SINGULAR BEHAVIOUR OF FINITE APPROXIMATIONS TO THE ADDITION MODEL

Philippe Laurençot
CNRS \& Institut Elie Cartan - Nancy, Université de Nancy I
BP 239, F-54506 Vandœuvre-lès-Nancy cedex, France

Abstract

Instantaneous gelation in the addition model with superlinear rate coefficients is investigated. The conjectured post-gelation solution is shown to arise naturally as the limit of solutions to some finite approximations as the number of equations grows to infinity. Non-existence of continuous solutions to the addition model is also established in that case.

1 Introduction

One approach to describe irreversible aggregation in the dynamics of cluster growth involves a coupled infinite system of ordinary differential equations first introduced by Smoluchowski [1] which reads

$$
\frac{d c_{i}}{d t}=\frac{1}{2} \sum_{j=1}^{i-1} a_{j, i-j} c_{j} c_{i-j}-c_{i} \sum_{j=1}^{\infty} a_{i, j} c_{j}, \quad i \geq 1
$$

Here c_{i} denotes the concentration of i-clusters (i.e. clusters made of i particles), $i \geq 1$ and the coagulation rates $a_{i, j}$ are nonnegative real numbers satisfying $a_{i, j}=a_{j, i}$ and characterising the reaction between i - and j-clusters, producing $i+j$-clusters. In the above equation, the first term of the right hand side accounts for the formation of i clusters by coagulation of smaller clusters while the second term represents the loss of i-clusters due to coalescence with other clusters. Notice that since particles are neither destroyed nor created in the coagulation process described above the total density of clusters $\sum_{i=1}^{\infty} i c_{i}$ is expected to remain constant through time evolution. However it is well-known that this is not always the case and that the total density of clusters may decrease after some time

$$
\begin{equation*}
\sum_{i=1}^{\infty} i c_{i}(t)<\sum_{i=1}^{\infty} i c_{i}(0) \text { for } t>T_{g e l} \tag{1.1}
\end{equation*}
$$

a phenomenon known as gelation [2,3]. The gelation phenomenon is said to take place instantaneously if $T_{g e l}=0$ in (1.1).

In this paper we discuss some mathematical properties of the so-called addition model which may be obtained from the Smoluchowski coagulation equation under the additional assumption that the only active reactions are those involving monoclusters. From a mathematical point of view, this assumption simply reads

$$
a_{i, j}=0 \quad \text { whenever } \min \{i, j\} \geq 2 .
$$

Introducing

$$
a_{i, 1}=a_{1, i}=a_{i} \quad \text { if } i \geq 2 \quad \text { and } a_{1,1}=2 a_{1},
$$

the addition model reads [4]

$$
\left\{\begin{align*}
\frac{d c_{1}}{d t}= & -a_{1} c_{1}^{2}-\sum_{i=1}^{\infty} a_{i} c_{1} c_{i} \tag{1.2}\\
\frac{d c_{i}}{d t}= & a_{i-1} c_{1} c_{i-1}-a_{i} c_{1} c_{i}, \quad i \geq 2 \tag{1.3}\\
& c_{i}(0)=c_{i}^{0}, \quad i \geq 1
\end{align*}\right.
$$

Let us mention that (1.2)-(1.3) may also be seen as a particular case of the BeckerDöring cluster equations [5] when fragmentation is not taken into account. Also a related system of ordinary differential equations arises in the modelling of hydrolysis and polymerisation of silicon alkoxides in the presence of ammonia [6].

Our interest in this paper is the behaviour of some approximations of (1.2)-(1.3) by finite systems of ordinary differential equations when the number of equations increases to infinity. More precisely, given $N \geq 3$ and $\delta \geq 0$ we denote by $c^{N}=\left(c_{i}^{N}\right)_{1 \leq i \leq N}$ the solution to

$$
\left\{\begin{array}{l}
\frac{d c_{1}^{N}}{d t}=-a_{1}\left(c_{1}^{N}\right)^{2}-\sum_{i=1}^{N-1} a_{i} c_{1}^{N} c_{i}^{N}-\delta a_{N} c_{1}^{N} c_{N}^{N} \tag{1.4}\\
\frac{d c_{i}^{N}}{d t}=a_{i-1} c_{1}^{N} c_{i-1}^{N}-a_{i} c_{1}^{N} c_{i}^{N}, \quad 2 \leq i \leq N-1 \\
\frac{d c_{N}^{N}}{d t}=a_{N-1} c_{1}^{N} c_{N-1}^{N}+\frac{\delta}{N} a_{N} c_{1}^{N} c_{N}^{N} \\
c_{i}^{N}(0)=c_{i}^{0}, \quad 1 \leq i \leq N
\end{array}\right.
$$

Assuming that

$$
\begin{equation*}
c_{i}^{0} \geq 0 \quad \text { for } \quad i \geq 1 \quad \text { and } \quad \sum_{i=1}^{\infty} i c_{i}^{0}<\infty \tag{1.5}
\end{equation*}
$$

we infer from [5, Theorem 2.2] that, if

$$
\sup _{i \geq 1} \frac{a_{i}}{i}<\infty
$$

there is a subsequence of $\left(c^{N}\right)_{N>3}$ which converges as $N \rightarrow+\infty$ towards a solution to (1.2)-(1.3) in the sense of Definition 2.4 below (in fact, only the case $\delta=0$ is considered in [5] but their proof easily extends to the case $\delta>0$). A similar result does not hold if

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} \frac{a_{i}}{i}=+\infty \tag{1.6}
\end{equation*}
$$

Indeed if (1.6) holds there are initial data fulfilling (1.5) for which (1.2)-(1.3) has no solution in the sense of Definition 2.4 (even locally in time) [5, Theorem 2.7]. In fact we
prove in this paper that for a large class of coagulation rates $\left(a_{i}\right)_{i \geq 1}$ satisfying (1.6) and for any initial data with $c_{1}^{0} \neq 0$ fulfilling (1.5) the system (1.2)-(1.3) has no solution (see Proposition 2.5 below for a precise statement). However the main result of this paper is that we are able to prove that the sequence $\left(c^{N}\right)_{N>3}$ still converges as $N \rightarrow+\infty$ under the assumption (1.6) and to identify its limit as well, namely

$$
\begin{aligned}
& \lim _{N \rightarrow+\infty} c_{1}^{N}(t)=0 \text { for a.e. } t \in(0,+\infty) \\
& \lim _{N \rightarrow+\infty} c_{i}^{N}(t)=c_{i}^{0} \text { for } t \in[0,+\infty) \text { and } i \geq 2
\end{aligned}
$$

Clearly when $c_{1}^{0} \neq 0$ the limit $\left(c^{N}\right)_{N \geq 3}$ is not a solution to (1.2)-(1.3) in the sense of Definition 2.4 below but it is exactly the post-gel solution to (1.2)-(1.3) obtained by Brilliantov and Krapivsky [7] for coagulation rates $a_{i}=i^{\alpha}$, $\alpha>1$, using formal arguments along the lines of van Dongen [8]. Our result thus shows that though (1.2)-(1.3) has no solution when the coagulation rates satisfies (1.6) the occurrence of instantaneous gelation in this model may be seen in the limiting behaviour of a sequence of approximating finite systems.

2 Main results

Before stating precisely our results we recall some notations we will use throughout the paper and the definition of a solution to (1.2) as well. Define

$$
X=\left\{c=\left(c_{i}\right)_{i \geq 1}, \quad \sum_{i=1}^{\infty} i\left|c_{i}\right|<\infty\right\}
$$

which is a Banach space when endowed with the norm

$$
\|c\|=\sum_{i=1}^{\infty} i\left|c_{i}\right|, \quad c \in X
$$

We denote by X^{+}the positive cone of X

$$
X^{+}=\left\{c=\left(c_{i}\right)_{i \geq 1} \in X, \quad c_{i} \geq 0 \quad \text { for each } \quad i \geq 1\right\}
$$

Our main results then read as follows.
Theorem 2.1 Assume that the coagulation rates $\left(a_{i}\right)_{i \geq 1}$ fulfil

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} \frac{a_{i}}{i}=+\infty \tag{2.1}
\end{equation*}
$$

and put

$$
\begin{equation*}
\gamma_{m}=\min _{i \geq m} \frac{a_{i}}{i}, \quad m \geq 1 \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
c^{0}=\left(c_{i}^{0}\right)_{i \geq 1} \in X^{+} \quad \text { and } \quad \lim _{m \rightarrow+\infty} \gamma_{m} \sum_{i=m}^{\infty} i c_{i}^{0}=+\infty \tag{2.3}
\end{equation*}
$$

Finally let δ be a nonnegative real number and for $N \geq 3$ we denote by $c^{N}=\left(c_{i}^{N}\right)_{1 \leq i \leq N}$ the solution to (1.4). For each $i \geq 1$ the sequence $\left(c_{i}^{N}\right)_{N \geq 3}$ has a limit as $N \rightarrow+\infty$ and

$$
\begin{align*}
& \lim _{N \rightarrow+\infty} c_{1}^{N}(t)=0 \quad \text { for a.e. } \quad t \in(0,+\infty) \tag{2.4}\\
& \lim _{N \rightarrow+\infty} c_{i}^{N}(t)=c_{i}^{0} \quad \text { for } t \in(0,+\infty) \text { and } i \geq 2 \tag{2.5}
\end{align*}
$$

Note that the above result is only valid for initial data whose components increase sufficiently fast as $i \rightarrow+\infty$. In order to be able to state a similar result valid for general initial data in X^{+}we need to strengthen the assumptions on the coagulation rates and to assume that $\delta>0$. More precisely, we have the following result.

Theorem 2.2 Assume that the coagulation rates $\left(a_{i}\right)_{i \geq 1}$ satisfy

$$
\begin{align*}
& \lim _{i \rightarrow+\infty} \frac{a_{i}}{i \ln \left(1+a_{i}\right)}=+\infty \quad \text { and } \quad a_{i+1} \geq a_{i} \geq a_{1}>0, \quad i \geq 1, \tag{2.6}\\
& a_{i} \geq K i(\ln (1+i))^{\alpha}, \quad i \geq 1 \tag{2.7}
\end{align*}
$$

for some $\alpha>1$ and $K>0$. Assume further that

$$
\begin{equation*}
c^{0}=\left(c_{i}^{0}\right)_{i \geq 1} \in X^{+} \quad \text { and } \quad c_{1}^{0} \neq 0 \tag{2.8}
\end{equation*}
$$

Finally let δ be a positive real number and $c^{N}=\left(c_{i}^{N}\right)_{1 \leq i \leq N}$ be the solution to (1.4) for $N \geq 3$. For each $i \geq 1$ the sequence $\left(c_{i}^{N}\right)_{N \geq 3}$ has a limit as $N \rightarrow+\infty$ and (2.4)-(2.5) hold.

Remark 2.3 1. We actually prove a stronger result than (2.5), namely that the convergence (2.5) holds uniformly on compact subsets of $[0,+\infty)$.
2. It is straightforward to check that $a_{i}=i^{\beta}(\ln (1+i))^{\alpha}$ satisfies (2.6)-(2.7) when $\beta=1$ and $\alpha>1$ and when $\beta>1$ and $\alpha \geq 0$. Also, $a_{i}=e^{i}$ satisfies (2.6)-(2.7).
3. It is clear that if $c_{1}^{0}=0$ then $c^{N}=\left(0, c_{2}^{0}, \ldots, c_{N}^{N}\right)$ and the convergences (2.4)-(2.5) are still valid.

In order to prove Theorem 2.2, we shall show that the addition model (1.2) has no solution with a non-zero first component when the coagulation rates satisfy (2.6)-(2.7). We first recall the definition of a solution to (1.2).

Definition 2.4 [5] Let $T \in(0,+\infty]$. A solution $c=\left(c_{i}\right)_{i \geq 1}$ to the addition model (1.2) on $[0, T)$ is a function $c:[0, T) \rightarrow X$ such that
(i) $c_{i}(t) \geq 0$ for all $t \in[0, T)$ and $i \geq 1$,
(ii) $c_{i} \in \mathcal{C}([0, T))$ for each $i \geq 1$ and $\sup _{t \in[0, T)}\|c(t)\|<\infty$,
(iii) $\sum_{i=1}^{\infty} a_{i} c_{i} \in L^{1}(0, t)$ for each $t \in(0, T)$,
(iv) and for each $t \in[0, T)$

$$
\begin{aligned}
c_{1}(t) & =c_{1}(0)-\int_{0}^{t}\left(a_{1} c_{1}(s)+\sum_{i=1}^{\infty} a_{i} c_{i}(s)\right) c_{1}(s) d s \\
c_{i}(t) & =c_{i}(0)+\int_{0}^{t}\left(a_{i-1} c_{i-1}(s)-a_{i} c_{i}(s)\right) c_{1}(s) d s, \quad i \geq 2
\end{aligned}
$$

Our final result extends [5, Theorem 2.7] for coagulation rates satisfying (2.6)-(2.7) and reads as follows.

Proposition 2.5 Assume that the coagulation rates $\left(a_{i}\right)_{i \geq 1}$ fulfil (2.6)-(2.7) and let c be a solution to (1.2) on $[0, T)$ (in the sense of Definition 2.4) for some $T>0$. Then there is a sequence $\left(r_{i}\right)_{i \geq 1}$ in X^{+}such that $r_{1}=0$ and

$$
c_{1} \equiv 0 \quad \text { and } \quad c_{i} \equiv r_{i} \quad \text { for } \quad i \geq 2
$$

The proof of Proposition 2.5 follows the lines of van Dongen [8] and Carr and da Costa [9]. Let us mention at this point that the (local) existence of a solution to (1.2)(1.3) for the monodisperse initial datum $c_{1}^{0}=1$ and $c_{i}^{0}=0, i \geq 2$ seems to be still open for the coagulation rates $a_{i}=i(\ln (1+i))^{\alpha}$ with $\alpha \in(0,1]$.

3 Proofs of Theorems $2.1 \& 2.2$

A straightforward computation first yields the following result.
Lemma 3.1 Let $N \geq 3$ and $\left(g_{i}\right)_{1 \leq i \leq N}$ be N nonnegative real numbers. For $t \in[0,+\infty)$ and $\tau \in[0, t]$ there holds

$$
\begin{align*}
\sum_{i=1}^{N} g_{i}\left(c_{i}^{N}(t)-c_{i}^{N}(\tau)\right) & =\int_{\tau}^{t} \sum_{i=1}^{N-1}\left(g_{i+1}-g_{i}-g_{1}\right) a_{i} c_{1}^{N}(s) c_{i}^{N}(s) d s \\
& +\delta\left(\frac{g_{N}}{N}-g_{1}\right) \int_{\tau}^{t} a_{N} c_{1}^{N}(s) c_{N}^{N}(s) d s \tag{3.1}\\
\sum_{i=1}^{N} i c_{i}^{N}(t) & =\sum_{i=1}^{N} i c_{i}^{0} \tag{3.2}
\end{align*}
$$

We fix $T \in(0,+\infty)$.
Lemma 3.2 The sequence $\left(c_{1}^{N}\right)_{N>3}$ is a sequence of non-increasing functions which is bounded in $L^{\infty}(0, T) \cap W^{1,1}(0, \bar{T})$. For $i \geq 2$, the sequence $\left(c_{i}^{N}\right)_{N \geq 3}$ is bounded in $W^{1, \infty}(0, T)$.

Proof. Let $i \geq 1$. Since $\left(c_{i}^{N}\right)_{N>3}$ is a sequence of non-negative functions, the boundedness of $\left(c_{i}^{N}\right)_{N \geq 3}$ in $L^{\infty}(0, T)$ follows at once from (3.2) and either the first part of (2.3) or (2.8).

If $i \geq 2$, we infer from (1.4) and (3.2) that

$$
\left|\frac{d c_{i}^{N}}{d t}\right| \leq\left(a_{i-1}+a_{i}\right)\left\|c^{0}\right\|^{2}
$$

hence the boundedness of $\left(c_{i}^{N}\right)_{N \geq 3}$ in $W^{1, \infty}(0, T)$.
Finally by (1.4) c_{1}^{N} is a non-increasing function on $[0, T]$ and

$$
\int_{0}^{T}\left|\frac{d c_{1}^{N}}{d t}(s)\right| d s \leq c_{1}^{0}
$$

The proof of the lemma is thus complete.
Lemma 3.3 There is a function $c=\left(c_{i}\right)_{i \geq 1}:[0, T] \rightarrow X^{+}$and a subsequence of $\left(c^{N}\right)_{N \geq 3}$ (not relabeled) such that

$$
\begin{align*}
c_{1}^{N}(t) & \longrightarrow c_{1}(t) \text { for each } t \in[0, T] \tag{3.3}\\
c_{i}^{N} & \longrightarrow c_{i} \text { in } \mathcal{C}([0, T]) \text { for } i \geq 2 . \tag{3.4}
\end{align*}
$$

Moreover, c_{1} is a non-increasing function on $[0, T]$,

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{i} c_{1} c_{i} \in L^{1}(0, T) \tag{3.5}
\end{equation*}
$$

and for $i \geq 2$ and $t \in[0, T]$ there holds

$$
\begin{equation*}
c_{i}(t)=c_{i}^{0}+\int_{0}^{t}\left(a_{i-1} c_{i-1}(s)-a_{i} c_{i}(s)\right) c_{1}(s) d s \tag{3.6}
\end{equation*}
$$

Finally we have

$$
\begin{equation*}
\|c(t)\| \leq\left\|c^{0}\right\| \quad \text { for } \quad t \in[0, T] . \tag{3.7}
\end{equation*}
$$

Proof. Since $\left(c_{1}^{N}\right)_{N \geq 3}$ is bounded in $L^{\infty}(0, T) \cap W^{1,1}(0, T)$ the everywhere convergence of a subsequence of $\left(c_{1}^{N}\right)_{N \geq 3}$ follows from the Helly selection principle [10, p. 372-374] and c_{1} is a non-increasing function as a limit of non-increasing functions. Owing to

Lemma 3.2 we may apply the Arzela-Ascoli theorem to the sequence $\left(c_{i}^{N}\right)_{N>3}$ for $i \geq 2$ and obtain (3.4) by a diagonal procedure. Letting then $N \rightarrow+\infty$ in (3.2) yields (3.7).

We next integrate the first equation of (1.4) over $(0, T)$; this gives

$$
\int_{0}^{T} \sum_{i=1}^{N-1} a_{i} c_{1}^{N}(s) c_{i}^{N}(s) d s \leq c_{1}^{0}
$$

Fix $M \geq 2$. For $N \geq M+1$ the above inequality entails

$$
\int_{0}^{T} \sum_{i=1}^{M} a_{i} c_{1}^{N}(s) c_{i}^{N}(s) d s \leq c_{1}^{0}
$$

We may then let $N \rightarrow+\infty$ in the above inequality and use (3.3), (3.4) and the Fatou lemma to conclude that

$$
\int_{0}^{T} \sum_{i=1}^{M} a_{i} c_{1}(s) c_{i}(s) d s \leq c_{1}^{0}
$$

As M is arbitrary, we have proved (3.5). Finally (3.6) follows from (3.3), (3.4), (3.2) and the Lebesgue dominated convergence theorem by letting $N \rightarrow+\infty$ in (1.4).

Lemma 3.4 Let $m \geq 1$ and $t \in[0, T]$. The sequence $c=\left(c_{i}\right)_{i \geq 1}$ defined in Lemma 3.3 satisfies

$$
\begin{equation*}
\sum_{i=m+1}^{\infty} i c_{i}(t)=\sum_{i=m+1}^{\infty} i c_{i}^{0}+\int_{0}^{t}\left(\sum_{i=m+1}^{\infty} a_{i} c_{1}(s) c_{i}(s)+(m+1) a_{m} c_{1}(s) c_{m}(s)\right) d s \tag{3.8}
\end{equation*}
$$

Proof. As $c=\left(c_{i}\right)_{i \geq 1}$ satisfies (3.6) which is nothing but the addition model without the first equation, the proof of Lemma 3.4 is similar to that of [5, Theorem 2.5] to which we refer.
Proof of Theorem 2.1 Let $t \in[0, T]$ and $m \geq 1$. By (3.8) $s \mapsto \sum_{i=m+1}^{\infty} i c_{i}(s)$ is a non-decreasing function on $[0, T]$ while c_{1} is a non-increasing function by Lemma 3.3. Therefore

$$
\begin{equation*}
\gamma_{m} t c_{1}(t) \sum_{i=m+1}^{\infty} i c_{i}^{0} \leq \gamma_{m} \int_{0}^{t} \sum_{i=m+1}^{\infty} i c_{1}(s) c_{i}(s) d s \leq\left|\sum_{i=1}^{\infty} a_{i} c_{1} c_{i}\right|_{L^{1}(0, T)} \tag{3.9}
\end{equation*}
$$

By (3.5) the right hand side of (3.9) is finite. We then let $m \rightarrow+\infty$ in the left hand side of (3.9) and infer from (2.3) that

$$
t c_{1}(t)=0 \quad \text { for each } \quad t \in[0, T]
$$

Thus, $c_{1}(t)=0$ for each $t \in(0, T]$ which together with (3.6) entails that $c_{i}(t)=c_{i}^{0}$ for $t \in[0, T]$ and $i \geq 2$.

By Lemma 3.2 the sequence $\left(c_{1}^{N}\right)_{N>3}$ is relatively compact in $L^{1}(0, T)$ while the sequence $\left(c_{i}^{N}\right)_{N \geq 3}$ is relatively compact in $\mathcal{C}([0, T])$ for each $i \geq 2$. Since $\left(c^{N}\right)_{N \geq 3}$ has one and only one cluster point $\left(0, c_{2}^{0}, \ldots, c_{i}^{0}, \ldots\right)$ as $N \rightarrow+\infty$ we conclude that the whole sequence $\left(c_{1}^{N}\right)_{N \geq 3}$ converges to zero in $L^{1}(0, T)$ and the whole sequence $\left(c_{i}^{N}\right)_{N \geq 3}$ converges to c_{i}^{0} in $\mathcal{C}([0, T])$ for $i \geq 2$. As T was arbitrary, the proofs of Theorem 2.1 and Remark 2.3 are complete.
Proof of Theorem 2.2 Without loss of generality we assume that $\delta=1$.
Step 1. we first claim that for a.e. $t \in(0, T)$ there holds

$$
\begin{equation*}
c_{1}(t)\left(\|c(t)\|-\left\|c^{0}\right\|\right)=0 \tag{3.10}
\end{equation*}
$$

Indeed, on the one hand it follows from (3.2) and (3.3) that

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} c_{1}^{N}(t) \sum_{i=1}^{N} i c_{i}^{N}(t)=\left\|c^{0}\right\| c_{1}(t) \quad \text { for each } \quad t \in[0, T] . \tag{3.11}
\end{equation*}
$$

On the other hand integration of the first equation of (1.4) over $(0, T)$ entails

$$
\begin{equation*}
\int_{0}^{T} \sum_{i=1}^{N} a_{i} c_{1}^{N}(s) c_{i}^{N}(s) d s \leq c_{1}^{0} \tag{3.12}
\end{equation*}
$$

since $\delta>0$. We fix $M \geq 2$. For $N \geq M+1$ we infer from (3.5) and (3.12) that

$$
\begin{aligned}
& \int_{0}^{T}\left|\sum_{i=1}^{N} i c_{1}^{N}(s) c_{i}^{N}(s)-c_{1}(s)\|c(s)\|\right| d s \leq \sum_{i=1}^{M} i\left|c_{1}^{N} c_{i}^{N}-c_{1} c_{i}\right|_{L^{1}(0, T)} \\
& +\int_{0}^{T} \sum_{i=M+1}^{N} i c_{1}^{N}(s) c_{i}^{N}(s) d s+\int_{0}^{T} \sum_{i=M+1}^{\infty} i c_{1}(s) c_{i}(s) d s \\
& \leq \sum_{i=1}^{M} i\left|c_{1}^{N} c_{i}^{N}-c_{1} c_{i}\right|_{L^{1}(0, T)} \\
& +\frac{1}{\gamma_{M}}\left(\left|\sum_{i=M+1}^{N} a_{i} c_{1}^{N} c_{i}^{N}\right|_{L^{1}(0, T)}+\left|\sum_{i=M+1}^{\infty} a_{i} c_{1} c_{i}\right|_{L^{1}(0, T)}\right) \\
& \leq \sum_{i=1}^{M} i\left|c_{1}^{N} c_{i}^{N}-c_{1} c_{i}\right|_{L^{1}(0, T)}+\frac{1}{\gamma_{M}}\left(c_{1}^{0}+\left|\sum_{i=1}^{\infty} a_{i} c_{1} c_{i}\right|_{L^{1}(0, T)}\right)
\end{aligned}
$$

Owing to (3.3), (3.4), (3.2) and the Lebesgue dominated convergence theorem we may let $N \rightarrow+\infty$ in the above inequality and obtain

$$
\limsup _{N \rightarrow+\infty} \int_{0}^{T}\left|\sum_{i=1}^{N} i c_{1}^{N}(s) c_{i}^{N}(s)-c_{1}(s)\|c(s)\|\right| d s \leq \frac{1}{\gamma_{M}}\left(c_{1}^{0}+\left|\sum_{i=1}^{\infty} a_{i} c_{1} c_{i}\right|_{L^{1}(0, T)}\right)
$$

As M is arbitrary it follows from (2.7) that

$$
\begin{equation*}
\sum_{i=1}^{N} i c_{1}^{N} c_{i}^{N} \longrightarrow c_{1}\|c\| \quad \text { in } \quad L^{1}(0, T) \tag{3.13}
\end{equation*}
$$

Combining (3.11) and (3.13) then yields the claim (3.10).
Step 2. In order to prove that c_{1} vanishes identically on ($\left.0, T\right]$ we argue by contradiction. Assume thus that

$$
\begin{equation*}
c_{1}\left(t_{0}\right)>0 \text { for some } t_{0} \in(0, T] . \tag{3.14}
\end{equation*}
$$

As c_{1} is a non-increasing function on $[0, T]$ we have in fact

$$
\begin{equation*}
c_{1}(t) \geq c_{1}\left(t_{0}\right)>0 \quad \text { for each } t \in\left[0, t_{0}\right] . \tag{3.15}
\end{equation*}
$$

We next introduce a function $\Gamma=\left(\Gamma_{i}\right)_{i \geq 1}:\left[0, t_{0}\right] \rightarrow X^{+}$defined by

$$
\begin{align*}
& \Gamma_{1}(t)=c_{1}^{0}-\int_{0}^{t}\left(a_{1} c_{1}(s)+\sum_{i=1}^{\infty} a_{i} c_{i}(s)\right) c_{1}(s) d s \text { for } t \in\left[0, t_{0}\right] \tag{3.16}\\
& \Gamma_{i}(t)=c_{i}(t) \text { for } t \in\left[0, t_{0}\right] \text { and } i \geq 2 . \tag{3.17}
\end{align*}
$$

By (3.16), (3.4), (3.5) and (3.7) we have

$$
\begin{equation*}
\Gamma_{i} \in \mathcal{C}\left(\left[0, t_{0}\right]\right) \quad \text { for } \quad i \geq 1 \quad \text { and } \quad \sup _{t \in\left[0, t_{0}\right]}\|\Gamma(t)\| \leq\left\|c^{0}\right\| . \tag{3.18}
\end{equation*}
$$

We then infer from (3.10), (3.15) and (3.8) that for almost every $t \in\left(0, t_{0}\right)$ there holds

$$
c_{1}(t)=\left\|c^{0}\right\|-\sum_{i=2}^{\infty} i c_{i}(t)=c_{1}^{0}-\int_{0}^{t} \sum_{i=2}^{\infty} a_{i} c_{1}(s) c_{i}(s) d s-2 \int_{0}^{t} a_{1} c_{1}(s)^{2} d s
$$

hence

$$
\begin{equation*}
c_{1}(t)=\Gamma_{1}(t) \text { for a.e. } t \in\left(0, t_{0}\right) \tag{3.19}
\end{equation*}
$$

Owing to (3.19) and (3.17), (3.16) and (3.6) now read

$$
\begin{aligned}
& \Gamma_{1}(t)=c_{1}^{0}-\int_{0}^{t}\left(a_{1} \Gamma_{1}(s)+\sum_{i=1}^{\infty} a_{i} \Gamma_{i}(s)\right) \Gamma_{1}(s) d s \text { for } t \in\left[0, t_{0}\right] \\
& \Gamma_{i}(t)=c_{i}^{0}+\int_{0}^{t}\left(a_{i-1} \Gamma_{i-1}(s)-a_{i} \Gamma_{i}(s)\right) \Gamma_{1}(s) d s \text { for } t \in\left[0, t_{0}\right] \text { and } i \geq 2
\end{aligned}
$$

while (3.5), (3.19) and (3.15) yield $\sum_{i=1}^{\infty} a_{i} \Gamma_{i} \in L^{1}\left(0, t_{0}\right)$. Recalling (3.18) we have thus shown that Γ is a solution to the addition model (1.2) on $\left[0, t_{0}\right)$ in the sense of Definition 2.4. As the coagulation rates satisfy (2.6)-(2.7) we infer from Proposition 2.5 that $\Gamma_{1} \equiv 0$, hence a contradiction since $\Gamma_{1}(0)=c_{1}^{0} \neq 0$ by (2.8).

Consequently, $c_{1}(t)=0$ for each $t \in(0, T]$. We now proceed as in the proof of Theorem 2.1 to conclude.

4 Non-existence of solutions

This section is devoted to the proof of Proposition 2.5. As already mentioned, the approach we shall use follows the lines of van Dongen [8] and Carr and da Costa [9].

From now on we assume that the coagulation rates $\left(a_{i}\right)_{i \geq 1}$ fulfil (2.6)-(2.7) and that $c=\left(c_{i}\right)_{i \geq 1}$ is a solution to (1.2) on $[0, T)$ in the sense of Definition 2.4 for some $T \in(0,+\infty)$. If $c_{1}(0)=0$ then $c_{1} \equiv 0$ and there is nothing to prove. We therefore assume that

$$
\begin{equation*}
c_{1}(0) \neq 0 \tag{4.1}
\end{equation*}
$$

A similar proof to that of [5, Theorem 4.6] yields that

$$
\begin{equation*}
c_{i}(t)>0 \text { for } t \in(0, T) \text { and } i \geq 1, \tag{4.2}
\end{equation*}
$$

while [5, Corollary 2.6] entails

$$
\begin{equation*}
\|c(t)\|=\|c(0)\| \quad \text { for } \quad t \in[0, T) \tag{4.3}
\end{equation*}
$$

Owing to (4.1), (4.2) and the continuity of c_{1} on $[0, T / 2]$ there is a positive real number μ such that

$$
\begin{equation*}
c_{1}(t) \geq \mu>0 \quad \text { for } \quad t \in[0, T / 2] . \tag{4.4}
\end{equation*}
$$

Lemma 4.1 For each integer $p \geq 1$ we have

$$
\begin{equation*}
\sup _{t \in[0, T / 4]} \sum_{i=1}^{\infty} i^{p} a_{i} c_{i}(t)<\infty . \tag{4.5}
\end{equation*}
$$

Proof. By [5, Theorem 2.5] and (4.4) we have for $m \geq 2$ and $0 \leq t_{1} \leq t_{2} \leq T / 2$

$$
\begin{aligned}
\sum_{i=m}^{\infty} i c_{i}\left(t_{2}\right)= & \sum_{i=m}^{\infty} i c_{i}\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} \sum_{i=m}^{\infty} a_{i} c_{1}(s) c_{i}(s) d s \\
& +m \int_{t_{1}}^{t_{2}} a_{m-1} c_{1}(s) c_{m-1}(s) d s \\
\geq & \sum_{i=m}^{\infty} i c_{i}\left(t_{1}\right)+\gamma_{m} \mu \int_{t_{1}}^{t_{2}} \sum_{i=m}^{\infty} i c_{i}(s) d s
\end{aligned}
$$

where

$$
\gamma_{m}=\min _{i \geq m} \frac{a_{i}}{i}
$$

The Gronwall lemma and (4.3) then yield

$$
\sum_{i=m}^{\infty} i c_{i}(t) \leq\|c(0)\| \exp \left(\gamma_{m} \mu(t-T / 2)\right), \quad t \in[0, T / 2]
$$

Consequently, for $t \in[0, T / 4]$ and $m \geq 2$ we have

$$
\begin{equation*}
m c_{m}(t) \leq \sum_{i=m}^{\infty} i c_{i}(t) \leq\|c(0)\| \exp \left(-\gamma_{m} \mu T / 4\right) \tag{4.6}
\end{equation*}
$$

Now let $p \geq 1$ be an integer and $t \in[0, T / 4]$. We infer from (4.6) that

$$
\begin{equation*}
\sum_{i=2}^{\infty} i^{p} a_{i} c_{i}(t) \leq\|c(0)\| \sum_{i=2}^{\infty} \exp \left((p-1) \ln i+\ln \left(1+a_{i}\right)-\gamma_{i} \mu T / 4\right) \tag{4.7}
\end{equation*}
$$

and the right hand side of (4.7) is finite by (2.6). Indeed, it follows from (2.6) that for i large enough

$$
\frac{\gamma_{i}}{\ln i} \geq \frac{\gamma_{i}}{\ln \left(1+a_{i}\right)} \geq \min _{k \geq i} \frac{a_{k}}{k \ln \left(1+a_{k}\right)} \longrightarrow+\infty
$$

and the series on the right hand side of (4.7) is convergent.
Remark 4.2 The proof of Lemma 4.1 does not make use of (2.7).
Lemma 4.3 For each integer $p \geq 2$ and $t \in[0, T / 4]$ we have

$$
\begin{equation*}
\sum_{i=1}^{\infty} i^{p} c_{i}(t)-\sum_{i=1}^{\infty} i^{p} c_{i}(0)=\int_{0}^{t} \sum_{i=1}^{\infty}\left((i+1)^{p}-i^{p}-1\right) a_{i} c_{1}(s) c_{i}(s) d s \tag{4.8}
\end{equation*}
$$

Proof. Let $p \geq 2$. Owing to Lemma 4.1 we have

$$
\int_{0}^{t} \sum_{i=1}^{\infty}\left((i+1)^{p}-i^{p}\right) a_{i} c_{i}(s) d s<\infty
$$

and

$$
\sum_{i=1}^{\infty} i^{p} c_{i}(t), \sum_{i=1}^{\infty} i^{p} c_{i}(0)<\infty
$$

We then infer from [5, Theorem 2.5] that

$$
\sum_{i=2}^{\infty} i^{p} c_{i}(t)-\sum_{i=2}^{\infty} i^{p} c_{i}(0)=\int_{0}^{t} \sum_{i=2}^{\infty}\left((i+1)^{p}-i^{p}\right) a_{i} c_{1}(s) c_{i}(s) d s+2^{p} \int_{0}^{t} a_{1} c_{1}(s)^{2} d s
$$

Since

$$
c_{1}(t)=c_{1}(0)-2 \int_{0}^{t} a_{1} c_{1}(s)^{2} d s-\int_{0}^{t} \sum_{i=2}^{\infty} a_{i} c_{1}(s) c_{i}(s) d s
$$

by Definition 2.4 we obtain (4.8) after summing the above two identities.

Proof of Proposition 2.5 Let $p \geq 2$ be an integer and put (recall (4.3))

$$
M_{p}(t)=\frac{1}{\|c(t)\|} \sum_{i=1}^{\infty} i^{p} c_{i}(t)=\frac{1}{\|c(0)\|} \sum_{i=1}^{\infty} i^{p} c_{i}(t), \quad t \in[0, T / 4]
$$

Let $t \in[0, T / 4]$ and $s \in[0, t)$. Since $(i+1)^{p}-i^{p}-1 \geq p i^{p-1}$ for $i \geq 1$ it follows from (4.8), (4.4) and (2.7) that

$$
\begin{equation*}
M_{p}(t) \geq M_{p}(s)+K p \mu \int_{s}^{t} \sum_{i=1}^{\infty} i^{p-1}(\ln (1+i))^{\alpha} \frac{i c_{i}(\sigma)}{\|c(0)\|} d \sigma \tag{4.9}
\end{equation*}
$$

As $1 /(p-1) \in(0,1]$ we have for $i \geq 1$

$$
\begin{aligned}
i^{p-1}(\ln (1+i))^{\alpha} & \geq \frac{1+i^{p-1}}{2}\left(\ln \left(\left(1+i^{p-1}\right)^{1 /(p-1)}\right)\right)^{\alpha} \\
& \geq \frac{1}{2(p-1)^{\alpha}}\left(1+i^{p-1}\right)\left(\ln \left(1+i^{p-1}\right)\right)^{\alpha}
\end{aligned}
$$

Recalling (4.3) it follows from (4.9) and the above inequality that

$$
\begin{equation*}
M_{p}(t) \geq M_{p}(s)+\int_{s}^{t} \sum_{i=1}^{\infty} \varphi_{p}\left(i^{p-1}\right) \frac{i c_{i}(\sigma)}{\|c(\sigma)\|} d \sigma \tag{4.10}
\end{equation*}
$$

where

$$
\varphi_{p}(x)=\frac{K p \mu}{2(p-1)^{\alpha}}(1+x)(\ln (1+x))^{\alpha}, \quad x \in[0,+\infty) .
$$

As φ_{p} is a convex function the Jensen inequality and (4.10) entail

$$
\begin{equation*}
M_{p}(t) \geq M_{p}(s)+\int_{s}^{t} \varphi_{p}\left(M_{p}(\sigma)\right) d \sigma, \quad 0 \leq s<t \leq T / 4 \tag{4.11}
\end{equation*}
$$

Combining (4.11) and the following lemma ensure that T cannot exceed some upper bound depending on p.

Lemma 4.4 Let $\vartheta:(0,+\infty) \rightarrow(0,+\infty)$ be a positive and non-decreasing continuous function such that

$$
\int_{1}^{\infty} \frac{d x}{\vartheta(x)}<\infty
$$

We next consider a positive and non-decreasing continuous function f defined on the interval $[0, \tau]$ for some $\tau>0$ and satisfying

$$
f(t) \geq f(0)+\int_{0}^{t} \vartheta(f(s)) d s \quad \text { for } \quad t \in[0, \tau]
$$

Then necessarily

$$
\tau \leq \int_{f(0)}^{\infty} \frac{d x}{\vartheta(x)}
$$

By Definition 2.4 (ii) and Lemma $4.1 M_{p}(.+T / 8) \in \mathcal{C}([0, T / 8])$ and Lemma 4.4 and (4.11) entail

$$
T / 8 \leq \int_{M_{p}(T / 8)}^{\infty} \frac{d x}{\varphi_{p}(x)}
$$

hence

$$
\begin{equation*}
T \leq \frac{16}{(\alpha-1) K \mu}\left(\ln \left(\left(1+M_{p}(T / 8)\right)^{1 / p}\right)\right)^{1-\alpha} \tag{4.12}
\end{equation*}
$$

We then infer from (4.2) and [9, Lemma 2.2] that

$$
\lim _{p \rightarrow+\infty}\left(1+M_{p}(T / 8)\right)^{1 / p}=+\infty
$$

Since (4.12) is valid for each integer $p \geq 2$ we may let $p \rightarrow+\infty$ in (4.12) and conclude that $T=0$, hence a contradiction. Consequently we have necessarily $c_{1}(0)=0$ and thus $c_{1} \equiv 0$ on $[0, T]$. The proof of Proposition 2.5 is then complete.

Acknowledgments

This work was done while visiting the Weierstraß-Institut für Angewandte Analysis und Stochastik in Berlin. I thank this institution for its hospitality and support.

References

[1] M. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik. Zeitschr. 17 (1916), 557-599.
[2] F. Leyvraz and H.R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A 14 (1981), 3389-3405.
[3] E.M. Hendriks, M.H. Ernst and R.M. Ziff, Coagulation equations with gelation, J. Statist. Phys. 31 (1983), 519-563.
[4] E.M. Hendriks and M.H. Ernst, Exactly soluble addition and condensation models in coagulation kinetics, J. Colloid Interface Sci. 97 (1984), 176-194.
[5] J.M. Ball, J. Carr and O. Penrose, The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions, Comm. Math. Phys. 104 (1986), 657-692.
[6] T. Matsoukas and E. Gulari, Monomer-addition growth with a slow initiation step : a growth model for silica particles from alkoxides, J. Colloid Interface Sci. 132 (1989), 13-21.
[7] N.V. Brilliantov and P.L. Krapivsky, Non-scaling and source-induced scaling behaviour in aggregation models of movable monomers and immovable clusters, J. Phys. A 24 (1991), 4787-4803.
[8] P.G.J. van Dongen, On the possible occurrence of instantaneous gelation in Smoluchowski's coagulation equation, J. Phys. A 20 (1987), 1889-1904.
[9] J. Carr and F.P. da Costa, Instantaneous gelation in coagulation dynamics, Z. Angew. Math. Phys. 43 (1992), 974-983.
[10] A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis, Prentice-Hall, Inc., Englewood Cliffs, 1970.

