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Abstract

Instantaneous gelation in the addition model with superlinear rate coe�cients

is investigated. The conjectured post-gelation solution is shown to arise naturally

as the limit of solutions to some �nite approximations as the number of equations

grows to in�nity. Non-existence of continuous solutions to the addition model is

also established in that case.

1 Introduction

One approach to describe irreversible aggregation in the dynamics of cluster growth

involves a coupled in�nite system of ordinary di�erential equations �rst introduced by

Smoluchowski [1] which reads

dci

dt
=

1

2

i�1X
j=1

aj;i�j cj ci�j � ci

1X
j=1

ai;j cj; i � 1:

Here ci denotes the concentration of i-clusters (i.e. clusters made of i particles), i � 1

and the coagulation rates ai;j are nonnegative real numbers satisfying ai;j = aj;i and

characterising the reaction between i- and j-clusters, producing i + j-clusters. In the

above equation, the �rst term of the right hand side accounts for the formation of i-

clusters by coagulation of smaller clusters while the second term represents the loss of

i-clusters due to coalescence with other clusters. Notice that since particles are neither

destroyed nor created in the coagulation process described above the total density of

clusters
P
1

i=1 ici is expected to remain constant through time evolution. However it is

well-known that this is not always the case and that the total density of clusters may

decrease after some time

1X
i=1

ici(t) <

1X
i=1

ici(0) for t > Tgel; (1.1)

a phenomenon known as gelation [2, 3]. The gelation phenomenon is said to take place

instantaneously if Tgel = 0 in (1.1).

In this paper we discuss some mathematical properties of the so-called addition

model which may be obtained from the Smoluchowski coagulation equation under the

additional assumption that the only active reactions are those involving monoclusters.

From a mathematical point of view, this assumption simply reads

ai;j = 0 whenever min fi; jg � 2:

Introducing

ai;1 = a1;i = ai if i � 2 and a1;1 = 2a1;
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the addition model reads [4]8>>>><
>>>>:

dc1

dt
= �a1c

2
1 �

1X
i=1

aic1ci;

dci

dt
= ai�1c1ci�1 � aic1ci; i � 2;

(1.2)

ci(0) = c0i ; i � 1: (1.3)

Let us mention that (1.2)-(1.3) may also be seen as a particular case of the Becker-

Döring cluster equations [5] when fragmentation is not taken into account. Also a

related system of ordinary di�erential equations arises in the modelling of hydrolysis

and polymerisation of silicon alkoxides in the presence of ammonia [6].

Our interest in this paper is the behaviour of some approximations of (1.2)-(1.3) by

�nite systems of ordinary di�erential equations when the number of equations increases

to in�nity. More precisely, given N � 3 and � � 0 we denote by cN =

�
cNi
�
1�i�N

the

solution to 8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

dcN1
dt

= �a1
�
cN1
�2
�

N�1X
i=1

aic
N
1 c

N
i � �aNc

N
1 c

N
N ;

dcNi
dt

= ai�1c
N
1 c

N
i�1 � aic

N
1 c

N
i ; 2 � i � N � 1;

dcNN
dt

= aN�1c
N
1 c

N
N�1 +

�

N
aNc

N
1 c

N
N ;

cNi (0) = c0i ; 1 � i � N:

(1.4)

Assuming that

c0i � 0 for i � 1 and

1X
i=1

ic0i <1; (1.5)

we infer from [5, Theorem 2.2] that, if

sup

i�1

ai

i
<1;

there is a subsequence of
�
cN
�
N�3

which converges as N ! +1 towards a solution to

(1.2)-(1.3) in the sense of De�nition 2.4 below (in fact, only the case � = 0 is considered

in [5] but their proof easily extends to the case � > 0). A similar result does not hold

if

lim
i!+1

ai

i
= +1: (1.6)

Indeed if (1.6) holds there are initial data ful�lling (1.5) for which (1.2)-(1.3) has no

solution in the sense of De�nition 2.4 (even locally in time) [5, Theorem 2.7]. In fact we
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prove in this paper that for a large class of coagulation rates (ai)i�1 satisfying (1.6) and

for any initial data with c01 6= 0 ful�lling (1.5) the system (1.2)-(1.3) has no solution (see

Proposition 2.5 below for a precise statement). However the main result of this paper

is that we are able to prove that the sequence
�
cN
�
N�3

still converges as N ! +1

under the assumption (1.6) and to identify its limit as well, namely

lim
N!+1

cN1 (t) = 0 for a.e. t 2 (0;+1);

lim
N!+1

cNi (t) = c0i for t 2 [0;+1) and i � 2:

Clearly when c01 6= 0 the limit
�
cN
�
N�3

is not a solution to (1.2)-(1.3) in the sense

of De�nition 2.4 below but it is exactly the post-gel solution to (1.2)-(1.3) obtained

by Brilliantov and Krapivsky [7] for coagulation rates ai = i�, � > 1, using formal

arguments along the lines of van Dongen [8]. Our result thus shows that though

(1.2)-(1.3) has no solution when the coagulation rates satis�es (1.6) the occurrence

of instantaneous gelation in this model may be seen in the limiting behaviour of a

sequence of approximating �nite systems.

2 Main results

Before stating precisely our results we recall some notations we will use throughout the

paper and the de�nition of a solution to (1.2) as well. De�ne

X =

(
c = (ci)i�1;

1X
i=1

ijcij <1

)
;

which is a Banach space when endowed with the norm

kck =

1X
i=1

ijcij; c 2 X:

We denote by X+ the positive cone of X

X+
= fc = (ci)i�1 2 X; ci � 0 for each i � 1g :

Our main results then read as follows.

Theorem 2.1 Assume that the coagulation rates (ai)i�1 ful�l

lim
i!+1

ai

i
= +1; (2.1)

and put


m = min
i�m

ai

i
; m � 1: (2.2)
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Assume also that

c0 =
�
c0i
�
i�1

2 X+ and lim
m!+1


m

1X
i=m

ic0i = +1: (2.3)

Finally let � be a nonnegative real number and for N � 3 we denote by cN =

�
cNi
�
1�i�N

the solution to (1.4). For each i � 1 the sequence (cNi )N�3 has a limit as N ! +1

and

lim
N!+1

cN1 (t) = 0 for a.e. t 2 (0;+1); (2.4)

lim
N!+1

cNi (t) = c0i for t 2 (0;+1) and i � 2: (2.5)

Note that the above result is only valid for initial data whose components increase

su�ciently fast as i ! +1. In order to be able to state a similar result valid for

general initial data in X+ we need to strengthen the assumptions on the coagulation

rates and to assume that � > 0. More precisely, we have the following result.

Theorem 2.2 Assume that the coagulation rates (ai)i�1 satisfy

lim
i!+1

ai

i ln (1 + ai)
= +1 and ai+1 � ai � a1 > 0; i � 1; (2.6)

ai � K i (ln (1 + i))
�
; i � 1; (2.7)

for some � > 1 and K > 0. Assume further that

c0 =
�
c0i
�
i�1

2 X+ and c01 6= 0: (2.8)

Finally let � be a positive real number and cN =

�
cNi
�
1�i�N

be the solution to (1.4) for

N � 3. For each i � 1 the sequence (cNi )N�3 has a limit as N ! +1 and (2.4)-(2.5)

hold.

Remark 2.3 1. We actually prove a stronger result than (2.5), namely that the

convergence (2.5) holds uniformly on compact subsets of [0;+1).

2. It is straightforward to check that ai = i� (ln (1 + i))
�
satis�es (2.6)-(2.7) when

� = 1 and � > 1 and when � > 1 and � � 0. Also, ai = ei satis�es (2.6)-(2.7).

3. It is clear that if c01 = 0 then cN = (0; c02; : : : ; c
N
N) and the convergences (2.4)-(2.5)

are still valid.

In order to prove Theorem 2.2, we shall show that the addition model (1.2) has no

solution with a non-zero �rst component when the coagulation rates satisfy (2.6)-(2.7).

We �rst recall the de�nition of a solution to (1.2).
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De�nition 2.4 [5] Let T 2 (0;+1]. A solution c = (ci)i�1 to the addition model

(1.2) on [0,T) is a function c : [0; T )! X such that

(i) ci(t) � 0 for all t 2 [0; T ) and i � 1,

(ii) ci 2 C([0; T )) for each i � 1 and sup

t2[0;T )

kc(t)k <1,

(iii)

1X
i=1

aici 2 L1
(0; t) for each t 2 (0; T ),

(iv) and for each t 2 [0; T )

c1(t) = c1(0)�

Z t

0

 
a1c1(s) +

1X
i=1

aici(s)

!
c1(s) ds;

ci(t) = ci(0) +

Z t

0

(ai�1ci�1(s)� aici(s)) c1(s) ds; i � 2:

Our �nal result extends [5, Theorem 2.7] for coagulation rates satisfying (2.6)-(2.7)

and reads as follows.

Proposition 2.5 Assume that the coagulation rates (ai)i�1 ful�l (2.6)-(2.7) and let c

be a solution to (1.2) on [0; T ) (in the sense of De�nition 2.4) for some T > 0. Then

there is a sequence (ri)i�1 in X+ such that r1 = 0 and

c1 � 0 and ci � ri for i � 2:

The proof of Proposition 2.5 follows the lines of van Dongen [8] and Carr and da

Costa [9]. Let us mention at this point that the (local) existence of a solution to (1.2)-

(1.3) for the monodisperse initial datum c01 = 1 and c0i = 0, i � 2 seems to be still open

for the coagulation rates ai = i (ln (1 + i))
�
with � 2 (0; 1].

3 Proofs of Theorems 2.1 & 2.2

A straightforward computation �rst yields the following result.

Lemma 3.1 Let N � 3 and (gi)1�i�N be N nonnegative real numbers. For t 2 [0;+1)

and � 2 [0; t] there holds

NX
i=1

gi
�
cNi (t)� cNi (�)

�
=

Z t

�

N�1X
i=1

(gi+1 � gi � g1)aic
N
1 (s)c

N
i (s) ds

+ �
�gN
N
� g1

�Z t

�

aNc
N
1 (s)c

N
N(s) ds; (3.1)

NX
i=1

icNi (t) =

NX
i=1

ic0i : (3.2)
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We �x T 2 (0;+1).

Lemma 3.2 The sequence
�
cN1
�
N�3

is a sequence of non-increasing functions which

is bounded in L1(0; T ) \W 1;1
(0; T ). For i � 2, the sequence

�
cNi
�
N�3

is bounded in

W 1;1
(0; T ).

Proof. Let i � 1. Since
�
cNi
�
N�3

is a sequence of non-negative functions, the bound-

edness of
�
cNi
�
N�3

in L1(0; T ) follows at once from (3.2) and either the �rst part of

(2.3) or (2.8).

If i � 2, we infer from (1.4) and (3.2) that����dcNidt
���� � (ai�1 + ai)kc

0
k
2;

hence the boundedness of
�
cNi
�
N�3

in W 1;1
(0; T ).

Finally by (1.4) cN1 is a non-increasing function on [0; T ] andZ T

0

����dcN1dt (s)

���� ds � c01:

The proof of the lemma is thus complete. ut

Lemma 3.3 There is a function c = (ci)i�1 : [0; T ] ! X+ and a subsequence of�
cN
�
N�3

(not relabeled) such that

cN1 (t) �! c1(t) for each t 2 [0; T ]; (3.3)

cNi �! ci in C([0; T ]) for i � 2: (3.4)

Moreover, c1 is a non-increasing function on [0; T ],

1X
i=1

aic1ci 2 L1
(0; T ); (3.5)

and for i � 2 and t 2 [0; T ] there holds

ci(t) = c0i +

Z t

0

(ai�1ci�1(s)� aici(s)) c1(s) ds: (3.6)

Finally we have

kc(t)k � kc0k for t 2 [0; T ]: (3.7)

Proof. Since
�
cN1
�
N�3

is bounded in L1(0; T )\W 1;1
(0; T ) the everywhere convergence

of a subsequence of
�
cN1
�
N�3

follows from the Helly selection principle [10, p. 372�374]

and c1 is a non-increasing function as a limit of non-increasing functions. Owing to
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Lemma 3.2 we may apply the Arzela-Ascoli theorem to the sequence
�
cNi
�
N�3

for i � 2

and obtain (3.4) by a diagonal procedure. Letting then N ! +1 in (3.2) yields (3.7).

We next integrate the �rst equation of (1.4) over (0; T ) ; this gives

Z T

0

N�1X
i=1

aic
N
1 (s)c

N
i (s) ds � c01:

Fix M � 2. For N � M + 1 the above inequality entails

Z T

0

MX
i=1

aic
N
1 (s)c

N
i (s) ds � c01:

We may then let N ! +1 in the above inequality and use (3.3), (3.4) and the Fatou

lemma to conclude that Z T

0

MX
i=1

aic1(s)ci(s) ds � c01:

As M is arbitrary, we have proved (3.5). Finally (3.6) follows from (3.3), (3.4), (3.2)

and the Lebesgue dominated convergence theorem by letting N ! +1 in (1.4). ut

Lemma 3.4 Let m � 1 and t 2 [0; T ]. The sequence c = (ci)i�1 de�ned in Lemma 3.3

satis�es

1X
i=m+1

ici(t) =

1X
i=m+1

ic0i +

Z t

0

 
1X

i=m+1

aic1(s)ci(s) + (m+ 1)amc1(s)cm(s)

!
ds: (3.8)

Proof. As c = (ci)i�1 satis�es (3.6) which is nothing but the addition model without

the �rst equation, the proof of Lemma 3.4 is similar to that of [5, Theorem 2.5] to

which we refer. ut

Proof of Theorem 2.1 Let t 2 [0; T ] and m � 1. By (3.8) s 7!
P
1

i=m+1 ici(s) is a

non-decreasing function on [0; T ] while c1 is a non-increasing function by Lemma 3.3.

Therefore


mtc1(t)

1X
i=m+1

ic0i � 
m

Z t

0

1X
i=m+1

ic1(s)ci(s) ds �

�����
1X
i=1

aic1ci

�����
L1(0;T )

: (3.9)

By (3.5) the right hand side of (3.9) is �nite. We then let m ! +1 in the left hand

side of (3.9) and infer from (2.3) that

tc1(t) = 0 for each t 2 [0; T ]:

Thus, c1(t) = 0 for each t 2 (0; T ] which together with (3.6) entails that ci(t) = c0i for

t 2 [0; T ] and i � 2.
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By Lemma 3.2 the sequence
�
cN1
�
N�3

is relatively compact in L1
(0; T ) while the

sequence
�
cNi
�
N�3

is relatively compact in C([0; T ]) for each i � 2. Since
�
cN
�
N�3

has

one and only one cluster point (0; c02; : : : ; c
0
i ; : : :) as N ! +1 we conclude that the

whole sequence
�
cN1
�
N�3

converges to zero in L1
(0; T ) and the whole sequence

�
cNi
�
N�3

converges to c0i in C([0; T ]) for i � 2. As T was arbitrary, the proofs of Theorem 2.1

and Remark 2.3 are complete. ut

Proof of Theorem 2.2 Without loss of generality we assume that � = 1.

Step 1. we �rst claim that for a.e. t 2 (0; T ) there holds

c1(t)
�
kc(t)k � kc0k

�
= 0: (3.10)

Indeed, on the one hand it follows from (3.2) and (3.3) that

lim
N!+1

cN1 (t)

NX
i=1

icNi (t) = kc0kc1(t) for each t 2 [0; T ]: (3.11)

On the other hand integration of the �rst equation of (1.4) over (0; T ) entails

Z T

0

NX
i=1

aic
N
1 (s)c

N
i (s) ds � c01 (3.12)

since � > 0. We �x M � 2. For N �M + 1 we infer from (3.5) and (3.12) that

Z T

0

�����
NX
i=1

icN1 (s)c
N
i (s)� c1(s)kc(s)k

����� ds �
MX
i=1

i
��cN1 cNi � c1ci

��
L1(0;T )

+

Z T

0

NX
i=M+1

icN1 (s)c
N
i (s) ds+

Z T

0

1X
i=M+1

ic1(s)ci(s) ds

�

MX
i=1

i
��cN1 cNi � c1ci

��
L1(0;T )

+
1


M

0
@
�����

NX
i=M+1

aic
N
1 c

N
i

�����
L1(0;T )

+

�����
1X

i=M+1

aic1ci

�����
L1(0;T )

1
A

�

MX
i=1

i
��cN1 cNi � c1ci

��
L1(0;T )

+
1


M

0
@c01 +

�����
1X
i=1

aic1ci

�����
L1(0;T )

1
A :

Owing to (3.3), (3.4), (3.2) and the Lebesgue dominated convergence theorem we may

let N ! +1 in the above inequality and obtain

lim sup

N!+1

Z T

0

�����
NX
i=1

icN1 (s)c
N
i (s)� c1(s)kc(s)k

����� ds � 1


M

0
@c01 +

�����
1X
i=1

aic1ci

�����
L1(0;T )

1
A :
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As M is arbitrary it follows from (2.7) that

NX
i=1

icN1 c
N
i �! c1kck in L1

(0; T ): (3.13)

Combining (3.11) and (3.13) then yields the claim (3.10).

Step 2. In order to prove that c1 vanishes identically on (0; T ] we argue by contradiction.

Assume thus that

c1(t0) > 0 for some t0 2 (0; T ]: (3.14)

As c1 is a non-increasing function on [0; T ] we have in fact

c1(t) � c1(t0) > 0 for each t 2 [0; t0]: (3.15)

We next introduce a function � = (�i)i�1 : [0; t0]! X+ de�ned by

�1(t) = c01 �

Z t

0

 
a1c1(s) +

1X
i=1

aici(s)

!
c1(s) ds for t 2 [0; t0]; (3.16)

�i(t) = ci(t) for t 2 [0; t0] and i � 2: (3.17)

By (3.16), (3.4), (3.5) and (3.7) we have

�i 2 C([0; t0]) for i � 1 and sup

t2[0;t0]

k�(t)k � kc0k: (3.18)

We then infer from (3.10), (3.15) and (3.8) that for almost every t 2 (0; t0) there holds

c1(t) = kc0k �

1X
i=2

ici(t) = c01 �

Z t

0

1X
i=2

aic1(s)ci(s) ds� 2

Z t

0

a1c1(s)
2 ds;

hence

c1(t) = �1(t) for a.e. t 2 (0; t0): (3.19)

Owing to (3.19) and (3.17), (3.16) and (3.6) now read

�1(t) = c01 �

Z t

0

 
a1�1(s) +

1X
i=1

ai�i(s)

!
�1(s) ds for t 2 [0; t0];

�i(t) = c0i +

Z t

0

(ai�1�i�1(s)� ai�i(s)) �1(s) ds for t 2 [0; t0] and i � 2;

while (3.5), (3.19) and (3.15) yield
P
1

i=1 ai�i 2 L1
(0; t0). Recalling (3.18) we have

thus shown that � is a solution to the addition model (1.2) on [0; t0) in the sense of

De�nition 2.4. As the coagulation rates satisfy (2.6)-(2.7) we infer from Proposition 2.5

that �1 � 0, hence a contradiction since �1(0) = c01 6= 0 by (2.8).

Consequently, c1(t) = 0 for each t 2 (0; T ]. We now proceed as in the proof of

Theorem 2.1 to conclude. ut
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4 Non-existence of solutions

This section is devoted to the proof of Proposition 2.5. As already mentioned, the

approach we shall use follows the lines of van Dongen [8] and Carr and da Costa [9].

From now on we assume that the coagulation rates (ai)i�1 ful�l (2.6)-(2.7) and

that c = (ci)i�1 is a solution to (1.2) on [0; T ) in the sense of De�nition 2.4 for some

T 2 (0;+1). If c1(0) = 0 then c1 � 0 and there is nothing to prove. We therefore

assume that

c1(0) 6= 0: (4.1)

A similar proof to that of [5, Theorem 4.6] yields that

ci(t) > 0 for t 2 (0; T ) and i � 1; (4.2)

while [5, Corollary 2.6] entails

kc(t)k = kc(0)k for t 2 [0; T ): (4.3)

Owing to (4.1), (4.2) and the continuity of c1 on [0; T=2] there is a positive real number

� such that

c1(t) � � > 0 for t 2 [0; T=2]: (4.4)

Lemma 4.1 For each integer p � 1 we have

sup

t2[0;T=4]

1X
i=1

ipaici(t) <1: (4.5)

Proof. By [5, Theorem 2.5] and (4.4) we have for m � 2 and 0 � t1 � t2 � T=2

1X
i=m

ici(t2) =

1X
i=m

ici(t1) +

Z t2

t1

1X
i=m

aic1(s)ci(s) ds

+ m

Z t2

t1

am�1c1(s)cm�1(s) ds

�

1X
i=m

ici(t1) + 
m�

Z t2

t1

1X
i=m

ici(s) ds

where


m = min
i�m

ai

i
:

The Gronwall lemma and (4.3) then yield

1X
i=m

ici(t) � kc(0)k exp (
m�(t� T=2)) ; t 2 [0; T=2]:

10



Consequently, for t 2 [0; T=4] and m � 2 we have

mcm(t) �

1X
i=m

ici(t) � kc(0)k exp (�
m�T=4) : (4.6)

Now let p � 1 be an integer and t 2 [0; T=4]. We infer from (4.6) that

1X
i=2

ipaici(t) � kc(0)k

1X
i=2

exp ((p� 1) ln i + ln (1 + ai)� 
i�T=4) ; (4.7)

and the right hand side of (4.7) is �nite by (2.6). Indeed, it follows from (2.6) that for

i large enough

i

ln i
�


i

ln (1 + ai)
� min

k�i

ak

k ln (1 + ak)
�! +1;

and the series on the right hand side of (4.7) is convergent. ut

Remark 4.2 The proof of Lemma 4.1 does not make use of (2.7).

Lemma 4.3 For each integer p � 2 and t 2 [0; T=4] we have

1X
i=1

ipci(t)�

1X
i=1

ipci(0) =

Z t

0

1X
i=1

((i + 1)
p
� ip � 1) aic1(s)ci(s) ds: (4.8)

Proof. Let p � 2. Owing to Lemma 4.1 we have

Z t

0

1X
i=1

((i+ 1)
p
� ip) aici(s) ds <1

and
1X
i=1

ipci(t) ;

1X
i=1

ipci(0) <1:

We then infer from [5, Theorem 2.5] that

1X
i=2

ipci(t)�

1X
i=2

ipci(0) =

Z t

0

1X
i=2

((i + 1)
p
� ip) aic1(s)ci(s) ds+ 2

p

Z t

0

a1c1(s)
2 ds:

Since

c1(t) = c1(0)� 2

Z t

0

a1c1(s)
2 ds�

Z t

0

1X
i=2

aic1(s)ci(s) ds

by De�nition 2.4 we obtain (4.8) after summing the above two identities. ut
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Proof of Proposition 2.5 Let p � 2 be an integer and put (recall (4.3))

Mp(t) =
1

kc(t)k

1X
i=1

ipci(t) =
1

kc(0)k

1X
i=1

ipci(t); t 2 [0; T=4]:

Let t 2 [0; T=4] and s 2 [0; t). Since (i + 1)
p
� ip � 1 � pip�1 for i � 1 it follows from

(4.8), (4.4) and (2.7) that

Mp(t) �Mp(s) +Kp�

Z t

s

1X
i=1

ip�1 (ln (1 + i))
� ici(�)

kc(0)k
d�: (4.9)

As 1=(p� 1) 2 (0; 1] we have for i � 1

ip�1 (ln (1 + i))
�
�

1 + ip�1

2

�
ln

��
1 + ip�1

�1=(p�1)���
�

1

2(p� 1)�
(1 + ip�1)

�
ln

�
1 + ip�1

���
:

Recalling (4.3) it follows from (4.9) and the above inequality that

Mp(t) �Mp(s) +

Z t

s

1X
i=1

'p

�
ip�1

� ici(�)

kc(�)k
d�; (4.10)

where

'p(x) =
Kp�

2(p� 1)�
(1 + x) (ln (1 + x))

�
; x 2 [0;+1):

As 'p is a convex function the Jensen inequality and (4.10) entail

Mp(t) �Mp(s) +

Z t

s

'p (Mp(�)) d�; 0 � s < t � T=4: (4.11)

Combining (4.11) and the following lemma ensure that T cannot exceed some upper

bound depending on p.

Lemma 4.4 Let # : (0;+1)! (0;+1) be a positive and non-decreasing continuous

function such that Z
1

1

dx

#(x)
<1:

We next consider a positive and non-decreasing continuous function f de�ned on the

interval [0; � ] for some � > 0 and satisfying

f(t) � f(0) +

Z t

0

#(f(s)) ds for t 2 [0; � ]:

Then necessarily

� �

Z
1

f(0)

dx

#(x)
:

12



By De�nition 2.4 (ii) and Lemma 4.1 Mp(: + T=8) 2 C([0; T=8]) and Lemma 4.4

and (4.11) entail

T=8 �

Z
1

Mp(T=8)

dx

'p(x)
;

hence

T �

16

(�� 1)K�

�
ln

�
(1 +Mp(T=8))

1=p
��1��

: (4.12)

We then infer from (4.2) and [9, Lemma 2.2] that

lim
p!+1

(1 +Mp(T=8))
1=p

= +1:

Since (4.12) is valid for each integer p � 2 we may let p! +1 in (4.12) and conclude

that T = 0, hence a contradiction. Consequently we have necessarily c1(0) = 0 and

thus c1 � 0 on [0; T ]. The proof of Proposition 2.5 is then complete. ut
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