
Weierstra�{Institut

f�ur Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 { 8633

Direct Linear Solver for Vector and Parallel

Computers

Friedrich Grund

Preprint No. 415

Berlin 1998

��������

Direct Linear Solvers for Vector and Parallel

Computers?

Friedrich Grund

Weierstrass Institute for Applied Analysis and Stochastics

Mohrenstrasse 39, 10117 Berlin, Germany

grund@wias-berlin.de

http://www.wias-berlin.de/�grund

Abstract. We consider direct methods for the numerical solution of lin-

ear systems with unsymmetric sparse matrices. Di�erent strategies for

the determination of the pivots are studied. For solving several linear sys-

tems with the same pattern structure we generate a pseudo code, that

can be interpreted repeatedly to compute the solutions of these systems.

The pseudo code can be advantageously adapted to vector and parallel

computers. For that we have to �nd out the instructions of the pseudo

code which are independent of each other. Based on this information,

one can determine vector instructions for the pseudo code operations

(vectorization) or spread the operations among di�erent processors (par-

allelization). The methods are successfully used on vector and parallel

computers for the circuit simulation of VLSI circuits as well as for the

dynamic process simulation of complex chemical production plants.

1 Introduction

For solving systems of linear equations

Ax = b; A 2 IR
n�n; x; b 2 IR

n (1)

with non singular, unsymmetric and sparse matrices A, we use the Gaussian

elimination method. Only the nonzero elements of the matrices are stored for

computation. In general, we need to establish a suitable control for the numerical

stability and for the �ll-in of the Gaussian elimination method.

For the time domain simulation in many industrial applications structural

properties are used for a modular modeling. Thus electronic circuits usually

consist of identical subcircuits as inverter chains or adders. Analogously, complex

chemical plants consist of process units as pumps, reboilers or trays of distillation

columns. A mathematical model is assigned to each subcircuit or unit and they

are coupled. This approach leads to initial value problems for large systems

of di�erential�algebraic equations. For solving such problems we use backward

di�erentiation formulas and the resulting systems of nonlinear equations are

? This work was supported by the Federal Ministry of Education, Science, Research

and Technology, Bonn, Germany under grants GA7FVB-3.0M370 and GR7FV1.

solved with Newton methods. The Jacobi matrices are sparse and maintain their

sparsity structure during the integration over many time steps. In general, the

Gaussian elimination method can be used with the same ordering of the pivots

for these steps. A pseudo code is generated to perform the factorizations of the

matrices and the solving of the systems with triangular matrices e�ciently. This

code contains only the required operations for the factorization and for solving

the triangular systems. It is de�ned independently of a computer and can be

adapted to vector and parallel computers.

The solver has been proven successfully for the dynamic process simulation of

large real life chemical production plants and for the electric circuit simulation

as well. Computing times for complete dynamic simulation runs of industrial

applications are given. For di�erent linear systems with matrices arising from

scienti�c and technical problems the computing times for several linear solvers

are compared.

2 The method

The Gaussian elimination method

PAQ = LU; (2)

Ly = Pb; UQ�1x = y (3)

is used for solving the linear systems (1). The nonzero elements of the matrix A

are stored in compressed sparse row format, also known as sparse row wise

format. L is a lower triangular and U an upper triangular matrix. The row

permutation matrix P is used to provide numerical stability and the column

permutation matrix Q is used to control sparsity. In the following, we consider

two cases for the determination of the matrices P and Q.

In the �rst case, we determine in each elimination step a permutation in

the matrix Q. For this, we search the �rst column with a minimal number of

nonzero elements in the matrix to be eliminated. This column becomes the pivot

column [6] and the columns are reordered (dynamic ordering). For keeping the

method numerically stable at stage k of the elimination, the pivot ai;j is selected

among those candidates satisfying the numerical threshold criterion

jai;j j � � max
l�k

jal;j j

with a given threshold parameter � 2 (0; 1]. This process is called partial pivot-

ing. In our applications we usually choose � = 0:01 or � = 0:001.

In the second case, we determine in a �rst step the permutation matrix Q

by minimum degree ordering of ATA or of AT
+ A, using the algorithm from

SuperLU [9]. Then the columns are reordered and in a separate step the permu-

tation matrix P is determined by using partial pivoting.

2

3 Pseudo code

As mentioned above, it is possible to use the Gaussian elimination method with

the same pivot ordering to solve several linear systems with the same pattern

structure of the coe�cient matrix. To do this, we generate a pseudo code to

perform the factorization of the matrix as well as to solve the triangular systems

(forward and back substitution).

For the generation of the pseudo code, the factorization of the Gaussian

elimination method is used as shown in Fig. 1.

for i = 2; n do

ai�1;i�1 = 1=ai�1;i�1

for j = i; n do

aj;i�1 = (aj;i�1 �
P

i�2

k=1
aj;kak;i�1)ai�1;i�1

enddo

for j = i; n do

ai;j = ai;j �
P

i�1

k=1
ai;kak;j

enddo

enddo

an;n = 1=an;n.

Fig. 1. Gaussian elimination method

The algorithm needs n divisions. Six di�erent types of pseudo code instruc-

tions are su�cient for the factorization of the matrix, four instructions for the

computation of the elements of the upper triangular matrix and two of the lower

triangular matrix. For computing the elements of the upper triangular matrix

one has to distinguish between the cases that the element is a pivot or not and

that it exists or that it is generated by �ll-in. For the determination of the ele-

ments of the lower triangular matrix one has only to distinguish that the element

exists or that it is generated by �ll-in.

Let l, with 1 � l � 6, denote the type of the pseudo code instruction, n

the number of elements of the scalar product and k;m; i�; j�; � = 1; 2; : : : ; n the

indices of matrix elements. Then, the instruction of the pseudo code to compute

an element of the lower triangular matrix

a(k) =

a(k)�

nX
�=1

a(i�)a(j�)

!
a(m)

is coded in the following form

l n i1 j1 ... in jn k m
.

3

The integer numbers l; n; i�; j�; k and m are stored in integer array elements.

For l and n only one array element is used.

The structure of the other pseudo code instructions is analogous.

Let � denote the number of multiplications and divisions for the factorization

of the matrix and � the number of nonzero elements of the upper and lower

triangular matrices. Then one can estimate the number of integer array elements

that are necessary to store the pseudo code with

(�+ �):

At this
 � 2:2 was found to be su�cient for large systems with more than

thousand equations while one has to choose
 � 4 for smaller systems.

4 Vectorization and parallelization

The pseudo code instructions are used for the vectorization and the paralleliza-

tion as well. For the factorization in (2) and for solving the triangular systems

in (3), elements have to be found that can be computed independently of each

other.

In the case of the factorization, a matrix

M = (mi;j); mi;j 2 IN [f0; 1; 2; : : : ; n2g

is assigned to the matrix

LU = PAQ;

where mi;j denotes the level of independence.

In the case of solving the triangular systems, vectors

p = (pi) and q = (qi); pi; qi 2 f0; 1; : : : ; ng

are assigned analogously to the vectors x and y from

Ly = Pb and UQ�1x = y:

Here the levels of independence are denoted by pi and qi.

The elements with the assigned level zero do not need any operations. Now,

all elements with the same level in the factorized matrix (2) as well as in the

vectors x and y from (3) can be computed independently. First all elements with

level one are computed, then all elements with level two and so on.

The levels of independence for the matrix elements in (2) and for the vector

elements in (3) can be computed with the algorithm of Yamamoto and Taka-

hashi [11]. The algorithm for the determination of the levels of independence

mi;j is shown in Fig. 2. The corresponding algorithm for the determination of

the elements of the vectors p and q is analogous to it.

4

M = 0

for i = 1; n� 1 do

for all fj : aj;i 6= 0 & j > ig do

mj;i = 1 +max(mj;i;mi;i)

for all fk : ai;k 6= 0 & k > ig do

mj;k = 1 +max(mj;k;mj;i; mi;k)

enddo

enddo

enddo.

Fig. 2. Algorithm of Yamamoto and Takahashi

For a vector computer, we have to �nd vector instructions at the di�erent

levels of independence [2, 7]. Let a(i) denote the nonzero elements in LU . The

vector instructions, shown in Fig. 3, have been proven to be successful in the

case of factorization. The di�culty is that the array elements are addressed

indirectly. But adequate vector instructions exist for many vector computers.

The Cray vector computers, for example, have explicit calls to gather/scatter

routines for the indirect addressing.

s =
X
�

a(i�) � a(j�)

a(ik) = 1=a(ik)

a(ik) = a(ik) � a(il)

a(ik) = (a(il) � a(im) + a(ip) � a(iq)) � a(ik)

Fig. 3. Types of vector instructions for factorization

For parallelization, it needs to distinguish between parallel computers with

shared memory and with distributed memory.

In the case of parallel computers with shared memory and p processors, we

assign the pseudo code for each level of independence in parts of approximately

same size to the processors. After the processors have executed their part of the

pseudo code instructions of a level concurrently, a synchronization among the

processors is needed. Then the execution of the next level can be started. If the

processors are vector processors then this property is also used. The moderate

parallel computer Cray J90 with a maximum number of 32 processors is an

example for such a computer.

In the case of parallel computers with distributed memory and q processors,

the pseudo code for each level of independence is again partitioned into q parts

5

of approximately same size. But in this case, the parts of the pseudo code are

moved to the memory of each individual processor. The transfer of parts of the

code to the memories of the individual processors is done only once. A synchro-

nization is carried out analogous to the shared memory case. The partitioning

and the storage of the matrix as well as of the vectors is implemented in the fol-

lowing way. For small problems the elements of the matrix, right hand side and

solution vector are located in the memory of one processor, while for large prob-

lems, they have to be distributed over the memories of several processors. We

assume that the data communication between the processors for the exchange

of data concerning elements of the matrix, right hand side and solution vector is

supported by the operating system. The massive parallel computers Cray T3D

and T3E are examples for such computers.

Now, we consider a small example to illustrate our approach. For a matrix

A =

0
BBBB@

9 2 1

1 3 5

2 4

1 7 8

5 7 9

1
CCCCA (4)

the determination the permutation matrices P and Q gives

PAQ =

0
BBBB@

2 4

5 7 9

2 9 1

1 7 8

1 3 5

1
CCCCA : (5)

The nonzero elements of the matrix A are stored in sparse row format in the

vector a. Let i denote the index of the i-th element in the vector a, then the

elements of the matrix PAQ are stored in the following way

0
BBBB@

7 8

12 13 14

2 1 3

9 10 11

4 5 6

1
CCCCA : (6)

The matrix M assigned to the matrix PAQ is found to be

M =

0
BBBB@

0 0

1 2 0

3 0 4

1 0 5

1 1 6

1
CCCCA : (7)

From (7), we can see, that six independent levels exist for the factorization.

The instructions for the factorization of the matrix A resulting from (4) � (7)

are shown in Table 1.

6

Table 1. Instructions for the factorization

Level Instructions

a(12) = a(12)/a(7)

a(9) = a(9)/a(1)
1 a(4) = a(4)/a(1)

a(5) = a(5)/a(10)

2 a(13) = a(13) � a(12) ? a(8)

3 a(2) = a(2)/a(13)

4 a(3) = a(3) � a(2) ? a(14)

5 a(11) = a(11) � a(5) ? a(3)

6 a(6) = a(6) � a(4) ? a(3) � a(5) ? a(11)

Now, we consider, for example, the instructions of level one in Table 1 only.

One vector instruction of the length four can be generated (see Fig.3) on a vector

computer.

On a parallel computer with distributed memory and two processors, the

allocation of the instructions of level one to the processors is shown in Table 2.

The transfer of the instructions to the local memory of the processors is done

during the analyse step of the algorithm. The data transfer is carried out by the

operating system.

Table 2. Allocation of instructions to processors

processor processor

one two

computation of a(12), a(9) a(4), a(5)

synchronization

On a parallel computer with shared memory the approach is analogous. The

processors have to be synchronized after the execution of the instructions of each

level.

From our experiments with many di�erent matrices arising from the process

simulation of chemical plants and the circuit simulation respectively, it was found

that the number of levels of independence is small. The number of instructions

in the �rst two levels is very large, in the next four to six levels it is large and

�nally it becomes smaller and smaller.

7

5 Numerical results

The developed numerical methods are realized in the program package GSPAR.

GSPAR is implemented on workstations (Digital AlphaStation, IBM RS/6000,

SGI, Sun UltraSparc 1 and 2), vector computers (Cray J90, C90), parallel

computers with shared memory (Cray J90, C90, SGI Origin2000, Digital Al-

phaServer) and parallel computers with distributed memory (Cray T3D).

The considered systems of linear equations result from real life problems in

the dynamic process simulation of chemical plants, in the electric circuit simula-

tion and in the account of capital links (political sciences) 1. The n�n matrices

A with jAj nonzero elements are described in Table 3.

Table 3. Test matrices

name discipline n jAj

bayer01 chemical 57 735 277 774

b_dyn engineering 1 089 4 264

bayer02 13 935 63 679

bayer03 6 747 56 196

bayer04 20 545 159 082

bayer05 3 268 27 836

bayer06 3 008 27 576

bayer09 3 083 21 216

bayer10 13 436 94 926

advice3388 circuit 33 88 40 545

advice3776 simulation 3 776 27 590

cod2655_tr 2 655 24 925

meg1 2 904 58 142

meg4 5 960 46 842

rlxADC_dc 5 355 24 775

rlxADC_tr 5 355 32 251

zy3315 3 315 15 985

poli account of 4 008 8 188

poli_large capital links 15 575 33 074

In Table 4 results for the matrices in Table 3 are shown using the method

GSPAR on a DEC AlphaServer with an alpha EV5.6 (21164A) processor. Here,

op LU is the number of operations (only multiplications and divisions) and

�ll-in is the number of �ll-ins during the factorization. The cpu time (in seconds)

1 Some matrices, which are given in Harwell�Boeing format and interesting details

about the matrices, can be found in Tim Davis, University of Florida Sparse Matrix

Collection, http://www.cise.u�.edu/�davis/sparse/

8

for the �rst factorization, presented in strat, includes the times for the analysis

as well as for the numerical factorization. The cpu time for the generation of

the pseudo code is given in code. At the one hand, a dynamic ordering of the

columns can be applied during the pivoting. At the other hand, a minimum

degree ordering of ATA (upper index �) or of AT
+ A (upper index+) can be

used before the partial pivoting.

Table 4. GSPAR �rst factorization and generation pseudo code

dynamic ordering minimum degree ordering

name # op LU �ll-in strat. code # op LU �ll-in strat. code

bayer01 10 032 621 643 898 35.18 12.72 13 860 173 812 505 5.75 9.95 �

b_dyn 15 902 2 909 0.02 0 21 556 8 231 0.02 0.02 �

bayer02 2 095 207 134 546 2.28 1.30 2 030 130 165 357 1.03 2.20 �

bayer03 1 000 325 64 130 0.68 0.47 625 272 53 991 0.25 0.35 �

bayer04 5 954 718 268 006 5.33 3.93 6 340 579 290 021 1.95 2.77 �

bayer05 119 740 11 024 0.15 0.03 474 273 33 797 0.18 0.17 �

bayer06 3 042 620 73 773 0.85 1.00 5 008 097 129 278 1.42 1.52 �

bayer09 364 731 23 145 0.18 0.15 287 947 22 022 0.12 0.12 �

bayer10 5 992 500 227 675 3.05 2.55 3 953 687 203 633 1.28 1.40 �

advice3388 310 348 9 297 0.38 0.65 396 965 9 818 0.75 0.95+

advice3776 355 465 25 656 0.35 0.75 382 224 26 074 0.62 0.98+

cod2655_tr 3 331 105 113 640 0.90 1.00 4 839 771 144 875 1.50 1.40+

meg1 796 797 40 436 0.32 0.40 1 245 847 59 558 0.48 0.78+

meg4 420 799 38 784 0.68 0.62 376 324 35 008 0.30 0.48+

rlxADC_dc 73 612 5 404 0.38 0.13 63 227 2 906 0.08 0.08+

rlxADC_tr 988 759 47 366 0.85 1.13 1 049 623 48 888 0.72 1.13+

zy3315 47 326 8 218 0.12 0.03 49 263 8 202 0.03 0.02+

poli 4 620 206 0.15 0 6 094 41 0.02 0 �

poli_large 43 310 10 318 2.38 0.25 34 115 588 0.08 0.03+

The results in Table 4 show the following characteristics. For linear systems

arising from the process simulation of chemical plants, the analyse step with the

minimum degree ordering is in most cases, particularly for large systems, faster

then with the dynamic ordering, but the �ll-in and the number of operations

for the factorization are larger. On the other hand, for systems arising from the

circuit simulation the factorization with the dynamic ordering is in most cases

faster then the minimum degree ordering. The factorization with the minimum

degree ordering of ATA is favourable for systems arising from chemical process

simulation, while using an ordering of AT
+ A is recommendable for systems

arising from the circuit simulation. The opposite cases of the minimum degree

ordering are unfavourable because the number of operations and the number of

�ll-ins is very large.

9

In Table 5, cpu times (in seconds) for the second factorization are shown

for the linear solvers UMFPACK [4], SuperLU with minimum degree order-

ing of ATA (upper index �) or of AT
+ A (upper index+) [5], Sparse [8] and

GSPAR with dynamical column ordering, using a DEC AlphaStation with an

alpha EV4.5 (21064) processor. In many applications, mainly in the numerical

simulation of physical and chemical problems, the analysis step including order-

ing and �rst factorization is performed only a few times, but the second factor-

ization is performed often. Therefor the cpu time for the second factorization is

essential for the overall simulation time.

Table 5. Cpu times for second factorization

name UMFPACK SuperLU Sparse GSPAR

bayer01 5.02 6.70 � 7.78 3.20

b_dyn 0.05 0.05 � 0.07 0.00

bayer02 1.13 1.47 � 10.433 0.55

bayer03 0.72 0.70 � 17.467 0.27

bayer04 3.37 2.77 � 187.88 1.70

bayer05 0.13 0.75 � 0.08 0.05

bayer06 0.83 0.90 � 54.33 0.82

bayer09 0.23 0.23 � 3.57 0.10

bayer10 1.60 1.57 � 379.75 1.65

advice3388 0.25 0.28+ 0.15 0.10

advice3776 0.30 0.42+ 0.20 0.10

cod2655_tr 0.30 0.55+ 0.27 0.10

meg1 0.58 1.43+ 13.95 0.22

meg4 0.37 0.75+ 0.25 0.13

rlxADC_dc 0.15 0.18+ 0.04 0.03

rlxADC_tr 0.40 0.90+ 0.72 0.30

zy3315 0.15 0.18+ 0.03 0.02

poli 0.03 0.07+ 0.00 0.00

poli_large 0.13 0.27+ 0.04 0.03

GSPAR achieves a fast second factorization for all linear systems in Table 5.

For linear systems with a large number of equations GSPAR is at least two times

faster then UMFPACK, SuperLU and Sparse respectively.

The cpu times for solving the triangular matrices are one order of magnitude

smaller then the cpu times for the factorization. The proportions between the

di�erent solvers are comparable to the results in Table 5.

The vector version of GSPAR has been compared with the frontal method

FAMP [12] on a vector computer Cray Y�MP8E using one processor. The used

version of FAMP is the routine from the commercial chemical process simulator

10

SPEEDUP 2 [1]. The cpu times (in seconds) for the second factorization are

shown in Table 6.

Table 6. Cpu times for second factorization

name FAMP GSPAR

b_dyn 0.034 0.011

bayer09 0.162 0.082

bayer03 0.404 0.221

bayer02 0.683 0.421

bayer10 1.290 0.738

bayer04 2.209 0.983

GSPAR is at least two times faster then FAMP for these examples. The

proportions for solving the triangular systems are again the same.

For two large examples the number of levels of independence are given in

Table 7, using GSPAR with two di�erent ordering for pivoting. The algorithm

for lower triangular systems is called forward substitution and the analogous

algorithm for upper triangular systems is called back substitution.

Table 7. Number of levels of independence

example dynamical ordering minimum degree ordering

factorization 3 077 3 688

bayer01 forward sub. 1 357 1 562

back substit. 1 728 2 476

factorization 876 820

bayer04 forward sub. 399 338

back substit. 556 495

In Table 8, wall�clock times (in seconds) are shown for the second fac-

torization, using GSPAR with di�erent pivoting on a DEC AlphaServer with

four alpha EV5.6 (21164A) processors. The parallelization technique is based

on OpenMP [10]. The wall�clock times have been determined with the system

routine gettimeofday .

In Table 9, the cpu times (in seconds) on a Cray T3D are given for the sec-

ond factorization, using GSPAR with dynamic ordering for pivoting. The linear

2 Used under licence 95122131717 for free academic use from Aspen Technology, Cam-

bridge, MA, USA; Release 5.5�5

11

Table 8. Wall�clock times for second factorization

processors dynamical ordering minimum degree ordering

bayer01 bayer04 bayer01 bayer04

1 0.71 0.39 1.08 0.43

2 0.54 0.27 0.75 0.29

3 0.45 0.23 0.63 0.25

4 0.49 0.24 0.70 0.30

systems can not be solved with less then four or sixteen processors respectively,

because the processors of the T3D have not enough local memory for the storage

of the pseudo code in this cases. The speedup factors are set equal to one for

four or sixteen processors respectively.

Table 9. Cpu times for second factorization on Cray T3D

example processors cpu time speedup factor

4 1.59 1.00

8 0.99 1.60

bayer04 16 0.60 2.65

32 0.37 4.30

64 0.24 6.63

16 2.36 1.00

bayer01 32 1.45 1.63

64 0.95 2.47

6 Applications

Problems of the dynamic process simulation of chemical plants can be modeled

by initial value problems for systems of di�erential�algebraic equations. The

numerical solution of these systems [3] involves the solution of large scale systems

of nonlinear equations, which can be solved with modi�ed Newton methods.

The Newton corrections are found by solving large unsymmetric sparse systems

of linear equations. The overall computing time of the simulation problems is

often dominated by the time needed to solve the linear systems. In industrial

applications, the solution of sparse linear systems requires often more then 70 %

of the total simulation time. Thus a reduction of the linear system solution time

usually results into a signi�cant reduction of the overall simulation time [13].

12

Table 10 shows three large scale industrial problems of the Bayer AG Lever-

kusen. The number of di�erential�algebraic equations as well as an estimate

for the condition number of the matrices of the linear systems are given. The

condition numbers are very large, what is typical for industrial applications in

this �eld.

Table 10. Large scale industrial problems

name chemical plants equations condition numbers

bayer04 nitration plant 3 268 2.95E+26, 1.4E+27

bayer10 distillation column 13 436 1.4E+15

bayer01 �ve coupled distillation columns 57 735 6.0E+18 6.96E+18

The problems have been solved on a vector computer Cray C90 using the

chemical process simulator SPEEDUP [1]. In SPEEDUP the vector versions of

the linear solvers FAMP and GSPAR have been used alternatively. The cpu time

(in seconds) for complete dynamic simulation runs are shown in Table 11.

Table 11. Cpu time for complete dynamic simulation

name FAMP GSPAR in %

bayer04 451.7 283.7 62.8

bayer10 380.9 254.7 66.9

For the large plant bayer01 benchmark tests have been performed on a dedi-

cated computer Cray J90, using the simulator SPEEDUP with the solvers FAMP

and GSPAR alternatively. The results are given in Table 12.

Table 12. Bench mark tests

time FAMP GSPAR in %

cpu time 6 066.4 5 565.8 91.7

wall�clock time 6 697.9 5 797.1 86.5

The simulation of plant bayer01 has been performed also on a vector com-

puter Cray C90 connected with a parallel computer Cray T3D, using SPEEDUP

13

and the parallel version of GSPAR. Here, the linear systems have been solved

on the parallel computer while the other parts of the algorithms of SPEEDUP

have been performed on the vector computer. GSPAR needs 1 440.5 seconds cpu

time on a T3D with 64 used processors. When executed on the Cray C90 only,

2 490 seconds are needed for the total simulation.

Acknowledgments. The author thanks his coworkers J. Borchardt and

D. Horn for useful discussions. The valuable assistance and the technical sup-

port from the Bayer AG Leverkusen, the Cray Research Munich and Aspen

Technology, Inc., Cambridge, MA, USA are gratefully acknowledged.

References

1. AspenTech: SPEEDUP, User Manual, Library Manual. Aspen Technology, Inc.,

Cambridge, Massachusetts, USA (1995)
2. Borchardt, J., Grund, F., Horn, D.: Parallelized numerical methods for large sys-

tems of di�erential�algebraic equations in industrial applications. Preprint No. 382,

WIAS Berlin (1997). Surv. Math. Ind. (to appear)
3. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical solution of initial�value

problems in di�erential�algebraic equations. North�Holland, New York (1997)
4. Davis, T.A., Du�, I.S.: An unsymmetric�pattern multifrontal method for sparse

LU factorization. Tech. Report TR�94�038, CIS Dept., Univ. of Florida, Gainsville,

FL (1994)
5. Demmel, J.W., Gilbert, J.R. Li, X.S.: SuperLU Users' Guide. Computer Science

Division, U.C. Berkeley (1997)
6. Grund, F., Borchardt, J., Horn, D., Michael, T., Sandmann, H.: Di�erential�

algebraic systems in chemical process simulation. In Scienti�c Computing in Chem-

ical Engineering, F. Keil, W. Mackens, H. Voÿ, J. Werther, eds., Springer�Verlag

Berlin Heidelberg (1996) 68�74
7. Grund, F., Michael, T., Brüll, L., Hubbuch, F., Zeller, R., Borchardt, J., Horn,

D., Sandmann, H.: Numerische Lösung groÿer strukturierter DAE�Systeme der

chemischen Prozeÿsimulation. In Mathematik Schlüsseltechnologie für die Zukunft,

K.-H. Ho�mann, W. Jäger, T. Lohmann, H. Schunk, eds., Springer�Verlag Berlin

Heidelberg (1997) 91�103
8. Kundert, K.S., Sangiovanni-Vincentelli, A.: Sparse User's Guide, A Sparse Linear

Equation Solver. Dep. of Electr. Engin. and Comp. Sc., U.C. Berkeley (1988)
9. Li, Xiaoye S.: Sparse Gaussian elimination on high performance computers. Techni-

cal Reports UCB//CSD-96-919, Computer Science Division, U.C. Berkeley (1996),

Ph.D. dissertation
10. OpenMP: A proposed standard API for shared memory programming. White pa-

per, http://www.openmp.org (1997)
11. Yamamoto, F., Takahashi, S.: Vectorized LU decomposition algorithms for large�

scale nonlinear circuits in the time domain. IEEE Trans. on Computer�Aided De-

sign CAD�4 (1985) 232�239
12. Zitney, S.E., Stadtherr, M.A.: Frontal algorithms for equation�based chemical pro-

cess �owsheeting on vector and parallel computers. Computers chem. Engng. 17

(1993) 319�338
13. Zitney, S.E., Brüll, L., Lang, L., Zeller, R.: Plantwide dynamic simulation on su-

percomputers: Modelling a Bayer distillation process. AIChE Symp. Ser. 91 (1995)

313�316

14

