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Abstract

We consider a di�usion model of small variance type with positive drift func-

tion varying in a nonparametric set. We investigate discrete versions of this

continuous model with respect to statistical equivalence, in the sense of the

asymptotic theory of experiments. It is shown that the collection of level crossing

times for a uniform grid of levels is asymptotically equivalent to the continuous

model in the sense of Le Cam's de�ciency distance, when the discretization step

decreases with the noise intensity ". It follows that in the continuous di�usion

model, the statistic of level crossing times is asymptotically su�cient. Since the

level crossing times obey a nonparametric regression model with independent

data, a further asymptotic equivalence can be established, leading to a simple

Gaussian signal-in-white noise problem. When the drift density f is also a prob-

ability density, this in turn is asymptotically equivalent to i.i.d data with density

f on the unit interval.

1 Introduction

Comparison of statistical experiments by means of Le Cam's notion of de�ciency dis-

tance has recently proved feasible in nonparametric settings (Brown and Low (1996),

Nussbaum (1996), Grama and Nussbaum (1997)).

When two families of experiments are asymptotically equivalent in the sense that their

Le Cam de�ciency distance goes to 0, then it is also generally possible to prove that
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the minimax risks are the same for both families. This allows major simpli�cations

of proofs when studying the minimax risk of the simplest family of experiments (see

e. g. Pinsker (1980), Korostelev (1993), Lepskii and Spokoiny (1995) for minimax risks

in Gaussian models; Nussbaum (1996) for equivalence of Gaussian with other models).

In particular, Milstein and Nussbaum (1996) considered the problem of estimating the

drift function f from an observed di�usion process (Yt , t 2 [0; 1]), de�ned by the

stochastic di�erential equation

dYt = f(Yt)dt+ "dWt ; t � 0; Y0 = 0:(1)

Here (Wt) is a Wiener process de�ned on a �ltered probability space (
;A; (At)t�0;P )
and " a small parameter. The function f belongs to a nonparametric set of functions

F satisfying appropriate conditions. These authors consider the Euler scheme associ-

ated with f and with the sampling interval 1
n
, i. e.

yi = yi�1 +
1

n
f(yi�1) +

"p
n
�i ; y0 = 0(2)

where (�i; i = 1; : : : ; n) is a n-sample of i. i. d. standard normal variables.

They prove that the de�ciency distance of these experiments tends to 0 as " goes to

0 if n = n" tends to in�nity in such a way that "n" !1 : An important consequence

is that the statistic (Yt1; :::; Ytn) , where ti =
i

n
, is asymptotically su�cient in the

�rst experiment. This extends the result obtained in the corresponding parametric

estimation problem (see Lar�edo (1990), Genon{Catalot (1990)).

In this paper, we address a closely related problem. We consider the problem of

estimating the function f on [0; 1] from the di�usion (Yt) de�ned in (1) when it is

observed up to its �rst hitting time T1(Y ) of the level 1. The function f belongs to

the set F = FK;m associated with two positive constants K and m :

F =

�
f : R ! R : f(x) � m; f(0) � K;

jf(x)� f(y)j � Kjx� yj; 8x; y 2 R

�
:(3)

This will be our �rst experiment E"0 with parameter set F . Let us stress that the

condition that f is positive implies that T1(Y ) is almost surely �nite.

The second experiment consists in a triangular array of n independent random vari-

ables (X i
n) distributed according to an inverse Gaussian law IG

�
n�1(f( i�1

n
))�1; n�2"�2

�
.

Recall that the inverse Gaussian distribution IG(�; �) can be de�ned as the distribu-

tion of the hitting time of level
p
� by the process Xt = �1=2��1t +Wt (�; � > 0) . It

has a density

h�;�(t) =

r
�

2�t3
exp

�
��(t� �)2

2�2t

�
1t>0(4)

(see e.g. Chikara and Folks (1989)). Denote by Gn;" this experiment indexed by the

same nonparametric set for f , i. e. F .
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Our �rst result (Theorem 1) states that, as " goes to 0 , the de�ciency distance of these

two families of experiments tends to 0 if n = n" goes to in�nity in such a way that

"n" !1 . As an important consequence, we obtain that the statistic consisting of the

hitting times of levels i=n; i = 1; : : : ; n of the di�usion (Yt; t � 0), i. e. the statistic

(Ti=n(Y ); i = 1; : : : ; n) is asymptotically su�cient (Corollary 2). Here again, these

results extend those obtained in the parametric drift estimation problem for di�usion

hitting times (Genon{Catalot and Lar�edo (1987), Lar�edo (1990)).

The experiment Gn;" can be seen as a nonparametric regression model with independent

data. Using results of Grama and Nussbaum (1997) for such models, we arrive at a

Gaussian approximation for our di�usion experiment (1).

Indeed, consider a family of experiments given by an observed di�usion process

dZu = f 1=2(u)du+
"

2
dWu; u 2 [0; 1]; Z0 = 0(5)

with " tending to 0 and f 2 F . Taking n" = ["�2] , we prove that Gn";" and the

signal-in-white-noise model (5) are asymptotically equivalent (Theorem 3).

Now, in the special case where the restriction of the drift function f to [0; 1] is a

probability density, it has been proved in Nussbaum (1996) that the signal-in-white-

noise model (5) is asymptotically equivalent to the experiment given by n = ["�2]
observed independent identically distributed variables having density f on the unit

interval. We thus obtain a rather unexpected connection between the i. i. d. model

and the di�usion experiment (1), in the sense of asymptotic equivalence (Corollary 4).

Kutoyants (1985) considers nonparametric estimation of the drift function f for model

(1), when it is continuously observed on a �xed time interval [0; T ], under the assump-

tion that f is bounded away from 0. He proves, using kernel type estimates, that the

rates of convergence are identical to the ones obtained for density estimation of i.i.d.

variables, for a given smoothness condition on f . The equivalences stated in Theorem

2 and Corollary 2 both clarify and explain these results.

Let us point out that, except for E"0 , f need not be de�ned outside the interval [0; 1].

So, the parameter can be taken to be the restriction of the function f to the interval

[0; 1], for the last two experiments. In fact, for E"0 , our results show that we could have

de�ned f on [0; 1] only and take any extension of f on R satisfying the conditions of F ,
as, for instance, f(x) = f(0) for x � 0 ; f(x) = f(1) for x � 1. Another way

to capture what happens here is just to remark that the function f is not identi�able

outside [0; 1] from the experiments E"0 .

Section 2 contains the notations, the statement of the main results, and some recap on

the Le Cam de�ciency distance � . In Section 3 we introduce an experiment which is

exactly equivalent to the triangular array (X i
n; i = 1; : : : ; n) , but comparable to the

di�usion experiment E"0 , as in Milstein and Nussbaum (1996). Using this experiment, in

Section 4 we compute a bound for the �- distance between the di�usion experiment (1)

and the other ones. In Section 5 we present the argument leading on to (5), specializing
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the exponential family nonparametric regression model of Grama and Nussbaum (1997)

to the inverse Gaussian case.

2 Notations and main results

2.1 De�nition of the experiments

Let (
;A; (At)t�0;P) be a probability space endowed with a �ltration (At) satisfying

the usual conditions, and let (Wt; t � 0) be an (At) - Brownian motion de�ned on


 . For f : R ! R , consider the process (Yt) de�ned by the stochastic di�erential

equation (1).

The parameter " is here assumed to be known. The function f varies in a set

F = FK;m associated with two positive constants K;m , and which is de�ned by

the following conditions

(C1) f(x) � m; 8x 2 R

(C2) f(0) � K; jf(x)� f(y)j � Kjx� yj 8x; y 2 R:

It follows from (C1); (C2) that any function f 2 F satis�es the linear growth con-

dition 0 < f(x) � K(1 + jxj) . Hence the stochastic di�erential equation (1) has a

unique strong solution (Yt; t � 0) . Let T1(Y ) be the �rst hitting time of level 1 by the

sample path (Yt; t � 0). Condition C1 implies that T1(Y ) is �nite almost surely. The

�rst experiment considered here is associated with the observation (Yt; t 2 [0; T1(Y )]).

We may now construct the canonical experiment. Let C(R+ ;R) be the space of con-

tinuous real functions de�ned on R
+ ; let (Xt; t � 0) be the canonical process of

C(R+ ;R); C0t = �(Xs; s � t); Ct =
T

s>t C0s and C =
W

t�0 Ct .

Denote by P "
f the distribution of (Yt; t � 0) de�ned by (1) on (C(R+ ;R); C) . Now,

for x 2 C(R+ ;R) and a 2 R , let

Ta(x) = infft � 0 : x(t) = ag:(6)

De�ne T = T1(X) the hitting time of level 1 by the canonical process (Xt; t � 0) and

let

P T;"

f = P "
f jCT(7)

be the restriction of P "
f to the �- algebra CT . The �rst experiment is now described

by

E"0 =
�
C(R+ ;R); CT ; (P T;"

f ; f 2 F)
�
:(8)

Let us now present the second experiment. For (�; �) 2 (R+)2, let us denote by

IG(�; �) the Inverse Gaussian distribution with density given in (4). The mean of this
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distribution is � and the variance is �3=� . Consider now a triangular array of n

independent random variables (X i
n) such that

X i
n � IG

�
n�1(f(

i� 1

n
))�1; n�2"�2

�
:(9)

The realization of such a triangular array can be obtained in the following way. Let

B1; : : : ; Bn be n independent Brownian motions and set

X i
n = infft � 0 :

i� 1

n
+ f(

i� 1

n
)t+ "Bi

t =
i

n
g(10)

= infft � 0 :
1

"
f(
i� 1

n
)t +Bi

t =
1

n"
g:

Denote by

P "
n;f

:
= the distribution of (X1

n; : : : ; X
n
n ):(11)

This second family of experiments is described by

Gn;" =
�
R
n ;B(Rn); (P "

n;f ; f 2 F)
�
;(12)

where B(Rn) denotes the Borel �- algebra of Rn .

The third family of experiments is de�ned by

E"1 =
�
C([0; 1];R);B; (Q"

f ; f 2 F)
�

(13)

where B is the Borel sigma algebra of C([0; 1];R), and Q"
f denotes the distribution of

the process (Zu)u2[0;1] given by

dZu = f 1=2(u)du+
"

2
dWu; u 2 [0; 1]; Z0 = 0:(14)

Finally, consider the case where
R
[0;1]

f(u)du = 1 . Let ~Qn
f be the joint distribution

of n i. i. d. random variables having density ( f(u); u 2 [0; 1] ) on the unit interval.

Consider the experiment

En =
�
R
n ;B(Rn); ( ~Qn

f ; f 2 F)
�
:(15)

Our aim is to compare these experiments which are indexed by the same parameter

set F = FK;m , but which are de�ned on di�erent observation spaces.

2.2 Statement of results

We can now state the results contained in this paper.
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Theorem 1 If, as " ! 0; n = n" ! +1 in such a way that "n" ! 1 then the

experiments E"0 and Gn;" are asymptotically equivalent : i.e. for the Le Cam de�ciency

distance �, we have

�(E"0 ;Gn;" ) �! 0 as "! 0:

Noting that the mapping a! Ta(Y ) is increasing from [0; 1] to [0; T1(Y )], the statistic

(T i

n

(Y ); i = 1:::n) is well de�ned. An important consequence of Theorem 1 is the

following.

Corollary 2 Under the conditions of Theorem 1, for the di�usion model (Yt; t � 0)

observed up to T1(Y ) the statistic
�
T i

n

(Y ); i = 1; :::; n
�

de�ned by the hitting times

of levels i

n
; i = 1; : : : ; n is asymptotically su�cient as "! 0.

Remark 1 The assumption that f is bounded from below by a positive constant m

is quite natural. This assumption is required if one wants to obtain a nonparametric

estimator of the drift function as " ! 0 (see e. g. Kutoyants (1985)). One has

to ensure that the di�usion passes all points x between 0 and xf (T ) , where xf (t)

is the solution of
dxf (t)

dt
= f(x(t)); xf (0) = 0 . It can then be shown that for the

uniform positive minorant m of f the relation
T

f2F [0; xf(T )] = [0; mT ] holds, so

that consistent estimation of f on [0; mT ] is possible. This coincides with the fact that,

here, f is identi�able on [0; 1] only.

The next result concerns the equivalence between the signal-in-white-noise model E"1
de�ned in (13) and the di�usion experiment E"0 .

Theorem 3 Under the conditions of Theorem 1 we have

�(E"0 ; E"1 ) �! 0 as "! 0:

Corollary 4 Suppose that n = n" = ["�2], and that f restricted to [0; 1] is a probability

density. Then, denoting by En = En",

�(E"0 ; En ) �! 0 as "! 0:

According to this last result, we have a new asymptotic di�usion representation for the

experiment given by i. i. d. random variables on the unit interval.

If the density g of these variables satis�es a uniform Lipschitz condition on [0; 1] and

is bounded away from 0, one may consider the extension of g to the whole of R by

setting fg(x) = g(0), for x < 0 and fg(x) = g(1) for x > 1. In that case, the model (1)

for f = fg is well de�ned and the di�usion experiment E"0 indexed by f = fg is also an

asymptotic representation for the i. i. d. experiment En with n = ["�2].
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Remark 2 : Fisher Information We may con�rm the result of Corollary 4 by a

calculation of the asymptotic Fisher information in both models. Indeed, asymptotic

equivalence in the Le Cam sense for the nonparametric models entails the same for

parametric submodels, and hence equality of asymptotic Fisher informations for regular

cases. Consider a parametric submodel of (1), where f = f# ; # 2 � and � is an open

interval and observation ( of model (1)) is between 0 and T1(Y ). According to Genon-

Catalot and Lar�edo (1987), if the model is su�ciently regular, the asymptotic Fisher

information (divided by "�2) is

IF (#) = I(#) =

Z 1

0

�
@

@#
f#(x)

�2

f�1# (x)dx:

This indeed coincides with the Fisher information in an i. i. d. model with regular

density f#.

In order to prove these results and for the sake of clarity, we recall below the main

de�nitions and properties of the Le Cam de�ciency distance.

2.3 The Le Cam de�ciency distance

This pseudo distance is generally denoted by � . In what follows, all measurable spaces

are supposed to be Polish metric spaces equipped with their Borel �-algebras.

Consider two experiments with the same parameter space that we shall again denote

by F , say E = (X ;A; (Pf ; f 2 F)) and G = (Y;B; (Qf ; f 2 F)). Assume also that

the two families (Pf ; f 2 F) and (Qf ; f 2 F) are dominated.

Consider now a Markov kernel M(x; dy) from X to (Y;B), i.e. an application such

that for all B 2 B the mapping x ! M(x;B) is A - measurable and, for all x 2 X ,

M(x; dy) is a probability measure on (Y;B). Denote by MPf the image probability

measure of Pf under the kernel M , i.e.

MPf (B) =

Z
X
M(x;B)Pf (dx) for B 2 B

The experiment ME = (Y;B; (MPf ; f 2 F) is called a randomization of E by the

kernel M . It is de�ned on the same measurable space Y that G . Let M denote the

set of Markov kernels from X into (Y;B) .

De�nition 1 The de�ciency of E with respect to G is given by

�(E ;G) = inf
M2M

sup
f2F

kMPf �QfkTV ;(16)

where k � kTV denotes the total variation norm, i.e. kP � QkTV = 2 supB2B jP (B) �
Q(B)j.
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De�nition 2 The de�ciency distance � in the sense of Le Cam is given by

�(E ;G) = maxf�(E ;G); �(G; E)g:(17)

In fact the � -distance is a pseudo-distance. Two experiments are said to be equivalent

whenever �(E ;G) = 0 . In the sequel we shall use two basic properties of � .

Property 1: Let T : (X ;A) �! (Y;B) be a measurable application and let T the

image experiment of E by the (deterministic) kernel T . Then, �(E ; TE) = 0 if and

only if T is a su�cient statistic for the experiment E .

Property 2: If the experiments E and G have the same measurable space of obser-

vations ((X ;A) = (Y;B)) then the following inequality holds:

�(E ;G) � sup
f2F

kPf �QfkTV :(18)

3 An accompanying di�usion experiment

It is well known and clear from its de�nition that it is di�cult to compute the �-

distance between two experiments when they are not de�ned on the same measurable

space.

So, following Brown and Low (1996), Milstein and Nussbaum (1996), we de�ne another

experiment Gn;" which has the same observation space as E"0 .
Let (t; z) 2 R

+ � C(R+ ;R) . Consider, for i = 1; : : : ; n the times T i

n

(z) = infft �
0; z(t) = i

n
g and the function

fn(t; z) =

nX
i=1

f

�
i� 1

n

�
1�

T i�1
n

(z);T i

n

(z)

�(t):(19)

Finally, de�ne the di�usion type process (Y t; t � 0) on (
;A; (At)t�0;P) as the

solution of the stochastic di�erential equation�
dY t = fn(t; Y )dt+ "dWt

Y 0 = 0:
(20)

Let T1(Y ) be the �rst hitting time of level 1 by the path (Y t). Again, by condition

(C1), T1(Y ) is �nite almost surely, and we can describe the experiment associated with

the observation (Y t; t 2 [0; T1(Y )]). Denote by �P "
n;f the distribution of (Y t; t � 0) on

(C(R+ ;R); C) and set
�P T;"

n;f = �P "
n;f jCT :

Recall that T is the �rst hitting time of level 1 by the canonical process of C(R+ ;R).
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The accompanying experiment is de�ned as

Gn;" =
�
C(R+ ;R); CT ; ( �P T;"

n;f ; f 2 F)
�
:

Then the following holds.

Proposition 5 (i) The statistic (z ! (T i

n

(z); i = 1:::n) is su�cient for the experiment

Gn;".

(ii) The experiments Gn;" and Gn;" are exactly equivalent, i.e.

8n � 1; 8" > 0; �(Gn;";Gn;") = 0 :

The proof of Proposition 1 is based upon a precise description of the process (Y t).

Let us de�ne by induction a sequence of processes and stopping times as follows. Let

X0(t) = f(0)t+ "Wt ; and

� 1
n

= T 1
n

(X0) = inff t � 0 : X0(t) =
1

n
g:

Then, by induction, for i = 1; :::; n

Xi�1(t) = f

�
i� 1

n

�
t + "

�
Wt+� i�1

n

�W� i�1
n

�
(21)

� i

n

= � i�1
n

+ T 1
n

(Xi�1):(22)

The process (Y t) satis�es the property stated below.

Lemma 6 The hitting times of levels ( i
n
; i = 1:::n ) by the process (Y t) are given by

T i

n

(Y ) = � i

n

; i = 1:::n:

Moreover, the n{tuple
n�

T i

n

(Y )� T i�1
n

(Y )
�
; i = 1; :::; n

o
has the distribution P "

n;f of

the triangular array de�ned in (11).

Proof. For t 2 [0; � 1
n

]; Y t = X0(t) and T 1
n

(Y ) = � 1
n

. Consider now t 2 [� 1
n

; � 2
n

]; then

Y t =
1

n
+ f(

1

n
)
�
t� � 1

n

�
+ "

�
Wt �W� 1

n

�
:

Thus Y � 1
n

+u = 1
n
+ X1(u) for u 2 [0; � 2

n

� � 1
n

], and T 2
n

(Y ) = � 2
n

since by con-

struction, � 2
n

� � 1
n

= T 1
n

(X1) . By induction, if t 2 (� i�1
n

; � i

n

] ,

Y t =
i� 1

n
+ f(

i� 1

n
)
�
t� � i�1

n

�
+ "

�
Wt �W� i�1

n

�
(23)
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and T i

n

(Y ) = � i�1
n

+ T 1
n

(Xi�1) = � i

n

. This holds for i = 1; :::; n . Now, the random

variables � i

n

are stopping times of (At)t�0 . Thus,
�
Wu+� i�1

n

�W� i�1
n

�
u�0

is a Brow-

nian motion independent of A� i�1
n

for all i = 1; :::; n . Hence, the random variablesn�
� i

n

� � i�1
n

�
; i = 1; :::; n

o
are independent, and by construction

�
� i

n

� � i�1
n

�
has the

inverse Gaussian distribution

IG

�
n�1(f(

i� 1

n
))�1; n�2"�2

�
:

Proof of Proposition 5. Let P " denote the distribution of ("Wt; t � 0) on

(C(R+ ;R); C) , and P "
T the restriction of P " to CT . Then by the Girsanov formula

log
d �P T;"

n;f

dP "
T

(Y ) =
1

"2

Z T

0

fn(t; Y )dY t �
1

2"2

Z T

0

fn(t; Y )
2dt

=
1

"2

nX
i=1

f

�
i� 1

n

�
1

n
� 1

2"2

nX
i=1

f

�
i� 1

n

�2 �
T i

n

(Y )� T i�1
n

(Y )
�
:

Hence, S =
�
T i

n

(Y )� T i�1
n

(Y ); i = 1; :::; n
�
is a su�cient statistic for the experiment

Gn;" de�ned by
�
Y t; t � T1(Y )

�
. This gives (i). Since, by Lemma 1, SGn;" = Gn;" , we

obtain that the two experiments are equivalent by Property 1.

4 A bound for the � -distance

In this section, we prove a proposition from which Theorem 1 can be derived. It follows

from the results of Section 3 and the triangular inequality that

�(E"0 ;Gn;") = �(E"0 ;G
n;"
):

Now, E"0 and Gn;" have the same measurable space (C(R+ ;R); CT ) . So applying

Property 2 (see (18)) we get the bound

�(E"0 ;Gn;") � sup
f2F

kP T;"

f � �P
T;"

n;f kTV :

Proposition 7 For f 2 F we have

kP T;"

f � �P T;"

n;f kTV � K C(m)

�
1

(n")2
+

1

n
+ "2

� 1
2

uniformly on F , where K is the constant de�ning F and C(m) is a constant which

depends only on m .
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Proof. We use here an upper bound given in Jacod and Shiryaev (1987), x4b, Theorem
4.21, p. 279, for the total variation norm between the distributions of two di�usion

type processes having the same constant di�usion coe�cient. Let hf be the Hellinger

process of order 1
2
between P "

f and P
"

n;f ( see e.g. Jacod and Shiryaev Chap. 4). For

z 2 C(R+ ;R) , it is given by

hfu(z) =
1

8"2

Z u

0

(f(z(t))� fn(t; z))
2dt; for u > 0:

Since the two processes (Yt) and (Y t) have the same initial distribution (Y0 = Y 0 = 0),

the inequality for the total variation norm k:kTV is the following,

kP T;"

f � �P T;"

n;f kTV � 4
q
E �P "

n;f

(hfT );(24)

with T = T1(X) .

It is worth noting that this inequality is not symmetric: for the right hand side of (24),

we may choose to take the expectation either with respect to �P "
n;f , or with respect to

P "
f . The choice �P "

n;f makes the computation easier here.

Let us set E �P "

n;f

(h
f

T ) = E(n; ") . We have

E(n; ") =
1

8"2
E

Z T

0

�
(f(Y t)� fn(t; Y t)

�2
dt

=
1

8"2

nX
i=1

E

Z T i

n

(Y )

T i�1
n

(Y )

�
f(Y t)� f(

i� 1

n
)

�2

dt:

Now, using Lemma 6 and (21)-(23),

E

Z T i

n

(Y )

T i�1
n

(Y )

�
f(Y t)� f(

i� 1

n
)

�2

dt = E

Z � i

n

� i�1
n

�
f(Y t)� f(

i� 1

n
)

�2

dt

= E

Z � i

n

�� i�1
n

0

�
f(Y u+� i�1

n

)� f(
i� 1

n
)

�2

du

= E

Z T 1
n

(Xi�1)

0

�
f(
i� 1

n
+Xi�1(u))� f(

i� 1

n
)

�2

du

� K2
E

Z T 1
n

(Xi�1)

0

X2
i�1(u)du;

where K is the Lipschitz constant of f and Xi�1 is a Brownian motion starting from

0 with drift coe�cient f
�
i�1
n

�
and di�usion coe�cient " (see ( 21), (22)).

It is well known that this last expectation can be computed explicitly.

11



Lemma 8 Let X(u) = �u+ "Wu, u � 0 be a Brownian motion with drift � > 0 . Let

Ta = Ta(X) be the �rst hitting time of level a . Then for a > 0 ,

E

Z Ta

0

X2(u)du =
a3

3�
� a2"2

2�2
+
a"4

2�3
:

Proof. Let s(u) = exp
�
�2�u

"2

�
and

S(x) =

Z x

0

s(u)du =
"2

2�

�
1� exp

�
�2�x

"2

��

be the scale function of the di�usion X(u) . For b < 0 < a , it is well known that (see

e. g. Karlin and Taylor (1981), Chap. 15 )

E

Z �

0

X2(u)du = 'b;a(0) with � = Ta ^ Tb;

where 'b;a = ' is the solution of the equation

"2

2
'00(x) + �'0(x) = �x2

'(b) = '(a) = 0:

Then limb!�1 'b;a(0) = E
R Ta
0

X2(u)du , and we have

E

Z Ta

0

X2(u)du =
2

"2

�Z a

0

(S(a)� S(u))
u2

s(u)
du+ (S(a)� S(0))

Z 0

�1
u2

du

s(u)

�
:

Straightforward computations lead to Lemma 8.

Coming back to the proof of Proposition 7, we get

E(n; ") � 1

8"2
K2

(
nX
i=1

1

3n3

1

f( i�1
n
)
� "2

2n2

nX
i=1

1

f 2( i�1
n
)
+

"4

2n

nX
i=1

1

f 3( i�1
n
)

)

� K2

8

�
1

3(n")2
1

m
� 1

2n

1

m2
+

"2

2m3

�
:

This completes the proof of Proposition 7.

Proof of Theorem 1 Now, we have,

�(E"0 ;Gn;") � KC(m)

�
1

(n")2
+

1

n
+ "2

� 1
2

which tends to 0 as "! 0 if n = n" !1 such that " n" !1 .

12



Remark 3 Setting "
p
n = 1, these three terms are equal to "2 . This leads to the rate

of convergence 1p
n
.

Proof of Corollary 1: By Proposition 1, the statistic z ! (T i

n

(z); i = 1; : : : ; n) is

exactly su�cient for the experiment Gn;". So, we have

�(E"0 ;Gn;") = �(E"0 ;G
n;"
):

Therefore, �(E"0 ;G
n;"
) tends to 0 as " ! 0. This proves that the same statistic is

asymptotically su�cient for E"0 .

5 Exponential family regression and white noise

The experiment Gn;" de�ned by the triangular array (X i
n; i = 1; : : : ; n) where X i

n is

distributed according to

IG

�
n�1(f(

i� 1

n
))�1; n�2"�2

�

is equivalent to a nonparametric regression experiment. Indeed, set Zi
n = nX i

n . Then

Zi
n =

1

f( i�1
n
)
+
p
n" �in

where E�in = 0, E(�in)
2 = 1

f3( i�1
n

)
(due to the properties of the inverse Gaussian dis-

tribution). Moreover, the inverse Gaussian distribution has the following scaling prop-

erty: if X � IG(�; �) then cX � IG(c�; c�) (cf. Johnson and Kotz, 1970). Hence the

variables Zi
n = nX i

n have distribution IG
�
(f( i�1

n
))�1; n�1"�2

�
.

Let us now assume

n = n" = "�2 :(25)

Note that this choice implies that n" ! +1 and "n" = 1
"
! 1 as " ! 0. This

corresponds to the conditions required in Theorem 1. Then, Zi
n � IG

�
(f( i�1

n
))�1; 1

�
.

The distribution of Zi
n is

�in;f(dt) = exp

�
� t

2
f 2(

i� 1

n
) + f(

i� 1

n
)

�
�(dt)

with

�(dt) =
1p
2�t3

exp

�
� 1

2t

�
� 1t>0 dt:

13



The dominating measure is now independent of n. Let ~Gn;" be the experiment given by

observing the independent variables (Zi
n; i = 1; : : : ; n). We have �(Gn;"; ~Gn;") = 0 since

the mapping X i
n 7! nX i

n is one-to-one. Consider the exponential family in canonical

form

�� (dt) = exp (�U(t)� V (�)) �(dt)(26)

where

U(t) = �t; V (�) = �(2�)1=2:

We note that �� = IG((2�)�1=2; 1) for � 2 (0;1), so that �� is de�ned for all � 2
(0;1). We thus have �in;f = �� for � = 1

2
f 2( i�1

n
).

The exponential family regression model in Grama and Nussbaum (1996) was that

independent variables (Zi
n; i = 1; : : : ; n) are observed, where the law L(Zi

n) is such

that L(Zi
n) = �� for � = g( i

n
), and g is a smooth function on [0; 1]. If we now set

g(x) = 1
2
f 2(x), then we are in this framework.

Proof of Theorem 3 . The conditions on f guarantee that m � f(x) � 2K for

x 2 [0; 1], with m > 0. Evidently g satis�es a uniform Lipschitz condition:

jg(x)� g(y)j =
1

2

��f 2(x)� f 2(y)
�� = 1

2
jf(x) + f(y)j jf(x)� f(y)j(27)

� 1

2
4K jf(x)� f(y)j � 2K2 jx� yj ; x; y 2 [0; 1](28)

and moreover, for x 2 [0; 1],

g(x) 2 [m2=2; 2K2]:(29)

Let � = �(m;K) be the set of all functions g satisfying (28) and (29). Thus all

conditions assumed in Grama and Nussbaum (1996) are satis�ed. By theorem 12 in

Grama and Nussbaum (1996) we obtain a Gaussian white noise approximation in the

�-sense, as an experiment

dZt = �(g(t))dt+ n�1=2dWt; t 2 [0; 1](30)

with g 2 �. The function � is determined by the exponential family (�� ; � 2 (0;1))

as an appropriate variance stabilizing transform. Let us determine �.

Using the notation of section 3.3 in Grama and Nussbaum (1996), we obtain (cf.

relation (3.35), (3.34) there)

�(�) = F (b(�))

where

F 0(x) =
p
a0(x); b(�) = V 0(�)

a is the inverse function to b(�) and V (�) = �(2�)�1=2 is the function appearing in

(26). We obtain

b(�) = � d

d�
(2�)1=2 = �(2�)�1=2 for � > 0;

a(x) =
1

2
x�2; a0(x) = �x�3 for x < 0:

14



Hence

F 0(x) = jxj�3=2; F (x) = �2jxj�1=2 + C for x < 0:

Consequently

�(�) = F (b(�)) = �2(2�)1=4

so that (30) becomes (up to an equivalence, given by multiplication with 1
2
)

dZt = (2g(t))1=4dt+
1

2
n�1=2dWt; t 2 [0; 1]:

Substituting g(x) = 1
2
f 2(x) we get

dZt = f 1=2dt+
1

2
n�1=2dWt; t 2 [0; 1]:

Thus the proof of Theorem 2 is complete.

Proof of Corollary 2 : From Nussbaum (1996), we know that, if n = n" = ["�2],
�(E"1 ; En)! 0 as "! 0. Using the triangular inequality yields

�(E"0 ; En) � �(E"0 ; E"1) + �(E"1 ; En)

This implies asymptotic equivalence with density estimation, more precisely with the

experiment given by n observed i.i.d. random variables, as claimed.
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