
Abstract. This paper gives a rigorous derivation of a

new stochastic particle method for the Boltzmann equa-

tion and illustrates its numerical e�ciency. Using esti-

mates based on the local temperature of the simulation

cells, any truncation error related to large velocities is

avoided. Moreover, time steps between collisions are

larger than in the standard direct simulation method.

This fact and an e�cient modelling procedure for the

index distribution of the collision partners lead to a con-

siderable reduction of computational e�ort in certain ap-

plications.
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1. Introduction

An important �eld of application of Monte Carlo methods is the numerical solution of

nonlinear equations of high dimension. An example is the Boltzmann equation in

rare�ed gas dynamics. In the case of monatomic gases, this equation takes the form (cf.

[5])

@

@t
f(t; x; v) + (v;rx) f(t; x; v) = (1.1)Z
R3

dw
Z
S2
deB(v;w; e)

h
f(t; x; v�) f(t; x; w�)� f(t; x; v) f(t; x; w)

i
;

1Supported by the Volkswagen-Stiftung (RiP-program at Oberwolfach)
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where t� 0 ; x 2D �R3 ; v 2R3 ; and appropriate initial and boundary conditions are

assumed. The symbol rx denotes the vector of the partial derivatives with respect to x ;

D is a bounded domain in the three�dimensional Euclidean space R3 ; and (:; :) is the

scalar product. The function B is called the collision kernel. The symbols de and dw

denote the uniform surface measure on the unit sphere S2 and the Lebesgue measure on

R3 ; respectively. The objects v� and w� are de�ned as

v� = v + e (e;w� v) ; w� = w + e (e; v � w) ; (1.2)

where v;w 2 R3 ; e 2 S2 : They are interpreted as the post�collision velocities of two

particles with the pre�collision velocities v and w. The function f describes the time

evolution of the distribution of gas particles in the position and velocity space, thus

depending on seven independent variables.

In real world applications (like the reentry of a space shuttle into the atmosphere)

Monte Carlo methods are the most common tools for the numerical solution of the Boltz-

mann equation (cf. [4], [6, Ch. 10], [12], [13]). They are based on the simulation of

trajectories of stochastic interacting particle systems. A system of simulation particles

�
xi(t); vi(t)

�
; i = 1; : : : ; n ; t � 0 ; (1.3)

is used to approximate the behaviour of the real gas described by the Boltzmann equation

(1.1). Here xi(t) 2 D and vi(t) 2 R3 denote the position and the velocity of the i-th
particle at time t ; respectively. The number of particles in the system is n : The solution

of Eq. (1.1) is approximated in the sense that

Z
D

Z
R3

'(x; v) f(t; x; v) dx dv � 1

n

nX
i=1

'(xi(t); vi(t)) ; (1.4)

for appropriate test functions ' : Convergence results have been obtained in [1] for Nanbu's
method, and in [14] for Bird's method.

The time evolution of the particle system (1.3) is de�ned using a splitting technique.

Namely, the simulation of the free �ow of the particles and the simulation of their collisions

are separated on a small time interval �t : This means that on �t ; at a �rst step, the

free �ow is simulated disregarding the possible collisions. Then, at a second step, the

collisions are simulated neglecting the free �ow.

During the free �ow simulation step, the particles move according to their velocities,

i.e.

xi(t+�t) = xi(t) +
Z

t+�t

t

vi(s) ds :

The velocities do not change unless a particle hits the boundary. In this case, the corre-

sponding velocity changes according to the boundary conditions.

During the collision simulation step, a partition

D =
lc[
l=1

Dl (1.5)
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of the spatial domain D into a �nite number lc of disjoint cells is used. There is no

interaction between di�erent cells. In each cell, collisions of the particles are simulated.

The principal modelling procedure is as follows.

Step 1: Calculate the time step until the next collision and add it to a time counter.

If the time counter exceeds �t ; then stop the collision simulation step.

Step 2: Generate the indices i; j of the collision partners according to some probability

distribution.

Step 3: Check whether the collision is �ctitious, i.e. go to step 1 with a certain proba-

bility.

Step 4: Generate the direction vector e 2 S2 according to some probability distribution.

Step 5: Calculate the new state, i.e. replace vi; vj by v
�
i
; v�

j
(cf. (1.2)), and go to step 1.

For an e�cient numerical implementation, the following points are to be taken into

account:

� the time step used in Step 1 should be easy to compute and as big as possible;

� the distribution of the indices i; j used in Step 2 should be easy to generate;

� the probability of �ctitious jumps used in Step 3 should be as small as possible.

The purpose of the paper is to give a rigorous derivation of a new stochastic particle

scheme for the Boltzmann equation and to illustrate its numerical e�ciency. We assume

that the collision kernel (cf. (1.1)) satis�es

Z
S2
B(v;w; e) de � cB kv � wk" ; 8v;w 2 R3 ; (1.6)

for some " 2 [0; 2) and some constant cB ; where k:k denotes the Euclidean norm. This

assumption assures existence of a solution to the spatially homogeneous Boltzmann equa-

tion (cf. [5, Ch. 8, � 2]). In the hard sphere case the collision kernel B corresponding to

the transformation (1.2) has the form

B(v;w; e) = Chs j(v � w; e)j ; (1.7)

for some constant Chs : In this case, one easily obtains

Z
S2
B(v;w; e) de = 2� Chs kv � wk (1.8)

so that (1.6) is ful�lled with " = 1 and cB = 2� Chs : Note that assumption (1.6) is also

ful�lled for the variable hard sphere model and the variable soft sphere model, which are

commonly used in applications ([4, Ch. 2]).

The paper is organized as follows. In Section 2 we introduce a Markov jump process

related to the simulation of particle collisions. This process provides a general frame for

various modi�cations of the DSMC (direct simulationMonte Carlo) method. In Section 3

we present the main results of the paper. Using some estimates based on the local

temperature of the simulation cells, we derive a scheme that avoids any truncation error

related to large velocities. We show that the corresponding time steps are always larger
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than in the standard DSMC method. Finally, we propose an e�cient procedure for

generating the corresponding index distribution. Section 4 contains results of numerical

experiments. Here we illustrate both the absence of a truncation error and the improved

e�ciency due to the larger time steps.

2. A Markov process related to the Boltzmann equa-

tion

Various steps of numerical simulation involved in the DSMC algorithm are related to some

approximations of the Boltzmann equation (1.1). The limiting equation (as the number

of simulation particles tends to in�nity) corresponding to the collision simulation step has

the form ([14])

@

@t
f(t; x; v) = (2.1)Z

D

dy
Z
R3

dw
Z
S2
de h(x; y)B(v;w; e)

h
f(t; x; v�) f(t; y; w�)� f(t; x; v) f(t; y; w)

i
:

The function

h(x; y) =
lcX
l=1

hl(x; y) ; (2.2)

where

hl(x; y) =
1

jDlj
�Dl

(x)�Dl
(y) ; x; y 2 D ; (2.3)

is a mollifying kernel depending on the partition (1.5). Here jDlj is the Lebesgue measure

of the cell Dl ; and � denotes the indicator function.

The Markov process related to the collision simulation step in one spatial cell Dl for

the molli�ed Boltzmann equation (2.1)-(2.3) has the in�nitesimal generator

A(�)(�z) = 1

2

X
1�i6=j�n

Z
S2
q(�z; i; j; e)

h
�(J(�z; i; j; e))� �(�z)

i
de ; (2.4)

where

�z =
�
(x1; v1); : : : ; (xn; vn)

�
2 Z =

�
D �R3

�
n

(2.5)

and � is an appropriate test function. The jump transformation is

[J(�z; i; j; e)]k =

8><
>:

(xk; vk) ; if k 6= i; j ;
(xi; v�i ) ; if k = i ;
(xj; v�j ) ; if k = j ;

(2.6)

where

v�
i
= vi + e (e; vj � vi) ; v�

j
= vj + e (e; vi � vj) ; (2.7)
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and the intensity function is

q(�z; i; j; e) =
1

n
hl(xi; xj)B(vi; vj; e) : (2.8)

The generator (2.4) can be rewritten in the usual form of a jump process generator ([7,

Ch. 4, � 2])

A(�)(�z) =
Z
Z

h
�(��)� �(�z)

i
Q(�z; d��) ; (2.9)

where

Q(�z; d��) =
1

2

X
1�i6=j�n

Z
S2
�J(�z;i;j;e)(d��) q(�z; i; j; e) de (2.10)

and � denotes the Dirac measure.

The generator (2.9) does not change if one replaces Q by

Q̂(�z; d��) = (2.11)

1

2

nX
i;j=1

�Z
S2
�J(�z;i;j;e)(d��) q(�z; i; j; e) de+ ��z(d��)

h
q̂(�z; i; j)�

Z
S2
q(�z; i; j; e) de

i�
;

where q̂ is a function such that (cf. (2.8))

Z
S2
q(�z; i; j; e) de =

1

n
hl(xi; xj)

Z
S2
B(vi; vj; e) de � q̂(�z; i; j) : (2.12)

Note that J(�z; i; i; e) = �z ; according to (2.6), (2.7).

The pathwise behaviour of the Markov process (1.3) with the in�nitesimal gen-

erator (2.9)-(2.11) is described as follows.

Coming to a state �z (cf. (2.5)), the process stays there for a random waiting time

�̂ (�z) ; which has an exponential distribution with the parameter

�̂(�z) =
Z
Z
Q̂(�z; d��) =

1

2

nX
i;j=1

q̂(�z; i; j) ; (2.13)

i.e.

Prob f�̂ (�z) � tg = exp(��̂(�z) t) :

Note that the expectation of the random waiting time is �̂(�z)�1 : If this value is su�ciently

small, it can be used as a deterministic approximation to the random time step, i.e.

�̂ (�z) = �̂(�z)�1 : (2.14)

After the time �̂(�z) ; the process jumps into a state �� ; which is distributed according

to the jump distribution

�̂(�z)�1 Q̂(�z; d��) :
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This distribution represents a superposition of simpler distributions (cf. (2.11)),

�̂(�z)�1 Q̂(�z; d��) =
nX

i;j=1

q̂(�z; i; j)

2 �̂(�z)

(R
S2 q(�z; i; j; e) de

q̂(�z; i; j)

Z
S2
�J(�z;i;j;e)(d��)

q(�z; i; j; e)R
S2 q(�z; i; j; e) de

de

+ ��z(d��)

"
1�

R
S2 q(�z; i; j; e) de

q̂(�z; i; j)

#)
:

Consequently, �rst the distribution of the indices i; j 2 f1; 2; : : : ng is determined by

the probabilities

q̂(�z; i; j)

2 �̂(�z)
=

q̂(�z; i; j)P
n

i;j=1 q̂(�z; i; j)
: (2.15)

Given i and j ; the new state is �� = �z with probability (cf. (2.8))

1�
R
S2 q(�z; i; j; e) de

q̂(�z; i; j)
= 1� hl(xi; xj)

R
S2 B(vi; vj; e) de

n q̂(�z; i; j)
: (2.16)

Expression (2.16) is therefore called probability of a �ctitious jump . Otherwise, i.e.

with the remaining probability, the new state is

�� = J(�z; i; j; e) ;

where the distribution of the direction vector e 2 S2 is (cf. (2.8))

q(�z; i; j; e)R
S2 q(�z; i; j; e) de

=
B(vi; vj; e)R

S2 B(vi; vj; e) de
: (2.17)

The distribution of the Markov process and therefore its convergence properties do not

depend on the function q̂ in (2.12). However, the choice of this function is of importance

for numerical purposes, since it provides di�erent ways of generating trajectories of the

process. We illustrate this by two examples.

Example 2.1 (The �direct simulation� scheme) A trivial choice of the function q̂ in
(2.12) is

q̂(�z; i; j) =
1

n
hl(xi; xj)

Z
S2
B(vi; vj; e) de : (2.18)

In the hard sphere case (1.7) one obtains (cf. (1.8))

q̂(�z; i; j) =
2� Chs

n
hl(xi; xj) kvi � vjk :

The time step (2.14), (2.13) takes the form

�̂ (�z) =
n jDlj

�Chs

P
i;j :xi;xj2Dl

kvi � vjk : (2.19)
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The distribution (2.15) of i; j is

�Dl
(xi)�Dl

(xj) kvi � vjkP
i;j :xi;xj2Dl

kvi � vjk
; (2.20)

i.e. the pairs of particles are chosen from the set

fi; j = 1; 2; : : : ; n : xi; xj 2 Dlg (2.21)

with probabilities proportional to their relative velocities. The probability (2.16) of a �c-

titious jump is zero (cf. (2.18)) as well as the probability of the event i = j : Finally, the
distribution (2.17) of e is (cf. (1.7), (1.8))

j(vi � vj; e)j
2� kvi � vjk

:

The modelling procedure for the direct simulation scheme is extremely simple. How-

ever, the numerical application may face serious problems if the number of particles n is

large. In general, in the calculation of the waiting time parameter (2.19) or the probabil-

ities (2.20) one has quadratic e�ort with respect to n : Therefore it is important to look

for an appropriate choice of the function q̂ in (2.12), which may lead to a substantial gain

in the e�ciency of the modelling of the process.

Example 2.2 (Bird's �no time counter� scheme) Using assumption (1.6) one chooses
the function q̂ in (2.12) in the form

q̂(�z; i; j) =
cB

n
hl(xi; xj)U

"

max
; (2.22)

where

Umax = Umax(�z) = max
i;j :xi;xj2Dl

kvi � vjk : (2.23)

The time step (2.14), (2.13) is

�̂ (�z) =
2n jDlj

cB n2l U
"
max

; (2.24)

where

nl = nl(�z) =
nX
i=1

�Dl
(xi) (2.25)

denotes the number of particles in the cell Dl : The indices i; j are generated uniformly

on the set (2.21) according to (2.15). The probability of the event i = j is 1=nl : The
probability (2.16) of a �ctitious jump is

1�
R
S2 B(vi; vj; e) de

cB U "
max

: (2.26)

The distribution of e is (2.17).
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The value of Umax(�z) may change after each collision. Its calculation takes a quadratic
e�ort with respect to nl : Therefore, the following approximate procedure is used.

Let �k ; k = 1; 2; : : : ; denote the time moments at which a (possibly �ctitious) collision

takes place, and ik; jk the corresponding indices of collision partners. Then the accumu-

lated maximal norm of the relative velocities of collision partners up to time t is

de�ned as

~Umax(t) = max
�
~Umax(0); max

k :�k�t
kvik � vjkk

�
: (2.27)

The value ~Umax(t) is used in (2.24) and (2.26) instead of Umax from (2.23) during the

collision simulation step on the time interval [t; t+�t] (cf. Section 1). The starting value
~Umax(0) is a reasonable but low quantity (cf. [4, p. 443]).

The method described in Example 2.2 has been developed by G.A. Bird since the

sixties (cf. [2], [3]). We also refer to [11], [9], [8], [10], and the detailed discussion of the

historical development in [4, � 11.1].

Since the function (2.22) with ~Umax does not always satisfy (2.12) at the beginning

of the collision simulation step, there will be a certain additional error in this procedure.

This error will vanish when ~Umax increases and adapts to the system. On the other hand,
~Umax remembers all events from the past. Therefore it may become too large later on

and create redundant �ctitious collisions. These e�ects will be illustrated by numerical

examples in Section 4. In the next section we derive a method that avoids both problems.

3. The temperature time counter scheme

3.1. Derivation of a temperature based time counter

In the cell Dl we consider the local mean velocity

V = V (�z) =
1

nl(�z)

X
i :xi2Dl

vi (3.1)

and the local temperature

T = T (�z) =
1

3nl(�z)

X
i :xi2Dl

kvi � V (�z)k2 = 1

3

2
4 1

nl(�z)

X
i :xi2Dl

kvik2 � kV (�z)k2
3
5 ; (3.2)

where �z is as in (2.5) and nl is de�ned in (2.25). These quantities are preserved during

the collision simulation step. Using (3.1) and (3.2) one obtainsX
j :xj2Dl

kvi � vjk2 =
X

j : xj2Dl

h
kvi � V k2 � 2 (vi � V; vj � V )+ kvj � V k2

i

= kvi � V k2 nl + 3T nl (3.3)

and X
i;j :xi;xj2Dl

kvi � vjk2 = 6T n2
l
: (3.4)
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Let �; � > 0 be such that

x" � � x2 + � ; 8x � 0 : (3.5)

Then, according to (1.6), we obtain

Z
S2
B(v;w; e) de � cB T

"

2

 kv �wkp
T

!
"

� cB T
"

2

"
�
kv � wk2

T
+ �

#

and choose the function q̂ in (2.12) as

q̂(�z; i; j) =
cB

n
hl(xi; xj)T

"

2

"
�
kvi � vjk2

T
+ �

#
: (3.6)

According to (3.4), the time step (2.14), (2.13) takes the form

�̂ (�z) =
2n jDlj

cB T
"

2

P
i;j :xi;xj2Dl

h
�
kvi�vjk2

T
+ �

i = 2n jDlj
cB T

"

2 n2
l
[6� + �]

: (3.7)

In order to increase the time step (3.7), we minimize the expression 6�+ � with respect

to �; � satisfying (3.5).

Lemma 3.1 The expression 6� + � takes its minimum from among the �; � satisfying

(3.5) for

� = �(") = 6
"

2
�1 "

2
(3.8)

and

� = �(") = 6
"

2

�
1 � "

2

�
: (3.9)

Proof. The function

'(x) = �x2 � x" + � ; x � 0 ; �; � > 0 ; " 2 (0; 2) ;

takes its minimum at some point x0 satisfying

'0(x0) = 2� x0 � " x"�10 = 0 ;

i.e.

x0 =
�
"

2�

� 1

2�"

or � =
" x"�20

2
: (3.10)

The minimum is non-negative if

� � x"0 � �x20 = x"0

�
1� "

2

�
: (3.11)

In order to minimize the expression 6� + � ; we consider the function

 (x0) = 6
" x"�20

2
+ x"0

�
1� "

2

�
:
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Condition

 0(x�) = 3 (" � 2) " x"�3� + " x"�1�

�
1� "

2

�
= 0

implies x� =
p
6 : Now (3.8), (3.9) follow from (3.10) and (3.11) .

With the optimal choice (3.8), (3.9) of the parameters �; � in the function (3.6) the

time step (3.7) takes the form

�̂ (�z) =
2n jDlj

cB n
2
l
(6T )

"

2

: (3.12)

The distribution of the indices i; j corresponding to (3.6) is (cf. (2.15), (3.4))

pi;j =
�(") kvi�vjk

2

T
+ �(")

n2
l
[6�(") + �(")]

=
"

12

kvi�vjk2
T

+ 1 � "

2

n2
l

(3.13)

being concentrated on the set (2.21). The probability of the event i = j is

�(")

nl [6�(") + �(")]
=

1

nl

�
1� "

2

�
:

The probability of a �ctitious jump corresponding to (3.6) is according to (2.16)

1�
R
S2 B(vi; vj; e) de

cB T
"

2

h
�(") kvi�vjk

2

T
+ �(")

i = 1�
R
S2 B(vi; vj; e) de

cB (6T )
"

2

h
"

12

kvi�vjk2
T

+ 1 � "

2

i : (3.14)

The distribution of the direction vector e is (2.17) independently of (3.6).

3.2. Comparison with the standard DSMC method

It follows from (3.4) that (cf. (2.23))

Umax �
p
6T : (3.15)

Thus, the time step (3.12) of the temperature time counter scheme is always larger than

the time step (2.24) of the standard DSMC method. These time steps may di�er by

several orders of magnitude, as the following example shows.

Example 3.2 Let the particle system approximate the measure

g ��c 1�g

g

(dv) + (1 � g) �c(dv) ; c 2 R3 ; g 2 (0; 1) ;

i.e.

vi = �c 1� g

g
; i = 1; : : : ; [g nl] ; vi = c ; i = [g nl] + 1; : : : ; nl ;

10



where [:] denotes the integer part. We have (cf. (3.1), (3.2))

V = 0 ; 3T =
1

nl

"
kck2 (1 � g)2

g2
g nl + kck2 nl (1� g)

#
= kck2 1� g

g

and

Umax = max
i;j

kvi � vjk = kck 1
g

so that

Umaxp
6T

=
1q

2 g (1� g)
: (3.16)

In the case g = 1
2
identity (3.16) takes the form Umaxp

6T
=
p
2 being relatively close

to the lower bounds given by (3.15). If g � 0 or g � 1 ; the expression (3.16) is arbitrarily
large.

However, the distribution of the indices (3.13) is much more complicated than the

uniform distribution related to the time counter (2.24). An e�cient modelling procedure

for the distribution (3.13) will be studied in the next subsection.

3.3. Modelling of the index distribution

Using (3.3) we represent the probabilities (3.13) in the form pi;j = pi pjji ; where the

probability of i is

pi =
X
j

pi;j =
"

12

kvi�V k2
T

+ 1� "

4

nl
(3.17)

and the probability of j given i takes the form

pjji =
pi;j

pi
=

"

12

kvi�vjk2
T

+ 1 � "

2

nl
h
"

12

kvi�V k2
T

+ 1� "

4

i : (3.18)

Both distributions (3.17) and (3.18) are generated using the acceptance-rejection tech-

nique. This technique based on the following lemma is useful in many modi�cations of

the DSMC method.

Lemma 3.3 Consider a measurable space (X;�) and two functions f and F on X sat-

isfying the majorant condition

0 � f(x) � F (x) ; 8x 2 X : (3.19)

Assume that Z
X

f(x)�(dx) > 0 and
Z
X

F (x)�(dx) <1 :
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Let a random variable � be de�ned by the following procedure:

1. Generate a random variable � with the probability density

P (x) =
F (x)R

X
F (x)�(dx)

: (3.20)

2. Generate independently a random variable u uniformly distributed on [0; 1] :

3. If the acceptance condition

u � f(�)

F (�)
(3.21)

is satis�ed, then � = � and stop.

4. If (3.21) is not ful�lled, then go to 1.

Then the random variable � has the probability density

p(x) =
f(x)R

X
f(x)�(dx)

:

We apply the idea of ordering the particles with respect to the absolute values of

their normalized velocities vi�Vp
T
: Note that the de�nitions (3.1) and (3.2) immediately

imply that

1

nl

X
i :xi2Dl

vi � Vp
T

= 0 and
1

3nl

X
i :xi2Dl






vi � Vp
T







2

= 1 :

Consider some values

0 < b1 < : : : < bK ; K � 1 ; (3.22)

where

kvi � V kp
T

� bK = bK(�z) ; 8i : (3.23)

De�ne

b̂(vi) = min

(
bk ; k = 1; : : : ;K :

kvi � V kp
T

� bk

)

and note that

kvi � V kp
T

� b̂(vi) ; 8i : (3.24)

The function b̂ taking values b1; : : : ; bK provides a certain non-global majorant for the

normalized velocities. The normalized velocities are divided into groups according to

their individual majorants. Let


k = 
k(�z) = #fi : b̂(vi) = bkg ; k = 1; : : : ;K ;

12



denote the number of normalized velocities with the individual majorant bk :

The distribution of the �rst index i (cf. (3.17), (3.19), (3.24)) is generated using

the acceptance�rejection technique with

X = fi = 1; 2; : : : ; n : xi 2 Dlg ; (3.25)

fi =
"

12

kvi � V k2
T

+ 1� "

4
(3.26)

and

Fi =
"

12
b̂(vi)

2 + 1 � "

4
: (3.27)

In order to generate (3.20) we calculate

X
j

Fj =
KX
k=1

X
j : b̂(vj)=bk

Fj =
KX
k=1


k

�
"

12
b2
k
+ 1� "

4

�
=

"

12

KX
k=1


k b
2
k
+ nl

�
1 � "

4

�
;

and

FiP
j Fj

=
"

12

P
K

k=1 
k b
2
k

"

12

P
K

k=1 
k b
2
k
+ nl (1 � "

4
)

b̂(vi)2P
K

k=1 
k b
2
k

+
nl (1 � "

4
)

"

12

P
K

k=1 
k b
2
k
+ nl (1 � "

4
)

1

nl
:

According to this representation the index i is distributed uniformly with probability

nl (1� "

4
)

"

12

P
K

k=1 
k b
2
k
+ nl (1 � "

4
)
:

With probability

1� nl (1 � "

4
)

"

12

P
K

k=1 
k b
2
k
+ nl (1� "

4
)
;

the index i is distributed according to the distribution

b̂(vi)
2P

K

k=1 
k b
2
k

: (3.28)

Thus, �rst a number of a group of indices is chosen according to the probabilities


k b
2
kP

K

�=1 
� b
2
�

; k = 1; : : : ;K ; (3.29)

and then the index i is chosen uniformly in the group fi : b̂(vi) = bkg : Finally, the
index i is accepted with probability (cf. (3.21), (3.26), (3.27))

"

12

kvi�V k2
T

+ 1 � "

4

"

12
b̂(vi)2 + 1 � "

4

: (3.30)
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The distribution of the second index j (cf. (3.18), (3.19)) is generated using the

acceptance�rejection technique with (3.25),

fjji =
"

12

kvi � vjk2
T

+ 1 � "

2
(3.31)

and

Fjji =
"

6

h
b̂(vi)

2 + b̂(vj)
2
i
+ 1� "

2
: (3.32)

Note that

kvi � vjkp
T

� kvi � V kp
T

+
kvj � V kp

T
�
h
b̂(vi) + b̂(vj)

i
;

according to (3.24), and therefore

"

12

kvi � vjk2
T

+ 1 � "

2
� "

6

h
b̂(vi)

2 + b̂(vj)
2
i
+ 1� "

2
:

One obtains

X
j

Fjji = nl

�
"

6
b̂(vi)

2 + 1� "

2

�
+
"

6

KX
k=1


k b
2
k

and the representation (cf. (3.20))

FjjiP
� F�ji

=
nl (

"

6
b̂(vi)2 + 1 � "

2
)

nl (
"

6
b̂(vi)2 + 1� "

2
) + "

6

P
K

k=1 
k b
2
k

1

nl
+

"

6

P
K

k=1 
k b
2
k

nl (
"

6
b̂(vi)2 + 1� "

2
) + "

6

P
K

k=1 
k b
2
k

b̂(vj)2P
K

k=1 
k b
2
k

:

Thus, with probability

nl (
"

6
b̂(vi)2 + 1� "

2
)

nl (
"

6
b̂(vi)2 + 1� "

2
) + "

6

P
K

k=1 
k b
2
k

;

the index j is distributed uniformly. With probability

1� nl (
"

6
b̂(vi)2 + 1 � "

2
)

nl (
"

6
b̂(vi)2 + 1 � "

2
) + "

6

P
K

k=1 
k b
2
k

;

the index j is distributed according to (3.28), i.e. �rst the number of the group is chosen

according to (3.29) and then the index j is generated uniformly in the corresponding

group. Finally, the index j is accepted with probability (cf. (3.21), (3.31), (3.32))

"

12

kvi�vjk2
T

+ 1� "

2

"

6

h
b̂(vi)2 + b̂(vj)2

i
+ 1 � "

2

: (3.33)
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Remark 3.4 In our test calculations we de�ne bK from the initial con�guration of the
system as (cf. (3.23))

bK = max

(kvi � V kp
T

: i = 1; : : : ; n ; xi 2 Dl

)
;

and put

bk = k
bK

K
; k = 1; : : : ;K :

The value of bK and the values of 
k ; k = 1; : : : ;K ; are updated during the simulation.

Note that, if some 
k equals zero, then the corresponding group is simply not chosen (cf.

(3.29)).

4. Numerical experiments

4.1. Test example

The initial distribution of our test example is a weighted mixture of two Maxwellians,

namely

f0(v) = g
1

(2� T1)3=2
exp

 
�kv � V1k2

2T1

!
+ (1 � g)

1

(2� T2)3=2
exp

 
�kv � V2k2

2T2

!
: (4.1)

This form is chosen in order to illustrate the e�ect described in Example 3.2. The function

f(t; v) is the solution of the spatially homogeneous Boltzmann equation with the initial

condition f(0; v) = f0(v) : It relaxes to the �nal equilibrium Maxwell distribution

L : 6:7

f1(v) =
1

(2� T )3=2
exp

 
�kv � V k2

2T

!

with the parameters

V = g V1 + (1� g)V2 (4.2)

and

T = g T1 + (1� g)T2 +
1

3
g (1� g) kV1 � V2k2 : (4.3)

We consider the problem of calculating the time evolution of the second moments

mi;j(t) =
Z
R3

vi vj f(t; v) dv ; i; j = 1; 2; 3 ; (4.4)

and the third moments

ri(t) =
Z
R3

vi kvk2 f(t; v) dv ; i = 1; 2; 3 : (4.5)

15



The initial values of these functionals are given by

mi;j(0) =
�
g T1 + (1 � g)T2

�
�i;j + g V1;i V1;j + (1� g)V2;i V2;j ; (4.6)

where �i;j denotes the Kronecker symbol, and

ri(0) = g
�
5T1 + kV1k2

�
V1;i + (1 � g)

�
5T2 + kV2k2

�
V2;i : (4.7)

Our �rst test case is

g = 0:001 ; V1 = (�999; 0; 0) ; V2 = (1; 0; 0) ; T1 = 1 ; T2 = 1 : (4.8)

For this special choice we obtain from (4.2), (4.3)

V = 0 ; T = 334 (4.9)

so that

lim
t!1

m11(t) = 334 ; lim
t!1

r1(t) = 0 : (4.10)

The initial values (4.6), (4.7) take the form

m11(0) = 1000 ; r1(0) = �997004 : (4.11)

A particle system approximating the distribution (4.1), (4.8) consists of many particles (�
99.9%) with small velocities (� V2) and of a few particles (� 0.1%) with large velocities

(� V1).

Our second test case is the relaxation problem with equal weights, i.e.

g = 0:5 ; V1 = (�31:6; 0; 0) ; V2 = (31:6; 0; 0) ; T1 = 1 ; T2 = 1 ; (4.12)

so that (4.9) holds.

We apply two methods:

� the standard DSMC method (cf. Example 2.2) with the accumulated maximal norm

of the relative velocities (2.27);

� the TTC method (described in Section 3) with di�erent numbers of groups (cf.

(3.22)).

4.2. Statistical notions

First we introduce some de�nitions and notations that are helpful for the understanding

of stochastic numerical procedures.

Functionals of the form (cf. (4.4), (4.5))

F (t) =
Z
R3

'(v) f(t; v) dv (4.13)
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are approximated by the random variable (cf. (1.4))

�(n)(t) =
1

n

nX
i=1

'(vi(t)) ; (4.14)

where (v1(t); : : : ; vn(t)) are the velocities of the particle system. In order to estimate and

to reduce the random �uctuations of the estimator (4.14), a number N of independent

ensembles of particles is generated. The corresponding values of the random variable are

denoted by �
(n)
1 (t); : : : ; �(n)

N
(t) : The empirical mean value of the random variable (4.14),

i.e.

�
(n;N)
1 (t) =

1

N

NX
j=1

�
(n)
j

(t) ; (4.15)

is then used as an approximation to the functional (4.13). The error of this approximation

is j�(n;N)
1 (t)� F (t)j consisting of the following two components.

The systematic error is the di�erence between the mathematical expectation of the

random variable (4.14) and the exact value of the functional, i.e.

e(n)
sys

(t) = E�(n)(t)� F (t) :

The statistical error is the di�erence between the empiricalmean value and the expected

value of the random variable, i.e.

e
(n;N)
stat (t) = �

(n;N)
1 (t)�E�(n)(t) :

A con�dence interval for the expectation of the random variable �(n)(t) is obtained
as

Ip =

2
4�(n;N)

1 (t)� �p

s
Var �(n)(t)

N
; �

(n;N)
1 (t) + �p

s
Var �(n)(t)

N

3
5 ; (4.16)

where

Var �(n)(t) := E
h
�(n)(t)� E�(n)(t)

i2
= E

h
�(n)(t)

i2 � h
E�(n)(t)

i2
(4.17)

is the variance of the random variable (4.14), and p 2 (0; 1) is the con�dence level.

This means that

Prob
n
E�(n)(t) =2 Ip

o
= Prob

8<
:je(n;N)

stat (t)j � �p

s
Var �(n)(t)

N

9=
; � p :

Thus, the value

c(n;N)(t) = �p

s
Var �(n)(t)

N

is a probabilistic upper bound for the statistical error.
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In the calculations we use a con�dence level of p = 0:999 and �p = 3:2 : The variance
(4.17) is approximated by the corresponding empirical value, i.e.

Var �(n)(t) � �
(n;N)
2 (t)�

h
�
(n;N)
1 (t)

i2
;

where

�
(n;N)
2 (t) =

1

N

NX
j=1

h
�
(n)
j

(t)
i2

is the empirical second moment of the random variable (4.14).

4.3. Results of computations

First we study the time evolution of the accumulated maximal norm of the relative

velocities ~Umax (cf. (2.27)) for the standard DSMC method in the test case (4.8). The

behaviour of the quantity ~Umax(t) on the time interval [0; 0:025] is displayed in Figure 1

for di�erent particle numbers. The lines correspond to n = 100000, n = 10000 and

n = 1000 from top to bottom.

0 0.005 0.01 0.015 0.02 0.025
0

200

400

600

800

1000

Figure 1: Accumulated maximal relative velocity norm

On a certain starting interval ~Umax is much less than the correct value 1000 : Thus, some

additional systematic error is expected for the standard DSMC method if the number

particles is not large enough. However, this interval becomes smaller when the number of

particles increases.

We illustrate this error for the second moment m11(t) (cf. (4.4), (4.10), (4.11)) in

Figure 2. The solid lines (from top to bottom) correspond to 1000, 10000 and 100000
particles for the standard DSMC method. The dashed line represents the numerical

solution obtained using the TTC method with only 1000 particles. Note that the number

of shells in the TTC method does not in�uence the systematic error. The results for the

DSMC method with 1000000 particles are identical with the dashed line.
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Figure 2: Time relaxation of the second moment m11(t)
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Figure 3: Time relaxation of the third moment r1(t)
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In Figure 3 a similar behaviour is observed for the third moment r1(t) (cf. (4.5),

(4.10), (4.11)). For 100000 particles the standard DSMC method delivers a result close

to the dashed line obtained using the TTC method with 1000 particles. All computations

have been done using N = 100 independent ensembles (cf. (4.15)) for 100000 particles,

N = 1000 ensembles for 10000 particles and N = 10000 repetitions if the number of

particles was 1000. The con�dence intervals (4.16) are of negligible size in this case.

Next we study the e�ciency of the temperature time counter scheme compared with

the standard DSMC method. We consider the test case (4.8) on the time interval [0; 0:1]
with a particle number n = 100000 :

The information about the computational time for these methods is contained in the

second column of Table 1. We assume the computational time needed by the DSMC

method as 100% so that the quantities in the table represent the percentage of time

needed using TTC with di�erent numbers of shells corresponding to (3.22). The other

columns show the numbers of collisions, �ctitious collisions (according to (3.14)) and

rejections (according to (3.30), (3.33)), respectively (measured in multiples of 104).

Table 1

Method CPU Collisions Fict. collisions Rejections

DSMC 100 500 486 0

TTC/1 3156 23.8 9.20 26300

TTC/2 834 23.8 9.24 6570

TTC/4 246 23.8 9.31 1630

TTC/8 101 23.8 9.30 409

TTC/16 65.5 23.8 9.31 115

TTC/32 56.8 23.8 9.22 44.1

TTC/64 54.7 23.8 9.28 23.2

TTC/128 54.7 23.8 9.29 16.4

TTC/256 55.3 23.8 9.21 13.8

The gain factor in e�ciency is about 2 ; when the number of shells is between 32
and 256 : This reduction is due to a decrease in the number of rejections of the selected

candidates for the collisions corresponding to the probabilities (3.30) and (3.33) (as shown

in the last column). If the number of rejections in the TTC method reaches the number

of �ctitious collisions in the standard DSMC method (see line TTC/8) the e�ciency of

both methods is the same. In the case of optimal e�ciency (see line TTC/64) only two

attempts in the acceptance-rejection technique are necessary to generate one sample. The

number of rejections decreases further when the number of shells grows, but this positive

e�ect gradually disappears due to the additional e�ort required for sorting particles.

Finally, we study the e�ciency of both methods in the test case (4.12). The purpose

of this test case is to show that the TTC scheme performs comparably in situations that

are actually well solved by the standard DSMC method. The results are displayed in

Table 2. The number of rejections in the temperature time counter scheme is reduced

using the shell technique. However, starting from K = 32 it reaches a stable value so that
no further gain in e�ciency can be expected. Note that the number of real collisions if

about 20:3 � 104 in both methods.
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Table 2

Method CPU Collisions Fict. collisions Rejections

DSMC 100 51.2 30.9 0

TTC/1 142 22.4 2.16 140

TTC/2 140 22.4 2.16 129

TTC/4 134 22.4 2.16 100

TTC/8 128 22.4 2.17 61.5

TTC/16 121 22.4 2.19 40.1

TTC/32 121 22.4 2.16 34.8

TTC/64 124 22.4 2.18 34.7

TTC/128 129 22.4 2.18 34.0

TTC/256 141 22.4 2.17 33.6

5. Concluding remarks

The temperature time counter scheme introduced in this paper and the standard DSMC

(direct simulation Monte Carlo) method have been considered in the unifying framework

provided by a Markov process related to the Boltzmann equation. These algorithms

contain three main components � the time steps, the distribution of the collision partners,

and the probability of �ctitious collisions.

The times steps and the probability of �ctitious collisions are closely related to each

other. If the time step is small then there are many attempts to collide and the probability

of �ctitious collisions must be large, since the number of real collisions should remain

constant. In the experiment represented in Table 1 the number of real collision is about

14 � 104 : The relationship (3.16) between the time steps of both methods is

Umaxp
6T

=
1000p
6 � 334 � 22:3

in the �rst test case (4.8), (4.9). Correspondingly, the number of collisions is about

22 times larger in the standard DSMC method (cf. third column of Table 1). This is

the �reserve� that one can use to generate the more di�cult index distribution. If the

modelling procedure is good enough, some gain in e�ciency remains.

There is an interplay between the time steps and the distribution of the collision

partners. In the standard DSMC scheme there are small time steps, but a very simple

distribution of the collision partners. In the TTC method the time steps are much larger.

However, more e�ort has to be spent in order to generate the distribution of the collision

partners. This e�ort can be in�uenced (decreases) by an appropriate application of the

acceptance-rejection technique, which was done in this paper by introducing the shells. It

should be mentioned that the relatively complicated index distribution of the TTC scheme

can be implemented easily on a computer. There are further opportunities to increase the

e�ciency of modelling the index distribution. The shell parameters bk ; k = 1; : : : ;K �1 ;
in (3.22) may be adapted to the system during the simulation. The majorant (3.32) for the

function (3.31) may be improved. To this end, one could use some ordering with respect

to the orientation in the velocity space, to take into account the term �2 (vi� V; vj � V )
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in the expression

kvi � vjk2 = kvi � V k2 � 2 (vi � V; vj � V )+ kvj � V k2 : (5.1)

The particular initial distribution (4.1), (4.8) was chosen to illustrate the advantages of

the temperature time counter scheme as compared with the standard DSMCmethod. This

example provides some �extreme� situation, when a relatively small number of particles

has a strong in�uence on the macroscopic quantities. However, the second test (4.12) case

shows that both methods perform comparably in �normal� situations.

A remarkable feature of the TTC scheme is the �xed time step during the collision

simulation (as in the no time counter scheme in Example 2.2). Furthermore, it has two

properties that are favourable compared with the standard DSMC method. The �rst is

the absence of an additional systematic error due to the wrong accumulated maximal

relative velocity bound (2.27). This gives better stability with respect to short time

perturbations. The second is a better long term performance in cases far fromMaxwellian.

These features are of importance in applications, when a low number of molecules of high

energy in�uences the behaviour of the gas.
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