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Abstract. The probabilistic approach is used for constructing special layer methods

to solve the Cauchy problem for semilinear parabolic equations with small parameter.

In spite of the probabilistic nature these methods are nevertheless deterministic. The

algorithms are tested by simulating the Burgers equation with small viscosity and the

generalized KPP-equation with a small parameter.
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1. Introduction

Nonlinear partial di�erential equations (PDE) are usually not susceptible of analytic

solutions and mostly investigated by means of numerical methods. Numerical methods
used for solving PDE are traditionally based on deterministic approaches (see, e.g., [22, 23,
26] and references therein). A class of layer methods intended to solve semilinear parabolic
equations is introduced in [18], where the well-known probabilistic representations of

solutions to linear parabolic equations and the ideas of weak sense numerical integration
of stochastic di�erential equations (SDE) are used to construct numerical algorithms. In
spite of the probabilistic nature these methods are nevertheless deterministic.
Nonlinear parabolic equations with small parameter arise in a variety of applications

(see, e.g., [2, 4, 8, 11, 25] and references therein). For instance, they are used in gas
dynamics, when one has to take into account small viscosity and small heat conductivity.
Some problems of combustion are described by PDE with small parameter. They also
arise as the result of introducing arti�cial viscosity in systems of �rst-order hyperbolic
equations that is one of the popular approaches to numerical solving of inviscid problems

of gas dynamics [20, 24, 29].
Here we construct some layer methods for solving the Cauchy problem for semilinear

parabolic equations with small parameter of the form

@u

@t
+
"2

2

dX
i;j=1

aij(t; x; u)
@2u

@xi@xj
+

dX
i=1

(bi(t; x; u) + "2ci(t; x; u))
@u

@xi
+ g(t; x; u) = 0;(1.1)

t 2 [t0; T ); x 2 Rd;

u(T; x) = '(x):(1.2)

The probabilistic representations of the solution to the problem (1.1)-(1.2) are con-
nected with systems of SDE with small noise. Namely for such systems, special weak
approximations are proposed in [19]. Applying these special approximations, we get new

layer methods intended to solve the Cauchy problem (1.1)-(1.2).
As it turned out, if the solution of (1.1)-(1.2) is regular, errors of the proposed methods

have the form of O(hp + "lhq); p > q; l > 0; h is a step of time discretization. Owing to
the fact that the accuracy order of such methods is equal to a comparatively small q; the
methods are not too complicated. But due to the large p and the small factor "l at hq;
their errors are fairly low and therefore these methods are highly e�cient. The singular
case, when derivatives of the solution go to in�nity as "! 0; requires a special theoretical
investigation. For the equations of a particular type, we give the corresponding theoretical
results. As to the equation (1.1) of the general type, we restrict ourselves to the analysis

of the one-step error. Further theoretical investigations should rest on a stability analysis
and on particular properties of the solution. However, we test the methods constructed
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here on model problems for which shock waves are observed. The tests give quite good
results not only in simulations of wave formation, that corresponds to the regular case,
but also in simulations of wave propagation, i.e., in the singular case. The reasons of
these experimental facts and possible ways to get realistic errors of the methods in the

singular case are discussed.
Section 2 gives some results from [18, 19] used in this paper. In Section 3, new implicit

and explicit layer methods for the problem (1.1)-(1.2) are proposed. Some theorems on
their rates of convergence both in the regular and in the singular cases are proved. For

implementation of the layer methods, we need in a space discretization. The numerical
algorithms based on the proposed layer methods and on the linear interpolation are con-
structed in Section 4. For the sake of simplicity in writing, Sections 3 and 4 deal with the
one-dimensional case of the problem (1.1)-(1.2). In Section 5, extensions for the multi-
dimensional case and for a system of reaction-di�usion equations are given. In Sections 6

and 7, we propose layer methods in two particular cases of the problem (1.1)-(1.2). To-
gether with two-layer methods, some three-layer methods are obtained in Section 6. For
constructing a layer method in Section 7, we attract the exact simulation of the Brown-
ian motion [17] instead of the weak simulation used in Sections 2-6 to approximate SDE

arising in the probabilistic representations.
All the numerical algorithms presented in the paper are tested through computer ex-

periments. Some results of numerical tests on the Burgers equation with small viscosity
and on the generalized KPP-equation with a small parameter are given in Section 8.

This paper is devoted to initial value problems. Boundary value problems for nonlinear
parabolic equations with small parameter will be considered in a separate work. The
probability approach to linear boundary value problems is treated in [15, 16, 17].

2. Preliminaries

Here we give, in the required form, some results from [18, 19] which are used in the

next sections.

2.1. Probabilistic approach to constructing numerical methods for semi-

linear PDE. Let the Cauchy problem (1.1)-(1.2) have the unique solution u = u(t; x)
which is su�ciently smooth and satis�es some needed conditions of boundedness (see the

corresponding theoretical results, e.g., in [13, 28]). If we substitute u = u(t; x) in the
coe�cients of (1.1), we obtain a linear parabolic equation with small parameter. The
solution to this linear equation has the following probabilistic representation

u(t; x) = E('(Xt;x(T )) + Zt;x;0(T )); t � T; x 2 Rd;(2.1)

where Xt;x(s); Zt;x;z(s); s � t; is the solution to the Cauchy problem for the system of

stochastic di�erential equations

dX = (b(s;X; u(s;X)) + "2c(s;X; u(s;X)))ds(2.2)

+"�(s;X; u(s;X))dw; X(t) = x;

dZ = g(s;X; u(s;X))ds; Z(t) = z:(2.3)

Here w(s) = (w1(s); : : : ; wd(s))> is a d-dimensional standard Wiener process, b(s; x; u)
and c(s; x; u) are d-dimensional column-vectors compounded from the coe�cients bi(s; x; u)
and ci(s; x; u) of (1.1), �(s; x; u) is a d� d-matrix obtained from the equation a(s; x; u) =
�(s; x; u)�>(s; x; u); where a = faijg; the equation is solvable with respect to � (for in-
stance, by a lower triangular matrix) at least in the case of a positively de�nite a:
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Note that to simplify the notation we write u(t; x) instead of u(t; x; ") and Xt;x(s)
instead of X"

t;x(s) in the whole paper.
Introduce a discretization, for de�niteness the equidistant one:

T = tN > tN�1 > � � � > t0 = t; h :=
T � t0

N
:

Note that all the methods given in the paper can be easily adapted for a nonequidistant

discretization. For instance, we use a variable discretization step h in some our numerical
tests (see Section 8.1).
Because the right-hand side of the equation (2.3) is independent of Z, we have from

(2.1):

u(tk; x) = E('(Xtk;x(T )) + Ztk;x;0(T ))(2.4)

= E('(Xtk+1;Xtk;x
(tk+1)(T )) + Ztk+1;Xtk;x

(tk+1);Ztk;x;0
(tk+1)(T ))

= EE('(Xtk+1;Xtk;x
(tk+1)(T )) + Ztk+1;Xtk;x

(tk+1);Ztk;x;0
(tk+1)(T )�Xtk;x(tk+1)); Ztk;x;0(tk+1))

= E(u(tk+1; Xtk;x(tk+1)) + Ztk ;x;0(tk+1)):

In accordance with the probabilistic approach to constructing numerical methods for

semilinear PDE from [18], the ideas of weak sense numerical integration of SDE [12, 14, 21]
are attracted to obtain some approximate relations from (2.2)-(2.4). The relations allow us
to express approximations �u(tk; x) of the solution u(tk; x) in terms of �u(tk+1; x) recurrently,
i.e., to construct some layer methods which are discrete in the variable t only. To make

clear the approach, it is relevant to derive one of the methods from [18] which is used in
this paper in a broad fashion. For simplicity in writing, we restrict ourselves to the case
d = 1.
Applying the explicit weak Euler scheme with the simplest noise simulation [12, 14, 21]

to the system (2.2)-(2.3), we get

Xtk;x(tk+1) ' �Xtk;x(tk+1) = x + hb(tk; x; u(tk; x)) + "2hc(tk; x; u(tk; x))(2.5)

+"h1=2�(tk; x; u(tk; x))�k;

Ztk;x;z(tk+1) ' �Ztk;x;z(tk+1) = z + hg(tk; x; u(tk; x));

where �N�1; �N�2; : : : ; �0 are i.i.d. random variables with the law P (� = �1) = 1=2:
Using (2.4)-(2.5), we obtain

u(tk; x) ' E(u(tk+1; �Xtk;x(tk+1)) +
�Ztk;x;0(tk+1))(2.6)

=
1

2
u(tk+1; x+ hb(tk; x; u(tk; x)) + "2hc(tk; x; u(tk; x)) + "h1=2�(tk; x; u(tk; x)))

+
1

2
u(tk+1; x+ hb(tk; x; u(tk; x)) + "2hc(tk; x; u(tk; x))� "h1=2�(tk; x; u(tk; x)))

+hg(tk; x; u(tk; x)):

Thus, we can calculate the approximations �u(tk; x) layerwise:

�u(tN ; x) = '(x);(2.7)

�u(tk; x) =
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=
1

2
�u(tk+1; x+ hb(tk; x; �u(tk; x)) + "2hc(tk; x; �u(tk; x)) + "h1=2�(tk; x; �u(tk; x)))

+
1

2
�u(tk+1; x+ hb(tk; x; �u(tk; x)) + "2hc(tk; x; �u(tk; x))� "h1=2�(tk; x; �u(tk; x)))

+hg(tk; x; �u(tk; x)); k = N � 1; : : : ; 1; 0:

The method (2.7) is an implicit layer method for solving the Cauchy problem (1.1)-
(1.2). This method is deterministic though the probabilistic approach is used for its

construction.
Applying the method of simple iteration to (2.7) with �u(tk+1; x) as a null iteration, we

get the �rst iteration (we denote it as �u(tk; x) again):

�u(tN ; x) = '(x);(2.8)

�u(tk; x) =

=
1

2
�u(tk+1; x + hb(tk; x; �u(tk+1; x)) + "2hc(tk; x; �u(tk+1; x)) + "h1=2�(tk; x; �u(tk+1; x)))

+
1

2
�u(tk+1; x+ hb(tk; x; �u(tk+1; x)) + "2hc(tk; x; �u(tk+1; x))� "h1=2�(tk; x; �u(tk+1; x)))

+hg(tk; x; �u(tk+1; x)); k = N � 1; : : : ; 1; 0:

According to the propositions proved in [18], this explicit layer method has the one-step

error estimated by O(h2) and the global error O(h).
Of course, all the results from [18] can be applied to solving the problem with small

parameter (1.1)-(1.2). But since the probabilistic representation of the solution to (1.1)-
(1.2) is connected with the system of di�erential equations with small noise (2.2)-(2.3),

one can expect that use of weak approximations for SDE with small noise [19] leads to
new e�ective methods for solving (1.1)-(1.2).

2.2. Some weak approximations for SDE with small noise. Here we recall some
weak approximations for SDE with small noise

dX = b(t; X)dt + "2c(t; X)dt+ "�(t; X)dw(t); X(t0) = x;(2.9)

t 2 [t0; T ]; 0 � " � "0;

where X, b(t; x); and c(t; x) are d-dimensional column-vectors, �(t; x) is a d�m-matrix,
w(s) = (w1(t); : : : ; wm(t))> is an m-dimensional standard Wiener process, "0 is a pos-
itive number. The coe�cients are supposed to satisfy the corresponding conditions of

smoothness and boundedness.
The one-step error � and the global error R of a weak approximation Xk = �Xt;x(tk) at

the point (t; x) are de�ned as

� = jEf(Xt;x(t + h))� Ef( �Xt;x(t+ h))j;

R = jEf(Xt;x(T ))� Ef( �Xt;x(T ))j;
where f(x) is a function belonging to a su�ciently wide class (see details, e.g., in [12, 14,
21]).

Below we write down a number of weak schemes from [14] and [19] which are used in
the next sections.
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The Euler scheme:

Xk+1 = Xk + hb(tk; Xk) + "2hc(tk; Xk) + "h1=2�(tk; Xk)�k;(2.10)

� = O(h2); R = O(h);

where �k = (�1k; : : : ; �
m
k ) are i.i.d. m-dimensional vectors with i.i.d. components and each

component is distributed by the law P (� = �1) = 1=2:
The Runge-Kutta scheme with error O(h2 + "2h):

Xk+1 = Xk +
1

2
hb(tk; Xk) +

1

2
hb(tk+1; Xk + hb(tk; Xk))(2.11)

+"2hc(tk; Xk) + "h1=2�(tk; Xk)�k;

� = O(h3 + "2h2); R = O(h2 + "2h);

where �k are the same as in (2.10).
The special second-order Runge-Kutta scheme (for SDE with small additive noise, i.e.,

� is a constant matrix; c � 0):

Xk+1 = Xk +
1

2
hb(tk; Xk) +

1

2
hb(tk+1; Xk + hb(tk; Xk) + "h1=2��k)) + "h1=2��k;(2.12)

� = O(h3); R = O(h2);

where �k = (�1k; : : : ; �
m
k ) are i.i.d. m-dimensional vectors with i.i.d. components and each

component is distributed by the law P (� = 0) = 2=3; P (� = �
p
3) = 1=6:

The special Runge-Kutta scheme with error O(h4 + "2h2) (for SDE with small additive
noise, i.e., � is a constant matrix; c � 0):

Xk+1 = Xk +
1

6
(k1 + 2k2 + 2k3 + k4) + "h1=2��k;(2.13)

k1 = hb(tk; Xk); k2 = hb(tk+1=2; Xk + k1=2);

k3 = hb(tk+1=2; Xk + k2=2 + "h1=2��k); k4 = hb(tk+1; Xk + k3 + "h1=2��k);

� = O(h5 + "2h3); R = O(h4 + "2h2);

where �k are the same as in (2.12).
Note that in Sections 6 and 7 we also attract some other special weak approximations.

3. Methods for a general semilinear parabolic equation with small
parameter

Here we construct new layer methods for semilinear parabolic equations with small
parameter (1.1)-(1.2) using the probabilistic approach from [18] and applying speci�c
weak approximations from [19] to the system with small noise (2.2)-(2.3).

3.1. Implicit layer method. For the sake of simplicity in writing, let us consider
the Cauchy problem (1.1)-(1.2) under d = 1 :

@u

@t
+
"2

2
�2(t; x; u)

@2u

@x2
+ (b(t; x; u) + "2c(t; x; u))

@u

@x
+ g(t; x; u) = 0;(3.1)

t 2 [t0; T ); x 2 R1;
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u(T; x) = '(x):(3.2)

The probabilistic representation of the solution u(t; x) to this problem has the form
(2.1)-(2.3) with d = 1:
Applying the Runge-Kutta scheme (2.11) to the system (2.2)-(2.3), we get

Xtk;x(tk+1) ' �Xtk;x(tk+1) = x +
1

2
hbk +

1

2
hb(tk+1; x + hbk; u(tk+1; x+ hbk))(3.3)

+"2hck + "h1=2�k�k;

Ztk;x;z(tk+1) ' �Ztk;x;z(tk+1) = z +
1

2
hgk +

1

2
hg(tk+1; x+ hbk; u(tk+1; x+ hbk));

where bk; ck; �k; and gk are the coe�cients b; c; �; and g calculated at the point
(tk; x; u(tk; x)):
Using the probabilistic representation (2.4), we obtain

u(tk; x) ' E(u(tk+1; �Xtk;x(tk+1)) +
�Ztk;x;0(tk+1))

=
1

2
u(tk+1; x + h[bk + b(tk+1; x+ hbk; u(tk+1; x + hbk))]=2 + "2hck + "h1=2�k)

+
1

2
u(tk+1; x+ h[bk + b(tk+1; x+ hbk; u(tk+1; x+ hbk))]=2 + "2hck � "h1=2�k)

+
1

2
hgk +

1

2
hg(tk+1; x+ hbk; u(tk+1; x+ hbk)):

We can approximate u(tk; x) by v(tk; x) found from

v(tk; x) =(3.4)

=
1

2
u(tk+1; x + h[~bk + b(tk+1; x+ h~bk; u(tk+1; x+ h~bk))]=2 + "2h~ck + "h1=2~�k)

+
1

2
u(tk+1; x+ h[~bk + b(tk+1; x+ h~bk; u(tk+1; x+ h~bk))]=2 + "2h~ck � "h1=2~�k)

+
1

2
h~gk +

1

2
hg(tk+1; x + h~bk; u(tk+1; x + h~bk));

where ~bk; ~ck; ~�k, and ~gk are the coe�cients b; c; �; and g calculated at the point
(tk; x; v(tk; x)):
The corresponding implicit layer method has the form

�u(tN ; x) = '(x);(3.5)

�u(tk; x) =
1

2
�u(tk+1; x + h[�bk + b(tk+1; x+ h�bk; �u(tk+1; x + h�bk))]=2 + "2h�ck + "h1=2��k)

+
1

2
�u(tk+1; x+ h[�bk + b(tk+1; x+ h�bk; �u(tk+1; x+ h�bk))]=2 + "2h�ck � "h1=2��k)

+
1

2
h�gk +

1

2
hg(tk+1; x+ h�bk; �u(tk+1; x + h�bk)); k = N � 1; : : : ; 0;

where �bk; �ck; ��k, and �gk are the coe�cients b; c; �; and g calculated at the point
(tk; x; �u(tk; x)):

6



3.2. Convergence theorem in the regular case. Let us assume that
(i) The coe�cients b(t; x; u) and g(t; x; u) and their �rst and second derivatives are

continuous and uniformly bounded, the coe�cients c(t; x; u) and �(t; x; u) and their �rst
derivatives are continuous and uniformly bounded:

j @
i+j+lb

@ti@xj@ul
j � K; j @

i+j+lg

@ti@xj@ul
j � K; 0 � i + j + l � 2;(3.6)

j @
i+j+lc

@ti@xj@ul
j � K; j @

i+j+l�

@ti@xj@ul
j � K; 0 � i + j + l � 1;

t0 � t � T; x 2 R1; u� < u < u�;

where �1 � u�; u
� � 1 are some constants.

(ii) There exists the only bounded solution u(t; x) to the problem (3.1)-(3.2) such that

u� < u� � u(t; x) � u� < u�;(3.7)

where u�; u
� are some constants, and there exist the uniformly bounded derivatives:

j @
i+ju

@ti@xj
j � K; i = 0; j = 1; 2; 3; 4; i = 1; j = 0; 1; 2; i = 2; j = 0; 1;(3.8)

i = 3; j = 0; t0 � t � T; x 2 R1; 0 < " � "�:

Below, in Section 3.4, we consider the singular case, when the condition (3.8) is not
ful�lled.

In Lemma 3.1 and Theorem 3.1 we use the letters K and C without any index for
various constants which do not depend on h; k; x; ":

Lemma 3.1. Under the assumptions (i) - (ii); the one-step error of the implicit layer

method (3:5) is estimated by O(h3 + "2h2); i.e.,

jv(tk; x)� u(tk; x)j � C � (h3 + "2h2);

where v(tk; x) is found from (3:4), C does not depend on h; k; x; ".

Proof. Introduce the function

Utk;x(v) :=

:=
1

2
u(tk+1; x+ h[�bk + b(tk+1; x + h�bk; u(tk+1; x+ h�bk))]=2 + "2h�ck + "h1=2��k)

+
1

2
u(tk+1; x+ h[�bk + b(tk+1; x+ h�bk; u(tk+1; x+ h�bk))]=2 + "2h�ck � "h1=2��k)

+
1

2
h�gk +

1

2
hg(tk+1; x + h�bk; u(tk+1; x + h�bk));

where �bk; �ck; ��k, and �gk are the coe�cients b; c; �; and g calculated at (tk; x; v):
To prove the lemma, we make use of the method of simple iteration. De�ne the sequence

v(i)(tk; x) := Utk;x(v
(i�1)(tk; x)); i = 1; 2; : : : ;

and take u(tk; x) as a null iteration:

v(0)(tk; x) = u(tk; x):

7



Firstly we prove that

jv(1)(tk; x)� v(0)(tk; x)j = jv(1)(tk; x)� u(tk; x)j � C � (h3 + "2h2):(3.9)

We have

v(1)(tk; x) =(3.10)

=
1

2
u(tk+1; x+ h[bk + b(tk+1; x+ hbk; u(tk+1; x+ hbk))]=2 + "2hck + "h1=2�k)

+
1

2
u(tk+1; x+ h[bk + b(tk+1; x + hbk; u(tk+1; x+ hbk))]=2 + "2hck � "h1=2�k)

+
1

2
hgk +

1

2
hg(tk+1; x + hbk; u(tk+1; x + hbk));

where bk; ck; �k; and gk are the coe�cients b; c; �; and g calculated at the point
(tk; x; u(tk; x)):
Using the assumptions (i)-(ii), we expand the functions u and g :

u(tk+1; x+ hbk=2 + hb(tk+1; x+ hbk; u(tk+1; x+ hbk))=2 + "2hck � "h1=2�k)

= u(tk; x) +
@u

@t
h+

@u

@x
� (bkh+

1

2

@b

@t
h2 +

1

2

@b

@x
bkh

2 +
1

2

@b

@u

@u

@t
h2

+
1

2

@b

@u

@u

@x
bkh

2 + "2ckh� "�kh
1=2) +

1

2

@2u

@t2
h2 +

@2u

@t@x
� (bkh2 � "�kh

3=2)

+
@2u

@x2
� (1

2
"2�2kh +

1

2
b2kh

2 � "h1=2�k � (bkh+ "2ckh))

�1

6

@3u

@x3
"3�3kh

3=2
+O(h3 + "2h2);

g(tk+1; x+ hbk; u(tk+1; x+ hbk)) = gk +
@g

@t
h+

@g

@x
bkh+

@g

@u

@u

@t
h

+
@g

@u

@u

@x
bkh+O(h2);

where the derivatives of u are calculated at the point (tk; x); the derivatives of the coe�-
cients b and g are calculated at the point (tk; x; u(tk; x)); and

jO(h3 + "2h2)j � C � (h3 + "2h2); jO(h2)j � C � h2:(3.11)

Substituting these expansions in (3.10), we get

v(1)(tk; x) = u(tk; x) + h � (@u
@t

+
@u

@x
� (bk + "2ck) +

"2

2

@2u

@x2
�2k + gk)

+
1

2
h2 � (@

2u

@t2
+
@b

@t

@u

@x
+
@b

@u

@u

@t

@u

@x
+ bk

@2u

@x@t
+
@g

@t
+
@g

@u

@u

@t
)

+
1

2
bkh

2 � ( @
2u

@t@x
+
@b

@x

@u

@x
+
@b

@u

@u

@x

@u

@x
+ bk

@2u

@x2
+
@g

@x
+
@g

@u

@u

@x
)

+O(h3 + "2h2):
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Then, adding and taking o� the appropriate terms of the order O("2h2) in the above
expression, we obtain

v(1)(tk; x) = u(tk; x) + h � (@u
@t

+
@u

@x
� (bk + "2ck) +

"2

2

@2u

@x2
�2k + gk)(3.12)

+
1

2
h2
@

@t
(
@u

@t
+
@u

@x
� (b + "2c) +

"2

2

@2u

@x2
�2 + g)

+
1

2
bkh

2 @

@x
(
@u

@t
+
@u

@x
� (b+ "2c) +

"2

2

@2u

@x2
�2 + g) +O(h3 + "2h2);

where, after di�erentiation, all the expressions are calculated at the point (tk; x).
Taking into account that u(t; x) is the solution of the problem (3.1)-(3.2), the relation

(3.12) implies

v(1)(tk; x) = u(tk; x) +O(h3 + "2h2):

The estimate (3.9) is proved.
Clearly, under a su�ciently small h we obtain

u� < �Ch2(h + ") + u� � v(1)(tk; x) � u� + Ch2(h + ") < u�; x 2 R1:

Using the assumptions (i)-(ii), we get

jv(2)(tk; x)� v(1)(tk; x)j = jUtk;x(v
(1)
(tk; x))� Utk ;x(v

(0)
(tk; x))j

� Khjv(1)(tk; x)� v(0)(tk; x)j;
whence it follows that

jv(2)(tk; x)� v(0)(tk; x)j � (1 +Kh) jv(1)(tk; x)� v(0)(tk; x)j:
It is not di�cult to show that there exists a su�ciently small h such that the procedure

can be continued in�nitely (i.e., u� < v(i)(tk; x) < u�; i = 2; 3; : : : ) and

jv(n)(tk; x)� v(n�1)(tk; x)j � (Kh)n�1jv(1)(tk; x)� v(0)(tk; x)j;

jv(n)(tk; x)� v(0)(tk; x)j �
1� (Kh)n

1�Kh
jv(1)(tk; x)� v(0)(tk; x)j; n = 1; 2; 3; : : : :

Further, we prove by the usual arguments that there is a unique root of the equation

v(tk; x) = Utk;x(v(tk; x))

such that

jv(tk; x)� v(0)(tk; x)j �
1

1�Kh
jv(1)(tk; x)� v(0)(tk; x)j:(3.13)

Substituting (3.9) in (3.13), we come to the statement of the lemma. Lemma 3.1 is
proved.

Let us prove the following theorem on global convergence.

Theorem 3.1. Under the assumptions (i) - (ii); the global error of the implicit layer

method (3:5) is estimated by O(h2 + "2h) :

ju(tk; x)� �u(tk; x)j � K � (h2 + "2h);

where the constant K does not depend on h; k; x; ":
9



Proof. We follow the proof of the corresponding theorem in [18].
Denote the error of the method (3.5) to the k-th step ( (N � k)-th layer) as

R(tk; x) := �u(tk; x)� u(tk; x):(3.14)

Introduce the notation

X
(�)

k+1 := x +
1

2
h�bk +

1

2
hb(tk+1; x + h�bk; �u(tk+1; x+ h�bk)) + "2h�ck � "h1=2��k;

where (we remember) �bk; �ck; and ��k are the coe�cients b(t; x; u); c(t; x; u), and �(t; x; u)
calculated at t = tk; x = x; u = �u(tk; x) = u(tk; x) +R(tk; x):
Using this notation, (3.5), and (3.14), we get

u(tk; x) +R(tk; x) = �u(tk; x)(3.15)

=
1

2
�u(tk+1; X

(+)

k+1) +
1

2
�u(tk+1; X

(�)

k+1) +
1

2
h�gk +

1

2
hg(tk+1; x+ h�bk; �u(tk+1; x + h�bk))

=
1

2
u(tk+1; X

(+)

k+1) +
1

2
u(tk+1; X

(�)

k+1) +
1

2
R(tk+1; X

(+)

k+1) +
1

2
R(tk+1; X

(�)

k+1)

+
1

2
h�gk +

1

2
hg(tk+1; x+ h�bk; �u(tk+1; x+ h�bk)):

Clearly, R(tN ; x) = 0: Below we prove recurrently that R(tk; x); k = N � 1; : : : ; 0; is
su�ciently small under a small h: Using the assumption (3.7), we shall be able to justify

the following suggestion, in which we need now: the value u(tk; x) + R(tk; x) remains in
the interval (u�; u

�) under h small enough.
We have

�bk = b(tk; x; �u(tk; x)) = b(tk; x; u(tk; x) +R(tk; x))

= b(tk; x; u(tk; x)) + �b = bk +�b;

where bk := b(tk; x; u(tk; x)) and due to the assumption (i) �b satis�es the inequality

j�bj � KjR(tk; x)j:(3.16)

Analogously,

�ck = ck +�c; j�cj � KjR(tk; x)j; ��k = �k +��; j��j � KjR(tk; x)j;(3.17)

�gk = gk +�g; j�gj � KjR(tk; x)j:
Using (3.16)-(3.17) and (3.14), we get

X
(�)

k+1 = x+
1

2
h(bk +�b) +(3.18)

+
1

2
hb(tk+1; x+ h[bk +�b]; u(tk+1; x+ h[bk +�b]) +R(tk+1; x+ h�bk))

+"2h[ck +�c]� "h1=2[�k +��]

= x+
1

2
hbk +

1

2
hb(tk+1; x+ hbk; u(tk+1; x + hbk)) + "2hck � "h1=2�k

+h[�b=2 + "2�c]� "h1=2�� + h2�1 + h�2
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and

1

2
h�gk +

1

2
hg(tk+1; x + h�bk; �u(tk+1; x+ h�bk))(3.19)

=
1

2
hgk +

1

2
h�g

+
1

2
hg(tk+1; x + h[bk +�b]; u(tk+1; x+ h[bk +�b]) +R(tk+1; x+ h�bk))

=
1

2
hgk +

1

2
hg(tk+1; x+ hbk; u(tk+1; x+ hbk)) +

1

2
h�g + h2�3 + h�4;

where j�1j; j�3j � KjR(tk; x)j and j�2j; j�4j � KjR(tk+1; x+ h�bk)j:
Substituting (3.18) and (3.19) in (3.15) and expanding the functions

1

2
u(tk+1; X

(�)

k+1); it

is not di�cult to obtain:

u(tk; x) +R(tk; x) = v(1)(tk; x) +
1

2
R(tk+1; X

(+)

k+1) +
1

2
R(tk+1; X

(�)

k+1) + r(tk; x) + ~r(tk; x);

where v(1)(tk; x) is de�ned in (3.10) and

jr(tk; x)j � KhjR(tk+1; x+ h�bk)j; j~r(tk; x)j � KhjR(tk; x)j:
Then by (3.9) we get

R(tk; x) =
1

2
R(tk+1; X

(+)

k+1) +
1

2
R(tk+1; X

(�)

k+1) + r(tk; x) + ~r(tk; x) +O(h3 + "2h2):(3.20)

Introduce the notation

Rk := max
�1<x<+1

jR(tk; x)j:

We have from (3.20):

RN = 0; Rk � Rk+1 +KhRk +KhRk+1 + C � (h3 + "2h2); k = N � 1; : : : ; 0:

Hence

Rk �
C

2K
((
1 +Kh

1�Kh
)N � 1) � (h2 + "2h);

and therefore (remember N = (T � t0)=h)

Rk �
C

2K
(e4K(T�t0) � 1) � (h2 + "2h):

Theorem 3.1 is proved.

Remark 3.1. For linear parabolic equations, i.e., when the coe�cients of (3.1) do not
depend on u; the method (3.5) becomes the explicit one with the global error O(h2+ "2h)
and can be applied to solving linear parabolic equations with small parameter. Note also
that if the dimension d of the linear problem is high (d > 3 in practice) and it is enough

to �nd the solution in a few points only, the Monte-Carlo technique is preferable.

3.3. Explicit layer methods. For implementation of the implicit method (3.5), one
can use the method of simple iteration. If we take u(tk+1; x) as a null iteration, in the
case of b(t; x; u) 6= b(t; x) or g(t; x; u) 6= g(t; x) the �rst iteration provides the one-step

error O(h2) only. One can show that applying the second iteration we get O(h3 + "2h2)
as the one-step error. However it is possible to reach the same one-step accuracy by some

11



modi�cation of the �rst iteration that reduces the number of recalculations. The explicit
layer method obtained on this way has the form (we use the same notation �u(tk; x) again)

�u(tN ; x) = '(x);(3.21)

b̂k = b(tk; x; �u(tk+1; x)); ĉk = c(tk; x; �u(tk+1; x)); �̂k = �(tk; x; �u(tk+1; x));

�u(1)(tk; x) = �u(tk+1; x+ hb̂k) + hg(tk; x; �u(tk+1; x));

�u(tk; x) =
1

2
�u(tk+1; x + h[b(tk; x; �u

(1)(tk; x)) + b(tk+1; x + hb̂k; �u(tk+1; x+ hb̂k))]=2

+"2hĉk + "h1=2�̂k)

+
1

2
�u(tk+1; x + h[b(tk; x; �u

(1)(tk; x)) + b(tk+1; x + hb̂k; �u(tk+1; x + hb̂k))]=2

+"2hĉk � "h1=2�̂k)

+
1

2
hg(tk; x; �u

(1)(tk; x)) +
1

2
hg(tk+1; x+ hb̂k; �u(tk+1; x + hb̂k));

k = N � 1; : : : ; 0:

The following theorem can be proved by the arguments like that in Lemma 3.1 and
Theorem 3.1.

Theorem 3.2. Under the assumptions (i) - (ii); the global error of the explicit layer

method (3:21) is estimated by O(h2 + "2h) :

ju(tk; x)� �u(tk; x)j � K � (h2 + "2h);

where the constant K does not depend on h; k; x; ":

Remark 3.2. Naturally, we can take other (more accurate than we use above) weak

approximations of SDE with small noise [19] to construct the corresponding high-order
(with respect to h and ") methods for the problem (3.1)-(3.2). In Section 6 we give
high-order methods in some particular cases of the equation (3.1).

3.4. Singular case. The estimates of errors for the methods proposed in this section

(Theorems 3.1 and 3.2) are obtained provided the bounds of derivatives of the solution to
the considered problems are uniform with respect to x 2 Rd; t 2 [t0; T ]; and 0 < " � "�

(see (3.8)). This assumption is ensured, e.g., in the following case. Consider the �rst-order
partial di�erential equation, obtained from (3.1) under " = 0 :

@u0

@t
+ b(t; x; u0)

@u0

@x
+ g(t; x; u0) = 0; t 2 [t0; T ); x 2 R1;(3.22)

u0(T; x) = '(x):(3.23)

If the coe�cients of the equation (3.22) and the initial condition (3.23) are such that
the solution u0(t; x); x 2 R1; is su�ciently smooth under t0 � t � T , then the derivatives
of the solution u(t; x) to (3.1)-(3.2) can be uniformly bounded with respect to 0 � " � "�

under t 2 [t0; T ] (see [7, 27]). Note that it is generally not enough to assume that the

coe�cients of (3.22) and the initial condition '(x) are bounded and smooth functions to
ensure the regular behavior of u0(t; x) at any t < T [7].
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A lot of physical phenomena (e.g., formation and propagation of shock waves) having
singular behavior is described by equations with small parameter. The derivatives of their
solutions go to in�nity as "! 0 and, rigorously speaking, the results of Theorems 3.1 and
3.2 become inapplicable.

After change of variables t = "2t0; x = "2x0; the problem (3.1)-(3.2) is rewritten for
v(t0; x0) := u("2t0; "2x0) in the form:

@v

@t0
+

1

2
�2("2t0; "2x0; v)

@2v

@x02
+ (b("2t0; "2x0; v) + "2c("2t0; "2x0; v))

@v

@x0
(3.24)

+"2g("2t0; "2x0; v) = 0; t0 2 [t0="
2; T="2); x0 2 R1; 0 < " � "�;

v(T="2; x0) = '("2x0):(3.25)

If the assumptions like (ii) take place for the solution v(t0; x0) to (3.24)-(3.25) (we pay
attention that the problem (3.24)-(3.25) is considered on long time intervals), then the

derivatives of the solution u(t; x) to (3.1)-(3.2) are estimated as:

j @
i+ju

@ti@xj
j � K

"2(i+j)
; t 2 [t0; T ]; x 2 R1; 0 < " � "�:(3.26)

These bounds are natural ones for the problem (3.1)-(3.2) in the singular case.

If one followed the arguments of Lemma 3.1 and Theorem 3.1 in the singular case
(i.e., taking the assumptions (i), (3.7), (3.26) instead of (i)-(ii)), the estimate of the form
K

C

h

"2
(eK(T�t0)="

2 � 1) would be obtained for the proposed methods. Due to the big factor

1="2 in the exponent, this estimate is meaningless for practical purposes. Our numerical
tests (see Section 8.1) demonstrate that the proposed methods possess essentially better

quality than it can be predicted by this estimate. Apparently, the methods work fairly
good in the singular case because the derivatives are large only in a small domain known as
internal layer (see, e.g., [8]) that is attributable to the majority of interesting applications.
The further theoretical investigation, to prove a realistic estimate for the errors of the

proposed methods, should rest on a stability analysis and on more extensive properties
of the considered solution. Recently, the similar problem for �nite elements methods is
considered in a few papers (see [3] and references therein).

However, in some particular, but important, singular cases of the problem (3.1)-(3.2)
we get reasonable estimates (without 1="2 in the exponent) for the errors of the proposed

methods by the arguments of Lemma 3.1 and Theorem 3.1.

Theorem 3.3. Assume the coe�cients b and � in (3:1) be independent of u: Let the

conditions (i) and (3:7) ful�ll and the derivatives j @
i+ju

@ti@xj
j; i = 0; j = 1; 2; 3; 4; i = 1; j =

0; 1; 2; i = 2; j = 0; 1; i = 3; j = 0; satisfy (3:26): Then under a su�ciently small h="2;
the global error of the explicit layer method (3:21) is estimated as

ju(tk; x)� �u(tk; x)j �
K

C

h

"4
(eK(T�t0) � 1);

where the constants C and K do not depend on h; k; x; ":

Proof. Denote the one-step approximation of u(tk; x) corresponding to the method
(3.21) as v(tk; x): By the arguments of Lemma 3.1, we get

u(tk; x)� v(tk; x) = "2h2C1(tk; x; "; h) + h3C2(tk; x; "; h):(3.27)

13



Here C1(tk; x; "; h) has the form

C1(tk; x; "; h) =
1

2
(� @c
@u

@u

@t

@u

@x
� @c

@t

@u

@x
� c

@2u

@x@t
� bc

@2u

@x2
� b

@c

@x

@u

@x
� b

@c

@u
(
@u

@x
)2

��@�
@t

@2u

@x2
� �b

@�

@x

@2u

@x2
� �2

2

@3u

@x2@t
+ b

�2

2

@3u

@x3
� @g

@u
(c
@u

@x
+
�2

2

@2u

@x2
))k

+
@c

@u
(tk; x; �)(

@u

@t

@u

@x
)k + ~ckbk(

@2u

@x2
)k + ~ck(

@2u

@x@t
)k +

"2

2
~ck�

2
k(
@3u

@x3
)k +

"2

2
~c2k(

@2u

@x2
)k

+
�k

4
(�k �

2h1=2

"
bk � 2"h1=2~ck)

@3u

@x2@t
(~�; ~��)�

�k

4

h1=2

"

@3u

@x@t2
(��; ���)

+
�k

4
(�k +

2h1=2

"
bk + 2"h1=2~ck)

@3u

@x2@t
(~�; ~�+) +

�k

4

h1=2

"

@3u

@x@t2
(��; ��+)

+
"�3k
12

((
"�k

4
� h1=2(bk + "2~ck))

@4u

@x4
(�; ��) + (

"�k

4
+ h1=2(bk + "2~ck))

@4u

@x4
(�; �+));

where the index k means calculation at (tk; x); ~ck := c(tk; x; u(tk+1; x)); � is a point

between u(tk; x) and u(tk+1; x); tk < ~�; �; �� < tk+1; and ~��; ��; ��� are points between x

and x+ 1
2
hbk +

1
2
hb(tk+1; x+ hbk) + "2h~ck � "h1=2�k:

It is not di�cult to write down the corresponding expression for C2(tk; x; "; h) as well.
Due to the assumptions (i), (3.7), (3.26), we obtain

jC1(tk; x; "; h)j �
C

"6
; jC2(tk; x; "; h)j �

C

"6
:(3.28)

Under a su�ciently small h="2 the one-step error of the method (3.21) is estimated as

ju(tk; x)� v(tk; x)j � C
h2

"4
:

By the arguments of Theorem 3.1, it is not di�cult to get the following analog of (3.20):

R(tk; x) =
1

2
R(tk+1; X

(+)

k+1) +
1

2
R(tk+1; X

(�)

k+1) + r(tk; x) + "2h2C1(tk; x; "; h)(3.29)

+h3C2(tk; x; "; h);

X
(�)

k+1 = x +
1

2
hb(tk; x) +

1

2
hb(tk+1; x + hb(tk; x)) + "2hc(tk; x; �u(tk+1; x))� "h1=2�(tk; x);

jr(tk; x)j � KhRk+1;

where

Rk+1 := max
�1<x<+1

jR(tk+1; x)j:

(Unlike (3.20) the formula (3.29) does not contain ~r(tk; x) because the method (3.21)
is explicit.)

From (3.29) and (3.28) we obtain the statement of the theorem by the usual arguments.
Theorem 3.3 is proved.
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In a lot of applications (e.g., in shock waves) the derivatives are signi�cant only in a
small interval (internal layer) (x�(t); x

�(t)) with the width jx�(t)� x�(t)j � "2 :

j @
i+ju

@ti@xj
j � K

"2(i+j)
; t 2 [t0; T ]; x 2 (x�(t); x

�
(t)); 0 < " � "�;(3.30)

and

j @
i+ju

@ti@xj
j � K; t 2 [t0; T ]; x =2 (x�(t); x

�
(t)); 0 < " � "�;(3.31)

Z

x=2(x�(t);x�(t))

j @
i+ju

@ti@xj
jdx � K; i+ j 6= 0; t 2 [t0; T ]; 0 < " � "�:

Theorem 3.4. Assume the coe�cients b and � in (3:1) be independent of u: Let the

conditions (i) and (3:7) ful�ll and the derivatives j @
i+ju

@ti@xj
j; i = 0; j = 1; 2; 3; 4; i = 1; j =

0; 1; 2; i = 2; j = 0; 1; i = 3; j = 0; satisfy (3:30) and (3:31). Then under a su�ciently

small h="2; the global error of the explicit layer method (3:21) is estimated in l1-norm asZ
R1

ju(tk; x)� �u(tk; x)jdx �
K

C

h

"2
(eK(T�t0) � 1);(3.32)

where the constants C and K do not depend on h; k; x; ":

Proof. Introduce the notation

Fk :=

Z
R1

jR(tk; x)jdx:

We have from (3.29):

Fk � Fk+1 +KhFk+1 +

Z
R1

j"2h2C1(tk; x; "; h) + h3C2(tk; x; "; h)jdx:

Due to the assumptions (i), (3.7), (3.30) (cf. (3.28))

jC1(tk; x; "; h)j �
C

"6
; jC2(tk; x; "; h)j �

C

"6
for x 2 (x�(tk); x

�(tk));

and due to (i), (3.7), (3.31)Z

x=2(x�(tk);x�(tk))

j"2h2C1(tk; x; "; h) + h3C2(tk; x; "; h)jdx � C � ("2h2 + h3):

Therefore, under a su�ciently small
h

"2

Fk � Fk+1 +KhFk+1 + C
h2

"2
;

whence (3.32) follows. Theorem 3.4 is proved.

The analogous theorems for the more simple method (2.8) give the same estimates of

its error. However, in our experiments the layer method (3.21) gives better results than
(2.8). To show the advantages of the method (3.21) in the singular case theoretically,
further investigation is required. Seemingly, a more accurate analysis of the error of the
method (3.21) should rest on more extensive properties of the solution u(t; x):
See also Section 7 and Remarks 6.1 and 8.1, where in the singular situation we give

reasonable estimates of the errors for some other particular cases of the problem (3.1)-
(3.2).
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4. Numerical algorithms based on interpolation

To calculate u(tk; x) ' �u(tk; x) at a certain point x by one of the above written explicit
layer methods, one can use the recursive procedure. But it is evident that if the number of
steps N = (T � t0)=h is relatively large, the recursive procedure is practically unrealizable

due to a huge volume of needed calculations. In [18] another way is proposed, which is
based on a discretization in the variable x and on an interpolation of �u(tk; x):
Introduce an equidistant space discretization: fxj = x0 + jhx; j = 0;�1;�2; : : : g;

x0 2 R1; hx is a su�ciently small positive number.

While it does not lead to any misunderstanding, we use the old notation �u; �u(1); etc.
for new values here.

Theorem 4.1. Under the assumptions (i)-(ii); the numerical algorithm based on the ex-

plicit method (3:21) and on the linear interpolation:

�u(tN ; x) = '(x);(4.1)

b̂k;j = b(tk; xj; �u(tk+1; xj)); ĉk;j = c(tk; xj; �u(tk+1; xj)); �̂k;j = �(tk; xj; �u(tk+1; xj));

�u(1)(tk; xj) = �u(tk+1; xj + hb̂k;j) + hg(tk; xj; �u(tk+1; xj));

�u(tk; xj) =

=
1

2
�u(tk+1; xj + h[b(tk; xj; �u

(1)(tk; xj)) + b(tk+1; xj + hb̂k;j; �u(tk+1; xj + hb̂k;j))]=2

+"2hĉk;j + "h1=2�̂k;j)

+
1

2
�u(tk+1; xj + h[b(tk; xj; �u

(1)
(tk; xj)) + b(tk+1; xj + hb̂k;j; �u(tk+1; xj + hb̂k;j))]=2

+"2hĉk;j � "h1=2�̂k;j)

+
1

2
hg(tk; xj; �u

(1)(tk; xj)) +
1

2
hg(tk+1; xj + hb̂k;j; �u(tk+1; xj + hb̂k;j));

�u(tk; x) =
xj+1 � x

hx
�u(tk; xj) +

x� xj

hx
�u(tk; xj+1); xj < x < xj+1;

j = 0;�1;�2; : : : ; k = N � 1; : : : ; 0;

has the global error estimated by O(h2 + "2h) if the value of hx is selected as hx =

�min(h3=2; "h); where � is a positive constant.

Proof. Here we follow the proof of the corresponding theorem in [18].
Introduce the notation

X
(�)

k+1;j = xj +
1

2
hb(tk; xj; �u

(1)
(tk; xj)) +

1

2
hb(tk+1; xj + hb̂k;j; �u(tk+1; xj + hb̂k;j))

+"2hĉk;j � "h1=2�̂k;j:

Just as in Theorem 3.1 for the implicit method (3.5), it is possible to obtain the ex-

pression like (3.20) for the algorithm (4.1) at the nodes xj:

R(tk; xj) =
1

2
R(tk+1; X

(+)

k+1;j) +
1

2
R(tk+1; X

(�)

k+1;j) + r(tk; xj) +O(h3 + "2h2);

16



jr(tk; xj)j � KhRk+1;

where

Rk+1 := max
�1<x<+1

jR(tk+1; x)j:

(unlike (3.20) this formula does not contain ~r(tk; xj) because the algorithm (4.1) is explicit
and, for instance, �b satis�es the inequality j�bj < KjR(tk+1; xj)j).
Hence

jR(tk; xj)j � Rk+1 +KhRk+1 + C � (h3 + "2h2):(4.2)

We have

u(tk; x) =
xj+1 � x

hx
u(tk; xj) +

x� xj

hx
u(tk; xj+1) +O(h2x); xj < x < xj+1;(4.3)

where the interpolation error O(h2x) satis�es the inequality jO(h2x)j � Ch2x with C inde-

pendent of h; k; hx; j; x; ":
From the last relation of (4.1) and from (4.3), we get

R(tk; x) =
xj+1 � x

hx
R(tk; xj) +

x� xj

hx
R(tk; xj+1) +O(h2x); xj < x < xj+1;

whence due to (4.2):

jR(tk; x)j � Rk+1 +KhRk+1 + C � (h3 + "2h2 + h2x)

with a new constant C:
As hx = �min(h3=2; "h); we obtain from here the statement of the theorem by the usual

arguments. Theorem 4.1 is proved.

Remark 4.1. The way of proving Theorem 4.1 gives us the restriction on the type of
interpolation procedure, which we can use for constructing the numerical algorithm. The
restriction is such that the sum of absolute values of the coe�cients staying at �u(tk; �) in
the interpolation procedure must be not greater than 1: We can make use of B-splines of

the order O(h2x) for which this restriction takes place. The cubic interpolation of the order
O(h4x) does not satisfy the restriction. However, our numerical tests give good results in
the case of the algorithm based on the cubic interpolation. See also Section 8.1 and some
details and theoretical explanations in [18].

Remark 4.2. One can use a nonequidistant space discretization. For instance, one can
take small hx in the intervals of x; where derivatives of the solution are big, and take
relatively large hx outside these intervals.

5. Extensions to multi-dimensional case and to reaction-di�usion
systems with small parameter

It is easy to generalize the proposed here algorithms to the multi-dimensional case
(d > 1): For instance, consider the algorithm like (4.1) in the case of d = 2: Introduce
the equidistant space discretization: x1j = x10 + jhx1 ; x

2
l = x20 + lhx2 ; j; l = 0;�1;�2; : : : ;

(x1j ; x
2
l )
> 2 R2; hxi = �imin(h3=2; "h); i = 1; 2; �i are positive constants. The algorithm

with the global error O(h2 + "2h) has the form

�u(tN ; x
1; x2) = '(x1; x2);(5.1)

b̂k;j;l = b(tk; x
1
j ; x

2
l ; �u(tk+1; x

1
j ; x

2
l )); ĉk;j;l = c(tk; x

1
j ; x

2
l ; �u(tk+1; x

1
j ; x

2
l ));
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�̂k;j;l = �(tk; x
1
j ; x

2
l ; �u(tk+1; x

1
j ; x

2
l ));

�u(1)(tk; x
1
j ; x

2
l ) = �u(tk+1; x

1
j + hb̂1k;j;l; x

2
l + hb̂2k;j;l) + hg(tk; x

1
j ; x

2
l ; �u(tk+1; x

1
j ; x

2
l ));

( ~X1
k+1;j;l;

~X2
k+1;j;l)

> = (x1j ; x
2
l )
> +

1

2
hb(tk; x

1
j ; x

2
l ; �u

(1)(tk; x
1
j ; x

2
l ))

+
1

2
hb(tk+1; x

1
j + hb̂1k;j;l; x

2
l + hb̂2k;j;l; �u(tk+1; x

1
j + hb̂1k;j;l; x

2
l + hb̂2k;j;l)) + "2hĉk;j;l;

�u(tk; x
1
j ; x

2
l ) =

=
1

4
�u(tk+1; ~X

1
k+1;j;l + "h1=2�̂11k;j;l + "h1=2�̂12k;j;l;

~X2
k+1;j;l + "h1=2�̂21k;j;l + "h1=2�̂22k;j;l)

+
1

4
�u(tk+1; ~X

1
k+1;j;l � "h1=2�̂11k;j;l + "h1=2�̂12k;j;l;

~X2
k+1;j;l � "h1=2�̂21k;j;l + "h1=2�̂22k;j;l)

+
1

4
�u(tk+1; ~X

1
k+1;j;l + "h1=2�̂11k;j;l � "h1=2�̂12k;j;l;

~X2
k+1;j;l + "h1=2�̂21k;j;l � "h1=2�̂22k;j;l)

+
1

4
�u(tk+1; ~X

1
k+1;j;l � "h1=2�̂11k;j;l � "h1=2�̂12k;j;l;

~X2
k+1;j;l � "h1=2�̂21k;j;l � "h1=2�̂22k;j;l)

+
1

2
hg(tk; x

1
j ; x

2
l ; �u

(1)(tk; x
1
j ; x

2
l ))

+
1

2
hg(tk+1; x

1
j + hb̂1k;j;l; x

2
l + hb̂2k;j;l; �u(tk+1; x

1
j + hb̂1k;j;l; x

2
l + hb̂2k;j;l));

�u(tk; x
1; x2) =

x1j+1 � x1

hx1
� x

2
l+1 � x2

hx2
�u(tk; x

1
j ; x

2
l ) +

x1j+1 � x1

hx1
� x

2 � x2l
hx2

�u(tk; x
1
j ; x

2
l+1)

+
x1 � x1j

hx1
� x

2
l+1 � x2

hx2
�u(tk; x

1
j+1; x

2
l ) +

x1 � x1j

hx1
� x

2 � x2l
hx2

�u(tk; x
1
j+1; x

2
l+1);

x1j � x1 � x1j+1; x
2
l � x2 � x2l+1; j; l = 0;�1;�2; : : : ;

k = N � 1; : : : ; 0:

The proposed methods are applicable to the Cauchy problem for systems of reaction-
di�usion equations with small parameter as well. For instance, in the case of the following

system (we take d = 1 for simplicity in writing)

@uq

@t
+
"2

2
�2q(t; x; u)

@2uq

@x2
+ (bq(t; x; u) + "2cq(t; x; u))

@uq

@x
+ gq(t; x; u) = 0;(5.2)

t 2 [t0; T ); x 2 R1; q = 1; : : : n; u := (u1; : : : ; un);

uq(T; x) = 'q(x);

the method like (3.21) has the form:

�uq(tN ; x) = 'q(x);(5.3)

18



b̂q;k = bq(tk; x; �u(tk+1; x)); ĉq;k = cq(tk; x; �u(tk+1; x)); �̂q;k = �q(tk; x; �u(tk+1; x));

�u
(1)
i (tk; x) = �ui(tk+1; x+ hb̂i;k) + hgi(tk; x; �u(tk+1; x)); i = 1; : : : ; n;

�uq(tk; x) =
1

2
�uq(tk+1; x+ h[bq(tk; x; �u

(1)(tk; x))

+bq(tk+1; x+ hb̂q;k; �u(tk+1; x+ hb̂q;k))]=2 + "2hĉq;k + "h1=2�̂q;k)

+
1

2
�uq(tk+1; x+ h[bq(tk; x; �u

(1)(tk; x))

+bq(tk+1; x + hb̂q;k; �u(tk+1; x+ hb̂q;k))]=2 + "2hĉq;k � "h1=2�̂q;k)

+
1

2
hgq(tk; x; �u

(1)
(tk; x)) +

1

2
hgq(tk+1; x+ hb̂q;k; �u(tk+1; x+ hb̂q;k));

q = 1; : : : ; n; k = N � 1; : : : ; 0:

It is easy to write down the corresponding algorithm like (4.1) on the base of this
method.

See [18] to obtain such methods and algorithms for another type of reaction-di�usion
systems.

6. High-order methods for semilinear equation with small
constant di�usion and zero advection

Here we restrict ourselves to the case of d = 1 for simplicity in writing again.
Consider the Cauchy problem

@u

@t
+
"2

2

@2u

@x2
+ g(t; x; u) = 0; t 2 [t0; T ); x 2 R1;(6.1)

u(T; x) = '(x):(6.2)

We assume that the coe�cient g(t; x; u) is a uniformly bounded and su�ciently smooth
function and conditions like (ii) from Section 3 are ful�lled for the solution u(t; x) to
(6.1)-(6.2). Note, to construct high-order methods we need in uniform boundedness of
derivatives of u(t; x) with higher orders than in the assumption (3.8). To realize the
methods of this section, we can avoid any interpolation. It occurs so because under

� � 1; b � 0; c � 0 we are able to choose the special space discretization. The methods
of this section are tested by simulation of the generalized KPP-equation with a small
parameter (see Section 8.2).

The probabilistic representation of the solution to (6.1)-(6.2) has the form (see (2.1)-
(2.3))

u(t; x) = E('(Xt;x(T )) + Zt;x;0(T ));(6.3)

where Xt;x(s), Zt;x;z(s); s � t; satis�es the system

dX = "dw(s); X(t) = x;(6.4)

dZ = g(s;X; u(s;X))ds; Z(t) = z:

Note that the system (6.4) is a system of di�erential equations with small additive
noise.
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6.1. Two-layer methods. For completeness of presentation, let us write down the
layer methods (2.8) and (3.21) and the second-order layer method from [18] in the case
of the problem (6.1)-(6.2).
The explicit layer method with error O(h) (2.8) has the form

�u(tN ; xj) = '(xj);(6.5)

�u(tk; xj) =
1

2
�u(tk+1; xj + "h1=2) +

1

2
�u(tk+1; xj � "h1=2) + hg(tk+1; xj; �u(tk+1; xj));

xj = x0 + j"h1=2; j = 0;�1;�2; : : : ; k = N � 1; : : : ; 0:

Note that it coincides with the well-known �nite-di�erence scheme under the special

relation of time and space steps (hx = "h
1=2
t ) in the scheme.

In the case of the problem (6.1)-(6.2) the explicit layer method (3.21) with error O(h2+
"2h) takes the form

�u(tN ; xj) = '(xj);(6.6)

�u(1)(tk; xj) = �u(tk+1; xj) + hg(tk; xj; �u(tk+1; xj));

�u(tk; xj) =
1

2
�u(tk+1; xj + "h1=2) +

1

2
�u(tk+1; xj � "h1=2)

+
1

2
h[g(tk; xj; �u

(1)
(tk; xj)) + g(tk+1; xj; �u(tk+1; xj))];

xj = x0 + j"h1=2; j = 0;�1;�2; : : : ; k = N � 1; : : : ; 0:

Using the second-order Runge-Kutta scheme (2.12), the implicit second-order layer

method for the semi-linear parabolic equation with constant di�usion is constructed in
[18]. In the case of the problem (6.1)-(6.2) the implicit layer method with error O(h2) has
the form

�u(tN ; xj) = '(xj);(6.7)

�u(tk; xj) =
1

6
�u(tk+1; xj +

p
3"h1=2) +

2

3
�u(tk+1; xj) +

1

6
�u(tk+1; xj �

p
3"h1=2)

+
h

2
g(tk; xj; �u(tk; xj)) +

h

3
g(tk+1; xj; �u(tk+1; xj))

+
h

12
g(tk+1; xj +

p
3"h1=2; �u(tk+1; xj +

p
3"h1=2))

+
h

12
g(tk+1; xj �

p
3"h1=2; �u(tk+1; xj �

p
3"h1=2));

xj = x0 + j
p
3"h1=2; j = 0;�1;�2; : : : ; k = N � 1; N � 2; : : : ; 0:

To solve the algebraic equations obtained at each step of the method (6.7), one can use
the Newton method or the method of simple iteration.
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Remark 6.1. In the singular case the natural bounds for derivatives of the solution to
(6.1)-(6.2) have the form

j @
i+ju

@ti@xj
j � K

"j
; t 2 [t0; T ]; x 2 R1; 0 < " � "�:(6.8)

These bounds are obtained after the following change of variables: t = t0; x = "2x0 (cf.
Section 3.4).
By the same arguments as in Theorem 3.3 one can prove under (6.8) that the errors of

both methods (6.5) and (6.6) are estimated as

ju(tk; x)� �u(tk; x)j � Kh;

where the constant K does not depend on x; k; h; ":
Nevertheless, the method (6.6) gives better results than (6.5) in our experiments. One

can explain this by the fact that the constant K of (6.6) is essentially less than the K of

(6.5).
Under (6.8) the error of the method (6.7) remains O(h2):
Note that in Section 8.2 we present results of testing these methods (instead of (6.5) we

use some its modi�cation) on the equation, the coe�cient g of which depends on "; and
the derivatives of its solution have other bounds than (6.8) (see Remark 8.1 and other
details in Section 8.2).

6.2. Three-layer methods. Here we obtain two three-layer methods. Their one-
step errors can be estimated by the same arguments as in Lemma 3.1. We do not prove
their convergence that requires stability analysis of multi-layer methods. We test these
methods in our experiments and they give fairly good results.

To calculate �u(tk+1; x) by a three-layer method, two previous layers are used. So, to
start simulations we should know �u(tN ; x) and �u(tN�1; x): To simulate �u(tN�1; x) one can
use, e.g., the two-layer method (6.7) under a su�ciently small step. Below we consider
this layer to be known and denote

 (x) := �u(tN�1; x):

Apply the special Runge-Kutta scheme (2.13) to approximate (6.4):

Xtk;x(tk+1) ' �Xtk;x(tk+1) = x+ "h1=2�k;(6.9)

Ztk;x;z(tk+1) ' �Ztk;x;z(tk+1) = z +
h

6
(g(tk; x; u(tk; x)) + 2g(tk+1=2; x; u(tk+1=2; x))

+2g(tk+1=2; x+ "h1=2�k; u(tk+1=2; x+ "h1=2�k))

+g(tk+1; x+ "h1=2�k; u(tk+1; x+ "h1=2�k)));

where �k are i.i.d. variables with the law P (� = 0) = 2=3; P (� = �
p
3) = 1=6:

The implicit method with the one-step error O(h5 + "2h3) has the form (to get the
method we use the scheme (6.9) with the time step 2h)

�u(tN ; xj) = '(xj); �u(tN�1; xj) =  (xj);(6.10)

�u(tk; xj) =
1

6
�u(tk+2; xj +

p
6"h1=2) +

2

3
�u(tk+2; xj) +

1

6
�u(tk+2; xj �

p
6"h1=2)

+
h

3
g(tk; xj; �u(tk; xj)) +

10h

9
g(tk+1; xj; �u(tk+1; xj))
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+
h

9
g(tk+1; xj +

p
6"h1=2; �u(tk+1; xj +

p
6"h1=2))

+
h

9
g(tk+1; xj �

p
6"h1=2; �u(tk+1; xj �

p
6"h1=2))

+
h

18
g(tk+2; xj +

p
6"h1=2; �u(tk+2; xj +

p
6"h1=2)) +

2h

9
g(tk+2; xj; �u(tk+2; xj))

+
h

18
g(tk+2; xj �

p
6"h1=2; �u(tk+2; xj �

p
6"h1=2));

xj = x0 + j
p
6"h1=2; j = 0;�1;�2; : : : ; k = N � 2; N � 3; : : : ; 0:

Let us look at the stability properties of this method in the simple case when u and

g in (6.1) do not depend on x; i.e., apply the method (6.10) to the ordinary di�erential
equation

du

dt
+ g(t; u) = 0; t � T; u(T ) = ':(6.11)

Recall (see, e.g., [10]) that a linear n-step method for (6.11)

�nuk + �n�1uk+1 + � � �+ �0uk+n = h � (�ngk + � � �+ �0gk+n);

gi = g(ti; ui); �n 6= 0; j�0j+ j�0j > 0;

is zero-stable (D-stable) if the generating polynomial

�n�
n + �n�1�

n�1 + � � �+ �0 = 0(6.12)

satis�es the root condition: the roots of (6.12) lie on or within the unit circle, and the
roots on the unit circle are simple.

In the case of (6.11) the method (6.10) coincides with the Milne two-step method which
is of the order O(h4) and is zero-stable. Its generating polynomial has two roots: 1 and
�1. As is known [10], the root �1 can be dangerous for some di�erential equations.
The method (6.10) has unstable behavior in our numerical tests on the generalized KPP-
equation with a small parameter (8.11)-(8.13) (Section 8.2). One can see that the method

(6.10) does not preserve the property u � 1 of the problem (8.11)-(8.13) that leads to
an unstable behavior of the approximate solutions. We modify the method (6.10) in the
experiments: if �u(tk; xj) > 1; we put �u(tk; xj) = 1: Because locally, at one step, the aris-
ing di�erence 0 < �u(tk; xj)� 1 is not greater than the one-step error of this method, this

modi�cation does not change the one-step accuracy order of the method. The modi�ed
method turned out to be fairly good in applying to the generalized KPP-equation. How-
ever, the modi�cation is based on the knowledge of the properties of the solution and
it may be di�cult to �nd such a modi�cation for another problem. Fortunately, we are

able to approximate the system (6.4) by another weak scheme and obtain a method for
(6.1)-(6.2) with better stability properties in the sense considered above (see the method
(6.13) below) but with the one-step error of lower order. To reach both the same one-
step accuracy O(h5 + "2h3) and the better stability properties is possible by a four-layer
method.

Approximate (6.4) by the special scheme with one-step order O(h4 + "2h3) :

Xtk;x(tk+1) ' �Xtk;x(tk+1) = x+ "h1=2�k;
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Ztk;x;z(tk+1) ' �Ztk;x;z(tk+1) = z +
h

12
(5g(tk; x; u(tk; x)) + g(tk+1; x; u(tk+1; x))

+7g(tk+1; x + "h1=2�k; u(tk+1; x+ "h1=2�k))

�g(tk+2; x+ "h1=2�k; u(tk+2; x+ "h1=2�k)));

where �k are i.i.d. variables with the law P (� = 0) = 2=3; P (� = �
p
3) = 1=6:

The three-layer implicit method with one-step error O(h4 + "2h3) has the form

�u(tN ; xj) = '(xj); �u(tN�1; xj) =  (xj);(6.13)

�u(tk; xj) =
1

6
�u(tk+1; xj +

p
3"h1=2) +

2

3
�u(tk+1; xj) +

1

6
�u(tk+1; xj �

p
3"h1=2)

+
5h

12
g(tk; xj; �u(tk; xj)) +

17h

36
g(tk+1; xj; �u(tk+1; xj))

+
7h

72
g(tk+1; xj +

p
3"h1=2; �u(tk+1; xj +

p
3"h1=2))

+
7h

72
g(tk+1; xj �

p
3"h1=2; �u(tk+1; xj �

p
3"h1=2))

� h

72
g(tk+2; xj +

p
3"h1=2; �u(tk+2; xj +

p
3"h1=2))

� h

18
g(tk+2; xj; �u(tk+2; xj))�

h

72
g(tk+2; xj �

p
3"h1=2; �u(tk+2; xj �

p
3"h1=2));

xj = x0 + j
p
3"h1=2; j = 0;�1;�2; : : : ; k = N � 2; N � 3; : : : ; 0:

For (6.11) this method coincides with one of the implicit two-step Adams methods of
order O(h3) and the roots of its generating polynomial are 1 and 0: One can expect that
in the case of the problem (6.1)-(6.2) the method (6.13) also possesses better stability

properties than (6.10). In our numerical tests on the generalized KPP-equation with a
small parameter (Section 8.2) the method (6.13) has stable behavior.
To solve the algebraic equations, obtained at each step of the methods (6.10) and (6.13),

one can use the Newton method or the method of simple iteration.

Remark 6.2. The methods of this section can be extended for a problem of a higher di-
mension or for a system of reaction-di�usion equations. In addition using some other weak
approximations to SDE with small additive noise, new layer methods can be constructed.
For instance, three- and four-layer methods with the one-step error O(h5 + "2h2) can be

obtained. It is also not di�cult to get an implicit four-layer method with the one-step
error O(h5+"2h3) for (6.1)-(6.2) possessing good stability properties in the sense as above
or an explicit four-layer method with the one-step error O(h4 + "2h3) and so on.
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7. Method based on exact simulation of the Brownian motion

In this section we construct a layer method for a model nonlinear problem using the
probabilistic approach as above but to approximate SDE, arising in the probabilistic
representation of the solution to the problem, we attract a numerical method with exact

simulation of the Brownian motion instead of the weak schemes used in Sections 2 - 6.
In [17] a few methods with exact simulation of some components of SDE are proposed
for linear problems. It was shown that these methods are preferable to weak schemes in
some situations. One can expect that in the nonlinear case layer methods used the exact

simulation of the Brownian motion possess some preferable properties as well.

Let us consider the model problem

@u

@t
+
"2

2

@2u

@x2
+ g0(t; x)u+ "2g1(t; x; u) = 0; t 2 [t0; T ); x 2 R1;(7.1)

u(T; x) = '(x; "); 0 < " � "�:(7.2)

As the initial condition '(x; "); one can take, for instance, a smooth function being

close to the step function (e.g., 0:5 � 0:5 tanh(x=")): Such a problem may be the result
of regularization (after introducing the arti�cial viscosity) of the �rst-order hyperbolic
problem with weak nonlinearity:

@u0

@t
+ g0(t; x)u

0 + "2g1(t; x; u
0) = 0; t 2 [t0; T ); x 2 R1;

u0(T; x) =

8<
:

1; x < 0;
1=2; x = 0;
0; x > 0:

The introduction of the arti�cial viscosity is a common way for numerical simulations

of �rst-order hyperbolic problems with discontinuous solutions [4, 20, 24, 29].

The solution u(t; x) to the problem (7.1)-(7.2) has the probabilistic representation

u(t; x) = E('(Xt;x(T ); ")Yt;x;1(T ) + Zt;x;1;0(T ));(7.3)

where Xt;x(s); Yt;x;y(s); Zt;x;y;z(s); s � t; satis�es the system of SDE

dX = "dw(s); X(t) = x;(7.4)

dY = g0(s;X)Y ds; Y (t) = y;

dZ = "2g1(s;X; u(s;X))Y ds; Z(t) = z:

We have

u(tk; x) = E(u(tk+1; Xtk;x(tk+1))Ytk;x;1(tk+1) + Ztk ;x;1;0(tk+1)):(7.5)

Let us assume that:
(a) The coe�cient g0(t; x) 2 C2;4([t0; T ] � R1); and both it and its derivatives are

uniformly bounded with respect to t 2 [t0; T ]; x 2 R1 :

j@
i+jg0

@ti@xj
j � K; 0 � 2i + j � 4; t 2 [t0; T ]; x 2 R1:

The coe�cient g1(t; x; u) and its �rst derivatives (with respect to t; x; u) and second

derivatives (with respect to x and u) are continuous and uniformly bounded:

j @
i+j+lg1

@ti@xj@ul
j � K; 0 � 2i+ j + l � 2; t 2 [t0; T ]; x 2 R1; u� < u(t; x) < u�;
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where �1 � u�; u
� � 1 are some constants.

(b) There exists the only bounded solution u(t; x) to the problem (7.1)-(7.2) such that

u� < u� � u(t; x) � u� < u�;(7.6)

where u�; u
� are some constants, and there exist the bounded derivatives:

j@u
@t
j � K; j@u

@x
j � K

"
; j@

2u

@x2
j � K

"2
; t 2 [t0; T ]; x 2 R1; 0 < " � "�:(7.7)

Note that because u(T; x) = '(x; "); the function '(x; ") is also assumed to satisfy the

inequalities (7.7). In addition, this set of assumptions is natural by the same reasons as
it is pointed out in Remark 6.1 and in Section 3.4.

We are able to simulate X(tk+1) exactly:

Xtk;x(tk+1) := Xk+1 = x + "�wk;(7.8)

where �wk := w(tk+1)� w(tk):
We are going to construct a method with the one-step error O(h3 + "2h2) based on

the exact simulation of X(tk+1): Taking into account the results of [17], we approximate
Ytk;x;y(tk+1) and Ztk;x;y;z(tk+1) by

Ytk;x;y(tk+1) ' �Ytk;x;y(tk+1) = y + hg0(tk; x)y +
"h

2

@g0

@x
(tk; x)y�wk(7.9)

+
h2

2
(
@g0

@t
(tk; x) + g20(tk; x))y

Ztk;x;y;z(tk+1) ' �Ztk;x;y;z(tk+1) = z + "2hg1(tk; x; u(tk+1; x))y:(7.10)

Using (7.5), (7.4), and (7.8)-(7.10), we construct the one-step approximation

u(tk; x) ' v(tk; x) = Eu(tk+1; Xk+1)Yk+1 + "2hg1(tk; x; u(tk+1; x))(7.11)

with Xk+1 from (7.8) and

Yk+1 := �Ytk;x;1(tk+1) = 1 + hg0(tk; x) +
"h

2

@g0

@x
(tk; x)�wk +

h2

2
(
@g0

@t
(tk; x) + g20(tk; x)):

(7.12)

Below, in Lemma 7.1, Theorems 7.1 and 7.2, we use the letters C and K without any

index for various constants, which do not depend on h; k; x; and ":

Lemma 7.1. Under the assumptions (a)-(b); the error of the one-step approximation

(7:11) is estimated as

ju(tk; x)� v(tk; x)j � C � (h3 + "2h2);(7.13)

where C is independent of h; k; x; and ":

Proof. We have (see (7.5), (7.8), and (7.11))

ju(tk; x)� v(tk; x)j =(7.14)

jE(u(tk+1; Xtk;x(tk+1))Ytk;x;1(tk+1) + Ztk;x;1;0(tk+1))

�(Eu(tk+1; Xk+1)Yk+1 + "2hg1(tk; x; u(tk+1; x)))j

� jEu(tk+1; Xk+1)(Ytk;x;1(tk+1)� Yk+1)j

+jE(Ztk;x;1;0(tk+1)� "2hg1(tk; x; u(tk+1; x)))j:
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Introduce the notation

� =
@

@x
; L =

@

@t
+ g0(t; x)y

@

@y
+
"2

2

@2

@x2
:

By the Ito formula, we obtain

Ytk;x;y(tk+1) = y +

Z tk+1

tk

g0(s;X(s))Y (s)ds = y + hg0(tk; x)y

+"(
@g0

@x
)ky

Z tk+1

tk

(w(s)� w(tk))ds+
h2

2
(
@g0

@t
+ g20)ky + �(tk; x; y);

where

�(tk; x; y) =
"2h2

4
(
@2g0

@x2
)ky + "2

Z tk+1

tk

Z s

tk

Z s1

tk

��g0(s2; X(s2))Y (s2)dw(s2)dw(s1)ds

+"

Z tk+1

tk

Z s

tk

Z s1

tk

L�g0(s2; X(s2))Y (s2)ds2dw(s1)ds

+"

Z tk+1

tk

Z s

tk

Z s1

tk

�Lg0(s2; X(s2))Y (s2)dw(s2)ds1ds

+

Z tk+1

tk

Z s

tk

Z s1

tk

L2g0(s2; X(s2))Y (s2)ds2ds1ds:

Here the operators ��; L�; �L; L2 are applied to the function g0(t; x)y:
Denote �k := �(tk; x; 1):
We have

jEu(tk+1; Xk+1)(Ytk;x;1(tk+1)� Yk+1)j =

= jEu(tk+1; Xk+1)(�k + "(
@g0

@x
)k(

Z tk+1

tk

(w(s)� w(tk))ds�
h

2
�wk))j

= jEu(tk+1; Xk+1)�k + "(
@g0

@x
)kE(u(tk+1; Xk+1)E((

Z tk+1

tk

(w(s)� w(tk))ds

�h
2
�wk)�Xk+1))j:

The formula

E(

Z tk+1

tk

(w(s)� w(tk))ds�Xk+1) = E(

Z tk+1

tk

(w(s)� w(tk))ds��wk) =
h

2
�wk

implies

jEu(tk+1; Xk+1)(Ytk;x;1(tk+1)� Yk+1)j = jEu(tk+1; Xk+1)�kj:
By the Taylor expansion, we get

u(tk+1; Xk+1) = u(tk+1; x) + "�wk

@u

@x
(tk+1; �);

where � is a point between x and x+ "�wk:
Then

jEu(tk+1; Xk+1)�kj � ju(tk+1; x)jjE�kj+ "jE�wk

@u

@x
(tk+1; �)�kj:
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By the assumption (a) we obtain

jE�kj � C � (h3 + "2h2):

Besides, one can prove

(E�2k)
1=2 � C � (h3 + "2h2):

Using the Cauchy-Bunyakovskii inequality and the assumption (b), we get

"jE�wk

@u

@x
(tk+1; �)�kj � C � (h7=2 + "2h5=2):

Thus,

jEu(tk+1; Xk+1)(Ytk;x;1(tk+1)� Yk+1)j � C � (h3 + "2h2):(7.15)

Now estimate the second term of (7.14).
Applying the Ito formula, we obtain

�z := jE(Ztk;x;1;0(tk+1)� "2hg1(tk; x; u(tk+1; x)))j

= jE
Z tk+1

tk

"2g1(s;X; u(s;X))Y (s)ds� "2hg1(tk; x; u(tk+1; x))j

= "2jhg1(tk; x; u(tk; x))� hg1(tk; x; u(tk+1; x))

+E(

Z tk+1

tk

Z s

tk

"�g1(s1; X; u(s1; X))Y (s1)dw(s1)ds

+

Z tk+1

tk

Z s

tk

Lg1(s1; X; u(s1; X))Y (s1)ds1ds)j

� "2hjg1(tk; x; u(tk; x))� g1(tk; x; u(tk+1; x))j

+"2jE
Z tk+1

tk

Z s

tk

Lg1(s1; X; u(s1; X))Y (s1)ds1ds)j:

Then due to the assumptions (a) and (b)

�z � C"2h2:(7.16)

The inequalities (7.15) and (7.16) together with (7.14) lead to the statement of the
lemma. Lemma 7.1 is proved.

Remark 7.1. If we omit the term
"h

2

@g0

@x
(tk; x)y�wk in the approximation (7.9), the

corresponding method has the one-step error O(h3 + "h2):

The layer method, based on the one-step approximation (7.11), has the form

�u(tN ; x) = '(x);(7.17)

�u(tk; x) = E�u(tk+1; x+ "�wk)(1 + hg0(tk; x) +
"h

2

@g0

@x
(tk; x)�wk

+
h2

2
(
@g0

@t
(tk; x) + g20(tk; x))) + "2hg1(tk; x; �u(tk+1; x));

k = N � 1; : : : ; 1; 0:
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Theorem 7.1. Under the assumptions (a)-(b); the global error of the layer method (7:17)
is estimated by

ju(tk; x)� �u(tk; x)j � K(h2 + "2h);(7.18)

where K does not depend on h; k; x; and ":

Proof. We follow the proof of the corresponding convergence theorem of [18] again.
Denote the error of the method (7.17) to the k-th step ( (N � k)-th layer) as

R(tk; x) := �u(tk; x)� u(tk; x):

Then

u(tk; x) +R(tk; x) = �u(tk; x) =

= E�u(tk+1; x+ "�wk)Yk+1 + "2hg1(tk; x; �u(tk+1; x))

= Eu(tk+1; x+ "�wk)Yk+1 + ER(tk+1; x + "�wk)Yk+1 + "2hg1(tk; x; �u(tk+1; x));

where Yk+1 is from (7.12).
Clearly, R(tN ; x) = 0: Below we prove recurrently that R(tk; x); k = N � 1; : : : ; 0; is

su�ciently small under a small h: Using the assumption (7.6), we shall be able to justify
the following suggestion, in which we need now: the value u(tk; x) + R(tk; x) remains in
the interval (u�; u

�) under h small enough.

We have

g1(tk; x; �u(tk+1; x)) = g1(tk; x; u(tk+1; x) +R(tk+1; x))(7.19)

= g1(tk; x; u(tk+1; x)) + �g1:

Due to the assumption (a), �g1 satis�es the inequality

j�g1j � KjR(tk+1; x)j:
Taking into account the assumption (a), it is not di�cult to obtain:

(EjYk+1 � 1j2)1=2 � Kh:

Now we have

u(tk; x) +R(tk; x) = �u(tk; x) =

= Eu(tk+1; x + "�wk)Yk+1 + ER(tk+1; x+ "�wk)

+ER(tk+1; x+ "�wk)(Yk+1 � 1) + "2hg1(tk; x; u(tk+1; x)) + "2h�g1

= v(tk; x) + ER(tk+1; x+ "�wk) + r(tk; x);

where

jr(tk; x)j � Kh("2jR(tk+1; x)j+ (ER2(tk+1; x+ "�wk))
1=2):

Then Lemma 7.1 implies

R(tk; x) = ER(tk+1; x + "�w) + r(tk; x) +O(h3 + "2h2):(7.20)

Introduce the notation

Rk := max
�1<x<+1

jR(tk; x)j:
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We have from (7.20):

RN = 0; Rk � Rk+1 +KhRk+1 + C � (h3 + "2h2); k = N � 1; : : : ; 0;

whence (7.18) follows. Theorem 7.1 is proved.

To realize the method (7.17), we need at each step k in an approximation of u(tk+1; x)
at all points x. As in Section 4, we attract a space discretization here.
Introduce an equidistant space discretization: fxj = x0 + jhx; j = 0;�1;�2; : : : g;

x0 2 R1. Using the linear interpolation, we construct the algorithm:

�u(tN ; x) = '(x);(7.21)

�u(tk; xj) = E�u(tk+1; xj + "�wk)(1 + hg0(tk; xj) +
"h

2

@g0

@x
(tk; xj)�wk

+
h2

2
(
@g0

@t
(tk; xj) + g20(tk; xj))) + "2hg1(tk; xj; �u(tk+1; xj));

�u(tk; x) =
xj+1 � x

hx
�u(tk; xj) +

x� xj

hx
�u(tk; xj+1);

xj < x < xj+1; j = 0;�1;�2; : : : ; k = N � 1; : : : ; 0:

Calculate the expectation in (7.21). Firstly, let us calculate E�u(tk+1; xj + "�wk) :

E�u(tk+1; xj + "�wk) =
1p
2�

Z 1

�1

�u(tk+1; xj + "h1=2�) exp(��
2

2
) d�

=
"h1=2p
2�

Z 1

�1

�u(tk+1; x) exp(�
(x� xj)

2

2"2h
) dx

=
"h1=2p
2�

1X
i=�1

xi+1Z

xi

(
xi+1 � x

hx
�u(tk+1; xi) +

x� xi

hx
�u(tk+1; xi+1)) � exp(�

(x� xj)
2

2"2h
) dx

=

1X
i=�1

�
(j)
i �u(tk+1; xi);

where

�
(j)
i =

"h1=2p
2�hx

(exp(�(xi�1 � xj)
2

2"2h
)� 2 exp(�(xi � xj)

2

2"2h
) + exp(�(xi+1 � xj)

2

2"2h
))

+
1

2hx
(xj � xi�1)(erfc

xi�1 � xjp
2"h1=2

� erfc
xi � xjp
2"h1=2

)

+
1

2hx
(xi+1 � xj)(erfc

xi � xjp
2"h1=2

� erfc
xi+1 � xjp

2"h1=2
):

Analogously,

E�u(tk+1; xj + "�wk)�wk =

1X
i=�1

�
(j)
i �u(tk+1; xi);
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where

�
(j)
i =

"h

2hx
(erfc

xi�1 � xjp
2"h1=2

� 2 erfc
xi � xjp
2"h1=2

+ erfc
xi+1 � xjp

2"h1=2
):

Therefore, the formula for �u(tk; xj) in (7.21) has the following form

�u(tk; xj) =

1X
i=�1

�
(j)
i �u(tk+1; xi)f(tk; xj; h) +

1X
i=�1

�
(j)
i �u(tk+1; xi)

"h

2

@g0

@x
(tk; xj)(7.22)

+"2hg1(tk; xj; �u(tk+1; xj))

with

f(tk; xj; h) = 1 + hg0(tk; xj) +
h2

2
(
@g0

@t
(tk; xj) + g20(tk; xj)):

Of course, under calculations, one has to take into account that the expressions for �
(j)
i

and �
(j)
i contain the di�erences of close numbers.

Theorem 7.2. Under the assumptions (a)-(b); the global error of the numerical algorithm

(7:21) is estimated by O(h2 + "2h) if the value of hx is selected as hx = �min("h3=2; "2h);
� is a positive number.

Proof. We follow the proof of the corresponding theorem in [18].
Denote the error of the numerical algorithm (7.21) to the k-th step as

R(tk; x) := �u(tk; x)� u(tk; x):

Just as in Theorem 7.1, we obtain the expression like (7.20) for the algorithm (7.21) at
the nodes xj:

R(tk; xj) = ER(tk+1; xj + "�wk) + r(tk; xj) +O(h3 + "2h2);

jr(tk; xj)j � KhRk+1;

where

Rk := max
�1<x<+1

jR(tk; x)j:

Hence

jR(tk; xj)j � Rk+1 +KhRk+1 + C � (h3 + "2h2):(7.23)

We have

u(tk; x) =
xj+1 � x

hx
u(tk; xj) +

x� xj

hx
u(tk; xj+1) + �int; xj < x < xj+1;(7.24)

where the interpolation error �int satis�es the inequality (see the assumption (7.7))

j�intj �
1

8
max

�1<x<1
j@

2u

@x2
j h2x � K

h2x
"2
:

From (7.21) and (7.24), we get

R(tk; x) =
xj+1 � x

hx
R(tk; xj) +

x� xj

hx
R(tk; xj+1) +O(

h2x
"2

); xj < x < xj+1;

whence due to (7.23) we obtain for all x :

jR(tk; x)j � Rk+1 +KhRk+1 + C � (h3 + "2h2 +
h2x
"2

):(7.25)
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As hx = �min("h3=2; "2h); we come to the statement of the theorem. Theorem 7.2 is
proved.

Remark 7.2. The approach described in this section may be applied to a more general

equation than (7.1), for instance, to the problem (1.1)-(1.2) under the constant di�usion.
Using the Girsanov transformation, one can obtain the following probabilistic represen-
tation of the solution to this problem

u(t; x) = E('(Xt;x(T ))Yt;x;1(T ) + Zt;x;1;0(T ));

where Xt;x(s); Yt;x;y(s); Zt;x;y;z(s); s � t; satis�es the system of SDE

dX = b0dt+ "�dw(s); X(t) = x;

dY =
1

"
(��1(b(s;X; u(s;X))� b0))

>Y dw(s); Y (t) = y;

dZ = g(s;X; u(s;X))Y ds; Z(t) = z;

which is suitable for construction of layer methods based on the exact simulation of

X(tk+1): Here b0 is a constant vector.
Since we use the probabilistic representation to construct only a one-step approximation

of the problem, it is possible to select b0 at each step, e.g., as b(tk; x; u(tk+1; x)). Such a
reception allows to decrease the in�uence of the big factor 1=" staying in the equation for

Y .

Method based on weak simulation of the Brownian motion. For completeness
of presentation, we construct a layer method with the global error O(h2 + "2h) (i.e., with
the error like that of the algorithm (7.21)) using a weak simulation of the Brownian motion
now. To construct the algorithm (7.21), we need in the bounds (7.7) for the derivatives
@i+ju

@ti@xj
with i = 0; j = 1; 2 and i = 1; j = 0. The new method, which we intend to

construct, is simpler but we need in additional assumptions on the derivatives of the
solution, namely:

j @
i+ju

@ti@xj
j � K

"j
; 0 � 2i+ j � 6; t 2 [t0; T ]; x 2 R1; 0 < " � "�:(7.26)

We also suppose that g0(t; x) and g1(t; x; u) are uniformly bounded and su�ciently
smooth functions.
For approximating (7.4), we use the weak scheme:

Xtk;x(tk+1) ' Xk+1 = x + "h1=2�k;(7.27)

Ytk;x;y(tk+1) ' �Ytk;x;y(tk+1) = y + hg0(tk; x)y + "h3=2
@g0

@x
(tk; x)y�k

+
h2

2
(
@g0

@t
(tk; x) + g20(tk; x))y;

Ztk;x;y;z(tk+1) ' �Ztk;x;y;z(tk+1) = z + "2hg1(tk; x; u(tk+1; x))y;

where �k are i.i.d. variables with the law P (�k = 0) =
2

3
; P (�k = �

p
3) =

1

6
and �k =

1

2
�k:

The corresponding method for (7.1)-(7.2) has the form

�u(tN ; xj) = '(xj; ");(7.28)
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�u(tk; xj) =
1

6
�u(tk+1; xj + "h1=2

p
3)(f(tk; xj; h) +

"h3=2

2

@g0

@x
(tk; xj)

p
3)

+
2

3
�u(tk+1; xj)f(tk; xj; h)

+
1

6
�u(tk+1; xj � "h1=2

p
3)(f(tk; xj; h)�

"h3=2

2

@g0

@x
(tk; xj)

p
3)

+"2hg1(tk; xj; �u(tk+1; xj));

xj = x0 + j
p
3"h1=2; j = 0;�1;�2; : : : ; k = N � 1; N � 2; : : : ; 0;

with

f(tk; xj; h) = 1 + hg0(tk; xj) +
h2

2
(
@g0

@t
(tk; xj) + g20(tk; xj)):

By the arguments like that in Section 3, the global error of this method is estimated

under (7.26) as O(h2 + "2h). Note that to realize this method we do not need in any
interpolation under the special selection of space discretization.
Let us underline that the method (6.6) of Section 6.1 has the same error O(h2 + "2h)

under the assumption on uniform boundedness of derivatives of the solution. However,

under the assumption (7.7), its error is estimated as O(h) only (see Remark 6.1 as well).

8. Numerical tests

In the previous sections we deal with semilinear parabolic equations with negative di-

rection of time t : the equations are considered under t < T and the �initial� conditions are
given at t = T: This form of equations is suitable for the probabilistic approach which we
use to construct numerical methods. Of course, the proposed methods are adaptable to
semilinear parabolic equations with positive direction of time and it can be done especially

easy in the autonomous case.
Consider the Cauchy problem for autonomous semilinear parabolic equations with pos-

itive direction of time

@u

@t
=
"2

2
�2(x; u)

@2u

@x2
+ (b(x; u) + "2c(x; u))

@u

@x
+ g(x; u); t > 0; x 2 R1;(8.1)

u(0; x) = '(x):(8.2)

Note that if we substitute the solution u(t; x) of this problem in the coe�cients �; b;
c; and g; the equation (8.1) becomes nonautonomous. Nevertheless, it is not di�cult
to obtain numerical procedures with positive direction of time which correspond to the
algorithms given in the previous sections. For instance, the algorithm for (8.1)-(8.2),
which follows from the algorithm (4.1) for (3.1)-(3.2), has the form

�u(0; x) = '(x);(8.3)

b̂k;j = b(xj; �u(tk; xj)); ĉk;j = c(xj; �u(tk; xj)); �̂k;j = �(xj; �u(tk; xj));

�u(1)(tk+1; xj) = �u(tk; xj + hb̂k;j) + hg(xj; �u(tk; xj));

�u(tk+1; xj) =
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=
1

2
�u(tk; xj + h[b(xj ; �u

(1)(tk+1; xj)) + b(xj + hb̂k;j; �u(tk; xj + hb̂k;j))]=2

+"2hĉk;j + "h1=2�̂k;j)

+
1

2
�u(tk; xj + h[b(xj ; �u

(1)(tk+1; xj)) + b(xj + hb̂k;j; �u(tk; xj + hb̂k;j))]=2

+"2hĉk;j � "h1=2�̂k;j)

+
1

2
h[g(xj; �u

(1)
(tk+1; xj)) + g(xj + hb̂k;j; �u(tk; xj + hb̂k;j))];

�u(tk; x) =
xj+1 � x

hx
�u(tk; xj) +

x� xj

hx
�u(tk; xj+1); xj < x < xj+1;

j = 0;�1;�2; : : : ; k = 0; : : : ; N � 1:

The algorithms used in our numerical tests below can be written analogously.

We note in Remark 4.1 that the algorithms rested on the cubic interpolation give quite

good results. We use the advantage of the cubic interpolation in our numerical tests on
the Burgers equation. Let us recall that a su�ciently smooth function f(x); x 2 R1; can
be interpolated by the cubic interpolation as

f(x) ' �f(x) =

3X
i=0

�j;i(x)f(xj+i); xj+1 < x < xj+2;(8.4)

�j;i(x) =

3Y
m=0;m6=i

x� xj+m

xj+i � xj+m
;

where xj = x0 + j � hx; x0 2 R1; j = 0;�1;�2; : : : ; hx is a positive number.

The error of the cubic interpolation (8.4) is estimated by

j �f(x)� f(x)j � 3

128
max

xj<x<xj+3
j@

4u

@x4
j � h4x; xj+1 < x < xj+2:

Remind (see Theorem 4.1) that the algorithm (4.1), based on the layer method (3.21)
and on the linear interpolation, has the error estimated by O(h2 + "2h) provided hx =

min(h3=2; "h): One can expect that under the assumptions (i)-(ii) from Section 3 the
algorithm based on the layer method (3.21) and on the cubic interpolation (8.4) can

achieve the same accuracy O(h2 + "2h) with hx taken equal to min(h3=4;
p
"h) only. Our

numerical tests on the Burgers equation approve this supposition. See some theoretical
explanations in [18] as well.
As it is mentioned in Introduction, all the methods (including those from Section 7)

have been tested through computer experiments. Some of them are presented below.

8.1. The Burgers equation with small viscosity. The one-dimensional Burgers

equation with small viscosity has the form

@u

@t
=
"2

2

@2u

@x2
� u

@u

@x
; t > 0; x 2 R1;(8.5)

u(0; x) = '(x):(8.6)
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By means of the Cole-Hopf transformation, it can be found the explicit solution of the
problem (8.5)-(8.6):

u(t; x) =

R1
�1

K(t; x; y)'(y) exp(� 1

"2

R y
0
'(�)d�)dy

R1
�1

K(t; x; y) exp(� 1

"2

R y
0
'(�)d�)dy

;

K(t; x; y) =
1p
2�"2t

exp(�(x� y)2

2"2t
):

Let us take the initial condition '(x) of the form

'(x) =

8<
:

c; x < l0;
�(x); l0 � x � l0 + l;
d; x > l0 + l;

(8.7)

where c; d; l0; l are some numbers, c > d; l � 0; �(x) is a bounded measurable function,

and d � �(x) � c:
Recall some theoretical facts concerning the problem (8.5)-(8.6), (8.7) (see details, e.g.,

in [9, 27]).
The solution u(t; x) to (8.5)-(8.6), (8.7) is uniformly bounded:

d � u(t; x) � c; x 2 R1; 0 � t; 0 � " � "� :

Let the initial condition '(x) be a su�ciently smooth function. Introduce the time
moment T such that the solution of the hyperbolic problem obtained from (8.5)-(8.6),
(8.7) under " = 0 is smooth at t < T and discontinuous at t � T: The solution u(t; x) to
(8.5)-(8.6), (8.7) is regular under t � t� < T :

j @
i+ju

@ti@xj
(t; x)j � K; x 2 R1; 0 � t � t�; 0 � " � "�:

If t � T then the solution is singular in an interval (x�(t); x
�(t)) with the width jx�(t)�

x�(t)j � "2 :

j @
i+ju

@ti@xj
(t; x)j � K

"2(i+j)
; x 2 (x�(t); x

�(t)); t � T; 0 < " � "�;

j @
i+ju

@ti@xj
(t; x)j � K; x =2 (x�(t); x

�(t)); t � T; 0 < " � "�:

In our experiments we take �(x) equal to

�(x) = a� b sin
�x

�
; � > 0; b > 0; and c = a+ b; d = a� b; l = �; l0 = ��

2
:(8.8)

Under this �(x) the moment T can easily be found: T =
�

�b
:

We compare the behavior of two algorithms. The �rst one is based on the layer method

(3.21) with the cubic interpolation (8.4). In the case of the problem (8.5)-(8.6) it has the
following form:

�u(0; x) = '(x);(8.9)

�u(tk+1; xj) =
1

2
�u(tk; xj � h�u(tk; xj � h�u(tk; xj)) + "h1=2)
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Table 1. The Burgers equation (regular solution). Dependence of the

errors errc(t�) and errl(t�) in h and " for the algorithms (8.9) and (8.10)
under a = b = 0:5, � = 8, and t� = 4 (T � 5:09).

" h algorithm (8.9) algorithm (8.10)

0:3
0:3
0:1
0:01
0:001

errc(t�) errl(t�)

0:1351 � 10�1 0:1531 � 10�1
0:2146 � 10�2 0:3347 � 10�2
0:2295 � 10�3 0:3874 � 10�3
0:2265 � 10�4 0:3947 � 10�4

errc(t�) errl(t�)

0:1130 0:1397
0:3978 � 10�1 0:4628 � 10�1
0:4221 � 10�2 0:4799 � 10�2
0:4244 � 10�3 0:4814 � 10�3

0:1

0:3
0:1
0:03
0:01
0:001

0:2325 � 10�1 0:2051 � 10�1
0:4255 � 10�2 0:2287 � 10�2
0:3489 � 10�3 0:2396 � 10�3
0:4444 � 10�4 0:5442 � 10�4
0:5529 � 10�5 0:6374 � 10�5

0:1539 0:1519
0:6084 � 10�1 0:5007 � 10�1
0:2029 � 10�1 0:1553 � 10�1
0:6751 � 10�2 0:5169 � 10�2
0:6806 � 10�3 0:5189 � 10�3

+
1

2
�u(tk; xj � h�u(tk; xj � h�u(tk; xj))� "h1=2);

�u(tk; x) =

3X
i=0

�j;i(x)�u(tk; xj+i); xj+1 < x < xj+2;

�j;i(x) =

3Y
m=0;m6=i

x� xj+m

xj+i � xj+m
;

j = 0;�1;�2; : : : ; k = 0; : : : ; N � 1;

where xj = x0 + j � hx:
The second algorithm is based on the layer method (2.8) proposed in [18] and on the

cubic interpolation (8.4):

�u(0; x) = '(x);(8.10)

�u(tk+1; xj) =
1

2
�u(tk; xj � h�u(tk; xj) + "h1=2) +

1

2
�u(tk; xj � h�u(tk; xj)� "h1=2);

�u(tk; x) =

3X
i=0

�j;i(x)�u(tk; xj+i); xj+1 < x < xj+2;

�j;i(x) =

3Y
m=0;m6=i

x� xj+m

xj+i � xj+m
;

j = 0;�1;�2; : : : ; k = 0; : : : ; N � 1:

Table 1 gives the results of simulation of the problem (8.5)-(8.6) with '(x) from (8.7),

(8.8) in the case of the regular solution. In this case the assumptions (i)-(ii) from Section
3 are ful�lled, and the algorithm (8.9) has the error estimated by O(h2 + "2h) and the

algorithm (8.10) has the error estimated by O(h): The value of hx is taken equal to h3=4:
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Table 2. The Burgers equation (singular solution). The errors errc(t) and
errl(t) under t = 8 (T � 5:09). Other parameter values are the same as
in Table 1. The time steps h and h� are used under t � t� and t > t�
correspondingly.

" h h� algorithm (8.9) algorithm (8.10)

0:3
0:1
0:01
0:001

0:01
0:001
0:0001

errc(t) errl(t)

0:6322 � 10�2 0:2713 � 10�2
0:4036 � 10�3 0:2482 � 10�3
0:5977 � 10�4 0:3760 � 10�4

errc(t) errl(t)

0:1693 0:6555 � 10�1
0:1771 � 10�1 0:6782 � 10�2
0:1776 � 10�2 0:6931 � 10�3

0:1
0:1
0:03

0:01
0:001

0:001
0:001
0:0001
0:0001
0:0001

0:5553 � 10�1 0:2351 � 10�2
0:1219 � 10�1 0:4699 � 10�3
0:3955 � 10�2 0:1718 � 10�3
0:7047 � 10�3 0:3007 � 10�4
0:4139 � 10�3 0:2312 � 10�4

> 0:5 0:6594 � 10�1
> 0:5 0:3189 � 10�1
0:4029 0:1716 � 10�1
0:1687 0:6828 � 10�2
0:5461 � 10�1 0:2185 � 10�2

We present the errors of the approximate solutions �u in the discrete Chebyshov norm and

in l1-norm:

errc(t) = max
xi
j�u(t; xi)� u(t; xi)j;

errl(t) =
X
i

j�u(t; xi)� u(t; xi)j � hx :

One can infer from Table 1 that the proposed special algorithm (8.9) with error O(h2+
"2h) requires less computational e�ort than the algorithm (8.10) with error O(h) and that
the experimental data are conformed to the orders of accuracy of the algorithms given by
the theoretical results.
To �nd the solution u(t; x) to the problem (8.5)-(8.6), (8.7) under t > T; when the

solution is singular, we realize the following numerical procedure: we simulate the problem

by the algorithms (8.9) and (8.10) with a su�ciently big time step h and with hx = h3=4

up to the time moment t� < T; then we change the time step h to a smaller one h�; take
hx = h�; and continue simulations.
Table 2 gives the results of simulation of the problem (8.5)-(8.6) with '(x) from (8.7),

(8.8) under t > T: One can see that in the singular case the behavior of the algorithm
(8.9) is also better than the behavior of (8.10).
In connection with this example, see the numerical experiments in [1] and [18] as well.

8.2. The generalized KPP-equation with a small parameter. Consider the
problem

@u

@t
=
"2

2

@2u

@x2
+ g(x; u; "); t > 0; x 2 R1;(8.11)

u(0; x) = � (x) =

8<
:

1; x < 0

1=2; x = 0

0; x > 0;
(8.12)

and take

g(x; u; ") =
1

"2
c(x)u(1� u);(8.13)
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c(x) = c+
a

�
arctg�(x� b):

Here " > 0 is a small parameter, � > 0 is a big number, c; a; and b are positive

constants, and
a

2
< c <

3a

2
:

The problem (8.11)-(8.13) is a generalization of the KPP-equation. The theoretical

results for this problem obtained in [5] give the following. For t < T0 �
b
p
2a

c+ 0:5a
; the

wave propagates to the right of the domain G0 = fx < 0g with the velocity
p
2c� a;

�taking no notice� of the fact that after x = b the coe�cient c(x) takes a larger value

0

0.5

0 2 4 6 x
t=4

u
(a)

0

0.5

0 2 4 6 x
t=5.7

u
(b)

0

0.5

0 2 4 6 8 x
t=5.75

u
(c)

0

0.5

0 2 4 6 8 x
t=6.75

u
(d)

0

0.5

0 2 4 6 8 10 12 14 16 x
t=8.75

u
(e)

0

0.5

0 2 4 6 8 10 12 14 16 x
t=9.75

u
(f)

Figure 1. The KPP-equation. Evolution of the solution u(t; x) to the
problem (8.11)-(8.13) under " = 0:1, c = 1:125, a = 2, b = 6, � = 150

simulated by the method (6.13) with h = 0:0001.
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3

Figure 2. The KPP-equation (new source appearance). Comparison of
the methods. The solid curve is simulated by (6.7) and (6.13) with h =

0:0001 and it visually coincides with the exact solution. The curves 1, 2 are
simulated by (8.14) and (6.6) with h = 0:0001; the curves 3, 4 - by (6.7)
and (6.13) with h = 0:001. Here " = 0:2, t = 5:8, other parameter values
are the same as in Figure 1.

c+
a

2
: But at the time T0; a new �source� arises at the point x = b; away from which the

front starts propagating in both directions: to the left with the velocity close to
p
2c� a

and to the right with the velocity close to
p
2c+ a:

Figure 1 obtained in our numerical experiments demonstrates this phenomenon. Under
the taken parameters (see the �gure caption) T0 � 5:65: Under the time t being close to

T0 the velocity of the new front to the right is greater than
p
2c+ a � 2:06 (see Figures

1c and 1d) and with an increase of time the velocity tends to
p
2c+ a (see Figures 1e and

1f). One can explain this by the fact that when the new �source� arises the value of the
solution u before the front is greater than the corresponding value of u when the shape
of the wave takes its limit form.

Let us note that under the taken parameters (" = 0:1; see the caption to Figure 1)

min
�1<x<b

�u(5:75; x) � 10�71

while there is already the new front at x = b (see Figure 1c). So, the �channel�, through
which the new �source� is initialized, is very narrow. This fact has to be taken into account

for realizing numerical procedures at a computer. For instance, under " = 0:04

min
�1<x<b

�u(5:75; x) � 10
�439

that is less than the smallest positive number (� 10�308) realized by many compilers. To

observe the phenomenon in this case, one has to compose a special numerical procedure
or use a special compiler.
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Figure 3. The KPP-equation. Comparison of the methods. The curve 3

is simulated by (6.7) and (6.13) with h = 0:0005 and h = 0:0001 and it
visually coincides with the exact solution. The curves 1,2 are simulated by
(8.14) and (6.6) with h = 0:0001. Here t = 5:75, other parameter values
are the same as in Figure 1.

An additional con�rmation of the high sensitiveness of the considered model is given,

for instance, by the following experiment. If we put u(0; x) = � for x > 0 with a small
positive �; e.g. 10�15; in the initial condition (8.12) and take the other parameters as in
Figure 1, the new �source� arises at a moment t� 1:
Here we compare �ve numerical methods: the methods (6.6), (6.7), (6.10), (6.13) given

in Section 6 (of course, we take their versions adapted to problems with positive direction
of time) and the �rst-order method written below.
The �rst-order method:

�u(0; xj) = � (xj);(8.14)

�u(tk+1; xj) =
1

2
�u(tk; xj + "h1=2) +

1

2
�u(tk; xj � "h1=2)

+
h

2
(g(xj�1; �u(tk; xj�1)) + g(xj+1; �u(tk; xj+1)));

xj = x0 + j"h1=2; j = 0;�1; : : : ; k = 0; : : : ; N � 1:

It can be checked that under a su�ciently small h this method preserves the mono-
tonicity property of the solution. The �rst-order method (6.5), which has hg(xj; �u(tk; xj))
instead of h(g(xj�1; �u(tk; xj�1))+g(xj+1; �u(tk; xj+1)))=2; does not preserve the monotonic-
ity property and has unstable behavior in the case of considered problem.
The algebraic equations, arising in the implementation of the methods (6.7), (6.10),

and (6.13) at each step, are quadratic ones and are solved exactly. The results of testing
of the three-layer method (6.10) are discussed in Section 6.2.
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The results of the numerical tests are given on Figures 2 and 3.

Remark 8.1. Derivatives of the solution to (8.11)-(8.12) can be estimated as

j @
i+ju

@ti@xj
j � K

"2(i+j)
; t 2 [t0; T ]; x 2 R1; 0 < " � "�:(8.15)

By the same arguments as in Theorem 3.3 one can prove that under (6.8) and a su�-
ciently small h="2 the errors of both methods (6.5) and (6.6) are estimated as

ju(tk; x)� �u(tk; x)j � K
h

"4
;

and the error of the method (6.7) is estimated as

ju(tk; x)� �u(tk; x)j � K
h2

"6
;

where the constant K does not depend on x; k; h; ":
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