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Abstract. Suppose one observes a process Y on the unit interval, where dY = f +

n�1=2dW with an unknown function parameter f , given scale parameter n � 1 (\sample

size") and standard Brownian motion W . We propose two classes of tests of qualitative

nonparametric hypotheses about f such as monotonicity or convexity. These tests are

asymptotically optimal and adaptive with respect to two di�erent criteria. As a by-

product we obtain an extension of L�evy's modulus of continuity of Brownian motion. It

is of independent interest because of its potential applications to simultaneous con�dence

intervals in nonparametric curve estimation.

1 Introduction

Suppose that one observes a stochastic process Y on the unit interval [0; 1], where

Y (t) =

Z
[0;t]

f(x) dx+ n�1=2W (t):

Here f is an unknown function in L1[0; 1], n � 1 is a given scale parameter, and W

is standard Brownian motion. The present paper devises asymptotically optimal and

adaptive tests of nonparametric hypotheses Ho about f as n!1. Speci�cally we treat

the following three hypotheses:

H� : f � 0;

H" : f is non-decreasing;

Hc : f is convex:

This is not a standard hypothesis testing problem because we do not assume any �xed

or at least parametric structure of the model under the null hypothesis. In that sense we

are speaking of testing a qualitative hypothesis. Such problems arise, for instance, in the

statistical analysis of econometrical, medical or biological data.

Since the null is nonparametrically speci�ed, it is natural to consider a nonparamet-

ric alternative. The theory of nonparametric testing of simple hypotheses is now well

developed. We refer to the survey of Ingster (1993) where the reader can �nd more ref-

erences. Under the nonparametric approach it is typically assumed that the alternative

is smooth and deviates from the null hypothesis in some integral norm. In case of qual-

itative hypotheses such as monotonicity, the deviations of the alternative from the null
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are usually well localized. In this situation it is natural to measure the distance between

the hypothesis and the alternative in supremum norm.

Below we consider two di�erent approaches to de�ne the alternative set. In the �rst

case we consider

HA(L; c) :=
n
g 2 F(L) : �(g) � c

o
with the Lipschitz function classes

F(L) :=
n
g : jg(x) � g(y)j � Ljx� yj for all x; y 2 [0; 1]

o
and the distance

�(g) := inf
fo2Ho

kg � fok1

from g to Ho in terms of supremum norm k � k1 on [0; 1].

The idea of the proposed testing procedure is to estimate nonparametrically the

function f and then to use the distance �( bf) from the estimate bf to the set Ho as a test

statistic. We apply kernel estimates bfh where h is the bandwidth parameter.

It is well-known that the choice of the smoothing parameter h is crucial in nonpara-

metric inference. Ingster (1993) showed that for testing simple hypotheses the proper

choice of h is to be of order L�2=3(n�1 log n)1=3 which allows one to detect an alternative

f deviated from the null with the distance �(f) of order (Ln�1 log n)1=3. Lepski (1993)

and Lepski and Tsybakov (1996) re�ned this result in showing that a proper choice of

the kernel function and the bandwidth h leads to asymptotically optimal tests.

In practical applications the Lipschitz constant L is typically unknown. The problem

of adaptive (data-driven) choice of a smoothing parameter for testing a simple hypoth-

esis, where deviation from the null hypothesis is measured by some integral norm, was

considered in Ledwina and Kallenberg (1995), Fan (1996), Spokoiny (1996), Ingster and

Suslina (1997). The main message of Spokoiny (1996) is that the adaptive approach leads

necessarily to suboptimal rates by a (log log)-factor. But here we consider supremum

norm and reach a completely di�erent conclusion: Adaptive testing is possible without

any loss of e�ciency. Combining kernel estimators with di�erent bandwidths leads to a

procedure which is asymptotically e�cient in the minimax sense for arbitrary values of

the unknown smoothness parameter L.
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Our second type of alternative is described in terms of a test signal  2 L1(R),

where  (x) = 0 if jxj > 1. The idea is that f may be equal, or at least similar, to

g := fo + ec � � � t

h

�
for some fo 2 Ho, ec > 0, h 2 ]0; 1=2] and t 2 [h; 1�h]. The signal  is required to satisfyZ

[0;1]
 
�x� t

h

�
fo(x) dx � 0 for all fo 2 Ho; h 2 ]0; 1=2]; t 2 [h; 1 � h]:(1.1)

The Cauchy-Schwarz inequality and (1.1) together imply that

	h(g) := sup
s2[h;1�h]

1

h

Z
[0;1]

 
�x� s

h

�
g(x) dx � ec Z  (x)2 dx

with equality if
R
 ((x� t)=h)f(x) dx = 0. Thus we consider the alternative

eHA(h; ec) :=
n
g 2 L1[0; 1] : 	h(g) � ec Z  (x)2 dx

o
:

This type of alternative assumes that a generally non-negative (or monotonous) func-

tion is contaminated at some place(s) by a signal with approximately known shape but

location, scale and magnitude of this contamination are unknown. Again using kernel

estimators with di�erent bandwidths in a suitable way leads to asymptotically e�cient

tests in a minimax sense.

Section 2 contains the precise de�nition of the tests. Their asymptotic properties

are presented in Section 3. These results depend on a new theorem about maxima of

stochastic processes presented in Section 4. The latter can be viewed as an extension of

L�evy's modulus of continuity of Brownian motion. It is of independent interest because

of its potential applications to simultaneous con�dence intervals in nonparametric curve

estimation. Speci�c applications of such con�dence intervals are introduced by Chaudhuri

and Marron (1997) and D�umbgen (1998). All proofs are deferred to Section 6.

2 De�nition of the tests

The kernel estimators use a �xed function k on R satisfying the following two require-

ments:

k has bounded total variation TV(k);(2.1)

k(x) = 0 if jxj > 1:(2.2)
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Then for h 2 ]0; 1=2] and t 2 [h; 1 � h] we de�ne

kh;t(x) :=
1

h
k
�x� t

h

�
and

bfh(t) :=

Z
kh;t(x) dY (x);

�fh(t) :=

Z
kh;t(x)f(x) dx = IE bfh(t):

Note that the distribution of the stochastic process�
n1=2( bfh � �fh)(t)

�
h2 ]0;1=2]; t2[h;1�h]

=
�Z

kh;t(x) dW (x)
�
h2 ]0;1=2]; t2[h;1�h]

does not depend on n or fo. Here is a key result for this process.

Theorem 2.1 Suppose that Conditions (2.1, 2.2) hold, and let �2 :=
R
k(x)2 dx. Then

sup
h2 ]0;1=2]; t2[h;1�h]

D(h)�1
�
(nh)1=2j bfh(t)� �fh(t)j � (2�2 log(1=h))1=2

�
< 1

almost surely, where D(h) := (log(e=h))�1=2 log log(ee=h).

2.1 Tests for HA(L; c)

In connection with HA(L; c) we consider only the hypotheses H�;H" of non-positivity or

monotonicity and utilize the triangular kernel

k(x) := (1� jxj)+:

Here a+ means maxfa; 0g and we get
R
k(x) dx = 1, �2 =

R
k(x)2 = 2=3. The value bfh

is viewed as an estimator for f . The de�nition of bfh(t) and �fh(t) is extended to t 2 [0; 1]

via

kh;t(x) :=
1f0 � x � 1g

ch;t
k
�x� t

h

�
;

where

ch;t :=

Z
1f0 � x � 1gk

�x� t

h

�
dx = h

Z
1
n
y �

t ^ (1� t)

h

o
k(y) dy � h=2;

so that
R
kh;t(x) dx = 1. Note that the following condition holds with M = 4.

For arbitrary h 2 ]0; 1=2] and t 2 [0; 1];(2.3)

TV(hkh;t) �M=h and fx : kh;t(x) 6= 0g � [t� h; t+ h] \ [0; 1]:

This condition implies a useful result for the boundary kernel estimators.
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Theorem 2.2 Suppose that Condition (2.3) holds. Then

sup
h2 ]0;1=2]; t2[0;h[[ ]1�h;1]

(nh)1=2j bfh(t)� �fh(t)j

(log log(ee=h))1=2
< 1

almost surely.

For �xed h a natural test statistic would be �( bfh). In order to combine �( bfh),
0 < h � 1=2, note that there are simple formulae for the distance �(g) from a function

g to Ho, namely

�(g) =

8><>:
sup

0�t�1
g+(t) if Ho = H�;

sup
0�s<t�1

(g(s) � g(t))+=2 if Ho = H":
(2.4)

Thus for testing non-positivity we de�ne the test statistic T (n1=2Y ) by

T�(n
1=2Y ) := sup

h2 ]0;1=2]
sup

0�t�1
D(h)�1

�
(nh)1=2 bfh(t)� (2�2 log(1=h))1=2

�
and for testing monotonicity by

T"(n
1=2Y ) := sup

h2 ]0;1=2]
sup

0�s<t�1
D(h)�1

�
(nh)1=2( bfh(s)� bfh(t))=2 � (2�2 log(1=h))1=2

�
:

Note that in case of f = 0, the test statistic T (n1=2Y ) equals T (W ) and is �nite almost

surely, according to Theorems 2.1 and 2.2. Moreover, if f = fo 2 Ho , then

T (n1=2Y ) = T (n1=2fo +W ) � T (W ):

In case of a non-positive function fo this is obvious, because �fh � 0. If Ho = H" and

hence fo is monotonously increasing, then the assertions follow from the fact that for

0 � s < t � 1 one can write �fh(s)� �fh(t) =
R
�(x)fo(x) dx with a function � such thatZ

�(x) dx = 0 and �(x)

(
� 0 if x � a;

� 0 if x � a;

where 0 < a < 1. Hence �fh(s)� �fh(t) equals
R
�(x)(fo(x)� fo(a)) dx � 0.

Thus we reject the hypothesis Ho if T (n
1=2Y ) is larger than d(�), the (1��)-quantile

of L(T (W )). This test has level

sup
fo2Ho

IPfo

n
T (n1=2Y ) > d(�)

o
= IP

n
T (W ) > d(�)

o
� �;

where IPfo denotes probability in case of f = fo.
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2.2 Tests for fHA(h; ec)
Here we take k :=  , assuming that Conditions (2.1, 2.2) hold. Then supt2[h;1�h]

bfh(t)
estimates 	h(f), and we de�ne

eT (n1=2Y ) := sup
h2 ]0;1=2]; t2[h;1�h]

D(h)�1
�
(nh)1=2 bfh(t)� (2�2 log(1=h))1=2

�
:

Under Condition (1.1),

eT (n1=2Y ) = eT (n1=2f +W )

8>>><>>>:
� eT (W ) if f 2 Ho;

= eT (W )

8><>:
if f = 0;

if f is constant and Ho = H";

if f is a�ne linear and Ho = Hc:

Moreover, eT (W ) <1 almost surely, by Theorem 2.1. Now we reject the hypothesis Ho

if eT (n1=2Y ) is larger than ed(�), the (1 � �)-quantile of L( eT (W )). Again this test has

level �.

In case of Ho = H�, Condition (1.1) is satis�ed if, and only if,  is nonnegative

almost everywhere. Two speci�c examples are

 1(x) := (1� jxj)+ and  2(x) := (1� x2)+:

If  =  1, then the resulting test statistic eT (n1=2Y ) is just the test statistic T�(n1=2Y )
introduced previously.

For Ho = H" one may take any odd function  such that  � 0 on [0; 1]. Speci�c

examples are

 j(2x+ 1)�  j(2x� 1) for j = 1; 2:

In case of Ho = Hc one may take any even function  such that  � 0 on [0; 1=2],  � 0

on [1=2; 1] and
R
 (x) dx = 0. Speci�c examples are

 j(2x) �  j(4x+ 3)=2 �  j(4x� 3)=2 for j = 1; 2:

3 Optimality of the tests

Let �n(Y ) be some test, that is, �n is a function of the observations Y with values in

[0; 1] and �n(Y ) means the probability of rejecting the null hypothesis given Y . We

say that the test �n is of level � with a prescribed � 2 ]0; 1[ if

sup
fo2Ho

IEfo �n(Y ) � �:
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The power of this test at a point g from the alternative set HA is IEg �n(Y ). We measure

the quality of this test by the minimum of the corresponding power function on the

alternative set. More precisely, for the alternative set of the form HA(L; c) and for each

test �n(Y ) of level � we characterize its quality by the minimal value c = c(�n) such that

inf
g2HA(L;c)

IEg �n(Y ) � �

for some prescribed � 2 ]�; 1[. The next theorem entails that our tests are asymptotically

optimal in the sense of minimizing c(�n) over all tests of level �.

Theorem 3.1 Let Ho be H� or H", and let

cn = cn(�) := �
�
L
logn

n

�1=3
for some � > 0.

(a) If � > 1, then

lim
n!1

inf
g2HA(L;cn)

IPg

n
T (n1=2Y ) > d(�)

o
= 1:

(b) Suppose that � < 1, and let (�n)n�1 be any family of tests on C[0; 1] of level �. Then

lim sup
n!1

inf
g2HA(L;cn)

IEg �n(Y ) � �:

We see that if cn = cn(�) with � < 1, then any sequence of tests �n has trivial

minimal power � asymptotically. This means that the minimal distance between the null

hypothesis and the alternative allowing consistent testing is not less than (Ln�1 logn)1=3.

On the other hand, for the case cn = cn(�) with � > 1, our tests based on T (n1=2Y )

have power one. Following Ingster (1993) the sequence c�n = (Ln�1 logn)1=3 is called the

optimal rate of testing and the tests ��n = 1(T (n1=2Y ) > d(�)) asymptotically sharp-

optimal.

Next we consider the alternatives eHA(h; ec).
Theorem 3.2 For some �xed � > 0 de�ne

ech = ech(�) := �
�2 log(1=h)

�2h

�1=2
7



The following conclusions hold uniformly in n � 1:

(a) If � > 1, then

lim
h#0

inf
g2eHA(h;n�1=2ech) IPg

n eT (n1=2Y ) > ed(�)o = 1:

(b) Suppose that � < 1, and let (�h)h2 ]0;1=2] be any family of tests on C[0; 1]. Then

lim sup
h#0

�
inf

g2eHA(h;n�1=2ech) IEg �h(n1=2Y )� IE0 �h(n
1=2Y )

�
� 0:

Some additional remarks on the tests.

One can easily verify that the preceding optimality results remain valid if the test statis-

tics T (n1=2Y ) and eT (n1=2Y ) are replaced with the simpler quantities

sup
h2 ]0;1=2]

�
(nh)1=2�( bfh)� (2�2 log(1=h))1=2

�
and

sup
h2 ]0;1=2]; t2[h;1�h]

�
(nh)1=2 bfh(t)� (2�2 log(1=h))1=2

�
;

respectively. The denominator D(h) = (log(e=h))�1=2 log log(ee=h) puts more weight on

smaller scales h.

In both cases Theorem 3.1 remains valid if replaces the whole interval ]0; 1=2] with

some �nite subset Hn = fhn1; hn2; : : : hnk(n)g with 0 =: hn0 < hn1 < hn2 < � � � < hnk(n)

provided that

(log(n)=n)�1=3hnk(n) ! 1 and min
1�`�k(n)

(log(n)=n)�1=3(hn` � hn;`�1) ! 0:

4 An extension of L�evy's modulus of continuity

It is a well-known result of L�evy that

lim
�#0

sup
s;t2[0;1]:t�s=�

W (t)�W (s)

(2� log(e=�))1=2
= 1 almost surely

(cf. Shorack and Wellner 1986, Theorem 14.1.1). This implies that the test statistic

�S(W ) := sup
0�s<t�1

(W (t)�W (s))2

2(t� s) log(e=(t� s))
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is �nite almost surely. However, for statistical purposes �S(W ) is suboptimal. The reason

is that the distribution of

sup
s;t2[0;1]:t�s=�

(W (t)�W (s))2

2� log(e=�)

becomes degenerate at one as � # 0, whereas some quantiles of �S(W ) are greater than one

because of larger values of �. Now we propose a better normalization of W 's increments:

It follows from Theorem 4.1 below that

S(W ) := sup
0�s<t�1

�(W (t)�W (s))2

t� s
� 2 log

� 1

t� s

��.
log log

� ee

t� s

�
is �nite almost surely. Note that

(W (t)�W (s))2

t� s
� 2 log

� 1

t� s

�
+ S(W ) log log

� ee

t� s

�
for 0 � s < t � 1;

and the �rst summand on the right hand side dominates the second one as t � s # 0.

Finiteness of S(W ) is related to, but not a consequence of, well-known results on the

limiting distribution of

S�(W ) := sup
s;t2[0;1]:t�s��

(t� s)�1=2(W (t)�W (s))

(suitably normalized) as � # 0.

Theorem 4.1 Let X be a stochastic process on a subset � of ]0; 1]� [0; 1] such that the

following inequalities hold for certain constants K;L;M > 0 and arbitrary (h; t); (h0; t0) 2

�, � � 0:

IP
n
jX(h; t)j > h1=2�

o
� K exp(��2=2);(4.1)

IP
n
jX(h; t) �X(h0; t0)j > (jh� h0j+ jt� t0j)1=2 �

o
� L exp

�
�M�2):(4.2)

If we de�ne

S(X) := sup
(h;t)2�

X(h; t)2=h� 2 log(1=h)

log log(ee=h)
;

then S(X) <1 almost surely. More precisely, IPfS(X) > Rg � �(R jK;L;M) for some

universal function �(� jK;L;M) such that limR!1 �(R jK;L;M) = 0.

Remark. By de�nition, X(h; t)2=h � 2 log(1=h) + S(X) log log(ee=h) for arbitrary

(h; t) 2 �. Since (A + B)1=2 � A1=2 + B1=2 and (A + B)1=2 � A1=2 + A�1=2B=2 for
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arbitrary positive numbers A;B, one can easily show that Theorem 4.1 implies �niteness

of

sup
(h;t)2�

D(h)�1
�
h�1=2jX(h; t)j � (2 log(1=h))1=2

�
almost surely, where D(h) = (log(e=h))�1=2 log log(ee=h).

As mentioned above, Theorem 4.1 applies to increments of Brownian motion, if we

de�ne X(h; t) :=W (t+ h=2)�W (t� h=2). More generally, combined with the previous

remark it implies Theorem 2.1 in Section 2, as shown in Section 6.

5 Some further developments

5.1 Other nonparametric models

In this paper we restrict ourselves to the ideal \signal + white noise" model which can be

viewed as a prototype for more realistic statistical models involving regression functions

or distribution densities. The results by Brown and Low (1996), and Nussbaum (1996)

and Grama and Nussbaum (1997) on asymptotic equivalence of these models can be

helpful in this context.

It is also worth mentioning that our procedures are formulated in terms of kernel

smoothers and thus apply directly to Gaussian regression models with an equispaced

or regular design. One possible modi�cation in order to treat regression models with

arbitrary error distributions uses simultaneous rank tests. This will be the subject of

another paper.

5.2 Other type of smoothness constraints

We assume that the underlying function f belongs to a Lipschitz function class F(L) .

More generally the case of a H�older class F�(L) can be considered. We refer to Lepski

and Tsybakov (1996) where sharp-optimal tests under H�older constraints are described.

The procedure is similar to the case of Lipschitz classes and it is also based on kernel

smoothers but they apply special kernels arising from an optimal recovery problem. The

problem of adaptive testing when both � and L are unknown seems to be more involved.

However, it follows from Ingster (1986) that the our tests with the triangular kernel
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are rate optimal over arbitrary H�older classes F�(L).

6 Proofs

Proof of Equality (2.4). In case of Ho = H� the assertion is easily veri�ed. As for H",

let �o = sup0�s<t�1(g(s)�g(t))=2 be the asserted expression for �(g). Let 0 � s < t � 1

be such that � := (g(s) � g(t))=2 > 0. Then for any f 2 H" either f(s) � g(s) � � or

f(t) � f(s) > g(s)� � = g(t) + �. Thus kg� fk1 � �, whence �(g) � �o. On the other

hand, if �o <1, then

f(t) := sup
s2[0;t]

g(s)��o

de�nes a function in H" such that f(t) � g(t)��o and

f(t) � g(t) + sup
s2[0;t]

(g(s)� g(t)) ��o � g(t) + �o: 2

Now we prove Theorems 3.1 and 3.2. When proving Theorem 3.1 we only consider

the hypothesis Ho = H", because the arguments for Ho = H� are similar or even simpler.

The main arguments for the latter case are also contained in the proof of Theorem 3.2.

Proof of Theorem 3.1 (a). First we note that

Var bfh(t) := IE
h bfh(t)� �fh(t)

i2
= n�1

Z
kh;t(x)

2 dx:

An important property of the kernel functions kh;t is that

h

Z
kh;t(x)

2 dx 2 [�2; 4�2] for all h 2 ]0; 1=2] and t 2 [0; 1]:

Indeed

h

Z
kh;t(x)

2 dx =

Z
1
n
y �

t ^ (1� t)

h

o
k(y)2 dy

,�Z
1
n
y �

t ^ (1� t)

h

o
k(y) dy

�2

= (�2 � 3=3)=(1 � 2=2)2

= �2(1� 3=2)=(1 � 2=2)2

2 [�2; 4�2];

where  :=
�
1� (t ^ (1� t))=h

�+
2 [0; 1]. This implies that for all 0 � s < t � 1,

�2h;s;t := Var
�
2�1(nh)1=2( bfh(s)� bfh(t))� � 4�2:
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Now let f 2 HA(L; c) with c=L � 1=2. Let 0 � s < t � 1 such that f(s)� f(t) � 2c.

With  := (f(s) + f(t))=2 and h := c=L,

�fh(s)� �fh(t) =

Z
(kh;s � kh;t)(x)f(x) dx

=

Z
(kh;s � kh;t)(x)(f(x) � ) dx

�

Z �
kh;s(x)(c� Ljx� sj)� kh;t(x)(�c+ Ljx� tj)

�
dx

= ch

Z �
kh;s(x)

2 + kh;t(x)
2
�
dx

� 2c�2

where �2 =
R
k(x)2 dx = 2=3. Next T (n1=2Y ) > d(�) entails that

2�1(nh)1=2( bfh(s)� bfh(t)) > (2�2 log(1=h))1=2 + d(�) log log(ee=h)(log(e=h))�1=2

= (2�2 log(1=h))1=2(1 + r�(h))

where limh!0 r�(h) = 0. Hence IP
n
T (n1=2Y ) > d(�)

o
is not smaller than

IP
n
2�1(nh)1=2( bfh(s)� bfh(t)) > (2�2 log(1=h))1=2(1 + r�(h))

o
� IP

n
2�1(nh)1=2

�
( bfh � �fh)(s)� ( bfh � �fh)(t)

�
> (2�2 log(1=h))1=2(1 + r�(h))� (nh)1=2c�2

o
= IP

n
2�1(nh)1=2

�
( bfh � �fh)(s)� ( bfh � �fh)(t)

�
> �2(3 log(L=c))1=2(1 + r�(c=L)) � �2(nc3=L)1=2

o
= �

�
�2��1h;s;t

�
(nc3=L)1=2 � (2 log(L=c))1=2(1 + r�(c=L))

��
;

where � is the standard Gaussian distribution function. If c = cn = �(L log(n)=n)1=3

with � > 1, then

(nc3=L)1=2 � (3 log(L=c))1=2(1 + r�(c=L)) = log(n)1=2
�
�3=2 � 1 + o(1)

�
;

whence

�
�
�2��1h;s;t

�
(nc3=L)1=2 � (3 log(L=c))1=2(1 + r�(c=L))

��
! 1;

uniformly in 0 � s < t � 1. 2

Proof of Theorem 3.2 (a). A simple rescaling argument shows that it su�ces to

consider the case n = 1.

12



Suppose that f 2 eHA(h; ec) i.e. supt2[h;1�h] �fh(t) � ~c�2. For 0 < � < 1 let t 2 [h; 1�h]

such that �fh(t) > �ec�2. Then IP
n eT (Y ) > ed(�)o is not smaller than

IP
n
(nh)1=2 bfh(t) > (2�2 log(1=h))1=2(1 + er�(h))o
� IP

n
(nh)1=2( bfh � �fh)(t) > (2�2 log(1=h))1=2 � �ec�2(nh)1=2o

= �
�
��1

�
�ec�2(nh)1=2 � (2�2 log(1=h))1=2(1 + er�(h))��;

where limh!0 er�(h) = 0. If ec = ech = ���1(2(nh)�1 log(1=h))1=2 and �� > 1, then

�ec�2(nh)1=2 � (2�2 log(1=h))1=2(1 + er�(h)) = (2�2 log(1=h))1=2(��� 1� er�(h))
! 1 as h # 0: 2

The proofs of Theorems 3.1 (b) and 3.2 (b) rely on the following result (cf. Ingster

1993, Lepski and Tsybakov 1996).

Lemma 6.1 Let �1;�2;�3; : : : be independent random variables with standard Gaussian

distribution. Then

lim
m!1

IE
��� 1
m

mX
i=1

exp(wm�i �w2
m=2) � 1

��� = 0;

if wm = (2 logm� �m)
1=2 with limm!1(logm)�1=2�m =1.

For the reader's convenience a proof is given here.

Proof of Lemma 6.1. Let Zm := exp(wm�1�w
2
m=2). Since IEZm = 1, the assertion

follows from the weak law of large numbers for triangular arrays, provided that

lim
m!1

IE jZm � 1jfjZm � 1j � �mg = 0 for any � > 0:

But for m � 1=�, the expectation of jZm � 1jfjZm � 1j � �mg is not greater than

IEZmfZm � �mg � IEZ1+�
m (�m)�� (for any � > 0);

= exp
�
�(1 + �)w2

m=2� � log(�m)
�

= exp
�
�2w2

m=2� �(log(�m)� w2
m=2)

�
= exp

�
�
(log(�m)� w2

m=2)
2

2w2
m

�
(if � = w�2m (log(�m)� w2

m=2))

� exp
�
�
(�m=2 + log �)2

4 logm

�
! 0 as m!1: 2

13



Proof of Theorem 3.1 (b). Let c = cn = �(L log(n)=n)1=3 with � < 1, and

h := c=L. Now de�ne m := b1=(2h)c, and for 1 � j � m let

tj := (2j � 1)h;

gj := chkh;tj ;

�j := (nh=�2)1=2 bfh(tj):
Then �1;�2; : : : ;�m are independent Gaussian random variables with Var(�j) = 1 and

IEgj �` = if j 6= `;

IEgj �j = (c2�2nh)1=2 = �3=2((2=3) log n)1=2 = n(2 logm)1=2 =: wn;

where n ! �3=2 < 1. All functions gj � g`, 1 � j < ` � m, belong to HA(L; c), and

d IPgj�g`
d IP0

= Zjn �Z`n

with Zjn := exp(wn�j � w2
n=2) and �Z`n := exp(�wn�` � w2

n=2). De�ning the sums

Sn := 2m�1
P

j�m=2(Zjn�1) and
�Sn := 2m�1

P
`>m=2(

�Z`n�1) it follows from Lemma 6.1

that IE0 jSnj+ IE0 j �Snj ! 0. Thus for arbitrary tests �n on C[0; 1],

inf
g2HA(L;c)

IEg �n(Y )� IE0 �n(Y )

� inf
j�m=2;`>m=2

IEgj�g` �n(Y )� IE0 �n(Y )

= inf
j�m=2;`>m=2

IE0(Zjn �Z`n � 1)�n(Y )

� IE0
4

m2

X
j�m=2;`>m=2

(Zjn �Z`n � 1)�n(Y )

= IE0(Sn �Sn + Sn + �Sn)�n(Y )

� IE0 jSnjj �Snj+ IE0 jSnj+ IE0 j �Snj

= IE0 jSnj IE0 j �Snj+ IE0 jSnj+ IE0 j �Snj

= o(1): 2

Proof of Theorem 3.2 (b). Again one may assume that n = 1. For h 2 ]0; 1=2] let

ec = ech = ���1(2(nh)�1 log(1=h))1=2 with � < 1. De�ne m, tj, gj and �j as in the proof

of Theorem 3.1 (b) with ec in place of c. Again �1;�2; : : : ;�m are independent Gaussian

random variables with Var(�j) = 1 and

IEgj �j = ec�(nh)1=2 = �(2 log(1=h))1=2 = �h(2 logm)1=2 =: wh;

14



where limh#0 �h = �. All functions g1; g2; : : : ; gm belong to eHA(L; ec), and
d IPgj
d IP0

= Zh;j := exp(wh�j � w2
h=2):

De�ning Sh := m�1
Pm

j=1(Zh;j� 1) it follows from Lemma 6.1 that IE0 jShj ! 0 as h # 0.

Thus for arbitrary tests �h on C[0; 1],

inf
g2eHA(h;ech) IEg �h(Y )� IE0 �h(Y )

� inf
1�j�m

IEgj �h(Y )� IE0 �h(Y ) � IE0 Sh�h(Y ) � IE0 jShj ! 0 as h # 0: 2

Proof of Theorem 4.1. We consider the metric

�((h; t); (h0; t0)) := (jh � h0j+ jt� t0j)1=2

on �. For u > 0 let �u be a maximal subset of � such that

�(a; b) > u for di�erent a; b 2 �u:

One can easily verify that ]0; 1] � [0; 1] can be covered by at most (1 + 2u�2)2 squares

with �-diameter at most u. Each such square contains at most one point of �u, whence

#�u � (1 + 2u�2)2 � 1 + 8u�4:

Hence, de�ning

!(X; �) := sup
a;b2�:�(a;b)��

jX(a)�X(b)j;

it follows from (4.2), Theorem 2.2.4 of van der Vaart and Wellner (1996) and elementary

calculations that

IP
n
!(X;�1=2) > �

o
� C exp

�
�

�2

C� log(e=�)

�
for all � 2 ]0; 1]; � > 0:(6.1)

Here and throughout the sequel C denotes a generic positive constant depending only on

K;L;M . Its value may di�er from place to place.

For � 2 ]0; 1] let �(�) := f(h; t) 2 � : h � �g. Now �x some D � 2. For each (h; t) 2

�(�) n �(�=2) there exists a point (h0; t0) 2 �(�=D)1=2 such that �((h; t); (h0; t0))2 � �=D.

For 0 < � < 1 and � � 1, the inequality

X(h; t)2 > 2h(log(1=h) + �)
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implies that

X(h0; t0)2 > 2h(log(1=h) + �)(1 � �)2

= 2h0(h0=h)�1(log(1=�) + �)(1 � �)2

� 2h0(1 + (�=D)=h)�1(log(1=�) + �)(1 � �)2

� 2h0(1 + 2=D)�1(log(1=�) + �)(1 � �)2

� 2h0(log(1=�) + �)(1 � 2=D)(1 � �)2;

or

!
�
X; (�=D)1=2

�2
> 2h(log(1=h) + �)�2

> �(log(1=�) + �)�2:

But h0 � h+�=D � (1+1=D)�, and covering ]0; (1+1=D)�]� [0; 1] with suitable squares

reveals that

#
n
(h0; t0) 2 �(�=D)1=2 : h

0 � (1 + 1=D)�
o
� (2D + 3)(1 + 2D=�):

Consequently, it follows from (4.1) and (6.1) that

IP
n
X(h; t)2 > 2h(log(1=h) + �) for some (h; t) 2 �(�) n �(�=2)

o
� (2D + 3)(1 + 2D=�)K exp

�
�(log(1=�) + �)(1 � 2=D)(1 � �)2

�
+ C exp

�
�
�(log(1=�) + �)�2

C(�=D) log(eD=�)

�
� C exp

�
2 logD + log(1=�) � (log(1=�) + �)(1 � 2=D)(1 � �)2

�
+ C exp

�
�
D(log(1=�) + �)�2

C log(eD=�)

�
� C exp

�
2 logD + log(1=�) � (log(1=�) + �)(1 � 2=D)(1 � 2�)

�
+ C exp

�
�

D�2

C
�
1 + log(D)= log(e=�)

��

� C exp
�
2 logD + log(1=�) � (log(1=�) + �)(1 � 2=D)(1 � 2�)

�
+ C exp

�
�
D�2

C

�
:

Now we take

� = �� := R log log(ee=�) with R � 1;

� = �� :=
�=4

log(1=�) + �
�

1

4 log(e=�)
:
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Then

C exp
�
2 logD + log(1=�) � (log(1=�) + �)(1� 2=D)(1 � 2�)

�
+ C exp

�
�
D�2

C

�
� C exp

�
2 logD � �=2 + (2 log(1=�) + �)=D

�
+ C exp

�
�

D

C log(e=�)2

�
:

Letting D = R log(e=�)2 log log(ee=�) = log(e=�)2� and R � 2, the latter bound is easily

shown to be not greater than

C exp
�
�(R=C � C) log log(ee=�)

�
:

Now we apply this bound to � = 2�k, k � 0. This yields

IP
n
X(h; t)2=h > 2 log(1=h) +R log log(ee=h) for some (h; t) 2 �

o
�

1X
k=0

IP
n
X(h; t)2=h > 2 log(1=h) +R log log(ee=2�k)

for some (h; t) 2 �(2�k) n�(2�k�1)
o

� C
1X
k=0

exp
�
�(R=C �C) log log(ee2k)

�
= C

1X
k=0

(e+ k log 2)�(R=C�C)

! 0 as R!1: 2

Proof of Theorem 2.1. Without loss of generality let �2 = 1. With X(h; t) :=

h
R
kh;t(x) dW (x) it su�ces to show that Conditions (4.1) and (4.2) of Theorem 4.1 are

satis�ed. It is well known that X is a centered Gaussian process with

Var(X(h; t)) = h2
Z
kh;t(x)

2 dx = h�2 = h:

Thus Condition (4.1) holds with K = 1. As for Condition (4.2), one can write

k(x) =

Z
1fy � xgf(y)P (dy)

for all but countably many x 2 R, where P is some probability measure on [�1=2; 1=2]

and f 2 L1(P ) with jf j � TV(k). Thus the Cauchy-Schwarz inequality yields

Var(X(h; t) �X(h0; t0)) =

Z �
k
�u� t

h

�
� k

�u� t0

h0

��2
du

=

Z �Z �
1
n
y �

u� t

h

o
� 1

n
y �

u� t0

h0

o�
f(y)P (dy)

�2
du
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� TV(k)2
Z Z ���1ny � u� t

h

o
� 1

n
y �

u� t0

h0

o���P (dy) du
= TV(k)2

Z Z ���1fu � t+ hyg � 1fu � t0 + h0yg
��� duP (dy)

� TV(k)2
Z �

jt� t0j+ jyjjh� h0j
�
P (dy)

� TV(k)2
�
jt� t0j+ jh� h0j

�
:

Thus Condition (4.2) holds with L = 1 and M = TV(k)�2=2. 2

Proof of Theorem 2.2. By assumption, for h 2 ]0; 1=2] and t 2 [0; h[[ ]1 � h; 1]

there exist a probability measure Ph;t on [t� h; t+ h] \ [0; 1] and a measurable function

bh;t with jbh;tj �M such that

h

Z
kh;t(x) dW (x) =

( R
[0;2h]W (s)bh;t(s)Ph;t(ds) if t < h;R

[1�2h;h](W (1)�W (s))bh;t(s)Ph;t(ds) if t > 1� h;

whence

sup
t2[0;h[[ ]1�h;1]

(nh)1=2j bfh(t)� �fh(t)j

� M
�

sup
s2[0;2h]

h�1=2jW (s)j _ sup
t2[1�2h;1]

h�1=2jW (1)�W (s)j
�
:

Now the assertion follows from the Law of the Iterated Logarithm for Brownian motion.

2
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