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Abstract

The construction of a Lyapunov function characterizing the pullback at-

traction of a cocycle attractor of a nonautonomous discrete time dynamical

system involving Lipschitz continuous mappings is presented.

1 Introduction

The Kishinev school of dynamical systems founded by K.S. Sibirsky has made many

wide ranging and important contributions to theory of dynamical systems, above

all in connection with multivalued and nonautonomous systems, for which the ref-

erences [2, 3, 4, 5, 11, 12, 15] are but a small sample. In this paper we consider a

result that falls within this Kishinev tradition, namely the construction of a Lya-

punov function that characterizes the pullback attraction of a cocycle attractor of a

nonautonomous discrete time dynamical system.

We consider a nonautonomous di�erence equation

xn+1 = fn(xn) (1)

on IR
d where fn is a Lipschitz continuous mapping from IR

d into IR
d with do-

main Domn which is an open, but not necessarily bounded, subset of IRd such

that fn(Domn)) � Domn+1 for each n 2 IZ.

Such a di�erence equation (1) generates a cocycle mapping � : Dom� ! IR
d,

where Dom� := IN �
S
n02IZ

fn0 �Domn0
g, through iteration by

�(n; n0; x0) = fn0+n�1 � � � � � fn0(x0) (2)

for each x0 2 Domn0
, n0 2 IZ and n 2 IN . This cocycle mapping � satis�es the

initial condition property

�(0; n0; x0) = x0 (3)

for each x0 2 Domn0
, n0 2 IZ and the cocycle property

�(m + n; n0; x0) = �(m;n0 + n;�(n; n0; x0)) (4)

for each x0 2 Domn0
, n0 2 IZ and n, m 2 IN [ f0g.

The cocycle property (4) is the nonautonomous counterpart of the group or

semigroup evolutionary property of an autonomous dynamical system. The cocycle

formalism provides a natural generalization to nonautonomous systems which re-

tains the original state space in contrast to the skew{product ow formalism that

represents the nonautonomous system as an autonomous system on the cartesian

product of the original state space and some function space, see [14]. This is partic-

ularly advantageous in numerical dynamics [9, 10] and for random systems [1, 13].
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It is too great a restriction of generality to consider as invariant just a single

subset A�, say, of IRd to be invariant w.r.t. every mapping fn0 , that is, to satisfy

fn0(A
�) = A

� for all n0 2 IZ. Instead we will say that a family bA = fAn0
; n0 2 IZg

of nonempty sets with An0
� Domn0

for each n0 2 IZ is invariant under � or �{

invariant if

�(n; n0; An0
) = An0+n; n0 2 IZ; n 2 IN;

or, equivalently, if fn0(An0
) = An0+1 for all n0 2 IZ. Consequently every trajectory of

� is �{invariant, with each of the sets An0
consisting of a single point. Some of these

trajectories could have certain attractive properties w.r.t. the other trajectories, as

can invariant families of more complicated, non-singleton sets. The task is how to

formulate such attraction, particularly so the limit sets are also invariant. For this

the concept of pullback attraction of random dynamical systems [1, 13] (see also

[9, 10] is appropriate and leads to the concept of a pullback or cocycle attractor.

Let H�(A;B) denote the Hausdor� separation or semi{metric between nonempty

compact subsets A and B of IRd, and is de�ned by

H
�(A;B) := max

a2A
dist(a; B)

where dist(a; B) := minb2B ka� bk.

The most obvious way to formulate asymptotic behaviour for a nonautonomous

dynamical system is consider the limit set of the forwards trajectory f�(n; n0; x0gn�0

as n ! 1 for each �xed initial value (n0; x0), which now depends on both the

starting time n0 and the starting point x0. This has been extensively investigated in

[3, 6, 8, 16], but has the disadvantage that the resulting (omega) limit sets !+(n0; x0)

are generally not invariant under �. On the other hand, if we consider a �{invariant

family bA = fAn0
; n0 2 IZg such forwards convergence would take the form

H
�(�(n; n0; x0); An0+n)! 0 as n!1:

To ensure convergence to a speci�c compnent set An0
for a �xed n0, we would have

to start progressively earlier in order to �nish at time n0. This leads to the concept

of pullback convergence

H
�(�(n; n0 � n; x0); An0

)! 0 as n!1;

that was �rst considered in connection with random dynamical systems, which are

intrinsically nonautonomous [1, 3, 4, 13]. The invariant family bA is then called a

pullback or cocycle attractor.

In this paper we construct a Lyapunov function which characterizes such pullback

attraction and attactors. The main result is stated in the next section, a lemma on

the existence of a pullback absorbing neighbourhood family is proved in Section 3,

and �nally in Section 4 an appropriate Lyapunov function is de�ned and shown to

satisfy the properties asserted in the the theorem.
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2 Lyapunov Functions for Pullback Attractors

A �{invariant family of compact subsets bA = fAn0
; n0 2 IZg will be called a cocycle

attractor if it satis�es the pullback attraction

lim
n!1

H
� (�(n; n0 � n;Dn0�n); An0

) = 0 (5)

for all n0 2 IZ and all cD = fDn0
; n0 2 IZg belonging to a basin of attraction system

Datt consisting of families of sets cD = fDn0
; n0 2 IZg such that Dn0

is bounded and

Dn0
� Domn0

for each n0 2 IZ with the properties:

i) there exists a cD(int) 2 Datt such that An0
� intD(int)

n0
for each n0 2 IZ; and

ii) cD(1) =
n
D

(1)
n0

; n0 2 IZ

o
2 Datt if

cD(2) =
n
D

(2)
n0

; n0 2 IZ

o
2 Datt and D

(1)
n0
� D

(2)
n0

for all n0 2 IZ.

Obviously bA 2 Datt. Although somewhat complicated, the use of such a basin of

attractionsystem allows us to consider both nonuniform and local attraction regions

which are typical in nonautonomous systems.

Our main result is the construction of a Lyapunov function that characterizes

this pullback attraction.

Theorem 1 Let fn0 be uniformly Lipschitz continuous on Domn0
for each n0 2

IZ and let bA be a family of nonempty compact �{invariant sets that is pullback

attracting with respect to � with a basin of attraction system Datt. Then there

exists a Lipschitz continous function V : IN�
S
n02IZ

ffn0g � Datt(n0)g ! IR
+, where

Datt(n0) :=
SbD2Datt Dn0

for each n0 2 IZ, such that

Property 1 (upper bound): For all n0 2 IZ and x0 2 Datt(n0)

V (n0; x0) � dist(x0; An0
); (6)

Property 2 (lower bound): For each n0 2 IZ there exists a function a(n0; �) :

IR
+ ! IR

+ with a(n0; 0) = 0 and a(n0; r) > 0 for all r > 0 which is monotonic

increasing in r such that

a(n0; dist(x0; An0
)) � V (n0; x0) (7)

for all x0 2 Datt(n0);

Property 3 (Lipschitz condition): For all n0 2 IZ and x0, y0 2 Datt(n0)

���V (n0; x0)� V (n0; y))
��� � kx0 � y0k; (8)
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Property 4 (pullback convergence): For all n0 2 IZ and any cD 2 Datt

limsup
n!1 sup

zn0�n
2Dn0�n

V (n0;�(n; n0 � n; zn0�n)) = 0: (9)

In addition,

Property 5 (forwards convergence): There exists cN 2 Datt which is positively

invariant under � and consists of nonempty compact sets Nn0
with An0

� intNn0

for each n0 2 IZ such that

V (n0 + 1;�(1; n0; x0)) � e
�1
V (n0; x0) (10)

for all x0 2 Nn0
and hence

V (n0 + j;�(j; n0; x0)) � e
�j
V (n0; x0) (11)

for all x0 2 Nn0
and j 2 IN .

Note 1: It would be nice to use �(n; n0 � n; x0) for a �xed x0 in the pullback

convergence property (9), but this may not always be possible due to nonuniformity

of the attraction region, i.e. we may not have a cD 2 Datt and an x0 2 Dn0�n for all

n 2 IN .

Note 2: The forwards convergence inequality (11) does not imply forwards Lya-

punov stability or asymptotic stability. Athough we then have

a(n0 + j; dist(�(j; n0; x0); An0+j)) � e
�j
V (n0; x0)

there is no guarantee (without additional assumptions) that

inf
j�0

a(n0 + j; r) > 0

for r > 0, so dist(�(j; n0; x0); An0+j) need not become small as j ! 1.

As a counterexample consider the cocycle mapping � on IR generated fn = f for

n � 0 and fn = g for n � 1 where the mappings f , g : IR! IR are given by f(x) :=
1

2
x and g(x) := maxf0; 4x(1� x)g for all x 2 IR. Then bA with An0

= f0g for all n0

2 IZ is pullback attracting for � but is not forwards Lyapunov asymptotically stable.

(Note we can restrict f , g to [�R;R] ! [�R;R] for any �xed R > 1 to ensure the

required uniform Lipschitz continuity of the fn).

Note 3: We can rewrite the forwards convergence inequality (11) as

V (n0;�(j; n0 � j; xn0�j)) � e
�j
V (n0 � j; xn0�j) � e

�jdist(xn0�j; An0�j)

4



for all xn0�j 2 Nn0�j and j 2 IN .

We will say that cD 2 Datt is past{tempered with respect to bA if

lim
j!1

1

j
log+H�(Dn0�j; An0�j) = 0

for each n0 2 IZ, or equivalently if

lim
j!1

e
�j

H
�(Dn0�j; An0�j) = 0

for each n0 2 IZ and every real  > 0. This says that there is at most subexponential

growth backwards in time of the starting sets. It is reasonable to restrict our atention

to such sets.

For a past-tempered set cD � cN we thus have

V (n0;�(j; n0 � j; xn0�j)) � e
�j
H
�(Dn0�j; An0�j) �! 0

as j ! 1, and hence

a(n0; dist(�(j; n0 � j; xn0�j); An0
)) � e

�j
H
�(Dn0�j; An0�j) �! 0

as j ! 1. Since n0 is �xed in the lower expression, this implies the pullback

convergence

lim
j!1

H
�(�(j; n0 � j;Dn0�j); An0

) = 0:

A rate of pull{back convergence for more general sets cD 2 Datt will be considered

in the appendix.

3 Pullback Absorbing Neighbourhood Systems

We will say that a family bB = fBn0
; n0 2 IZg 2 Datt of nonempty compact sub-

sets with nonempty interior is a pullback absorbing neighbourhood system for a �{

pullback attractor bA if it is positively invariant w.r.t. � in the sense that

�(n; n0; Bn0
) � Bn0+n 8n 2 IN; n0 2 IZ

and if it pullback attracts all cD 2 Datt, that is for each
cD 2 Datt and n0 2 IZ there

exists an N(cD; n0) 2 IN such that

�(n; n0 � n;Dn0�n) � intBn0
; 8n � N:

Obviously we then have bA � bB 2 Datt. Moreover, by positive invariance and the

cocycle property we have

�(n +m;n0 � n�m;Bn0�n�m) � �(n; n0 � n;Bn0�n)
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for all n, m 2 IN and n0 2 IZ. From this we see that

An0
=
\
n2IN

�(n; n0 � n;Bn0�n); 8n0 2 IZ:

The following lemma shows that there always exists such a pullback absorbing

neighbourhood system for any given cocycle attractor. This will be required for the

construction of the Lyapunov function for the proof of Theorem 1

Lemma 2 If bA is a cocycle attractor with a basin of attraction system Datt for a

cocycle � which is continuous in its spatial variable, then there exists a pullback

absorbing neighbourhood system bB � Datt of
bA w.r.t. �.

Proof: For each n0 2 IZ pick �n0 > 0 such that B[An0
; �n0 ] := fx 2 IR

d :

dist(x;An0
) � �n0g � Datt(n0) and de�ne

Bn0
:=

[
j�0

�(j; n0 � j; B[An0�j; �n0�j]):

Obviously An0
� intB[An0

; �n0 ] � Bn0
. To show positive invariance we use the

cocycle property in what follows.

�(1; n0; Bn0
) =

[
j�0

�(1; n0;�(j; n0 � j; B[An0�j; �n0�j]))

=
[
j�0

�(j + 1; n0 � j; B[An0�j; �n0�j])

=
[
i�1

�(i; n0 + 1� i; B[An0+1�i; �n0+1�i])

�
[
i�0

�(i; n0 + 1� i; B[An0+1�i; �n0+1�i]) = Bn0+1;

so �(1; n0; Bn0
) � Bn0+1. By this and the cocycle property again we obtain

�(2; n0; Bn0
) = �(1; n0 + 1;�(1; n0; Bn0

))

� �(1; n0 + 1; Bn0+1) � Bn0+2:

The general positive invariance assertion then follows by induction.

Now by the continuity of �(j; n0 � j; �) and the compactness of B[An0�j; �n0�j],

the set �(j; n0� j; B[An0�j; �n0�j]) is compact for each j � 0 and n0 2 IZ. Moreover,

by pullback convergence, there exists an N = N(n0; �n0) 2 IN such that

�(j; n0 � j; B[An0�j; �n0�j]) � B[An0
; �n0 ] � Bn0
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for all j � N . Hence

�(1; n0; Bn0
) =

[
j�0

�(j; n0 � j; B[An0�j; �n0�j])

� B[An0
; �n0 ]

[ [
0�j<N

�(j; n0 � j; B[An0�j; �n0�j])

=
[

0�j<N

�(j; n0 � j; B[An0�j; �n0�j]);

which is compact, so Bn0
is compact.

To see that bB so constructed is pullback absorbing w.r.t. Datt, let
cD 2 Datt. Fix

n0 2 IZ. Since bA is pullback attracting, there exists an N(cD; �n0 ; n0) 2 IN such that

H
� (�(j; n0 � j;Dn0�j); An0

) < �n0

for all j � N(cD; �n0; n0). But (�(j; n0 � j;Dn0�j) � intB[An0
; �n0 ] and B[An0

; �n0]

� Bn0
, so

�(j; n0 � j;Dn0�j) � intBn0

for all j � N(cD; �n0 ; n0). Hence bB is pullback absorbing as required. 2

4 Proof of Theorem 1

We want to construct a Lyapunov function V (n0; x0) that characterizes a pullback

attractor bA and satis�es properties 1{5 of Theorem 1.

For this we de�ne for all n0 2 IZ and x0 2 Datt(n0) :=
SbD2Datt Dn0

as

V (n0; x0) := sup
n2IN

e
�Tn0 ;ndist (x0;�(n; n0 � n;Bn0�n))

where

Tn0;n = n+
nX
j=1

�
+
n0�j

with Tn0;n = 0. Here �n = logLn, where Ln is the uniform Lipschitz constant of fn

on Domn, and a
+ = (a+ jaj)=2, i.e. the positive part of a real number a.

Note 4: We have Tn0;n � n and Tn0;n+m = Tn0;n + Tn0�n;m for all n, m 2 IN and

n0 2 IZ.

4.1 Proof of property 1

Since e�Tn0;n � 1 for all n 2 IN and dist (x0;�(n; n0 � n;Bn0�n)) is monotonically

increasing from 0 � dist (x0;�(0; n0; Bn0
)) at n = 0 to dist (x0; An0

) as n ! 1, we
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have

V (n0; x0) = sup
n2IN

e
�Tn0;ndist (x0;�(n; n0 � n;Bn0�n))

� 1 � dist (x0; An0
) :

4.2 Proof of property 2

If x0 2 An0
we have V (n0; x0) = 0 by Property 1, so let us assume that we have x0

2 Datt(n0) n An0
. Now in

V (n0; x0) = sup
n�0

e
�Tn0;ndist (x0;�(n; n0 � n;Bn0�n))

the supremum involves the product of an exponential decreasing quantity bounded

below by zero and a bounded increasing function, since the �(n; n0 � n;Bn0�n) are

a nested family of compact sets decreasing to An0
with increasing n. In particular,

dist (x0; An0
) � dist (x0;�(n; n0 � n;Bn0�n)) ; 8n 2 IN:

Hence there exists an N
� = N

�(n0; x0) 2 IN such that

1

2
dist(x0; An0

) � dist (x0;�(n; n0 � n;Bn0�n)) � dist(x0; An0
)

for all n � N
� but not for n = N

� � 1. Then from above

V (n0; x0) � e
�Tn0 ;N

�dist (x0;�(N
�
; n0 �N

�
; Bn0�N

�))

�
1

2
e
�Tn0;N

�dist (x0; An0
) :

De�ne

N̂(n0; r) := supfN�(n0; x0) : dist (x0; An0
) = rg

We have N̂(n0; r) < 1 for x0 =2 An0
with dist (x0; An0

) = r and N̂(n0; r) is nonde-

creasing with r ! 0. To see this note that by the triangle rule

dist(x0; An0
) � dist(x0;�(n; n0 � n;Bn0�n)) +H

�(�(n; n0 � n;Bn0�n); An0
):

Also by pullback convergence there exists an N(n0; r=2) such that

H
�(�(n; n0 � n;Bn0�n); An0

) <
1

2
r

for all n � N(n0; r=2). Hence for dist(x0; An0
) = r and n � N(n0; r=2) we have

r � dist(x0;�(n; n0 � n;Bn0�n)) +
1

2
r;
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that is
1

2
r � dist(x0;�(n; n0 � n;Bn0�n)):

Obviously we have N̂(n0; r) � N(n0; r=2).

Finally, we de�ne

a(n0; r) :=
1

2
r e

�T
n0;N̂(n0;r): (12)

Note that there is no guarantee here (without further assumptions) that a(n0; r)

does not go to 0 for �xed r 6= 0 as n0 ! 1.

4.3 Proof of property 3

We have jV (n0; x0)� V (n0; y0)j

=

�����sup
n2IN

e
�Tn0;ndist (x0;�(n; n0 � n;Bn0�n))� sup

n2IN

e
�Tn0;ndist (y0;�(n; n0 � n;Bn0�n))

�����
� sup

n2IN

e
�Tn0 ;n jdist (x0;�(n; n0 � n;Bn0�n))� dist (y0;�(n; n0 � n;Bn0�n))j

� sup
n2IN

e
�Tn0 ;nkx0 � y0k � kx0 � y0k:

4.4 Proof of property 4

Assume the opposite. Then there exists an "0 > 0, a sequence nj ! 1 in IN and

points xj 2 �(nj; n0 � nj; Dn0�nj ) such that V (n0; xj) � "0 for all j 2 IN . Since cD
2 Datt and

bB is pullback absorbing, there exists an N = N(cD; n0) 2 IN such that

�(nj; n0 � nj; Dn0�nj) � Bn0
; 8nj � N:

Hence for all j such that nj � N we have xj 2 Bn0
, which is a compact set, so there

exists a convergent subsequence xj0 ! x
� 2 Bn0

. But we also have

xj0 2
[

n�n
j0

�(n; n0 � n;Dn0�n)

and \
n
j0

[
n�n

j0

�(n; n0 � n;Dn0�n) � An0

by the de�nition of a cocycle attractor. Hence we must have x� 2 An0
and V (n0; x

�)

= 0. But V is Lipschitz continuous in its second variable by property 3, so

"0 � V (n0; xj0) = kV (n0; xj0)� V (n0; x
�)k � kxj0 � x

�
k;

which contradicts the convergence xj0 ! x
�. Hence property 4 must hold.
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Proof of property 5

De�ne

Nn0
:= fx0 2 B[Bn0

; 1] : �(1; n0; x0) 2 Bn0+1g ;

where B[Bn0
; 1] = fx0 : dist(x0; Bn0

� 1g is bounded because Bn0
is compact and

IR
d is locally compact, so Nn0

is bounded. It is also closed, hence compact, since

�(1; n0; �) is continuous and Bn0+1 is compact. Now An0
� intBn0

and Bn0
� Nn0

,

so An0
� intNn0

. In addition,

�(1; n0; Nn0
) � Bn0+1 � Nn0+1;

so cN is positive invariant.

It remains to establish the exponential decay inequality (10). For this we will

need the following Lipschitz condition

k�(1; n0; x0)� �(1; n0; y0)k � e
�n0kx0 � y0k

for all x0, y0 2 Domn0
on �(1; n0; �) � fn0(�). It follows from this that

dist(�(1; n0; x0);�(1; n0; Cn0
)) � e

�n0dist(x0; Cn0
)

for any compact subset Cn0
� Domn0

.

From the de�nition of V we have

V (n0 + 1;�(1; n0; x0)) = sup
n�0

e
�Tn0+1;ndist(�(1; n0; x0);�(n; n0 � n;Bn0�n))

= sup
n�1

e
�Tn0+1;ndist(�(1; n0; x0);�(n; n0 � n;Bn0�n))

since �(1; n0; x0) 2 Bn0+1 when x0 2 Nn0
. Hence re-indexing and then using the

cocycle property and the Lipschitz condition on �(1; n0; �) we have

V (n0 + 1;�(1; n0; x0)) = sup
j�0

e
�Tn0+1;j+1dist(�(1; n0; x0);�(j + 1; n0 � j; Bn0�j))

= sup
j�0

e
�Tn0+1;j+1dist(�(1; n0; x0);�(1; n0;�(j; n0 � j; Bn0�j)))

� sup
j�0

e
�Tn0+1;j+1e

�n0dist(x0;�(j; n0 � j; Bn0�j))

Now Tn0+1;j+1 = Tn0;j + 1� �
+
n0
, so

V (n0 + 1;�(1; n0; x0)) � sup
j�0

e
�Tn0+1;j+1+�n0dist(x0;�(j; n0 � j; Bn0�j))

= sup
j�0

e
�Tn0;j�1��

+
n0
+�n0dist(x0;�(j; n0 � j; Bn0�j))
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� e
�1 sup

j�0

e
�Tn0 ;jdist(x0;�(j; n0 � j; Bn0�j))

� e
�1
V (n0; x0);

which is the desired inequality.

Moreover, since �(1; n0; x0) 2 Bn0+1 � Nn0+1, the proof continues inductively to

give

V (n0 + j;�(j; n0; x0)) � e
�j
V (n0; x0)

for all j 2 IN .

This completes the proof of Theorem 1. 2

Appendix: Rate of pull-back convergence

Since bB is a pullback absorbing neighbourhood system for every n0 2 IZ, n 2 IN and
cD 2 Datt there exists an N(cD; n0; n) 2 IN such that

�(m;n0 � n�m;Dn0�n�m) � Bn0�n; 8m � N:

Hence by the cocycle property we have

�(n +m;n0 � n�m;Dn0�n�m) = �(n; n0 � n;�(m;n0 � n�m;Dn0�n�m))

� �(n; n0 � n;Bn0�n); 8m � N;

= �(i; n0 � i;�(n� i; n0 � n;Bn0�n)); 8 � i � n;

� �(i; n0 � i; Bn0�i)

where we have used the forward positive invariance of bB in the last line. Hence we

have

�(n +m;n0 � n�m;Dn0�n�m) � �(i; n0 � i; Bn0�i)

for all m � N(cD; n0; n) and 0 � i � n, or equivalently

�(m;n0 �m;Dn0�m) � �(i; n0 � i; Bn0�i)

for allm � n + N(cD; n0; n) and 0 � i � n. This means that for any zn0�m 2 Dn0�m

the supremum in

V (n0;�(m;n0�m; zn0�m)) = sup
i�0

e
�Tn0;idist (�(m;n0 �m; zn0�m);�(i; n0 � i; Bn0�i))

need only be considered over i � n. Hence

V (n0;�(m;n0 �m; zn0�m))
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= sup
i�n

e
�Tn0;idist (�(m;n0 �m; zn0�m);�(i; n0 � i; Bn0�i))

� e
�Tn0;n sup

j�0

e
�Tn0�n;jdist (�(m;n0 �m; zn0�m);�(n+ j; n0 � n� j; Bn0�n�j))

� e
�Tn0;ndist (�(m;n0 �m; zn0�m); An0

)

� e
�Tn0;ndist (Bn0

; An0
)

since An0
� �(n + j; n0 � n� j; Bn0�n�j) and �(m;n0 �m; zn0�m) 2 Bn0

.

We thus have

V (n0;�(m;n0 �m; zn0�m)) � e
�Tn0;ndist (Bn0

; An0
)

for all zn0�m 2 Dn0�m, m � n + N(cD; n0; n) and n � 0.

We can assume that the mapping n 7! n + N(cD; n0; n) is monotonic increasing

in n (by taking a larger N(cD; n0; n) if necessary), and is hence invertible. Let the

inverse of m = n + N(cD; n0; n) be n = M(m) = M(cD; n0; m). Then

V (n0;�(m;n0 �m; zn0�m)) � e
�Tn0 ;M(m)dist (Bn0

; An0
)

for all m � N(cD; n0; 0) � 0. Usually we will have N(cD; n0; 0) > 0. We can modify

the expression to hold for all m � 0 by replacing M(m) by M
�(m) de�ned for all

m � 0 and introducing a constant KbD;n0 � 1 to account for the behaviour over the

�nite time set 0 � m < N(cD; n0; 0). This will give us
V (n0;�(m;n0 �m; zn0�m)) � KbD;n0e�Tn0 ;M�(m)dist (Bn0

; An0
)

for all m � 0.

References

[1] L. Arnold, Random Dynamical Systems. Springer{Verlag, (1998, to appear)

[2] I. Yu. Bronshtein, On dynamical systems without uniqueness as semi-groups of

non-single-valued mappings of a topological space. Doklady Akad Nauk SSSR

144 (1962), 954{957.

[3] D.N. Cheban, Nonautonomous dissipative dynamical systems. The method of

Lyapunov functions. Di�erentsnye Uravneniya 23 (3) (1987), 464{474.

[4] D.N. Cheban, Global attractors of in�nite{dimensional nonautonomous dynam-

ical systems. Izvestiya Akad Nauk RM. Mathematika 24 (2) (1997).

12



[5] D.N. Cheban and D.S. Fakeeh, Global Attractors of Dynamical Systems without

Uniqueness. Sigma, Kishinev, 1994.

[6] V.V. Chepyzhov and M.I. Vishik, Attractors of nonautonomous systems and

their dimension, J. Math. Pures Appl. 73 (1994), 279{333.

[7] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab.

Theory. Relat. Fields 100 (1994), 1095{1113.

[8] Fang Shuhong, Global attractor for general nonautonomous dynamical systems

Nonlinear World. 2 (1995), 191{216.

[9] P.E. Kloeden and B. Schmalfu�, Lyapunov functions and attractors under vari-

able time{step discretization, Discrete & Conts. Dynamical Systems 2 (1996),

163{172.

[10] P.E. Kloeden and B. Schmalfu�, Nonautonomous systems, cocycle attractors

and variable time{step discretization, Numer. Algorithms 14 (1997), 141{152.

[11] B.A. Scherbakov, Topological Dynamics and Poisson Stability of Solutions of

Di�erential Equations. Shtiintsa, Kishinev, 1972.

[12] B.A. Scherbakov, Poisson Stability of Motions of Dynamical Systems and So-

lutions of Di�erential Equations. Shtiintsa, Kishinev, 1985.

[13] B. Schmalfu�, The stochastic attractor of the stochastic Lorenz system,in Non-

linear Dynamics: Attractor Approximation and Global Behaviour, Proc. ISAM

92 (Editors: N. Koksch, V. Reitmann and T. Riedrich), TU Dresden, 1992,

185{192.

[14] G.R. Sell, Lectures on Topological Dynamics and Di�erential Equations. Van

Nostrand{Reinbold, London, 1971.

[15] K.S. Sibirsky, Introduction to Topological Dynamics. Noordho� International

Publishing, Leyden, 1975.

[16] M.I. Vishik, Asymptotic Behaviour of Solutions of Evolution Equations. Cam-

bridge University Press, Cambridge, 1992.

[17] T. Yoshizawa, Stability Theory by Lyapunov's Second Method. Mathematical

Soc. Japan, Tokyo, 1966

13


