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Abstract. The purpose of the paper is studying the relaxation time of product{

type Markov chains on product spaces which approach a product distribution. We

determine bounds to approach stationarity for such Markov chains in terms of the

mixing times of the component Markov chains. In cases where the component

mixing times vary much we propose an optimized visiting scheme which makes

such product{type Markov chains comparative to Gibbs{type samplers.

We conclude the paper by a discussion of the relaxation of Metropolis{type

samplers applied to separable energy functions.

1. Introduction, Background

Sampling from given distributions even from a �nite population may be laborious.

One way to circumvent this is asymptotically sampling using a strategy called Me-

tropolis sampling. We shall study the e�ciency of this procedure within the context

of distributions given on product structures. Hence we suppose that we are given

d �nite sets X1; : : :Xd and corresponding distributions �1; : : : ; �d. The prototype of
this setup is provided by d{dimensional grids on a given domain in Rd with possibly

direction dependent mesh size (suited to a function living on the domain). The

purpose of the paper is studying the relaxation time of product{type Markov chains

on X :=
Qd

j=1Xj which asymptotically approach � :=
Qd

j=1 �j. Of course, this is

a serious restriction of the applicability of the results obtained below. Nevertheless

we hope pointing at properties required from the given distribution to enable as-

ymptotic sampling without visiting most of the states. Such type of problems will

be the subject of Section 5.

A �rst analysis of this type was carried out within the context of groups in a

previous study, [5] by the author. As mentioned there it was not necessary to restrict

to the setup of groups and the uniform distribution to be approximated. However

the analysis has to be di�erent, since switching from Markov chain to convolution

of measures is not possible in the general framework which shall be outlined below.

Suppose we are given Markov chains on the component sets X1; : : :Xd driven by

the respective transition matrices P1; : : : ; Pd. A product{type Markov chain is ob-

tained from these components in the following way. We choose a convex combination

� := (�1; : : : ; �d), i.e., �j � 0;
Pd

j=1 �j = 1, and compose

P� :=

dX
j=1

�j ~Pj;(1)

where~indicates the embedding of the component transition matrices into ones for

X. In conjunction with an initial distribution � on X we obtain a Markov chain on

X with respective distribution �P n
� at the n{th step. This corresponds to a mixture

of the components and means, that at each step we choose a component of our

product space with a certain probability and then we take a transition according to

the Markov chain acting on this component. So we may think of � as a randomized

visiting scheme being the counterpart of the visiting scheme in the context of Gibbs{

type samplers, see [7], where this is called a proposal or exploration distribution.
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The mixing behavior of Markov chains shall be quanti�ed in terms of the variation

distance of measures. Given a (signed) measure � on some (�nite) set X1 we denote

by

k�kX := max
A�X

j�(A)j =
1

2

X
x2X

j�(fxg)j:

Whenever it will be clear from the context, we will suppress the subscript indicating

the set the measure is living on. Let us however mention that for a measure �j on

Xj the corresponding embedded ~�j on X obeys k~�jkX = k�jkXj
. We also explicitly

state an estimate, similar to the one in Lemma (7.9) in [2]:

Let �P denote any distribution on X.

Lemma 1. For any distribution P on X which is a mixture

P = � �P + (1� �)Q

for some choice of 0 < � < 1 and distribution Q we have

�P (fx; Q(fxg) = 0g) �
kP � �Pk

1� �
� 2:

Proof. The right{hand side inequality is obvious. To prove the left{hand side esti-

mate let A := fx; Q(fxg) = 0g. On this set A we have P (fxg) = � �P (fxg) and
consequently P (Ac) = 1� � �P (A). This implies

kP � �Pk =
1

2

X
x2X

jP (fxg)� �P (fxg)j

�
1

2

X
x2A

(1� �) �P (fxg) +
1

2

X
x2Ac

jP (fxg)� �P (fxg)j

�
1

2
(1� �) �P (A) +

1

2
P (Ac)�

1

2
�P (Ac)

� (1� �) �P (A):

The proof is complete.

We turn to the study of mixing (relaxation) times. Our approach is close to [1, 2].

Given transition matrices P and Q on X we let

d(P;Q) := max
� on X

k�P � �Qk

�
= max

x2X
k�xP � �xQk

�
:

It is readily seen that this turns to a metric between transition matrices and that

with any further transition R we have d(PR;QR) � d(P;Q).
Moreover, if � is a probability on X, then, by letting P�(x; y) := �(fyg); x; y 2

X, we agree to write

d(P; �) := d(P; P�):(2)

1Throughout the remainder of this section the set X may be arbitrary �nite.



RELAXATION OF PRODUCT MARKOV CHAINS ON PRODUCT SPACES 3

In case P is the transition of an ergodic Markov chain with invariant distribution �

we simply abbreviate dk(P ) := d(P k;�) the (worst) distance of the distribution at

the k{th step from the invariant distribution.

As a function of k 2 N it is easily seen to be decreasing. Further, as will be

clear below it makes sense to measure the time to reach stationarity in terms of this

quantity. So we agree to let

K(P ) := min

�
k 2 N ; dk(P ) �

1

2e

�
(3)

be the mixing time of P . The quantity dk(P ) is close to being submultiplicative.

From [5] we recall

Lemma 2. For any k 2 N the following inequality holds true

dl�k(P ) � (2dk(P ))
l; l 2 N :

Especially, with k := K(P ) we obtain dl�K(P )(P ) � e�l.

The proof is based on another auxiliary quantity, cf. [1, 2],

�k(P ) := max
x;y2X

k�xP
k � �yP

kk:(4)

It is known from Lemma (4.5) in [2] that this is submultiplicative. Moreover we

have

dk(P ) � �k(P ) � 2dk(P ):(5)

We mention that �1(P ) is the contraction coe�cient studied in [7, Ch. 4.2], which

will be useful in Section 5 below.

In view of Lemma 2 we may think of K(P ) as a threshold level starting from

which the convergence to stationarity is exponential.

For later use we recall some facts about multinomial distributions. Given a d{
tuple �r = (r1; : : : ; rd) of natural numbers with r1 + : : : rd = k we denote by

�
k

�r

�
:=

k!
r1!���rd!

and rmin := minj=1;:::;d rj. Let Pk;� denote the multinomial distribution on

f0; : : : ; kg
d
with point masses

Pk;�((r1; : : : ; rd)) =

�
k

�r

� dY
j=1

�
rj
j ; if r1 + : : : rd = k:

A detailed exposition with further references can be found in [4, Ch. 11.2]. We

mention that the component distributions of Pk;� are respective binomial ones Bk;�j

with respective �j. The following lemma is probably well known and proven in [5].

Lemma 3. For any d, convex combination � and k 2 N we have

1� e�
Pd

j=1(1��j )
k

� Pk;�("rmin = 0") �

dX
j=1

(1� �j)
k:(6)
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2. An auxiliary Markov chain

Below we suppose that we are given d �nite state spaces X1; : : : ; Xd with Markov

chains driven by respective transition matrices P1; : : : ; Pd. Throughout we shall

assume that all transition matrices Pj; j = 1; : : : ; d are ergodic, hence possess

unique invariant distributions denoted by �1; : : : ; �d, respectively.

A Markov chain on the product X :=
Qd

j=1Xj is constructed as follows. We

�rst embed the Markov chains Pj; j = 1; : : : ; d into the product by letting for

x = (�1; : : : ; �d) and y = (�1; : : : ; �d) the embedded chain be

~Pj(x; y) :=

(
Pj(�j; �j) ; if �l = �l; l = 1; : : : ; d; l 6= j

0 ; otherwise
:(7)

Hence, the Markov chains ~Pj accept transitions in the components Xj only. We

mention the following

Lemma 4. Any 2{step transition ~Pi
~Pj is commutative, precisely we have for any

x = (�1; : : : ; �d) and y = (�1; : : : ; �d) the equality

~Pi
~Pj(x; y) = ~Pj

~Pi(x; y) = Pi(�i; �i)Pj(�j; �j); i 6= j:

For later use we introduce the following

Example. Let �j; j = 1; : : : ; d; denote the given limit distributions on Xj and

consider the Markov chain Qj, describing an i.i.d. walk on Xj, hence

Qj(�j; �j) := �j(f�jg) �j; �j 2 Xj; j = 1; : : : ; d:

Let ~Qj; j = 1; : : : ; d denote the embeddings of Qj into X. The following observa-

tion is easily checked.

1. The distribution of any 2{step transition ~Q2
j equals

~Qj; j = 1; : : : ; d.
2. In view of Lemma 4 we have

~Qi1 : : :
~Qik = � =

dY
j=1

�j whenever fi1; : : : ; ikg = f1; : : : ; dg :

We recall from the introduction that a product{type Markov chain is obtained

from these components by choosing a convex combination � := (�1; : : : ; �d), i.e.,

�j � 0;
Pd

j=1 �j = 1, and composing

P� :=

dX
j=1

�j ~Pj:(8)

Especially we shall study the product{type Markov chains Q� obtained from the

component transitions Qj; j = 1; : : : ; d.
Let us investigate the mixing behavior of the Markov chain Q� introduced before.

Recall that the component Markov chains represent i.i.d. samples within the com-

ponents. For this particular type of walk one can expect that the mixing behavior

does not depend on the relaxation times of the involved component Markov chains

but rather on the number d of such. This is supported by Lemma 6 below. We need

an intermediate fact.
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Lemma 5. Given an initial point x = (�1; : : : ; �d) we have for any step number k

and y = (�1; : : : ; �d) 2
Qd

j=1 (Xj n f�jg) equality

�xQ
k
�(fyg) = Pk;�("minfr1; : : : ; rdg > 0")�(fyg);(9)

where (r1; : : : ; rd) counts how many times the respective components have been visited

during the k steps.

Proof. Since by Lemma 4 subsequent transitions are commutative we have

�xQ
k
� = �x

 
dX

j=1

�j ~Qj

! 
dX

j=1

�j ~Qj

!
: : :

 
dX

j=1

�j ~Qj

!
| {z }

k�fold

=
X

r1+:::+rd=k

�
k

�r

�
�x

dY
j=1

�
�j ~Qj

�rj 2

=
X

r1+:::+rd=k
rmin>0

�
k

�r

� dY
j=1

�
rj
j �+

X
r1+:::+rd=k

rmin=0

�
k

�r

�
�x

dY
j=1

�
�j ~Qj

�rj
:

For a transition to y which is from
Qd

j=1 (Xj n f�jg) the right{hand side sum above

is equal to 0, since for i0 with ri0 = 0 the respective destination �i0 must equal �i0
which is impossible by the choice of y.

This yields

Lemma 6. For �xed d, convex combination � and natural k we have

dY
j=1

(1�
1

jXjj
)Pk;�("rmin = 0") � dk(Q�) � 2Pk;�("rmin = 0"):(10)

Proof. Choose in each component Xj a point �0j with smallest probability �j(
�
�0j
	
)

which is at most 1
jXj j

. Let this determine the starting point x0 := (�01; : : : ; �
0
d). In

view of equation (9) we apply Lemma 1 to P := �x0Q
k
� and � = Pk;�("rmin > 0").

Note that by our choice of x0 we ensure

�(

dY
j=1

�
Xj n

�
�0j
	�
) �

dY
j=1

(1�
1

jXjj
)

which completes the proof of the lemma.

The sharp bounds from Lemma 3 immediately yield

2The symbol
Q

in conjunction with transition matrices denotes successive transition throughout.

Since, in view of Lemma 4, the order does not a�ect the overall distribution this is justi�ed.
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Proposition 1. If the spaces Xj are rich enough such that
Qd

j=1(1�
1

jXj j
) � 4

5
, then

we have

K(Q�) � d(0:5 + log(d)):

On the other hand, by the choice of �0 = (1
d
; : : : ; 1

d
) we obtain

K(Q�0) � d(2:5 + log(d)):

Proof. The proof is an immediate consequence of Lemmas 3 and 6. We only mention

that the lower bound in (6) is maximized by letting � = �0 = (1
d
; : : : ; 1

d
). In this

case the sum reduces to de�k=d and yields with k = d(0:5 + log(d)) the estimate

1� e�
Pd

j=1(1��j)
k

� 1� e�e�1=2 :

from which the �rst assertion follows by noting that under our assumptions on X
we obtain

dk(Q�) �
4

5
(1� e�e�1=2) �

1

e
:

On the other hand it is easy to see that with k � d(2:5 + log(d)) the desired upper

bound is obtained, completing the proof of the proposition.

3. Mixing with fixed visiting scheme

The basic step towards determination of the mixing time on product spaces is the

following

Proposition 2. Let k � 1 and � be �xed. For transition matrices P� we have

d(P k
� ; Q

k
�) �

dX
j=1

e�
k�j
8 +

dX
j=1

d
b
k�j
2

c+1
(Pj):

Proof. Arguing as in the proof of Proposition 1 we obtain for any initial distribution

� on X a representation

�P k
� � �Qk

� =
X

r1+:::+rd=k

�
k

�r

�
�

 
dY

j=1

�
�j ~Pj

�rj
�

dY
j=1

�
�j ~Qj

�rj!
:

Taking into account that the transition matrices ful�ll the properties from Lemma 4

we infer

�

dY
j=1

�
�j ~Pj

�rj
� �

dY
j=1

�
�j ~Qj

�rj
=

dY
j=1

�
rj
j

dX
l=1

 
�

l�1Y
j=1

~P
rj
j

!�
~Pl � ~Ql

� dY
j=l+1

~Q
rj
j

!
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(with obvious modi�cation for l = 1 and l = d), which implies

d(P k
� ; Q

k
�) �

X
r1+:::+rd=k

�
k

�r

� dY
j=1

�
rj
j

dX
l=1

d( ~P rl
l ;

~Qrl
l )

=

dX
l=1

kX
rl=0

�
k

rl

�
�rll (1� �l)

k�rld( ~P rl
l ;

~Qrl
l )

�

dX
l=1

 
Bk;�l(

�
0; : : : ; b

k�l

2
c

�
) + max

rl>b
k�l
2
c

drl(Pl)

!

�

dX
l=1

e�
k�l
8 +

dX
l=1

d
b
k�l
2
c+1

(Pl):(11)

To derive the �rst sum in (11) we used the well known estimate

Bk;p(

�
0; : : : ; b

kp

2
c

�
) � e�

kp
8 ;

which is a consequence of Okamoto's result, see [4, Ch. 3.8]. The proof is complete.

To proceed recall the de�nition of the mixing times K(P ) in (3). The main result

in this section is

Theorem 1. For any convex combination � we have

K(P�) � 8

�
max

j=1;:::;d

K(Pj)

�j

�
(1 + b1 + log(d)c) :(12)

Proof. Let k � 8
�
maxj=1;:::;d

K(Pj)

�j

�
(1 + b1 + log(8d)c) be �xed. We have, using

the results from Proposition 2 and Lemma 6, the following estimate.

dk(P�) � dk(Q�) + d(P k
� ; Q

k
�)

� 2

dX
l=1

e�k�l +

dX
l=1

e�
k�l
8 +

dX
l=1

d
b
k�l
2
c+1

(Pl):(13)

By our assumption on k the �rst and second sums above can be bounded by 1
8e
. It

can further be deduced from this assumption that k�l
2
� (1 + b1 + log(8d)c)K(Pl),

such that an application of Lemma 2 yields

d
b
k�l
2
c+1

(Pl) �
1

8de

from which the proof can be completed.
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4. Optimizing the visiting scheme

Below we allow to design our Markov chain P� to �t the mixing properties of

the components by varying �. This section is a straight{forward extension of the

arguments provided in [5, Sect. 5].

As there we introduce the following notation. Given spaces Xj with Markov chains

Pj having mixing times K(Pj) we let

� :=

dX
j=1

K(Pj) and �j :=
K(Pj)

�
; j = 1; : : : ; d:

The d{tuple � = (�1; : : : ; �d) gives rise to a probability and we let

H(�) := �

dX
j=1

�j log(�j)

denote the entropy of �.
As for the setup in [5, Sect. 5] we have within the present context

Theorem 2. Let

�j :=
�j(3� log(�j))

H(�) + 3
;

such that this provides a convex combination ��. This speci�c combination �� leads to

inf
�
K(P�) � K(P��) � b8�(H(�) + 3)c+ 1:(14)

The proof is the same as in [5, Sect. 5]. Of course, the above result lacks of an

appropriate lower bound. As Lemma 6 suggests, some assumption on the richness

of the components has to be made.

The bound (14) of the above Theorem is in fact a strengthening of Theorem 1,

since H(�) � log(d) as well as � � maxj=1;:::;d
K(Pj)

�j
.It is however surprising that

the intuitively good choice of �j = �j; j = 1; : : : ; d does not lead to the same

conclusion.

5. Application: Metropolis sampling with separable energy function

Within the framework studied above we apply the previous estimates to a Metro-

polis{type sampler. Thus we study the relaxation of product{type Markov chains

which possess as invariant distributions a Boltzmann distribution �f . Such a distri-

bution is de�ned through an (energy) function, say f : X ! R by letting

�f (fxg) :=
e�f(x)P
y2X e�f(y)

; x 2 X:

Approximate sampling from Boltzmann distribution is the basis of Simulated An-

nealing, cf. [7]; such Markov chains which rapidly converge to the Boltzmann dis-

tribution allow global minimization without visiting most of the state space.

Of course, not every Boltzmann distribution can be approximated by product{

type Markov chains, which points at serious limitations of the present approach.
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However, if it can be approximated, then relaxation is achieved typically without

visiting many states.

Metropolis{type Markov chains to approximately simulate the Boltzmann distri-

bution are determined by an underlying Markov chain �P . Hence the compound

transition matrix of the Metropolis Markov chain for an energy function f on a

space X is

Pf(x; y) :=

(
e�(f(y)�f(x))+

3
�P (x; y) ; if y 6= x

1�
P

z2Xnfxg e
�(f(z)�f(x))+ �P (x; x) ; y = x

:

Observe that Pf(x; x) � �P (x; x) for obvious reasons. Moreover it is important that

the invariant distribution of this Markov chain is the Boltzmann distribution �f , cf.

[7, Ch. 8.2]. We shall concentrate on speci�c types of energies. Again we assume

that the state space X is a product X :=
Qd

j=1Xj.

De�nition 1. A function f :
Qd

j=1Xj ! R shall be called separable if there exist

functions f1; : : : ; fd acting on the components only such that

f(�1; : : : ; �d) =

dX
j=1

fj(�j); (�1; : : : ; �d) 2 X:

The following is readily checked:

� The compound Boltzmann distribution �f is the product �f =
Qd

j=1�fj .

� If in addition the neighborhood system, which means the underlying Markov

chain is of product type �P = 1
d

Pd
j=1

~Pj, then this is valid also for the compound

Metropolis sampler Pf , i. e.,

Pf =
1

d

dX
j=1

~Pfj :

Within this context an application of Theorem 1 yields a constant such that the

mixing time K(Pf ) can be estimated by

K(Pf) � C

�
max

j=1;:::;d
K(Pfj)

�
d log(d);(15)

i.e., through the mixing times of the corresponding component Metropolis samplers,

based on underlying Markov chains Pj, which remain to be estimated. This may be

done under an additional assumption.

De�nition 2. A Markov chain P on a space X is said to satisfy a minorization

condition, if there is " > 0 for which

min
�;�2X

P (�; �) �
"

jXj
:(16)

Such condition is a powerful tool when studying convergence of Markov chains,

we refer to [6, Sect. 6.2] for further details and references. The relevant result is

3for a real number r we let r+ := max fr; 0g.
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Proposition 3. The mixing time of the Metropolis{type sampler Pf based on a

Markov chain satisfying a minorization for some " can be bounded by

K(Pf ) �
2e�max

"
;

where �max := max�2X f(�)�min�2X f(�).

Proof. The proof is based on estimating the contraction coe�cient �1(Pf), see (4).

In view of (5) we obtain

dl(Pf) � �l(Pf) � (�1(Pf))
l
;

such that it su�ces to determine l for which (�1(Pf))
l
� 1

2e
. The well{know estimate,

see e. g. [7, Lemma 4.2.3], yields

�1(Pf) � 1� jXj min
�;�2X

Pf(�; �):

This yields

�1(Pf) � 1�
e��max

"
� e�

e
��max

" :

The choice of l � 2e�max

"
�nally provides �1(Pf)

l � 1
2e
.

Applying this estimate to the component Metropolis samplers Pfj , which are now

supposed to be driven by Markov chains satisfying an "{minorization, together with

estimate (15) we obtain

Proposition 4. If f :
Qd

j=1Xj ! R is separable and the Metropolis sampler is

based on a Markov chain of product type with components satisfying an "{minorization

condition, then there is a constant 0 < C <1 for which

K(Pf ) � C
e�f

"
d log(d);(17)

with �f := maxj(max�2Zn fj(�)�min�2Zn fj(�)) being the maximal directional am-

plitude.

It is worth noting that this estimate is independent of the cardinality of the state

space due to the minorization assumption. Best behavior from this point of view is

predicted by sampling directly from the uniform distribution on each Xj, yielding

" = 1. This may contrast to the necessity of having a local underlying chain for fast

computation of the di�erences fj(�)� fj(�); �; � 2 Xj.

One way to construct Markov chains satisfying a minorization is to chose a local

random walk and let this relax until an appropriate minorization is achieved. The

resulting compound Markov chain will then serve as underlying Markov chain for the

Metropolis sampler. We are concerned with the problem, how long this relaxation

takes. This can be solved using results from [2].

Our subsequent analysis requires additional notation, which is again close to the

one from [2]. In addition to d(P; �) as introduced in (2) we need the separation

distance of a transition function P on a state space X4 to its invariant distribution

4Again the space X is assumed to be arbitrary �nite at this stage.
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� by

s(P; �) := max
x;y2X

j1�
P (x; y)

�(fyg)
j:(18)

For � > 0 we let

S�(P ) := min
�
k; s(P k; �) � �

	
(19)

be the minimal number of transitions of P required to make the distribution at the

k{th step �{close to the invariant distribution �.
Recall that K(P ) denotes the mixing time and that the invariant distribution for

a symmetric transition function is necessarily the uniform one. In view of [2, Prop.

5. 13] we have

Lemma 7. Let P be a symmetric transition function with mixing time K(P ). Then
we have

S�(P ) � 2K(P )(1 + blog(
32

�2
)c):(20)

Proof. Let k� = K(P )(1 + blog(32
�2
)c). In view of Lemma 2 we have

dk�(P ) �
�2

32
:

By Proposition 5.13 from [2] we can bound

s(P k; U) � 4

q
2dk�(P ) � �;

whenever k � 2k�, completing the proof.

This leads to

Corollary 1. Let P be a symmetric transition function on a space X with mixing

time K(P ) towards the invariant distribution U . For k � 2K(P )(1 + blog( 32
(1�")2

)c)

we have

min
�;�2X

P k(�; �) �
"

jXj
:

Proof. Under the assumption on k we apply Lemma 7 to bound

s(P k; U) � 1� "

and an application of the triangle inequality yields �nally for arbitrary � and � in

X

P k(�; �) � "min
�2X

U(f�g) �
"

jXj
:
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Returning to the original setup of Metropolis samplers for separable energy functions

on product spaces we state that for letting each component Markov chain be Pj :=

P 10K(P ), such that one Pj step is 10K(P ) steps according to the nearest neighbor

walk P , then each Pj obeys a minorization condition with " � 1
5
.

Summarizing, let us brie
y discuss a Metropolis sampler on a grid Zd
n for a sep-

arable energy function based on component nearest neighbor walks. The mixing

time of such nearest neighbor walk is known to be proportional to n2=2, see [3, Ch.
3C]. The above analysis yields that 50e�fn2 steps su�ce for the component Markov

chains to approach stationarity. An application of estimate (15) implies a constant

C for which Ce�fn2d log(d) steps su�ce to approach stationarity of Pf . In conclu-

sion, the portion r of states visited to the overall number nd of states is bounded

by

r �
Ce�fn2d log(d)

nd
;

which is small for at least moderate values of d and n, provided �f was not too

large, say �f << d log(n).
Hence for separable functions the Boltzmann distribution can be approximated

using the Metropolis sampler on product spaces without visiting most states espe-

cially in high dimensions.
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