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Abstract

In the present paper we consider the radiosity equation over the boundary of a

polyhedral domain. Similarly to corresponding results on the double layer potential

equation, the solution of the second kind integral equation with non-compact integral

operator is piecewise continuous. The partial derivatives, however, are not bounded.

In the present paper we derive the �rst term in the asymptotic expansion of the

solution in the vicinity of an edge. Note that, knowing this term, optimal mesh

gradings can be designed for the numerical solution of this equation.

1 Introduction

The radiosity equation for a Lambertian di�use re�ector takes the form (cf. e.g. [5, 2]

and for the numerical treatment cf. also [8, 3])

u(P )�
%(P )

�

Z
S
u(Q)G(P;Q)dQS = E(P ); P 2 S; (1.1)

G(P;Q) :=
[nP � (Q� P )][nQ � (P �Q)]

jP �Qj4
V (P;Q);

where S is the boundary @
 of a bounded domain 
 � IR3 and nP is the unit normal

to S pointing into 
 at P 2 S. The right-hand side E is the known emissivity function,

and the coe�cient % is the re�ectivity satisfying 0 � %(P ) < 1. The visibility function

V (P;Q) is 1 if the straight line segment fP + �
�!

PQ: 0 < � < 1g is contained in the

interior of 
 and V (P;Q) = 0 otherwise. The unknown function u is the radiosity. We

write (1.1) shortly as (I �KS)u = E.

For the edge asymptotics, we need the following assumptions:

(A1) The surface S is the boundary of a polyhedron 
 and O the point at which we seek

the asymptotic expansion of u is an edge point. The tangent cone of S at O is

the union of two half planes H1 and H2. The coordinate system with coordinates

(x; y; z) is chosen such that O = (0; 0; 0) and

H1 := f(x; y; 0) : �1 < y <1; 0 � x <1g ;
H2 := f(x cos'; y; x sin') : �1 < y <1; 0 � x <1g

where the angle ' between H1 and H2 satis�es 0 < ' < 2�.

(A2) Let us denote the union of the visibility set fW 2 S : V (P;W ) = 1g with the

two faces containing O by 
P and its boundary @
P � S by �P . For P in a small

neighbourhood of O, we assume that �P is the union of two parts � and ~�P with

� independent of P and ~�P varying with P . Usually � is the union of edges such

that one of the adjacent faces is visible from O and the other not. The polygonal

curve ~�P is the boundary line of the shadows on S thrown by � if a light source is

placed at P (cf. Figure 1). We suppose that ~�O contains no vertex and intersects

each edge of S in at most one point. Moreover, we assume that, for any Q 2 ~�O,
there exists exactly one point between O and Q which belongs to S.
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Figure 1: Cross section of 
 through O.

(A3) Suppose E is bounded and twice continuously di�erentiable over each face of S,
i.e. the derivatives exist in the interior of the face and extend continuously to the

boundary.

(A4) Suppose % is twice continuously di�erentiable over each face of S and equal to the

constant values %1 and %2 over H1 \ S and H2 \ S, respectively.

In the case that O is an interior point of a face of S, i.e., in the case ' = �, the solution
u of (1.1) is twice continuously di�erentiable (cf. Corollary 3.1 and Remark 3.1). For the

case ' 6= �, we get

Theorem 1.1 If the Assumptions (A1)-(A4) are ful�lled, then in a neighbourhood of O
the solution u of (1.1) can be represented as

u(P ) = u(xP ; yP ; 0) =  H1

1 (yP ) +  H1

2 (yP )x

P +  H1

3 (xP ; yP ); (1.2)

u(Q) = u(xQ cos'; yQ; xQ sin') =  H2

1 (yQ) +  H2

2 (yQ)x

Q +  H2

3 (xQ; yQ):

Here P = (xP ; yP ; 0) 2 H1; Q = (xQ cos '; yQ; xQ sin ') 2 H2 and xP as well as xQ are

just the distances of P and Q to the edge H1\H2. The singularity exponent ; 0 <  < 1
is a constant depending only on

p
%1%2, and ' (cf. Figure 2, Table 1, (2.11), and the end

of the next section). The functions  H1

1 and  H2

1 are twice continuously di�erentiable, the

singularity coe�cients  H1

2 and  H2

2 once continuously di�erentiable and, for a su�ciently

small � > 0, the remainder functions  H1

3 and  H2

3 are once continuously di�erentiable if

y 2 [��; �] and x 2 (0; �]. Moreover, for a suitably small " > 0, there holds

����� @
k

@yk
@l

@xl
 Hi
3 (x; y)

����� � Cx�l+"; k; l = 0; 1:
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Note that, the �rst term in the asymptotics may be helpful to design optimal mesh

gradings for numerical methods to solve (1.1). We believe that, analogously to the case

of the double layer integral operator, in many situations the edge singularities will be

stronger than those of the vertices. In this case, only the edge singularities are important

for the mesh gradings.

The remainder of the present paper is devoted to the veri�cation of Theorem 1.1. Using

localization techniques, we reduce the derivation of the asymptotics to the analysis of

a one-dimensional Mellin convolution equation. A sketch of this localization and the

computation of the exponent  from the zeros of the Mellin symbol is provided in Section

2. Details follow in Section 3. In Section 4 we present the results of a numerical test in

which we have tried to compute the exponents  of the edge asymptotics approximately.

Finally, we remark that the Mellin techniques applied in this paper are well known. A

complete overview over the historical development, however, would be longer than the

present article. Therefore we only mention the two quite recent works [6, 7], where the

asymptotic behaviour of solutions to partial di�erential equations and to one-dimensional

integral equations is analyzed.

2 The Exponents of the Asymptotics

Now we reduce the computation of the asymptotics to the solution of a Mellin convolution

equation over a one-dimensional curve. As we shall see in the next section, the asymptotics

depends on local properties only. Thus, without loss of generality, we may suppose:
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Angle '=� Re�ectivity
p
%1; %2 Exponent 

0.100 0.200 0.983

0.100 0.467 0.954

0.100 0.733 0.859

0.100 1.000 0.208

0.367 0.200 0.910

0.367 0.467 0.771

0.367 0.733 0.610

0.367 1.000 0.419

0.633 0.200 0.921

0.633 0.467 0.830

0.633 0.733 0.747

0.633 1.000 0.670

0.900 0.200 0.985

0.900 0.467 0.974

0.900 0.733 0.964

0.900 1.000 0.954

Table 1: Some values of exponent .

� The in�uence of remote boundary parts of S can be neglected. We suppose that S
coincides with the tangent cone T := H1 [H2.

� We observe that V (P;Q) is di�erent from 1 only if at least one argument P or Q is

not close to O. Hence, for the localized situation, we may suppose that the visibility

function V is identically equal to 1.

� The right-hand side function E and the solution V depend smoothly on the variable

y in edge direction. Therefore we can freeze the dependence on y and suppose

E(x; y; z) = E(x; 0; z) and u(x; y; z) = u(x; 0; z). We introduce

E1(x) := E(x; 0; 0);

E2(x) := E(x cos '; 0; x sin ');

u1(x) := u(x; 0; 0);

u2(x) := u(x cos '; 0; x sin '): (2.1)

For P = (xP ; yP ; 0) 2 H1 and Q = (xQ cos'; yQ; xQ sin') 2 H2, we get nP = (0; 0; 1) and
nQ = (sin'; 0;� cos'). The kernel kT of the integral operator KT (cf. (1.1) and replace

S by T ) over T takes the form

kT (U;W ) =

8>>>>>>>>>><
>>>>>>>>>>:

if U;W 2 H1

0 or if U;W 2 H2

%1 sin
2 'xPxQ

�
h
x2P + x2Q � 2 cos 'xPxQ + (yP � yQ)

2
i2 if U = P;W = Q:

%2 sin
2 'xPxQ

�
h
x2P + x2Q � 2 cos 'xPxQ + (yP � yQ)

2
i2 if W = P;U = Q

(2.2)
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Using (2.1) and the fact that u is independent of y, we arrive at

KTu(P ) =
Z
1

0

Z
1

�1

u(Q)kT (P;Q)dyQdxQ (2.3)

=
%2 sin

2 '

�

Z
1

0
u2(xQ)xPxQ

Z
1

�1

dyQh
x2P + x2Q � 2 cos'xPxQ + (yP � yQ)

2
i2dxQ

=
%2 sin

2 '

2

Z
1

0
u2(xQ)

xPxQq
x2P + x2Q � 2 cos'xPxQ

3dxQ

=
Z
1

0
k2

 
xP

xQ

!
1

xQ
u2(xQ)dxQ ;

k2(�) :=
%2 sin

2 '

2

�
p
�2 + 1 � 2� cos'

3 : (2.4)

Similarly, we obtain

KTu(Q) =
Z
1

0

Z
1

�1

u(P )kT (Q;P )dyPdxP =
Z
1

0
k1

�
xQ

xP

�
1

xP
u1(xP )dxP ; (2.5)

k1(�) :=
%1 sin

2 '

2

�
p
�2 + 1 � 2� cos'

3 : (2.6)

Consequently, KTu is independent of the edge variable y. Equation (1.1) over T is equiv-

alent to the one-dimensional system of equations 
u1
u2

!
�
 

0 K2

K1 0

! 
u1
u2

!
=

 
E1

E2

!
; (2.7)

Kiui(x) :=
Z
1

0
ki

 
x

�

!
1

�
ui(�)d�;

where Ki is a Mellin convolution operator. To analyze a Mellin convolution operator we

need the Mellin transform. Using this, we shall derive a representation for the Mellin

transform of the solution functions u1 and u2. From this representation we shall obtain

the asymptotics.

For a function f over the half axis, we introduce its Mellin transformMf = f̂ by

f̂(z) :=
Z
1

0
f(x)xz�1dx:

If jf(x)j � Cx�� for x �!1, if jf(x)j � Cx�� for x �! 0, and if � < �, then f̂(z) exists
and is analytic for � < Re z < �. Knowing f̂ and the decay property jf̂(z)j � C(1+jzj)�2,
the function f can be reconstructed by the inverseM�1 of M.

f(x) =
1

2�i

Z
fz: Re z=z0g

f̂ (z)x�zdz; � < z0 < �:

In particular, the estimate jf̂(z)j � C(1 + jzj)�2; � < z < � implies that, for su�ciently

small positive ",

jf(x)j � C

(
x���" for x �! 0
x��+" for x �!1 : (2.8)
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Now the Mellin convolution operator is transformed into multiplication by

(Kiui)
^ (z) = k̂i(z)ûi(z):

In particular, for the identity I, we get (Iui)^(z) = 1 � ûi(z). Consequently, (2.7) leads to

 
û1
û2

!
=

 
1 �k̂2

�k̂1 1

!�1  
Ê1

Ê2

!
: (2.9)

We observe k̂i = %im(z) and (cf. [4], p. 310, formula (22) and change the exponent of

the sine function from the wrong value � � 0:5 to the correct value 0:5� �)

m(z) :=
Z
1

0

sin2 'xz

2
p
x2 + 1 � 2x cos'

3dx

= sin' B(z + 1; 2 � z)

s
1 + cos'

1� cos'
2F1

�
1� z; z; 2;

1 + cos'

2

�
;

where B(x; y) = �(x)�(y)=�(x + y) is the beta function and 2F1 is the hypergeometric

series

2F1(a1; a2; b; z) :=
1X
k=0

�(a1 + k)�(a2 + k)�(b)

�(a1)�(a2)�(b+ k)

zk

k!
:

Note that m(z) is analytic for �1 < Re z < 2.

The asymptotics of a function f can be determined from its Mellin transform. For a

�xed complex number z0, the inverse Mellin transform of the function z 7! 1=(z � z0) is
x 7! x�z0 . Consequently, if f̂ (z) is meromorphic for �1 < Re z < 2" and has simple poles

only, then we get

f(x) �
X

z0 : pole of f̂ in fz: �1<Re z<"g

cz0x
�z0 + O(x1�"); x �! 0; (2.10)

for any small " > 0. The numbers cz0 are constants. Hence, it su�ces to determine the

poles of û1 and û2. The functions E1 and E2 are smooth by assumption. They satisfy

Ei � ei + O(x1�") with constants ei. This means that the functions Êi; i = 1; 2 are

meromorphic with a simple pole at 0. By (2.9) the functions ûi; i = 1; 2 have poles

at 0 too. This corresponds to a constant (i.e. not depending on y) term  1 =  Hi
1 in

the asymptotic expansion (1.2). To get further terms, we need the poles of the matrix

function on the right hand side of (2.9), i.e., the zeros of the determinant

det

 
1 �k̂2

�k̂1 1

!
=

�
1�

p
%1%2m(z)

��
1 +

p
%1%2m(z)

�
:

We seek the zero z = z0 with the smallest absolute real part jRe zj. In view of (2.10), this

leads to u1 =  1 +  2x
 + O(x+") with  = �z0. To determine , the following lemma

is useful.

Lemma 2.1 i) For �1 < Re z < 2, we get m(Re z) � jRem(z)j. Moreover, if Imz 6=
0, then there holds even m(Re z) > jRem(z)j.
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ii) The function (�1; 0:5] 3 y 7! m(y) is strictly monotone decreasing. It takes the

values m(�1 + 0) = +1 and m(0) = (1 + cos')=2.

Proof. i) The �rst assertion follows from

Rem(z) =
Z
1

0

sin2 'xRe z

2
p
x2 + 1� 2x cos'

3 cos(Imz log x)dx

jRem(z)j �
Z
1

0

sin2 'xRe z

2
p
x2 + 1� 2x cos'

3dx = m(Re z):

ii) We conclude

Z
1

0

xy
p
x2 + 1 � 2x cos'

3dx =
Z 1

0
: : :+

Z
1

1
: : : :

Substituting x = ��1 for the variable of integration, we arrive at

Z 1

0
: : : =

Z 1

1

��y
p
��2 + 1� 2��1 cos'

3

�d�

�2
; =

Z
1

1

�1�y
p
�2 + 1� 2� cos'

3d�;

Z
1

0

xy
p
x2 + 1 � 2x cos'

3dx =
Z
1

1

1
p
x2 + 1 � 2x cos'

3

n
xy + x1�y

o
dx:

The last expression is monotone decreasing since y 7! xy + x1�y is decreasing for y < 0:5.

Corollary 2.1 The function (1�
p
%1%2m(z))(1 +

p
%1%2m(z)) has exactly one real zero

in the strip �1 < Re z < 0:5. This zero is negative and it is just that zero in the strip

�1 < Re z < 0:5 with the smallest absolute real part jRe zj.

Proof. From Lemma 2.1 ii) we derive that there is exactly one simple real zero of

(1�p%1%2m(z)) in the interval (�1; 0) and no further real zero in [0; 0:5). The function
z 7! (1 +

p
%1%2m(z)) is positive on (�1; 0:5). Let the negative real zero be � and

suppose z is another zero of (1�
p
%1%2m(z)) with Imz 6= 0 and �1 < Re z < 0:5. Then

we get

Rem(z) = �
1

p
%1%2

;

m(Re z) >
1

p
%1%2

;

(1 �
p
%1%2m(Re z)) < 0:

Since (1�
p
%1%2m(0)) > 0 and since y 7! (1�

p
%1%2m(y)) is strictly monotone increasing

over (-1,0.5), there is a zero of y 7! (1 �p%1%2m(y)) between Re z and 0. Thus Re z <

� < 0.

The actual value of  depending on
p
%1%2 and on ' can be computed numerically. Using

Maple, this can be done for an angle of e.g. ' = 1:2345 and a re�ectivity of e.g.
p
%1%2 =

7



0:12345 with the following program:

with(inttrans);
readlib(hypergeom);
Sy := (a; r; y) �> 1 � r � sin(a) �Beta(y + 1; 2� y)�

sqrt( (1 + cos(a))=(1� cos(a)) ) � hypergeom([1� y; y]; [2]; (1 + cos(a))=2);
Ex := (a; r) �> �fsolve( Sy(a; r; y) = 0 ; y;�1::0:5);
evalf(Ex(1:2345; 0:12345));

Results of such computations are presented in Figure 2 and Table 1. Finally, we note that

m(z) depends only on sin2 ' and cos ' but not on '. Hence, the exponent  = (
p
%1%2; ')

satis�es

 (
p
%1%2; ') =  (

p
%1%2; 2� � ') : (2.11)

3 Details of the Localization

Now we turn to the details of the localization arguments mentioned in the beginning of

Section 2. We introduce cut o� functions � and �0 which are smooth and concentrated in

a neighbourhood of O. For these and their supports, we assume �(U) = 1 and �0(U) = 1
in a small vicinity of O and

supp�0 � fP 2 S : �(P ) = 1g � supp� � T \ S:

Moreover, we assume that V (U;W ) = 1 for any U;W 2 supp�. To get an equation over

T , we write

(I �KS)u = E;

�0 (I �KS)�u = �0E + �0KS (1 � �)u;

�0 (I �KT )�u = �0E + �0KS (1 � �)u;

(I �KT ) [�
0u] = R := �R1 +R2 +R3; (3.1)

R1 := [KT�
0 � �0KT ]�u;

R2 := �0E;

R3 := �0KS (1� �)u:

Clearly, R2 is piecewise twice continuously di�erentiable by Assumption (A3).

Lemma 3.1 i) The function R3 is continuously di�erentiable over each face of T .
Suppose additionally that, for any directional derivative @u of the solution u and for

any point U 2 S not belonging to a small neighbourhood of the vertices, the estimate

j@u(U)j � C distq; (3.2)

is valid, where the exponent q satis�es �1 < q < 0 and where dist stands for

the distance of U to the set of edge points of S. Then R3 is twice continuously

di�erentiable over each face of T .
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ii) The derivatives @kyPR1(P ) of R1, taken in edge direction yP over the half plane H1,

are continuous for k = 0; 1; 2. The additional derivatives @xP @
k
yP
R1(P ); k = 0; 1 in

the direction perpendicular to the edge are continuous at the points P 2 H1 which

do not belong to the edge. If C stands for a general positive constant independent

of P , then ���@kyPR1(P )
��� � C; k = 0; 1; 2; (3.3)

���@xP @kyPR1(P )
��� � C

(
log jxP j�1 if xP � 0:5
1 if xP > 0:5

; k = 0; 1: (3.4)

Similar estimates hold over H2.

iii) The function [�0u] is continuously di�erentiable with respect to the edge variable

over each face of T . For P 2 H1, we get���@kyP [�0u](P )
��� � C; k = 0; 1: (3.5)

The function is twice continuously di�erentiable and (3.5) holds with k = 2 if (3.2)

is valid. Similar estimates hold over H2.

Proof. i) In the case V � 1 the kernel function of the integral operator �0KS(1 � �)
and all its derivatives are continuous over each face of S and T (cf. Assumption (A4)).

Hence, assertion i) follows even without the assumption (3.2). In the case that V 6� 1
the computation of the derivatives is more sophisticated. To get a formula, we �x a unit

vector ~d and consider the directional derivative

@Pf(P ) := lim
h�!0

f(P + h~d )� f(P )

h

at the point P = O. For a Q 2 ~�O, we know from Assumption (A2) that there is exactly

one W 2 S such that OWQ are collinear. To each point O0 = O + h~d with su�ciently

small h there is exactly one point Q0 2 ~�O0 such that O0WQ0 are collinear. The shift

vector
�!

QQ0 is the image of the shift vector
�!

OO0� T via �re�ection� at point W . The

length of this vector satis�es (cf. Figure 3)

���� �!QQ0

���� =: ~�(h) = � � h+ o(h); � =
j
�!

WQ j

j
�!

OW j

sin(
�!

OW;
�!

OO0)

sin(
�!

QW;
�!

QQ0)
:

By '(Q); 0 < '(Q) < � we denote the angle at Q between ~�O and
�!

QQ0. We introduce

the factor

�(Q) :=

(
� sin '(Q) if V (O0; Q) = 1
�� sin '(Q) if V (O0; Q) = 0

and the kernel kS

kS(U;W ) :=
%(U)

�

[nW � (U �W )][nU � (U �W )]

jU �W j4
;

9



��
��

��
��

�

��
��

��
��

�

@
@

@

@
@

@

��
��

��
��

�

��
��

��

C
C
C
C
C
C

�
�
�
�
�
�

@
@

@
@

@
@

@
@@

�
�
�
�
�
�
�
��
@

@
@

@
@

@
@

@@

�
�
�
�
�
�
�
��

A
A

A
A
A

A
A
A
A
AA

�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�

�

�

�

��

W
O

O0

Q

Q0

~�O

~�O0

Figure 3: Neighbourhoods of O and Q.

which is roughly speaking the kernel G of (1.1) without multiplication by the visibility

function V . With this notation and that from the introduction we get

@O [�0KS(1 � �)u] (O) =
Z

O

@O [�0(O)kS(O;Q)] (1� �(Q))u(Q)dQS + (3.6)Z
~�O

[�0(O)kS(O;Q)(1� �(Q))]�(Q)u(Q)dQ~�0:

Indeed, without loss of generality, we assume that ~�O is a straight line and that V (O0; Q)

is equal to 1. Retaining the notation O0 = O + h~d and setting ~d(Q) :=
�!

QQ0 =j
�!

QQ0 j, we
observe


O0 n 
O = fQ+ �~d(Q) : Q 2 ~�O; 0 � � � ~�(h)g:

Consequently, we obtain

1

h
f[�0KS(1� �)u](O0)� [�0KS(1� �)u](O)g

=
Z

O

1

h
[�0(O0)kS(O

0; Q)� �0(O)kS(O;Q)] (1 � �(Q))u(Q)dQS +

1

h

Z

O0n
O

�0(O0)kS(O
0; Q)(1� �(Q))u(Q)dQS:

Clearly, the �rst term tends to the �rst term on the right-hand side of (3.6). The second

can be written as

Z
~�O

1

h

Z ~�(h)

0

(
�0(O0)kS

�
O0; [Q+ �~d(Q)]

��
1 � �(Q+ �~d(Q))

�

u(Q+ �~d(Q))

)
sin '(Q)d�dQ~�O:

Taking into account that the functions Q 7! kS(O0; Q), Q 7! �(Q), and Q 7! u(Q) are
continuous at non edge points and that ~�(h) sin '(Q) = �(Q)h+ o(h), we conclude that

10



the last expression tends to the second term on the right-hand side of (3.6). Thus (3.6)

is proved.

Now the continuity of @PR3 follows easily from (3.6), the continuity of ~�O, and the smooth-

ness of kernel [�0(O)kS(O;Q)(1 � �(Q))] with respect to O and Q. To get the second

derivative of R3, we have to di�erentiate (3.6) once again. The �rst term on the right-

hand side can be treated analogously to the �rst derivative of R3. For the derivative of

the second term, we observe that ~�O is a polygonal curve each side of which depends

di�erentiably on O. The kernel function Q 7! [�0(O)kS(O;Q)(1 � �(Q))] and � are con-

tinuously di�erentiable and the derivatives of u remain integrable by assumption (3.2).

Hence, the second integral on the right-hand side of (3.6) is continuously di�erentiable

too. The function R3 is twice continuously di�erentiable if (3.2) holds.

ii) Let kC(U;W ) = [�0(U) � �0(W )]kT (U;W )�(W ) stand for the kernel of the integral

operator [KT�
0 � �0KT ]�. If diamsupp� denotes the diameter of the support of �, then

it is not hard to see that

jkC(U;W )j � C

8><
>:
jU �W j�1 if jU j � 2 diam supp�
0 if U;W both on H1 or H2

jU j�2 if jU j � 2 diam supp�
; (3.7)

j@UkC(U;W )j � C

8><
>:
jU �W j�2 if jU j � 2 diam supp�
0 if U;W both on H1 or H2

jU j�3 if jU j � 2 diam supp�
: (3.8)

Hence, for U 2 H1 and jU j � 2 diamsupp�, we get

j@UR1(U)j � C
Z
supp�\H2

jU �W j�2dWT � C log dist(U;H2)
�1

and, for jU j � 2 diam supp�,

j@UR1(U)j � C
Z
supp�\H2

jU j�3dWT � CjU j�3:

This and the corresponding results for U 2 H2 prove the assertions for the �rst derivative

taken in arbitrary direction.

Now suppose that U = P 2 H1 and that the direction is parallel to the edge, i.e., @P = @yP .

We can replace (3.7) by

jkC(P;Q)j � C

8><
>:
jnP � (P �Q)j jP �Qj�2 if jP j � 2 diamsupp�
0 if Q 2 H1

jP j�2 if jP j � 2 diamsupp�
: (3.9)

The factor nP � (P � Q) equals �xQ sin' and is independent of the variable yP in edge

direction. Consequently, (3.8) can be improved to

j@yP kC(P;Q)j � C

8><
>:
jnP � (P �Q)j jP �Qj�3 if jP j � 2 diam supp�
0 if Q 2 H1

jP j�3 if jP j � 2 diam supp�
: (3.10)

We end up with

j@yPR1(P )j � C
Z
supp�\H2

jnP � (P �Q)j
jP �Qj3

dQT = C

�����
Z
supp�\H2

nP � (P �Q)

jP �Qj3
dQT

����� � C:

11



The last estimate is a well-known fact for double layer kernels nP � (P � Q)jP � Qj�3.
Namely, the integral over this kernel is the solid angle under which the surface supp�\H2

is seen from the point P . This angle is smaller than the full solid angle 4�. Thus all the
assertions for the �rst order derivatives are proved.

Using only the results on �rst order derivatives, we shall prove in part iii) that @yP [�
0u]

is continuous. If we shift O and the cut o� functions a little bit, we get the piecewise

continuous di�erentiability at all points close to the edge. In other words, even @yP [�u]
is continuous. On the other hand, the operator KT has a kernel kT (P;Q) which depends

in edge direction only on the di�erence yP � yQ. Consequently, KT commutes with

di�erentiation in edge direction and we arrive at

@yPR1 = [KT (@yP�
0) � (@yP�

0)KT ]�u+ [KT�
0 � �0KT ] @yQ [�u]:

Repeating the arguments from above, we conclude

j@xP @yPR1(P )j � C

(
C log dist(P;H2)�1 if jP j � 2 diam supp�
CjP j�3 else

;

j@2yPR1(P )j �
(
C if jP j � 2 diam supp�
CjP j�3 else

:

iii) In view of the fact that KT@y = @yKT we get

(I �KT ) @
k
y [�

0u] = @kyR; k = 0; 1; 2: (3.11)

Note that I �KT is a bounded and invertible operator in L1 (cf. e.g. [2]) mapping L1

into the space of piecewise continuous functions which are continuous over each face of T .
Hence, I �KT is bounded and invertible in the space of piecewise continuous functions.

Since the right-hand side in (3.11) is piecewise continuous and continuous over each face of

T for k = 0; 1, we conclude that @ky [�
0u] is continuous and bounded for k = 0; 1. Moreover,

if (3.2) is valid, then the right-hand side is piecewise continuous for k = 2. Thus under

this assumption @2y [�
0u] is continuous and bounded over each face of T .

Corollary 3.1 If O is a point in the interior of a face, then ' = �, T is a plane, KT = 0,
and R1 � 0. In this case Lemma 3.1 i) and (3.1) imply that the solution u is continu-

ously di�erentiable at O. Moreover, if (3.2) holds, then u is even twice continuously

di�erentiable at O.

Now we set

u1(xP ) := [�0u](xP ; 0; 0);

u2(xQ) := [�0u](xQ cos'; 0; xQ sin'):

We freeze [�0u] over T \ f(x; 0; z) : x; z 2 IRg by de�ning

v(xW ; yW ; zW ) := [�0u](xW ; 0; zW )

and set R4 := KT ([�0u]� v). Thus (3.1) changes into

[�0u]�KTv = R4 +R: (3.12)

12



Introducing

r1(xP ) = [R4 +R](xP ; 0; 0);

r2(xQ) = [R4 +R](xQ cos'; 0; xQ sin')

and restricting (3.12) to T \ f(x; 0; z) : x; z 2 IRg yields (compare (2.7))

 
u1
u2

!
�
 

0 K2

K1 0

! 
u1
u2

!
=

 
r1
r2

!
: (3.13)

Lemma 3.2 i) For the matrix operator on the right-hand side of (3.13), we get the

inverse

 
I �K2

�K1 I

!
�1

=

 
I +K1;1 K1;2

K2;1 I +K2;2

!
; (3.14)

where the Kj;l are Mellin convolution operators

Kj;lf(x) :=
Z
1

0
kj;l

 
x

�

!
1

�
f(�)d�

with kernels kj;l such that

kj;l(�) = cj;l�(�)�
 + ~kj;l(�); (3.15)������

 
�
d

d�

!k
~kj;l(�)

������ � C

(
�+" if � < 1
��" if � � 1

; k = 0; 1: (3.16)

Here the cj;l are constants,  is the exponent mentioned in Sections 1 and 2, and "

is a su�ciently small positive number. The function � 7! �(�) is a smooth cut o�

function which is equal to 1 for � � 0:5 and equal to 0 for � � 1.

ii) The functions ri; i = 1; 2 are continuously di�erentiable over (0;1) and satisfy

jri(x)j � C;

����� ddxri(x)
����� � C log jxj�1 if x � 0:5: (3.17)

Proof. i) Recall that k̂j(z) is analytic for �1 < Re z < 2. Applying the de�nition of the

Mellin transform we conclude2
4
 
x
d

dx

!k
kj

3
5
^

(z) = (�z)kk̂j(z); k = 0; 1; : : : (3.18)

and we obtain that even the (�z)kk̂j(z) are analytic and bounded in the strip �1 + " <

Re z < 2 � ". Hence, jk̂j(z)j � C(1 + jzj)�k holds for any positive integer k and any z in

this strip. From

 
1 + k̂1;1 k̂1;2

k̂2;1 1 + k̂2;2

!
=

 
1 �k̂2

�k̂1 1

!�1

13



we obtain that the k̂j;l have a simple pole at z = � and no further poles for � � " <

Re z < " (cf. Corollary 2.1). On the other hand, the support of (x d
dx
� )[�(x)x] =

�0(x)x+1 is contained in [0:5; 1]. Consequently, the Mellin transform of (x d
dx
)k(x d

dx
�

)[�(x)x], k = 0; 1; : : : is an entire function which is uniformly bounded over the strip

�1 < Re z < 2. In view of (3.18), we conclude that (�z)k(�1)(z + )[�(�)(�)]^(z) is

entire and uniformly bounded over the strip �1 < Re z < 2. Hence, the Mellin transform

[�(�)(�)]^(z) is meromorphic in �1 < Re z < 2. The only pole is the simple pole at

z = � and ���[�(�)(�)]^ (z)��� � C(1 + jzj)k; k = 0; 1; : : :

holds for jz + j > " and a constant C depending on k and the small ". For a suitably

chosen cj;l the function ~k^j;l(z) = k̂j;l(z)�cl;j[�(�)(�)]^(z) is analytic over the strip ��" <
Re z < " and satis�es ���~k^(z)��� � C(1 + jzj)k; k = 0; 1; : : : :

Applying the inverse Mellin transform and using (2.8), we arrive at (3.16).

ii) In view of Lemma 3.1 i) and ii) it is su�cient to consider the restriction of function

R4 to T \ f(x; 0; z) : x; z 2 IRg. The proof of the continuous di�erentiability for this

function, however, is completely analogous to the proof of Lemma 3.1 ii). The only

di�erence is that, for U = P = (xP ; 0; 0) and W = Q = (xQ cos '; yQ; xQ sin '), the
estimate j�0(U)��0(W )j � CjU �W j for the factor [�0(U)��0(W )] is to be replaced by

the estimate (cf. Lemma 3.1 iii))����[�0u](Q)� v(Q)
���� =

����[�0u] (xQ cos'; yQ; xQ sin')� [�0u] (xQ cos'; 0; xQ sin')
����

� CyQ � CjP �Qj:

for the factor [[�0u](Q)� v(Q)].

Corollary 3.2 There exist constant numbers c0 and c and a di�erentiable function g
such that, for x � 0:5 and for su�ciently small " > 0,

ui(x) = c0 + cx
 + g(x); (3.19)

jg(x)j � Cx+";

����� ddxg(x)
����� � Cx+"�1: (3.20)

Of course, c0, c, and g depend on i.

Proof. Applying (3.14) to (3.13), we observe that it is su�cient to prove the desired

representation (3.19) for Kj;lrl. We get

(Kj;lrl) (x) = rl(0) (Kj;l1) (x) + [Kj;l (rl � rl(0))] (x)

= k̂j;l(0)rl(0) + cj;l

Z
1

0
�

 
x

�

! 
x

�

!
1

�
[rl(�) � rl(0)] d�

+
Z
1

0

~kj;l

 
x

�

!
1

�
[rl(�) � rl(0)] d�

= c0 + cx
 + g(x); (3.21)
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where g = g1 + g2 and

g1(x) := cj;l

Z
1

0

(
1� �

 
x

�

!) 
x

�

!
1

�
[rl(�)� rl(0)] d�;

g2(x) :=
Z
1

0

~kj;l

 
x

�

!
1

�
[rl(�)� rl(0)] d�;

c := cj;l

Z
1

0
��1� [rl(�)� rl(0)] d�:

Note that the integral de�ning c is �nite by Lemma 3.2 ii). It remains to estimate g.

Now suppose x < 0:5. Then Lemma 3.2 yields

jg2(x)j � C
Z x

0

 
x

�

!
�"

1

�
� log j�j�1d� + C

Z 0:5

x

 
x

�

!+"
1

�
� log j�j�1d�

+C
Z
1

0:5

 
x

�

!+"
1

�
d� � Cx+": (3.22)

The derivative takes the form

d

dx
g2(x) =

d

dx

Z
1

0

~kj;l

 
x

�

!
1

�
[rl(�) � rl(0))] d�

=
Z
1

0

~k0j;l

 
x

�

! 
�
1

�

!
1

�
[rl(�) � rl(0))] d�

= �x�1
Z
1

0

" 
x

�

!
~k0j;l

 
x

�

!#
1

�
[rl(�) � rl(0))] d�:

This can be estimated as in (3.22).

For g1 we conclude that, if x is small,

jg1(x)j � Cx
Z
1

0

�����1� �

 
x

�

!����� ��1� jrl(�)� rl(0)j d�

� Cx
Z 2x

0
�� log �d� � Cx1�";����� ddxg1(x)

����� =

�����cj;lx
Z
1

0
(�1)�0

 
x

�

!
��2� [rl(�) � rl(0)] d�+

cj;lx
�1

Z
1

0

(
1� �

 
x

�

!)
��1� [rl(�) � rl(0)] d�

�����
� Cx

Z 1

0:5
��2� jrl(�) � rl(0)j d� + Cx�1

Z 2x

0
�� log �d�

� Cx�":

This completes the proof of (3.20).

Remark 3.1 All the constants in Corollary 3.2 are independent of the point O at which

we consider the asymptotic expansion. From this, Lemma 3.1 iii), and Corollary 3.1, we

conclude (3.2) for any point U not close to a vertex. Hence, the assertions on the second

order derivatives in Lemma 3.1 i) and iii) and in Corollary 3.1 are true.
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Corollary 3.3 There exist constant numbers d0 and d and a di�erentiable function h

such that, for x � 0:5 and for su�ciently small " > 0,

@y[�
0u](x; 0; 0) = d0 + dx

 + h(x); (3.23)

jh(x)j � Cx+";

����� ddxh(x)
����� � Cx+"�1 : (3.24)

A similar representation holds for the function x 7! @y[�0u](x cos '; 0; x sin ').

Proof. The starting point is

(I �KT )
�
@y[�

0u]
�

= @yR:

From this we can proceed analogously to the derivation of Corollary 3.2 from (3.1). Instead

of the function ui we have

v1(x) := @y[�
0u](x; 0; 0);

v2(x) := @y[�
0u](x cos '; 0; x sin '):

Setting w(x; y; z) := @y[�0u](x; 0; z), we get R5 := KT (@y[�0u] � w) instead of R4. The

right-hand sides ri in (3.13) are to be replaced by s1(x) := [R5+@yR](x; 0; 0) and s2(x) :=
[R5+@yR](x cos '; 0; x sin '). Using Lemma 3.1 and the arguments of the proof to Lemma

3.2 ii), we get that, analogously to (3.17),

jsi(x)j � C;

����� ddxsi(x)
����� � C log jxj�1 if x � 0:5: (3.25)

Instead of the entities in (3.21) we arrive at the corresponding entities

d0 := k̂j;l(0)sl(0); (3.26)

d := cj;l

Z
1

0
���1 [sl(�) � sl(0)] d�; (3.27)

h := h1 + h2; (3.28)

h1(x) := cj;l

Z
1

0

(
1 � �

 
x

�

!) 
x

�

!
1

�
[sl(�) � sl(0)] d�; (3.29)

h2(x) :=
Z
1

0

~kj;l

 
x

�

!
1

�
[sl(�) � sl(0)] d�: (3.30)

With this notation the estimate for h is analogous to that for g.

Now let us consider the y dependence of the coe�cients c0, d0, c, d, and of the function

h and g in Corollaries 3.2 and 3.3. To this end let the point O and the coordinate system

with coordinates (x; y; z) be �xed. Let ~O := (0; y ~O; 0) be another edge point and denote

the coordinates corresponding to this point by (~x; ~y; ~z). Obviously, (~x; ~y; ~z) = (x; y�y ~O; z).
If we apply Corollary 3.3 to ~O, we get

@y[�
0u](x; y ~O; 0) = ~d0 + ~d + ~h(x) (3.31)

together with the corresponding estimates for ~h. We write d0(y ~O) := ~d0, d(y ~O) := ~d,
and h(x; y ~O) := ~h(x) and note that these entities are de�ned by (3.26)-(3.30) with sl
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replaced by sl(x; y ~O) := ~sl(x). The function ~sl(x) is the restriction of [ ~R5 + @yR] to
f(x; y ~O; z) : x; y 2 IRg and ~R5 := KT (@y[�0u] � @y[�0u](�; y ~O; �)). All these functions

depend continuously on y ~O and even the estimates (3.25) for sl replaced by ~sl are uni-

form with respect to y ~O. Consequently, the functions d0(y ~O), d(y ~O), and h(x; y ~O) are

continuous with respect to y ~O.

Integrating (3.31) with respect to y = y ~O, we obtain

u(x; y; 0) = u(x; 0; 0) +
Z y

0
@yu(x; �; 0)d� (3.32)

= c0 + c + g(x) +
Z y

0
d0(�)d� + x

Z y

0
d(�)d� +

Z y

0
h(x; �)d�

=
�
c0 +

Z y

0
d0(�)d�

�
+
�
c +

Z y

0
d(�)d�

�
x +

�
g(x) +

Z y

0
h(x; �)d�

�
:

Clearly, the function y 7! u(+0; y; 0) = [c0+
R
d0(�)d�] is twice continuously di�erentiable

by Lemma 3.1 iii) and Remark 3.1. Equation (3.32) and the estimates (3.20) and (3.24)

imply Theorem 1.1.

4 Numerical Test

In order to verify the �rst term of the edge asymptotics numerically, we consider the

two-piece wedge boundary of two triangles meeting along the x-axis at an angle of ', i.e.,

S = T1 [ T2 with

T1 := f(x; y; 0) : 0 < x < 1; 0 < y < 1� xg ;
T2 := f(x; y cos'; y sin') : 0 < x < 1; 0 < y < 1 � xg :

Note that this S can be considered as a part of a polyhedral boundary ~S. If % and E
vanish over ~S n S, then the equation (1.1) over ~S reduces to an equation (1.1) over the

open surface S. We choose

E(x; y; 0) :=
sin y

0:61
;

E(x; y cos'; y sin') :=
sinfy sin'g

0:61
;

%(P ) :=

(
%1 if P 2 T1
%2 if P 2 T2

:

Note that the special choice of the right-hand side E ensures that the �constant� terms

 Hi
1 (y) in (1.2) are close to zero.

Using a program package of Atkinson which is an extended version of the package [1],

we solve (1.1) numerically by piecewise linear collocation. The surface is divided into

2048 uniform triangles of diameter h = 0:0442. The approximate solution is linear over

each of the triangles but not necessarily continuous. In the interior of each triangle three

collocation points are chosen. Thus the number of degrees of freedom is 6144. The

integrals in the coe�cients of the arising linear system of equations are computed by a

change of variable followed by Gaussian quadrature if the integral is singular. They are

computed by a suitable subdivision combined with a seven point scheme if the integral
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%1 %2 '  h
0.6 0.6 0.5� 0.718 0.710

0.3 0.7 0.5� 0.782 0.814

0.6 0.6 0.9� 0.972 0.983

Table 2: Some values of approximate exponent h.

is non-singular. The linear system is solved directly by Gaussian elimination. We denote

the approximate solution for u by uh.

To �nd an approximation for the exponent , we consider the edge point (x0; 0; 0); x0 =
23=64 which is relatively far from the boundary points of the open surface S. We restrict

the solution uh to f(x0; y; 0) : 0 < y < 1�x0g and try to verify the asymptotic expansion

uh(x0; y; 0) � C + Cy + : : : . If this is the real asymptotic behaviour, then

 � h :=
log[uh(x0; 4y0; 0)� uh(x0; 2y0; 0)]� log[uh(x0; 2y0; 0)� uh(x0; y0; 0)]

log 2
; (4.1)

where the error j�hj is small for su�ciently small y0 and su�ciently small discretization

errors ku � uhkL1(S). For our numerical tests, we have chosen y0 = 0:01. Note that this
choice guarantees that the points (x0; y0; 0), (x0; 2y0; 0), and (x0; 4y0; 0) (cf. (4.1)) belong
to three di�erent subdivision triangles. Much smaller values y0 would lead to the situation

that all the three points used for (4.1) are contained in one triangle. Then, due to the

linearity of the approximation uh, we would get h = 1. Much larger values yh lead to

larger errors j � hj due to the in�uence of higher order terms in the asymptotics.

In Table 2 we present some approximate values which seem to be in relatively good

agreement with the values predicted by Theorem 1.1. Note, however, that in general the

approximation of  by h is not very accurate. For the case %1 = %2 = 0:6 and ' = �=2,
we compare the solution uh with a lower level solution uh and get the estimate 0:008 for

the discretization error. With this error tolerance applied to (4.1), we can only conclude

that the true  is contained in the interval [0:41; 1:01].
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