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Abstract

A method is developed which allows for the calculation of locking regions of self-pulsating multi-

section lasers which are exposed to external optical data sequences. In particular, resonant locking is

investigated where both wavelength detuning and detuning of the power frequencies are important.
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1 Introduction

In experiments, fast self-pulsations (SP) have recently been discovered in multi-section DFB lasers [2, 3].

These self-pulsations exhibit frequencies from 10 to 80GHz and are therefore of great technical interest.

Within the range of about 10� 20GHz, their existence has been attributed in [4, 5, 1] to the dispersive

self-Q-switching mechanism (DQS), a single-mode instability. This relation was further corroborated

by a detailed comparison of experiment and theory for a 3-section DFB laser [5]. Also, in 1994, the

applicability of these SP's for clock recovery has been shown experimentally at 18GBit/s [6]. Self-

pulsations are therefore an important feature for future high-speed data transmission.

The purpose of this paper is an extension of the theory of DQS for free-running single-mode SP's. We

are interested in resonant locking of a self-pulsating DFB laser when one facet of the laser is exposed to

an external optical signal. It is assumed that the wavelength and the clock frequency of the optical signal

are close to those of the free-running laser. The theory presented here will predict regions of the relevant

laser and signal parameters for which locking occurs. Finally, the method is applied to self-pulsating

states of the 3-section DFB laser studied in [5].

2 Theory

Assuming stable index-guiding of the fundamental transverse TE-mode, the main component of the

electric �eld in a laser can be written as a superposition of a forward and a backward traveling wave [1]

E(~r; t) = A(x; y)ei!0t
�
 +(z; t)e

�i�
�
z +  

�
(z; t)ei

�

�
z
�
:

Here, � is the corrugation period, and !0 is a constant optical reference frequency which we choose to

be close to the emission frequency of the laser. The transverse �eld pro�le A(x; y) of the waveguide can

be normalized such that j +(z; t)j
2 and j 

�
(z; t)j2 are the powers guided by the forward and backward

wave, respectively. The time evolution of the amplitudes is governed by the traveling-wave equation
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where L is the length of the laser, and H(z; n(t)) is a matrix operator given by

H = vg

0
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Here, vg is the group velocity, and � is the coupling coe�cient due to the presence of the DFB-grating.

Moreover, � denotes the propagation constant at ! = !0, which depends on the longitudinal position z

and on the time t via the carrier distribution n(z; t).

For the sake of simplicity, we will work with a spatially averaged number nk(t) of carriers within the

kth section of the laser and apply the same model for � as in [5]

�k = �Ik
Ik

Lk
+ �nk(

nk

Vk
� nt) +

i

2
(Gk(nk)� �0k) +

�

�
;

using the logarithmic gain model Gk(n) = g0knt ln(n=Vknt). Vk is the active volume of the kth section.

The parameters �Ik and �nk are heating and carrier contributions, respectively, to the e�ective index in

terms of �, see [5]. The waveguide absorption is denoted by �0, and nt is the transparency density. The

dynamics of the carrier numbers is now governed by the balance equation

dnk

dt
=
Ik

e
�

nk

�k
�

Gk(nk)

�h!
h ;  ik; (2)

where Ik denotes the injection current of the section Sk, e is the elementary charge and �h! � �h!0 is the

energy of a single photon. In (2), we used the notation

h�; 'ik �

Z
Sk

�
��+(z; t)'+(z; t) + ��

�
(z; t)'

�
(z; t)

�
dz;

for any two-component functions �(z; t); '(z; t).1

At the facets of the laser, we assume the boundary conditions

 +(0; t) = r0  �(0; t) + ei�ta(t) and  
�
(L; t) = rL  +(L; t); (3)

where r0 and rL denote the amplitude facet re
ectivities, and a(t) is the external signal with optical

frequency � relative to !0. The power frequency of the external signal is denoted by �, i.e. a(t) is

2�
�
-periodic.

1If the integral in the above formula is computed over the whole laser length, we will drop the index k. Also, � denotes

complex conjugation.
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Let  (z; t) = ei�0t 0(z; t) and nk(t) = n0k(t) be a self-pulsating solution of the free-running laser,

i.e. a(t) = 0, with averaged optical frequency �0 relative to !0 and power frequency �0. We then seek

solutions of (1-3) employing the perturbation ansatz

� = �0(1 + jaj�1) +O(jaj2);

� = �0(1 + jaj�1) + O(jaj2);

 (z; t) = ei(�t+�) 0(z; t+ 
=�) +O(jaj);

nk(t) = n0k(t+ 
=�) +O(jaj);

(4)

where jaj2 = maxt2[0;2�=�] ja(t)j
2 is the maximal power of the optical signal.

We substitute (4) into (1-3) and expand the resulting equation in powers of jaj. Upon omitting terms

of order O(jaj2), we then obtain solvability conditions [7]. These conditions depend on solutions (	j ; N
j
k)

of the linear system

i
@	j

@t
= �(H�(z; n0(t)) � �0) 	

j + 2 0
X
k

Gk(n
0
k)

�h!
�k(z)N

j
k ; (5)

dN
j
k

dt
=
N

j
k

�k
+
G0

k(n
0
k)

�h!
N

j
kh 

0;  0
ik � vg<e

�
d��k
dnk

h 0;	j
ik

�
(6)

for j = 1; 2 with boundary conditions

	
j
�
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j
+(0; t) and 	

j
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j
�
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subject to the normalization
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Here, H� denotes the adjoint of the evolution operator H appearing in (1). The function �k(z) appearing

in (5) is one for z in the kth section and zero otherwise. If (1-3) with a(t) = 0 is linearized about

the given self-pulsating solution ( 0(z; t); n0k(t)), then (5-7) is the corresponding adjoint linear system.

Furthermore, (8) are bi-orthogonality conditions between the fundamental solutions

( (z; t); nk(t)) =
�@ 0

@t
(z; t);

dn0k
dt

(t)
�
and (i 0(z; t); 0)
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of the linearized equation and the fundamental solutions (	j(z; t); N
j
k(t)) for j = 1; 2 of the adjoint

equation. We denote the 	
�
-components of the solutions 	j(z; t) of (5-8) evaluated at z = 0 by 	

j
�
(0; t).

The solvability conditions mentioned above are then given by

�� = �� �0 = �0<e
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e�i�
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�0
)	2

�
(0; t) dt

�
:

(9)

These are two real-valued nonlinear equations which relate the locked phases 
 and � with the locked

optical and power frequencies up to order O(jaj2). The locking region is given as follows: Upon varying

the relative phases � and 
, the pair (��;��) will sweep a certain region in the plane. The locking

domain in (�; �) can therefore be calculated asymptotically for small maximal input power.

3 Single-mode approximation

It has been shown in [5] that DQS, calculated by the single-mode approximation of (1) developed in [1],

is in excellent agreement with the full PDE (1) as well as with experiments. It is therefore reasonable

to compute the solutions of the linear system (5-8) using the single-mode approximation rather than the

full PDE (1).

Modes are eigenfunctions of the evolution operator H appearing in (1) subject to the boundary

conditions (3) with a(t) = 0. Let � satisfy

H(z; n(t)) �(z; n(t)) = 
(n(t)) �(z; n(t)); (10)

normalized according to

2

L

Z L

0

�+(z; n(t)) ��
(z; n(t)) dz = 1 (11)

for all times [4, 1]. Rather than solving equation (1), we will only take the mode with the lowest threshold,

i.e. smallest =m(
), into account. This is the single-mode approximation [1]. The �eld amplitudes are

then given by

 = f(t) �(z; n(t)); (12)
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and the evolution of f(t) is governed by

df

dt
= i
f: (13)

Furthermore, equation (2) for the carrier dynamics is given by

dnk

dt
=
Ik

e
�

nk

�k
�

Gk(nk)

�h!
jf j2h�;�ik: (14)

Suppose that (13-14) has a self-pulsating solution (f0; n0k). We would like to calculate the locking prop-

erties of the laser state (f0; n0k). Recalling the basic strategy which has been explained in the last

section, we shall linearize the unperturbed system (13-14) about the self-pulsating solution (f0; n0k). The

corresponding adjoint linearized system is then given by

d

dt

0
BB@ F

Nk

1
CCA = D�(f0; n0k)

0
BB@ F

Nk

1
CCA : (15)

Here, D� denotes the transposed and complex conjugated Jacobian of (13-14) evaluated along the periodic

orbit (f0; n0k) of (13-14). Again, we seek two solutions (F j; N
j
k) of (15) for j = 1; 2 which satisfy suitable

boundary and normalizing conditions. Given that these solutions have been computed, the functions

	j(z; t) = F j(t)

0
BB@ ��

�
(z; n(t))

��

+(z; n(t))

1
CCA ; (16)

should satisfy (5-8) approximately. Upon substituting (16) into (9), the solvability conditions then read

�� = �0<e
�
e�i�

Z 2�

�0

0

a(t �



�0
)F 1(t)��

�
(0; t) dt

�
;

�� = �0<e
�
e�i�

Z 2�

�0

0

a(t�



�0
)F 2(t)��

�
(0; t) dt

�
;

(17)

where �; 
 are the locked phases. If the external signal is applied to the right rather than the left facet of

the laser, the solvability conditions (17) remain valid with �
�
(0; t) replaced by �+(L; t).

4 Locking properties

In this section, the method described above will be applied to the 3-section DFB laser which has been

investigated in [5]. The device consists of two identical DFB sections and a passive phase-tuning section
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without DFB grating. Here, the phase-tuning section is located at the furthest left of the device. We

listed the relevant laser parameters in Table 1. The reference frequency !0 corresponds to the central

wavelength � = 1:57�m. As mentioned above, this particular laser device can be modeled using the

single-mode approximation described in the last section [5]. Using numerical simulations, a self-pulsating

solution (f0; n0k) of (13-14) is computed with parameters de�ned in Table 1. The temporal behavior of

the output power of this free-running laser-state is shown in Fig. 1.

In order to investigate the locking properties of the free-running laser, we apply an external sinusoidal

signal

a(t) = a0 + a1e
i�t (18)

to the left facet of the laser. The mean power P0 and the clock-modulated power amplitude Pmod of the

signal are then given by P0 = ja0j
2 + ja1j

2 and Pmod = 2ja0a1j, respectively. It is worth noting that the

locking region corresponding to signals of the form (18) does not depend on the phase of the coe�cients

a0 and a1. This is no longer true for more general signals. Using equation (17), the corresponding locking

regions are now calculated for various values of P0 and Pmod.

Firstly, we have applied the signal with a constant power (Pmod = 0) of P0 = 0:1mW. According to

(17) the locking region becomes an ellipse in the (��;��)-plane. The ellipse is centered at the origin

with diameters being proportional to ja0j. As expected, the resonance frequencies of the laser are shifted

in response to the external power.

In a second step, we perturb the SP by modulating the external power with Pmod = 0:01mW.

This corresponds to the experimental set-up described in [6]. The locking region is shown in Fig. 2. The

aforementioned ellipse is contained in the dotted area in Fig. 2 ; the locking region has therefore broadened

signi�cantly. In fact, quantitatively, we obtain locking ranges of about 0:1 nm for the wavelength and

about 170MHz for the clock frequency. This is in good agreement with experiments [6]. In addition, for

a �xed pair of frequencies belonging to the locking region, there exists precisely one stable locked state.

Finally, we �x Pmod = 0:01mW and decrease the mean power to P0 = Pmod. The external power

is then completely modulated. The corresponding locking region is the dotted area in Fig. 3. The
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locking area has decreased considerably compared with the regions computed above. In addition, the �ne

structure in the interior of the region in Fig. 3 indicates that stable locked solutions are in general no

longer unique. Indeed, for frequencies in certain subregions, there exist several stable locked states which

di�er by their phase o�sets � and 
. As a result, the laser may switch randomly between these states.

This is certainly not desired when SP's are used for clock recovery.

For clock recovery, it seems therefore necessary to apply a relatively large background power P0. In

a real data signal, a(t) will consist of many more additional components. The locking region will then

experience further deformation and may become quite complicated. Even in this case, the role of the

zeroth component a0 for resonant locking is of importance.

5 Conclusions

In this article, we calculated locking regions of self-pulsating DFB lasers which are exposed to an external

optical data signal. In particular, we were interested in resonant locking when both optical and power

frequencies lock.

For given laser parameters, we computed the laser response for various di�erent data signals. We

showed that it is necessary to have a su�ciently large background power in order to use the laser for

clock recovery. Indeed, decreasing the background power results in smaller locking regions. This behavior

is in good qualitative and quantitative agreement with experiments.

It should therefore be possible to use this method as an optimization tool. For a given input signal,

it is desirable to maximize the locking regions by optimizing the laser parameters for clock recovery.

References

[1] H. Wenzel, U. Bandelow, H.-J. W�unsche, and J. Rehberg, IEEE J. Quantum Electron. 32 (1996)

69-78.

8



[2] M. M�ohrle, U. Feiste, J. H�orer, R. Molt, and B. Sartorius, IEEE Photon. Technol. Lett. 4 (1992)

976-979.

[3] B. Sartorius, M. M�ohrle, and U. Feiste, IEEE J. Select. Top. Quantum Electron. 1 (1995) 535-538.

[4] U. Bandelow, H.-J. W�unsche, and H. Wenzel, IEEE Photon. Technol. Lett. 5 (1993) 1176-1179.

[5] U. Bandelow, H.-J. W�unsche,B.Sartorius, and M. M�ohrle, IEEE J. Select. Topics Quantum Electron.,

Special Issue on Semiconductor lasers (1997), in press.

[6] U. Feiste, D. J. As, and A. Erhardt, IEEE Photon. Technol. Lett. 6 (1994) 106-108.

[7] D. Peterhof, L. Recke, and B. Sandstede, in Self-organization in activator-inhibitor systems: semi-

conductors, gas-discharge and chemical active media, H. Engel et al. (eds.), Wissenschaft und Technik

Verlag, Berlin, (1996) 218-222.

Figure Captions

FIG. 1 Temporal evolution of the output power of the self-pulsating laser at the left (solid line) and right (dotted

line) facet of the laser. The currents are 40mA, 131mA and 8mA in the phase-tuning, the middle and the right

DFB-section, respectively.

FIG. 2 Locking region in (��
2

2�c
��;��). Mean power and clock-modulated power amplitude are P0 = 0:1mW and

Pmod = 0:01mW, respectively.

FIG. 3 Locking region in the same coordinates as in Fig. 2 but for a mean power of P0 = 0:01mW and a clock-

modulated power amplitude of Pmod = 0:01mW. Compared with the results shown in Fig. 2 , the locking region

has shrunk further (note that the axes are scaled di�erently in Figures 2 and 3).
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Tables

Table 1: Parameter values used for 3-section DFB laser

explanation DFB section phase-tuning section

� central wavelength 1:57�m

r0, rL facet re
ectivities 10�6 0:6

� coupling coe�cient 1:4 � 104m�1 0

Lk length 2 � 10�4m 4 � 10�4m

vg group velocity 8:8 � 107m/s 8:8 � 107m/s

�n di�erential index 4:75 � 10�20m2 7 � 10�20m2

g0 di�erential gain 5:0 � 10�21m2 0

nt transparency concentration 1�1024m�3 3.5�1023m�3

�0 internal absorption 2500m�1 4900m�1

�I thermal detuning 50A�1 0

Vk volume 9 � 10�17m3 1:8 � 10�16m3

� carrier lifetime 2 ns 1 ns
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