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Abstract. The DSMC (direct simulation Monte Carlo) method for rarefied gas dynamics
- is studied. The behaviour of the underlying stochastic particle system is determined by
three main components - the time step between subsequent collisions, the random mech-
anism for the choice of the collision partners, and the random mechanism for calculating
the result of the collision. The purpose of this paper is to illustrate the interplay between
these various components and to propose some new modifications of the DSMC method.
. Different time counting procedures are derived and their influence on the other parts of the
algorithm is investigated. Various modifications of the DSMC method are compared with
respect to different criteria such as efficiency, systematic error, and statistical fluctuations.
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: 1 Introduction

A commonly used tool for the numerical treatment of rarefied gas flows in real world
applications (like the reentry of a space shuttle into the atmosphere) is the DSMC (direct
simulation Monte Carlo) method (see, e.g., [9]). This method had been developed by
G. A. Bird since the sixties (cf. [1], [2], [3]).

An important part of the DSMC method is the mechanism tha.t determlnes the number
of collisions among the simulation particles during a given time interval. The original
procedure, called “time counter”, assigned an appropriate individual amount of time to
each of the collisions. Later this procedure was replaced by a tool that was called “no time
counter” method, so as to be clearly distinguished from the previous one. Here the number
of collisions on the given time interval was calculated in advance, which is numerically
more convenient. We refer to [8], [4] and the detailed discussion of this development in
[5, §11.1].

From a mathematical point of view, the time evolution of rarefied gas flows is de-
- scribed by the Boltzmann equation (see, e.g., [6], [7]). The relationship between the
DSMC method and the Boltzmann equation was established in [11], where both the
“time counter” and the “no time counter” versions of the method were treated. Stochas-
tic interacting particle systems and, in particular, Markov jump processes, turned out -
to be a convenient mathematical model for the description and unification of different
numerical procedures in rarefied gas dynamics. We refer to [7, Ch. 10], [12], [10] for more
details and references related to particle methods for the Boltzmann equation.

Generally speaking, the behaviour of the stochastic particle system is determmed
by three main components - the time step between subsequent interactions (collisions),
the random mechanism for the choice of the collision partners, and the (again random)
mechanism for calculating the result of the collision. The purpose of this paper is
to illustrate the interplay between these various components and to propose some new
modifications of the DSMC method. v

Section 2 contains some material about stochastic processes related to rarefled gas
dynamics, which we need for the presentation of the subject. The main results are con-
tained in Section 3. Here we derive different time counting procedures and show how they
influence the other (random) parts of the corresponding algorithms. Section 4 contains
the results of numerical experiments. Here we compare the various modifications of the
DSMC method with respect to different criteria such as efficiency, systematic error, and
statistical fluctuations. :

2. Preliminaries

2.1. The Boltzmann equation

The Boltzmann equation for dilute monatomic gases ([6]) takes the form
ft,z,v)+ (v, Vy) f(t,z,v) = : (2.1)
LS dw [32 de B(v,w,€) [f(t,m,v*) flt,z,w*) — f(t,z,v) f(t,a:,w)],

2



where t >0, z € D CR®, v € R?, and appropriate initial and boundary conditions are
assumed. The symbol V, denotes the vector of the partial derivatives with respect to z,
D is a bounded domain in the three-dimensional Fuclidean space R, and (.,.) is the
scalar product. The function B is called the collision kernel. The symbols de and dw
denote the uniform surface measure on the unit sphere S? and the Lebesgue measure on
R3 | respectively. The objects v* and w* are defined as

v =v+e(e,w—v), w=w+e(ev—w),

where v,w € R3, e € S?. They are interpreted as the post—collision velocities of two
' pa.rtlcles with the pre-collision velocities v and w.

Various approximations involved in the DSMC algorithm are related to some approx-
imations of the Boltzmann equation (2.1). First there is a splitting of the free flow
simulation and the collision simulation on a small time interval. Second a partition

D=UgD (22

of the spatial domain D into a finite number I, of disjoint cells is used during the collision
simulation step. Thus, the limiting equation (as the number of simulation particles tends
to infinity) corresponding to the collision simulation step of the DSMC algorithm has the
form (cf. [11])

f(ta:v) S » , A ; (2:3)
Ldy dwf de h(z,y) B(v,w e)[f(t z,v*) f(t,y,w*) — f(t,z v)f(t,y,w)]

The function '
h(ai, y) Z ID |1IDl(m) q[Dz(y) ) - (2'4)
=1 _ :

is a mollifying kernel depending on the partition (2.2), where |D;| is the Lebesgue measure
- of the cell Dy, and ¥ denotes the indicator function. :
2.2. The basic Markov process

The stochastic process related to the molhﬁed Boltzmann equation (2 3) has the infinites-
imal generator :

A®)(2) = = 5,2 L, oz 2 ) [B(I (25, €)) — o(2)] de (25)
. where
L Z= (zl’- -'7zn) :_ ((:12’1,'1)1),..”.,(:11",’1)1;)) 7 (2'6)
and |

; (mk)vk)7 if & # %7,
[J(Z,3,7,e)l = 3 (@i,v]) ,if k=1,
. (zj,v}),if k=j.
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" The function q will be specified later.
The generator (2.5) can be rewritten in the usual form of a jump process generator
A@)a) = [ o) -2@] ), (@7
where |

Qo dl) = z N Satasia(dC) a(as 23, ) de

1<1¢]<n

and § denotes the Dirac measure. The generator (2. 7) does not change if one replaces Q

by

Q(é ) = : o (2. 8)‘
| % {f 5J(2»=,J,e)(do ‘I(zn z;,e) de + 5-(dC) [ §(2i, 25) — / q(z, 4, e) de]}

1<z¢g<n

.Whére disa Afunct;on such that
[gz q(z, z;,e) de < §(z;, z;) . ; - (2.9)

Remark 2.1 Note that the distribution of the process does not depend on the function §.
However, the choice of this function provides different ways of genemtmg tmyectomes of
the process.

The behaviour of the Ma,rkov process with the 1nﬁn1te31ma1 generator (2.7), (2.8) is
described as follows.

Coming to a state z (cf. (2. 6)), the process stays there for a random waiting time
'r(z) which has an exponential distribution with the parameter

M= 0GB =L T dame), | (2.10)
S 1giZi<n |
ie |
- Prob {#(z) > t} = exp(—#(2) t) .’
Note that the expectation of the ra.ndorﬂ waiting time is
#(z)7.

If this value is sufﬁc1ently sma.ll it can be used as a deterministic approx1ma.t10n to the
random time step 7(Z).

Then the process jumps into a state (, wh1ch 18 dlstnbuted according to the jump
distribution

#2)™ O(z,df).
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This distribution represents a superposition of éimpler distributions (cf. (2.8)),
#(2)7 Qz,d() = .

: q 1y 24 Zi, 24, € de < iy 23,

Z 4(zi, z;) {fs:f q(zi, zj, €) /82 5J(E,i,j,e)(dC) q(zi, 25, €) de

1<i#j<n 2 7?(2) c}(z,-, z;) Js2 ‘I(Zi: zj,e)de
= sz Q(zi) 23 e) de ] } '
+ 65(d [1 — - .
( C) Q(ziaz.‘i)

Consequently, first the dlstnbutlon of the parameters ¢+ and j is determined by the
probab111t1es

qA(zb Z_,‘) _ Q(Z{,Zj) ) . | (2 11)
27%(2)  Yicitj<n 4(2i) 25)
Given 7 and j, there is a certain probability that the jump is fictitious. Namely,
the new stateis { = 2 with probability

1— sz q(Zi, 23, 6) de (2 12) ‘
é(zi)z:i) . . .

Otherwise, the distribution of the parameter e is

Q(zi) zj, e) '\ - -
Js2 a(zi, i, €) de’ C(213)

and the new state is { = J(Z,i,j;e) .

2.3. Modelling of the cell process

The stochastic process related to the collision simulation step in one spatial cell D (cf.
(2.3), (2.4)) corresponds to the function (cf. (2.5))

q(zn zg; e) 1 |1]5 | ‘lDl(mi) ﬂDl(mJ) B(”n v.’h e)

We choose

' 1 1
qA(Zh zj) ID l ﬂDl (mt) ﬂDl(mJ) B('U,, UJ) v (214’)
where | |
-/82 B(v,-,v,-, 8) de S B(vi,vj) ,k’ (2.15)

so that condition (2.9) is satisfied. ;
- We specify the general modelling procedure from the previous section according to
(2.14). The parameter (2.10) of the waiting time distribution takes the form

ﬁ(z)g%}w_ll S Bu,vy). | (2.16)

i#jrw,m; €D
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The 'diStributiOn (2.11) of 4, is concentrated on the set {7 : z; € D;} and takes the form
" B(vi,v;) |

! . (2.17)
Zi;&j rxi,z;€0; B(’U,’, ’Uj)
The probablllty (2.12) of a ﬁctltlous jump is
_ Js2 B(vi,vj, e) de (2.18)
B(vnvj) ‘
Finally, the distribution (2.13) of e is
B(’U,, vj, €) i
. 2.19
[s2 B(vi, v, €)de (2.19)
2.4. Example: Hard sphere molecules
- Consider the collision kernel B of the form h
e |, -
B(vb”j: e)= o |(vi — 5, e)l,
for some constant cg. In this case, one obtains ,
. . cg [T 27 : .
Jou Bvs,eyde = 22 ["dion [ dga s = vl | con pn| sin
,, ‘ /2 o
= 2cp |lvi — v /; cos gy sin ¢y dpy
_ 1 .
= 2cp v —vill [ ydy = ca i — vl (2.20)
Consequently, condition (2 15) takes the form |
o o =31 < Blow,vs). e

A trivial choice of the function B is
B(vi,v;) = /52 B(vi,vj,€) de = cp ||vi — vj,

which gives the “original” behaviour of the process. In this case, the parameter (2.16) of
the waiting time distribution takes the form

#(z i — ;). o (2.22)
CEP= I

The distribution (2.17) of 4,7 is

[Jv: — vl (2.23)
Yitirznwsen, lvi —vsll 7 :

1.e. the pairs of particles are chosen with probability proportional to their relative velocity.
The probability (2.18) of a fictitious jump is zero. Pinally, the distribution (2.19) of e is

| (vi — ”J:e)l o (2.24)

2 i~ vl
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2.5. Statement of the problem

The modelling procedure for the stochastic partlcle system with the generator (2.5) is
extremely simple. However, the numerical application may face serious problems if the
number of particles n is large. In general, one has quadratic (with respect to n) effort in
~ the calculation of the waiting time parameter (2.22) or the probabilities (2.23). Therefore,
it is important to look for an appropriate choice of the function B in (2.15), which may
lead to a substantial gain in the efficiency of the modelling of the process.

For an efficient numerlcal implementation, there are three points to be taken into
account:

1. The inverse tlme step (2. 16) should be easy to compute and not too b1g
2. The distribution (2.17) of 4,5 should be easy to generate.
3. The probability (2.18) of ﬁct;tlous jumps should be as small as possible.

3. Time counting procedures

3.1. The acceptance—rejection technique

The technique based on the followmg lemma is useful in many modifications of the DSMC
method.

Lemma 3.1 Consider a measurable space (X p) and two functwns f and F on X sat-
isfying the majorant condition

0< f(z) < F(z), VYVzelX.

Assume that
/Xf(a:) p(dz) >0 and /X F(z)p(dz) < o 3

Let a random variable ¢ be defined by the following procedure:
1. Generate a random variable  with the probability density
| F(z)

P(2) = 0 i) | (3.1)

2. Generate independently a random variable u uniformly distributed on [0,1].
8. If the acceptance condition '

u < fl) | , (3.2)

is satisfied, then £ =7 and étop.
4. If (3.2) 1s not fulfilled, then go to 1.
Then the random variable € has the probability density

= T Fo) lde) - (33)

7



» Rémark 3.2 Lemma 8.1 shows how to model the density (8.8) on the basis of a modelling
procedure for the density (8.1). Note that one does not need to know the norma,lzzm_q
constant fx (:z:) ,u,(dm) :

3.2. Bird’s timé counter

First the indices ¢, j are genera.ted according to the distribution (2.23). This is done Wlth
the acceptance—rejectlon technique. One con31ders the set

X={1<i#j<n}
and the functibns | |
- f=lvimwll,  Fg=e,
where ¢ is a constant sa.tisfying |
| llvi — vj| <c, Vi,j€X.
,chvordingly, the indices 4, j are generated uniformly on X and accepted if (cf. (3.2))

< i =il
- c

The corresponding time step is then computed as (cf. (2.22))

IR e 2n | Dy |
H&67) = 5 D,!Iv: ul Y = ) (3.4)

i+ 505 EDs cemu (e — 1) |lvi — i

where n; = n(2) denotes the number of particles fn the cell D;. Note that according to
(2.23) , »

Ao S g 'U'—"v~]|
E#(z,1,7) = 7(Z2,%,7) o = 5
7 . i’#j:g,;jEDz Y Zi;éj:a:;,ijD; ”'U,; - vJ“ «
_ 1 ) 2n|D¢|‘ o . : ( 2n|D1]
- Zi;ﬁjv:m;,zjeDz ”’U;‘ - Uj” i#5: @i,z €D; cB 1 ('n’l - 1) CB kzi;éj:a:;,a:jED; “'U.,; - vj”
] :
= T .

Thus, the time counter (3.4) has the correct expectation (2.22).

Note that in this procedure the rejections replace what we call fictitious jumps else-
where.

Remark 3.3 If, by chance, a pair (z,7) with a small relative velocity is chosen, then the
time step (3.4) is large. This effect may create strong statistical fluctuations.



3.3.‘ Bird’s “no time counter”
" One chooses (cf. (2.21))
R Blviv;) = caUnas | (3.5)
where

Ve = Urnn(2) = mafos = ] (3.)

From (2.16) one obtains the time step

ny_ R 2n]D1|
— 1 .
T(z) - W(z) 9:247] (nl - 1) Umaw

(3.7)

The indices z,j are generated uniformly according to (2.17). The probability (2.18) of a
fictitious jump is ' ‘, o ;

1 i =l
11— . 3.8

Uma:z: ) ( )
‘The distribution of e is (2.24).

The value of Upnaz(Z) may change after each collision. Its calculation takes a quadratic
effort with respect to n;. Therefore, the following approximate procedure is used.

Let 0%, k = 1,2,..., denote the time moments at which a (possibly fictitious) col-
lision takes place, and ik, the corresponding indices of collision partners. Then the
‘accumulated maximal norm of the relative velocities of collision partners up to
the moment oy, i.e.

Urmae = Uas(94) = max (Tmas(0), max v, — w3l ) (3.9)
is used in (3.7) and (3.8) instead of Upnez from (3.6).

‘Remark 3.4 Since the function f?(vi,vj) = g Upas does not usually satisfy (2.21) at the
beginning of the collision simulation step, there will be a certain additional error in this
procedure. This error will vanish when Upnaw increases and adapts to the system. On the
other hand, ﬁmm remembers all events from the past. Therefore it will be too large later
on and create redundant fictitious collisions. These effects will be illustrated by numerical
ezamples. ‘ ' ’

3.4. Global bounds for the relative velocity norm

In the cell D; we consider the local mean velocity

V=V(z)=;l%—2)>z v o (310)

T/ iixg€Dy



and the local temperature

> | lvzllz—IIV(Z)ll2 . (311)

1:z€D)

T=T()= gors 2 - v(z)||2—1[ 5

These qua.ntltles are preserved during the c0111s1on s1mu1at10n step.

- From the obvious 1nequa11t1es

llvi = vill <2 max ||v; — V(2)]

and ;
o = VN = |- 3= v3)] < mgelos =]
one obtains - - ;
max [o; = V(Z)|| < Upaa(2) < 2 max fui = V(2)][, (3.12)
where Upqg is defined in (3.6). The estimate (3.12) shows that the function
B(vi,v;) = ¢ Upas | o (3.13)
where ‘ o | |
Umas = Umao(2) = 2 max o = V(2)|, (3.14)

satisfies (2.21). By analogy with (3.5), Umas is to be replaced by Umaz in (3 7) and (3.8).
Thus, the time step is

2n ID[I
cB Ny (nl - ]—) Umam

#z) = #(z)" = (3.15)

The indices %, j are generated umformly according to (2.17). The probability of a fictitious
jump is

1-%. o | (3.16)

The distribution of e is (2.24).
Remark 3.5 The calculation of [)‘maz(z“) only takes linear effort in n;. Numerical tests

with this slight modification of the DSMC method will be presented.

3.5. Localized upper bounds for the relative velocity norm

The definitions of the local mean velocity (3.10) and the local temperature (3.11) imme-
diately imply that

: , 2
Ly w V@) o Loy w—V@E| _
" ;.z;eD, \/T(Z) 3 LRI T(z)
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It will be convenient to deal with the correspondingly normalized velocities in the cell D;.

Consider some values

0<by<...<bg, K>1, | (3.17)
’Where \ ' 7 k
llv: — V|| . | »
— < by Vi. 3.18
| VT b 319
Deﬁne( |

?('[)i):min{bk, k:l,...,K‘: ﬂyl\/_T“/” < k}

-and note that
llvi = V||
VT

The function b taking values by,...,bx provides a certain non-global majorant for the
normalized velocities. From (3.19) one obtains

<bo), Vi. | (3.19)

”'Ui _ ’Uj” S ﬁ I:”’Uz\}“TV” + ”'UJ\/_T_V":l < \/T [?)('u,) -+ I;(?JJ)] |

Thus, the function
B(vi,v;) = eg VT [b(w) + b(v;)] (3.20)

 satisfies (2.21).

The normalized velocities are divided into groups according to their individual maJo-
rants. Let

Le={i: bv;) =b} and y=#L, k=1,..,K, (3.21)

so that 7 is the number of normalized velocities Wlth the 1nd1v1dua1 maJorant by, . We

obtain from (2.16) and (3.20)

#(Z) = znllDzl #j:g;szDl cg VT [?)(vz) + ?)('Uj)] ,
:cB‘\/T2(nl 1) > (o) = : cB’\/TZ(m—~1)§:bk%;
2n | Dy iiaeD, 2n |Dy| =
The‘time step is - |
2n|Dy|

(2) #(2)' = on (= D) 2vVT S bee (3.22)
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Accordmg to (2. 17) (3. 20), the distribution of the mdlces K and 7 takes the form /
b('u,) + b(”a) 1 | b(v,) | 1 b('"J)
2 - ) beve 22— b 2 (- DT ey

This means that one of the indices is distributed (on the set {¢ : z; € D;}) according to
the probabilities

b(w;)
Zli{ =1 bk ’)’k

the other is d1str1buted uniformly. The order should be chosen with equal probability 2 5~
This last step can be omitted since the result of the j jump does not depend on the order
- Finally, we obtain a very simple procedure:

~e choose the index of a group k on {1,..., K} according to the distribution

by 5 ‘ bx __9%x vk

. 3.23)
Ep.—l bF '7# Eu—l bu 'Yu (

e choose the index 7 of the first collision partner uniformly among the 1nd1ces in the
group ;.

e choose the index j of the second collision ’pa.rtner uniformly on {j # 1 : z; € Di}.
The probability of a fictitious jump is, according to (2.18), (2.20), (3.20),

l|vi — |

VT [bo) + bws)]

(3.24)

The distribution of e is (2.24).

Remark 3.6 This modification of the DSMC method is ezpected to be more efficient than

‘the standard method if there are relatively few particles with large relative velocity while
the majority of particles has moderate relative velocities. In these cases the individual
magjorant (8.20) will be significantly better than the globa,l magorant (8.13). This effect
will be illustrated by numerical examples.

Remark 3.7 In our test calculations we define bg from the initial configuration of the
system as (cf. (3.18))

bK=ma.x{—”—1-)—t-\/TVu 1,...,n,.’n,~€Dz}, . (3.25)
and put
\ ; / .
bk:k—_%, E=1,.. K. (3.26)

The value of bx is increased (if necessary) during the simulation. -

Remark 3.8 The values of v, have to be updated after each collision. If some i equals
zero, then the corresponding group is simply not chosen (cf. (3.23)). '

12



4. Numerical experiments

4.1. Test example

The initial distribution of our test example is a weighted mixture of two Maxwellians,
namely

y 1 lo = VA 1 v - VAl
— g exp -2 o) —exp | P2l 4.1
300 = o e o7, ) P e\ e, ) Y
with |
a=0001, V;=(-999,0,0), V;=(1,0,0), Ty=1, Tp=1.

We consider the problem of calculating the time evolution of the second moments

ma ;(t) = L wv; f(t0)dv, 4,5 =1,2,3, (4.2)

and the third moments

()= [ wlbl fo)dv, i=1,23. @)

- The function f(¢,v) is the solution of the spatially homogeneous Boltzmann equation
with the initial condition f(0,v) = fo(v) . In addition, we calculate some shell-functionals,
which are of the form ' "

Sagi(t) = fn o(v, V,T) f(t,v)dv, f (4.4)

where

) . "u—Vl
(P(’U,‘/,T):{l, lf T ?[a7b))

0, otherwise.

- A particle system approximating the distribution (4.1) consists of many particles (~
99.9%) with small velocities (~ V;) and of a few particles (~ 0.1%) with large velocities -
(~ V1). The system relaxes to a Maxwellian with mean velocity V = 0 and temperature

T =334.
We apply three methods:

o the standard DSMC method with the accumulated maximal norm of the relative
velocities (described in § 3.3);

e the modification of the DSMC method with the adaptive global upper bound for
the norm of the relative velocities (described in § 3.4);

o the modification of the DSMC method with the localized upper bound for the norm
of the relative velocities (described in § 3.5).

13



4,2, Statistical notions

Fn'st we introduce some definitions and notatlons that are helpful for the understanding
of stochastic numerical procedures.

Functionals of the form R . : ,
F(t) = /R 0(v) f(t,v) dv. o (4.5)
are approximated by the random variable ‘ h
En(t) = Z p(vi(t)) | (4.6)
: ™ =1 .

where (vi(%),...,vn(t)) is the particle system. In order to estimate and to reduce the
random fluctuations of the estimator (4.6), a number N of independent ensembles of
partlcles is generated. The correspondlng values of the random variable are denoted by

SROREOR
The empirical mean value of the random va.ria.blé (4.6) | |
() = z:ls () (47)
N ;= -
is then used as’a.n approximation to the functional (4.5). The error of this approximation
is : ; ‘
" e M(t) = In{™"(8) - F ()]

and consists of the following two components.

The systematic error is the difference between the mathematical expecta,tion of the
random variable (4.6) and the exact value of the functional, i.e.

el (t) = BEM(t) - F(t).

sy.s

The statistical error is the difference betweeﬁ the empirical mean value and the
expected value of the random variable, i.e. ' :

() = 7{V(E) — BEM().

A confidence interval for the expectation of the random variable ¢ (¢) is obtained

as ’ | ,
| (n, Var £()(¢ n, Var £(m)(¢

= [vﬁ (1) — 2y VEEE iy g, [VEEZD (48)
- where ‘ ‘

Var ¢ (t) := B [6™(t) — Be™(t)]" = B [e™@)] ~ [Bem @) (4.9)
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is the variance of the random variable (4.6), and p € (0,1) is the confidence level.
This means that ,

Prob {B¢(t) ¢ I} = Prob {les?ai”(m > in)(t)} ~p.
Thus, the value o |
O PR ALL ) f\(,n)(t) | (4.10)

is a probabilistic upper bound for the statistical error.

In the calculations we use a confidence level of p = 0.999 and A, = 3.2. The variance
~ is approximated by the corresponding empirical value (cf. (4.9)), i.e.

Var f(ﬂ)(t) < ngn,N)(t) _ [Tlg‘n,y)(t)]z ’

where

e =5 0]

=1

is the empirical second moment« of the random variable (4.6).

4.3. Influence of the relative velocity bounds

First we study the relationship between the accumulated maximal norm of the relative
velocities Ummc (cf. (3.9)) and the adaptive upper bound for the norm of the relative
velocities Umaz (cf. (3.14)). The behaviour of these quantities is displayed in Figure 1
on different time intervals and for different particle numbers. The thick lines represent
Unnas , while the two thin lines represent the lower and upper bounds in (3 12) (the upper
bound being Umaw) On longer time intervals, the difference between Uz and Unas
becomes quite significant. In the starting 1nterva.1 where Upaz is less than the lower
bound in (3.12), a certain additional systematic error is expected for the method from
§ 3.3. However, this interval becomes smaller when the number of particles increases.

Next we study the influence of different relative velocity bounds on various numbers
of collisions. Figure 2 shows the behaviour of real and fictitious collisions for different
methods and the particle number n = 100000 .- The numbers of real collisions are (as they
should be) almost identical. The numbers of fictitious collisions are quite different. The
" lines (from above) correspond to the methods from § 3.3, § 34, and § 3.5 (with K =16
and K = 64 in (3.25), (3.26)).

More detailed information is contained in Tables 1 and 2. The last but one columns
in these tables show the number of collisions for different methods in relation to the
standard DSMC method. The last columns show the corresponding relative values for
the CPU time. Table 2 shows, for example, that the method from § 3.4 needs only half of
the collisions compared with the standard method. However, this advantage is cancelled
out by the additional effort needed for updating the bound for the norm of the relative

15



200041
1

1500} }
1000} ﬁ

. -,\ \,7'...
500 ™

2000}

1500

1000} " =~

500}

velocities. The method from § 3.5 with K = 64 gives a gain factor of about 16 as far
- as the number of collisions is concerned. Most of this advantage is lost due to the effort
needed for sorting the particles with respect to the local bounds. However, a gain factor
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Figure 1: Relative velocity bounds

of 2 remains. This factor becomes larger on longer time intervals.

Table 1
time n N | method real | fict. (%) | coll | CPU
0.04 | 100000 | 100 | § 3.3 32069 | 98.4 |1.00| 1.00
0.04 | 100000 | 100 | § 3.4 32377 | 98.6 1.15 | 1.10
0.04 | 100000 | 100 | § 3.5/K=4 | 32361 96.8 0.50 | 0.94
0.04 | 100000 | 100 | § 3.5/K=8 | 32159 | 93.7 |0.25| 0.85
0.04 | 100000 | 100 | § 3.5/K=64 | 32504 | 63.6 | 0.05| 0.80
‘ » ~ Table 2
|time| n | N [ method | real [fict. (%) | coll | CPU |
0.2 | 100000 | 100 | § 3.3 330123 | 96.8 | 1.00 | 1.00
0.2 | 100000 | 100 | § 3.4 333054 93.3 0.48 | 1.00
0.2 | 100000 | 100 | § 3.5/K=4 334633 93.3 0.48 | 0.82
0.2 | 100000 | 100 | § 3.5/K=16 | 332348 74.7 1 0.13 | 0.52
0.2 | 100000 | 100 | § 3.5/K=64 | 338708 |  46.7 0.06 | 0.48
0.2 | 100000 | 100 | § 3.5/K=256 | 336520 | 28.9 | 0.05| 1.31
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4.4, ‘Relaxa.tion of mdments

Here we study the behaviour of the moments (4.2), (4.3) as t — 0o, and the dependence
of this behaviour on the number of particles.

Figure 3 shows the dependence on 7 of the time evolution of the functional ri(¢)
calculated with the standard DSMC method from § 3.3. The systematic error is due to
the deviation of Uinqe from Umaz , which was investigated in the previous section. For small
n, the time steps are too large at the beginning. Thus, increasing curves are moved to the
right. The confidence intervals are displayed according to (4.8). The curve for n = 100000
is correct and identical to the curves for all other methods with » = 1000, 10000, 100000.

3. moment - 1. component

0
e I
e T
- e
-200000 | T
. it g
d/ d"‘ N
///
-400000 f
© -600000 |-
-800000
6] . —— .
-l 10 0.02 0.03 0.04

Figure 3: Method from § 3.3 with » = 1000, 10000, 100000 (from below)

Now we consider the particle number n = 100000, where the results for different
methods are identical. The time evolution of all moments (4.2), (4.3) is displayed in
Figure 4 on a small time interval. At the end of the time interval the exact stationary
values are already in the confidence interval, except for the first component of the third
moment 74(t) . Here the detailed picture shows that this is not yet the case. Figures 5
and 6 show the corresponding behaviour on a medium and a long time interval. Note
that only at a time of about 0.3 the functional r; (t) reaches its exact stationary value.

More details are contained in Tables 3-5. The values of the estimates (4.7) and
the corresponding statistical error bounds (4.10) are provided for the functional 7;(¢) (cf.
(4.3)) for different methods, time intervals, and particle numbers. In addition to what
has been already pointed out in connection with Figures 4-6, Table 5 shows that there
is still a systematic error in the stationary values for n=1000 and n=10000. The exact
value is only inside the confidence interval for n=100000.
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Table 3

Tgn)(()), Tgﬂ)(f /2), r&")(t) ’ conf. bounds

t n N lmethdd
0.04 | 1000 | 10000 | § 3.3 -999224, -265069, -93721 | 32471, 13807, 8195
0.04 | 1000 | 10000 | § 3.4 -1002827, -38731, -11339 | 31986, 1494, 455
0.04 [ 1000 | 10000 | § 3.5/K=4 | -998123, -38772, -11332 | 31454, 1458, 458
0.04 | 1000 | 10000 | § 3.5/K=8 | -1002008, -38971, -11341 | 32279, 1504, 469
0.04 | 1000 | 10000 | § 3.5/K=64 | -991583, -38382, -11162 | 31672, 1475, 457
0.04 | 10000 | 1000 | § 3.3 992973, -55523, -12096 | 31198, 6022, 789
0.04 | 10000 | 1000 | § 3.4 -1007682, -38474, -10422 | 32385, 1483, 445
0.04 | 10000 | 1000 | § 3.5/K=4 |-1005091, -38431, -10224 | 30879, 1446, 406
10.04 | 10000 | 1000 | § 3.5/K=8 | -1003321, -37871, -10461 | 30828, 1441, 419
0.04 | 10000 | 1000 | § 3.5/K=64 | -993212, -37593, -10216 | 30719, 1397, 408
0.04 [ 100000 | 100 | § 3.3 -1005132, -39108, -10460 | 32647, 1394, 394
0.04 | 100000 | 100 | § 3.4 -1005382, -38344, -10260 | 33376, 1462, 446
0.04 [ 100000 | 100 | §3.5/K=4 |-1006211, -38220, -10234 | 32276, 1481, 446
0.04 | 100000 | 100 | §3.5/K=8 | -995805, -37671, -10125 | 29834, 1291, 401
0.04 | 100000 | 100 | § 3.5/K=64 | -1010693, -38387, -10291 | 33515, 1446, 422
Table 4
4 L t| = | N | method | 7™(0), 7™ (2/2),7™(#) | conf. bounds
0.2] 10000 [ 1000 ] § 3.3 -998392, -1670, -316 | 30624, 104, 68
0.2 [ 10000 | 1000 | § 3.4 , -904193, -1549, -307 | 32003, 104, 67
0.2 | 10000 | 1000 | § 3.5/K=64 | -993032, -1585, -317 | 31313, 103, 66
0.2 [ 100000 | 100 | §3.3 -983604, -1431, -148 [ 30991, 101, 58
0.2 | 100000 | 100 | § 3.4 -995456, -1501, -178 | 34683, 114, 63
0.2 | 100000 | 100 | § 3.5/K=4 -1002561, -1487, -186 | 32766, 105, 61
0.2 [ 100000 | 100 | § 3.5/K=16 -991378, -1439, -157 | 30813, 102, 62
0.2 [ 100000 | 100 | § 3.5/K=64 | -1022255, -1538, -217 | 30124, 99, 55
0.2 [ 100000 | 100 | § 3.5/K=256 | -1011767, -1489, -207 | 29479, 94, 54
Table 5
I t n | N |method r$™(0), P (¢/2), r{(4) l conf. bounds
[ 1.0 [ 1000 | 10000 [ § 3.5/K=64 | -988719, -1677, -1665 | 32088, 143, 141
1.0 | 10000 | 1000 |§ 3.4 -1010812, -188, -189 | 31942, 70, 70
1.0 | 10000 | 1000 | § 3.5/K=64 | -987763, -153, -156 32014, 66, 68
1.0 [ 100000 | 100 [§ 3.4 -994765, -13, -17 34622, 60, 63 -
1.0 | 100000 | 100 | § 3.5/K=4 1010652, -48, -49 32017, 59, 59
1.0 [ 100000 | 100 | § 3.5/K=64 991310, -13, -19 34112, 60, 58
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4.5. Rvelawx}ation of shell functionals

Here we calculate the time evolution of functionals of the form (4.4). The behaviour
of these functionals illustrates the phenomenon of relaxation rather impressively. We

_consider the particle number n =
methods give the same results but are slower.
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Figure 7: Large shells on a medium time interval
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Figure 7 shows how the small number of particles with large velocities relaxes to the

Next we divide the inner shell into smaller subshells Flgure 8 shows that the cor-

inner shell [0,4].
responding functionals have not yet relaxed. Relaxation of those functionals only takes
place on the longer time interval in Figure 9. The constant lines represent the exact

sta,tlonary values, which were calculated analytically.
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5. Conclusions

The algorithms stu‘died in this paper contain three main components — the time steps,
the distribution of the collision partners, and the probability of fictitious collisions. The
first and third component are closely related to each other. If the time step is small then
there are many attempts to collide and the probability of fictitious collisions must be
large, since the number of real collisions should remain constant (see Figure 2). Thus, the
average size of the time step is well represented by the number of all (real and ﬁct1t1ous)
collisions (see Tables 1 and 2).

There is an interplay between the time steps and the dxstrlbutlon of the collision
partners. In the standard DSMC scheme from § 3.3 there are small time steps, but a
very simple distribution of the collision partners. In the modification from § 3.5 the time
steps are much larger. However, more effort has to be spent in order to generate the
distribution of the collision partners. In the modification from § 3.4 the time steps are
larger than in the standard method and the distribution of the collision pa.rtners is the
same. However, the calculation of the time steps is more expensive.

Using different modifications of the DSMC method, several effects were observed.
Adaptive bounds for the norm of the relative velocities (as in the method of § 3.4) lead
to a reduction of the systematic error, since they avoid the wrong time scale at the
beginning of the relaxation period (see Figure 3). Localized bounds for the norm of the
relative velocities (as in the method of § 3.5) lead to a significant reduction of the number
of fictitious collisions. Of course, the particular initial distribution (4.1) was chosen to
illustrate the inefficiency of the standard DSMC method with the accumulated maximal
relative velocity norm in certain situations.

Several other modifications of the DSMC method seem to be of interest. For example,
an adaptive value of bg (cf. (3.25)) in the method of § 3.5 can be considered. Com-
paring the time step (3.22) with (3.15) one notes that the factor my Uma,,. is replaced by
2VT XK by Takmg into account (3.17), (3.21), (3 25), and (3.14), one obtains that

2\/—Zbk’)’k<2\/—bKZ'Yk—2‘/__bKnl mam’nz

Thus the time step (3.22) is always larger than the time step (3.15) of the standard DSMC

method with the adaptive bound for the relative velocity norm. In the case K =1, one
obtains 26, /T = T:fmam and v; = n;. Thus, the time steps are equal. The indices 1,

are distributed uniformly. The probabilities of a fictitious jump are also the same (cf.

(3.16), (3.24)). Thus, the modification of the DSMC method from § 3.4 is a special case.

Another opportunity is to derive a method with a constant time step containing the local

temperature (3.11) instead of some bound for the relative velocity norm. This would

avoid the correspondlng systematic error and make the method more stable with respect

to small perturbations of the flow. Work on these modifications is in progress.

The approach developed in this paper opens a field for further investigations on the
'DSMC method. New modifications can be derived adapting the method to special appli-
cations.
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