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1. Introduction

Strongly disordered systems such as spin glasses represent some of the most interesting and

most di�cult problems of statistical mechanics. Amongst the most remarkable achievements of

theoretical physics in this �eld is the exact solution of some models of mean �eld type via the replica

trick and Parisi's replica symmetry breaking scheme (For an exposition see [MPV]; the application

to the Hop�eld model [Ho] was carried out in [AGS]). The replica trick is a formal tool that allows

to eliminate the di�culty of studying disordered systems by integrating out the randomness at the

expense of having to perform an analytic continuation of some function computable only on the

positive integers to the value zero1. Mathematically, this procedure is highly mysterious and has

so far resisted all attempts to be put on a solid basis. On the other hand, its apparent success

is a clear sign that something ought to be understood better in this method. An apparently less

mysterious approach that yields the same answer is the cavity method [MPV]. However, here too,

the derivation of the solutions involves a large number of intricate and unproven assumptions that

seem hard or impossible to justify in general.

However, there has been some distinct progress in understanding the approach of the cavity

method at least in simple cases where no breaking of the replica symmetry occurs. The �rst at-

tempts in this direction were made by Pastur and Shcherbina [PS] in the Sherrington-Kirkpatrick

model and Pastur, Shcherbina and Tirozzi [PST] in the Hop�eld model. Their results were con-

ditional: They assert to show that the replica symmetric solution, holds under certain unveri�ed

assumption, namely the vanishing of the so-called Edwards-Anderson parameter. A breakthrough

was achieved in a recent paper by Talagrand [T1] where he proved the validity of the replica sym-

metric solution in an explicit domain of the model parameters in the Hop�eld model. His approach

is purely by induction over the volume (i.e. the cavity method) and uses only some a priori es-

timates on the support properties of the distribution of the so-called overlap parameters as �rst

proven in [BGP1,BGP2] and in sharper form in [BG1].

Let us recall the de�nition of the Hop�eld model and some basic notations. Let SN � f�1; 1gN
denote the set of functions � : f1; : : : ; Ng ! f�1; 1g, and set S � f�1; 1gIN . We call � a spin

con�guration and denote by �i the value of � at i. Let (
;F ; IP ) be an abstract probability space

and let �
�
i , i; � 2 IN , denote a family of independent identically distributed random variables on

this space. For the purposes of this paper we will assume that IP [�
�
i = �1] = 1

2
. We will write

��[!] for the N -dimensional random vector whose i-th component is given by �
�
i [!] and call such

1 As a matter of fact, such an analytic continuation is not performed. What is done is much more subtle: The

function at integer values is represented as some integral suitable for evaluation by a saddle point method. Instead of

doing this, apparently irrelevant critical points are selected judiciously and the ensuing wrong value of the function

is then continued to the correct value at zero.
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a vector a `pattern'. On the other hand, we use the notation �i[!] for the M -dimensional vector

with the same components. When we write �[!] without indices, we frequently will consider it as

an M �N matrix and we write �t[!] for the transpose of this matrix. Thus, �t[!]�[!] is the M �M

matrix whose elements are
PN

i=1 �
�
i [!]�

�
i [!]. With this in mind we will use throughout the paper a

vector notation with (�; �) standing for the scalar product in whatever space the argument may lie.

E.g. the expression (y; �i) stands for
PM

�=1 �
�
i y�, etc.

We de�ne random maps m
�
N [!] : SN ! [�1; 1] through2

m
�
N [!](�) �

1

N

NX
i=1

�
�
i [!]�i (1:1)

Naturally, these maps `compare' the con�guration � globally to the random con�guration ��[!]. A

Hamiltonian is now de�ned as the simplest negative function of these variables, namely

HN [!](�) � �N

2

M(N)X
�=1

(m
�
N [!](�))

2

= �N

2
kmN [!](�)k22

(1:2)

where M(N) is some, generally increasing, function that crucially inuences the properties of the

model. k � k2 denotes the `2-norm in IRM , and the vector mN [!](�) is always understood to be

M(N)-dimensional.

Through this Hamiltonian we de�ne in a natural way �nite volume Gibbs measures on SN via

�N;�[!](�) � 1

ZN;�[!]
e��HN [!](�) (1:3)

and the induced distribution of the overlap parameters

QN;�[!] � �N;�[!] �mN [!]
�1 (1:4)

The normalizing factor ZN;� [!], given by

ZN;�[!] � 2�N
X
�2SN

e��HN [!](�) � IE�e
��HN [!](�) (1:5)

is called the partition function. We are interested in the large N behaviour of these measures.

In our previous work we have been mostly concerned with the limiting induced measures. In this

paper we return to the limiting behaviour of the Gibbs measures themselves, making use, however,

of the information obtained on the asymptotic properties of the induced measures.

2 We will make the dependence of random quantities on the random parameter ! explicit by an added [!]

whenever we want to stress it. Otherwise, we will frequently drop the reference to ! to simplify the notation.
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We pursue two objectives. Firstly, we give an alternative proof (whose outline was given

in [BG2]) of Talagrand's result (with possibly a slightly di�erent range of parameters) that, al-

though equally based on the cavity method, makes more extensive use of the properties of the

overlap-distribution that were proven in [BG1]. This allows, in our opinion, some considerable

simpli�cations. Secondly, we will elucidate some conceptual issues concerning the in�nite volume

Gibbs states in this model. Several delicacies in the question of convergence of �nite volume Gibbs

states (or local speci�cations) in highly disordered systems, and in particular spin glasses, were

pointed out repeatedly by Newman and Stein over the last years [NS1,NS2]. But only during

the last year did they propose the formalism of so-called \metastates" [NS3,NS4,N] that seems to

provide the appropriate framework to discuss these issues. In particular, we will show that in the

Hop�eld model, this formalism seems unavoidable for spelling out convergence results.

Let us formulate our main result in a slightly preliminary form (precise formulations require

some more discussion and notation and will be given in Section 5).

Denote by m�(�) the largest solution of the mean �eld equation m = tanh(�m) and by e� the

�-th unit vector of the canonical basis of IRM . For all (�; s) 2 f�1; 1g�f1; : : : ;Mg let B(�;s)
� � IRM

denote the ball of radius � centered at sm�e�. For any pair of indices (�; s) and any � > 0 we

de�ne the conditional measures

�
(�;s)
N;�;�[!](A) � �N;�[!](A j B(�;s)

� ); A 2 B(f�1; 1gN ) (1:6)

The so called \replica symmetric equations"3of [AGS] is the following system of equations in

three unknowns m1; r, and q, given by

m1 =

Z
dN (g) tanh(�(m1 +

p
�rg))

q =

Z
dN (g) tanh2(�(m1 +

p
�rg))

r =
q

(1� � + �q)2

(1:7)

With this notation we can state

Theorem 1.1: There exist �nite positive constats c; c0; c0 such that if 0 � � � c(m�(�))4 and

0 � � � c0��1, with limN"1M(N)=N = �, the following holds: Choose � such that c0 �
p
�

m�(�)
�

� � 1
2
m�(�). Then, for any �nite I � IN , and for any sI � f�1; 1gI ,

�
(�;s)
N;�;�(f�I = sIg)!

Y
i2I

e�si[m1�
1
i+gi

p
�r]

2 cos (� [m1�
1
i + gi

p
�r])

(1:8)

3 We cite these equations, (3.3-5) in [AGS] only for the case k = 1, where k is the number of the so-called

\condensed patterns". One could generalize our results presumably measures conditioned on balls around \mixed

states", i.e. the metastable states with more than one \condensed pattern", but we have not worked out the details.
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as N " 1, where the gi, i 2 I are independent Gaussian random variables with mean zero and

variance one that are independent of the random variables �1i , i 2 I. The convergence is understood

in law with respect to the distribution of the Gaussian variables gi.

This theorem should be juxtaposed to our second result:

Theorem 1.2: On the same set of parameters as in Theorem 1.1, the following is true with

probability one: For any �nite I � IN and for any x 2 IRI , there exist subsequences Nk[!] " 1
such that for any sI � f�1; 1gI , if � > 0,

lim
k"1

�
(�;s)

Nk[!];�;�
[!](f�I = sIg) =

Y
i2I

esixi

2 cosh(xi)
(1:9)

The above statements may look a little bit surprising and need clari�cation. This will be the

main purpose of Section 2, where we give a rather detailed discussion of the problem of convergence

and the notion of metastates with the particular issues in disordered mean �eld models in view. We

will also propose yet a di�erent notion of a state (let us call it \superstate"), that tries to capture the

asymptotic volume dependence of Gibbs states in the form of a continuous time measure valued

stochastic process. We also discuss the issue of the \boundary conditions" or rather \external

�elds", and the construction of conditional Gibbs measures in this context. This will hopefully

prepare the ground for the understanding of our results in the Hop�eld case.

The following two section collect technical preliminaries. Section 3 recalls some results on the

overlap distribution from [BG1-3] that will be crucially needed later. Section 4 states and proves a

version of the Brascamp-Lieb inequalities [BL] that is suitable for our situation.

Section 5 contains our central results. Here we construct explicitly the �nite dimensional

marginals of the Gibbs measures in �nite volume and study their behaviour in the in�nite volume

limit. The results will be stated in the language of metastates. In this section we assume the

convergence of certain thermodynamic functions which will be proven in Section 6. Modulo this,

this section contains the precise statements and proofs of Theorems 1.1 and 1.2.

In Section 6 we give a proof of the convergence of these quantities and we relate them to the

replica symmetric solution. This sections is largely based on the ideas of [PST] and [T1] and is

mainly added for the convenience of the reader.

Acknowledgements: We gratefully acknowledge helpful discussions on metastates with Ch. New-

man and Ch. K�ulske.
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2. Notions of convergence of random Gibbs measures.

In this section we make some remarks on the appropriate picture for the study of limiting

Gibbs measures for disordered systems, with particular regard to the situation in mean-�eld like

systems. Although some of the observations we will make here arose naturally from the properties

we discovered in the Hop�eld model, our understanding has been greatly enhanced by the recent

work of Newman and Stein [NS3,NS4,N] and their introduction of the concept of \metastates". We

refer the reader to their papers for more detail and further applications. Some examples can also

be found in [K]. Otherwise, we keep this section self-contained and geared for the situation we will

describe in the Hop�eld model, although part of the discussion is very general and not restricted

to mean �eld situations. For this reason we talk about �nite volume measures indexed by �nite

sets � rather then by the integer N .

Metastates. The basic objects of study are �nite volume Gibbs measures, ��;� (which for con-

venience we will always consider as measures on the in�nite product space S1). We denote by

(M1(S1);G) the measurable space of probability measures on S1 equipped with the sigma-algebra

G generated by the open sets with respect to the weak topology onM1(S1)4. We will always regard

Gibbs measures as random variables on the underlying probability space (
;F ; IP ) with values in

the space M1(S1), i.e. as measurable maps 
!M1(S1).

We are in principle interested in considering weak limits of these measures as � " 1. There

are essentially three things that may happen:

(1) Almost sure convergence: For IP -almost all !,

��[!]! �1[!] (2:1)

where �1[!] may or may not depend on ! (in general it will).

(2) Convergence in law:

��
D! �1 (2:2)

(3) Almost sure convergence along random subsequences: There exist (at least for almost all !)

subsequences �i[!] " 1 such that

��i[!][!]! �1;f�i[!]g[!] (2:3)

In systems with compact single site state space, (3) holds always, and there are models with

non-compact state space where it holds with the \almost sure" provision. However, this contains

4 Note that a basis of open sets is given by sets of the forms Nf1;:::;fk;�
(�)�f�0j81�i�k j�(fi)��0(fi)j<�g, where

fi are continuous functions on S1; indeed, it is enough to consider cylinder functions.
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little information, if the subsequences along which convergence holds are only known implicitly.

In particular, it gives no information on how, for any given large � the measure �� \looks like

approximately". In contrast, if (i) holds, we are in a very nice situation, as for any large enough �

and for (almost) any realization of the disorder, the measure ��[!] is well approximated by �1[!].

Thus, the situation would be essentially like in an ordered system (the \almost sure" excepted). It

seems to us that the common feeling of most people working in the �eld of disordered systems was

that this could be arranged by putting suitable boundary conditions or external �elds, to \extract

pure states". Newman and Stein [NS1] were, to our knowledge, the �rst to point to di�culties

with this point of view. In fact, there is no reason why we should ever be, or be able to put us,

in a situation where (1) holds, and this possibility should be considered as perfectly exceptional.

With (3) uninteresting and (1) unlikely, we are left with (2). By compactness, (2) holds always

at least for (non-random!) subsequences �n, and even convergence without subsequences can be

expected rather commonly. On the other hand, (2) gives us very reasonable information on our

system, telling us what is the chance that our measure �� for large � will look like some measure

�1. This is much more than what (3) tells us, and baring the case where (1) holds, all we may

reasonably expect to know.

We should thus investigate the case (2) more closely. As proposed actually �rst by Aizenman

and Wehr [AW], it is most natural to consider an object K� de�ned as a measure on the product

space 

M1(S1) (equipped with the product topology and the weak topology, respectively), such

that its marginal distribution on 
 is IP while the conditional measure, ��(�)[!], onM1(S1) given

F5is the Dirac measure on ��[!]; the marginal on M1(S1) is then of course the law of ��. The

advantage of this construction over simply regarding the law of �� lies in the fact that we can in

this way extract more information by conditioning, as we shall explain. Note that by compactness

K� converges at least along (non-random!) subsequences, and we may assume that it actually

converges to some measure K. Conditioning this measure on F we obtain a random measure � on

M1(S1) (the regular conditional distribution of K on G given F). See e.g. [Ka]). In a slightly

abusive, but rather obvious notation: K(�jF)[!] = �(�)[!]
 �!(�).

Now the case (1) above corresponds to the situation where the conditional probability on G
given F is degenerate, i.e.

�(�)[!] = ��1[!](�); a.s. (2:4)

Thus we see that in general even �(�)[!] is a nontrivial measure on the space of in�nite volume

Gibbs measures, this latter object being called the (Aizenman-Wehr) metastate6 . What happens is

5 We write shorthand F for M1(S1)
F whenever appropriate.
6 It may be interesting to recall the reasons that led Aizenman and Wehr to this construction. In their analysis

of the e�ect of quenched disorder on phase transition they required the existence of \translation-covariant" states.
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that the asymptotic properties of the Gibbs measures as the volume tends to in�nity depend in a

intrinsic way on the tail sigma �eld of the disorder variables, and even after all random variables are

�xed, some \new" randomness appears that allows only probabilistic statements on the asymptotic

Gibbs state.

A toy example: It may be useful to illustrate the passage from convergence in law to the Aizenman-

Wehr metastate in a more familiar context, namely the ordinary central limit theorem. Let

(
;F ; IP ) be a probability space, and let fXigi2IN be a family of i.i.d. centered random variables

with variance one; let Fn be the sigma algebra generated by X1; : : : ;Xn and let F � limn"1Fn.
De�ne the real valued random variable Gn � 1p

n

Pn
i=1Xi. We may de�ne the joint law Kn of Gn

and the Xi as a probability measure on IR

. Clearly, this measure converges to some measure K

whose marginal on IR will be the standard normal distribution. However, we can say more, namely

Toy-Lemma 2.1 In the example described above,

�(�)[!] = N (0; 1); IP -a.s. (2:5)

Proof: We need to understand what (2.5) means. Let f be a continuous function on IR. We claim

that for almost all !, Z
f(x)�(dx)[!] =

Z
e�x

2=2

p
2�

f(x)dx (2:6)

De�ne the martingale hn �
R
f(x)K(dx; d!jFn). We may write

hn = lim
N"1

IEXn+1
: : : IEXN

f

 
1p
N

NX
i=1

Xi

!

= lim
N"1

IEXn+1
: : : IEXN

f

 
1p
N�n

NX
i=n+1

Xi

!
; a.s.

=

Z
e�x

2=2

p
2�

f(x)dx;

(2:7)

where we used that for �xed N , 1p
N

Pn
i=1Xi converges to zero as N " 1 almost surely. Thus,

for any continuous f , hn is almost surely constant, while limn"1 hn =
R
f(x)K(dx; d!jF), by the

martingale convergence theorem. This proves the lemma. }

Such object could be constructed as weak limits of �nite volume states with e.g. periodic or translation invariant

boundary conditions, provided the corresponding sequences converge almost surely (and not via subsequences with

possibly di�erent limits). They noted that in a general disordered system this may not be true. The metastate

provided a way out of this di�culty.
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The CLT example may inspire the question whether one might not be able to retain more

information on the convergence of the random Gibbs state than is kept in the Aizenman-Wehr

metastate. The metastate tells us about the probability distribution of the limiting measure, but

we have thrown out all information on how for a given !, the �nite volume measures behave as the

volume increases.

Newman and Stein [NS3,NS4] have introduced a possibly more profound concept of the em-

pirical metastate which captures more precisely the asymptotic volume dependence of the Gibbs

states in the in�nite volume limit. We will briey discuss this object and elucidate its meaning in

the above CLT context. Let �n be an increasing and absorbing sequence of �nite volumes. De�ne

the random empirical measures �emN (�)[!] on (M1(S1)) by

�emN (�)[!] � 1

N

NX
n=1

���n [!] (2:8)

In [NS4] it was proven that for su�ciently sparse sequences �n and subsequences Ni, it is true that

almost surely

lim
i"1

�emNi
(�)[!] = �(�)[!] (2:9)

Newman and Stein conjectured that in many situations, the use of sparse subsequences would not be

necessary to achieve the above convergence. However, K�ulske [K] has exhibited some simple mean

�eld examples where almost sure convergence only holds for very sparse (exponentially spaced)

subsequences). He also showed that for more slowly growing sequences convergence in law can be

proven in these cases.

Toy example revisited: All this is easily understood in our example. We set Gn � 1p
n

Pn
i=1Xi.

Then the empirical metastate corresponds to

�emN (�)[!] � 1

N

NX
n=1

�Gn[!] (2:10)

We will prove that the following Lemma holds:

Toy-Lemma 2.2 Let Gn and �emN (�)[!] be de�ned above. Let Bt, t 2 [0; 1] denote a standard

Brownian motion. Then

(i) The random measures �emN converge in law to the measure �em =
R 1
0
dt�t�1=2Bt

(ii)

IE [�em(�)jF ] = N (0; 1) (2:11)
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Proof: Our main objective is to prove (i). We will see that quite clearly, this result relates

to Lemma 2.1 as the CLT to the Invariance Principle, and indeed, its proof is essentially an

immediate consequence of Donsker's Theorem. Donsker's theorem (see [HH] for a formulation in

more generality than needed in this chapter) asserts the following: Let �n(t) denote the continuous

function on [0; 1] that for t = k=n is given by

�n(k=n) � 1p
n

kX
i=1

Xi (2:12)

and that interpolates linearly between these values for all other points t. Then, �n(t) converges

in distribution to standard Brownian motion in the sense that for any continuous functional F :

C([0; 1])! IR it is true that F (�n) converges in law to F (B). From here the proof of (i) is obvious.

We have to proof that for any bounded continuous function f ,

1

N

NX
n=1

�Gn[!](f) �
1

N

NX
n=1

f
�
�n(n=N)=

p
n=N

�
!

Z 1

0

dtf(Bt=
p
t) �

Z 1

0

dt�Bt=
p
t(f)

(2:13)

To see this, simply de�ne the continuous functionals F and FN by

F (�) �
Z 1

0

dtf(�(t)=
p
t) (2:14)

and

FN (�) �
1

N

NX
n=1

f(�(n=N)=
p
n=N) (2:15)

We have to show that in distribution F (B)� FN (�N ) converges to zero. But

F (B)� FN (�N ) = F (B)� F (�N ) + F (�N )� FN (�N ) (2:16)

By the invariance principle, F (B)�F (�N ) converges to zero in distribution while F (�N )�FN (�N )

converges to zero since FN is the Riemann sum approximation to F .

To see that (ii) holds, note �rst that as in the CLT, the Brownian motion Bt is measurable

with respect to the tail sigma-algebra of the Xi. Thus

IE [�emjF ] = N (0; 1) (2:17)

}

Remark: It is easily seen that for su�ciently sparse subsequences ni (e.g. ni = i!),

1

N

NX
i=1

�Gni
! N (0; 1); a.s (2:18)
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but the weak convergence result contains in a way more information.

Superstates: In our example we have seen that the empirical metastate converges in distribution

to the empirical measure of the stochastic process Bt=
p
t. It appears natural to think that the

construction of the corresponding continuous time stochastic process itself is actually the right way

to look at the problem also in the context of random Gibbs measures, and that the the empirical

metastate could converge (in law) to the empirical measure of this process. To do this we propose

the following, yet somewhat tentative construction.

We �x again a sequence of �nite volumes �n
7. We de�ne for t 2 [0; 1]

�t�n [!] � (t� [tn]=n)��[tn]+1
[!] + (1� t+ [tn]=n)��[tn]

[!] (2:19)

(where as usual [x] denote the smallest integer less than or equal to x). Clearly this object is

a continuous time stochastic process whose state space is M1(S). We may try to construct the

limiting process

�t[!] � lim
n"1

�t�n [!] (2:20)

where the limit again can in general be expected only in distribution. Obviously, in our CLT ex-

ample, this is precisely how we construct the Brownian motion in the invariance principle. We can

now of course repeat the construction of the Aizenman-Wehr metastate on the level of processes.

To do this, one must make some choices for the topological space one wants to work in. A nat-

ural possibility is to consider the space C ([0; 1];M1(S1)) of continuous measure valued function

equipped with the uniform weak topology8, i.e. we say that a sequence of its elements �i converges

to �, if and only if, for all continuous functions f : S1 ! IR,

lim
i!1

sup
t2[0;1]

j�i;t(f)� �t(f)j = 0 (2:21)

Since the weak topology is metrizable, so is the uniform weak topology and C ([0; 1];M1(S1)) be-

comes a metric space so we may de�ne the corresponding sigma-algebra generated by the open sets.

Taking the tensor product with our old 
, we can thus introduce the setM1 (C ([0; 1];M1(S1))

)

of probability measures on this space tensored with 
. Then we de�ne the elements

Kn 2M1 (C ([0; 1];M1(S1))
 
)

7 The outcome of our construction will depend on the choice of this sequence. Our philosophy here would be to

choose a natural sequence of volumes for the problem at hand. In mean �eld examples this would be �n=f1;:::;ng,

on a lattice one might choose cubes of sidelength n.
8 Another possibility would be a measure valued version of the space D([0;1];M1(S)) of measure valued C�adl�ag

functions. The choice depends essentially on the properties we expect from the limiting process (i.e. continuous

sample paths or not).
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whose marginals on 
 are IP and whose conditional measure on C ([0; 1];M1(S1)), given F are

the Dirac measure on the measure valued function ��[tn]
[!], t 2 [0; 1]. Convergence, and even the

existence of limit points for this sequence of measures is now no longer a trivial matter. The problem

of the existence of limit points can be circumvented by using a weaker notion of convergence, e.g.

that of the convergence of any �nite dimensional marginal. Otherwise, some tightness condition is

needed [HH], e.g. we must check that for any continuous function f , supjs�tj�� j�t�n(f)� �s�n(f)j
converges to zero in probability, uniformly in N , as � # 0.9

We can always hope that the limit as n goes to in�nity of Kn exists. If the limit, K exists, we can

again consider its conditional distribution given F , and the resulting object is the functional analog

of the Aizenman-Wehr metastate. (We feel tempted to call this object the \superstate". Note that

the marginal distribution of the superstate \at time t = 1" is the Aizenman-Wehr metastate, and

the law of the empirical distribution of the underlying process is the empirical metastate). The

\superstate" contains an enormous amount of information on the asymptotic volume dependence

of the random Gibbs measures; on the other hand, its construction in any explicit form is generally

hardly feasible.

Finally, we want to stress that the superstate will normally depend on the choice of the basic

sequences �n used in its construction. This feature is already present in the empirical metastate.

In particular, sequences growing extremely fast will give di�erent results than slowly increasing

sequences. On the other hand, the very precise choice of the sequences should not be important.

A natural choice would appear to us sequences of cubes of sidelength n, or, in mean �eld models,

simply the sequence of volumes of size n.

Boundary conditions, external �elds, conditioning. In the discussion of Newman and Stein,

metastates are usually constructed with simple boundary conditions such as periodic or \free" ones.

They emphasize the feature of the \selection of the states" by the disorder in a given volume without

any bias through boundary conditions or symmetry breaking �elds. Our point of view is somewhat

di�erent in this respect in that we think that the idea to apply special boundary conditions or, in

mean �eld models, symmetry breaking terms, to improve convergence properties, is still to some

extend useful, the aim ideally being to achieve the situation (1). Our only restriction in this is

really that our procedure shall have some predictive power, that is, it should give information of

the approximate form of a �nite volume Gibbs state. This excludes any construction involving

subsequences via compactness arguments. We thus are interested to know to what extend it is

possible to reduce the \choice" of available states for the randomness to select from, to smaller

9 There are pathological examples in which we would not expect such a result to be true. An example is the

\highly disordered spin glass model" of Newman and Stein [NS5]. Of course, tightness may also be destroyed by

choosing very rapidly growing sequences of volumes �n.
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subsets and to classify the minimal possible subsets (which then somehow play the rôle of extremal

states). In fact, in the examples considered in [K] it would be possible to reduce the size of such

subsets to one, while in the example of the present paper, we shall see that this is impossible. We

have to discuss this point carefully.

While in short range lattice models the DLR construction gives a clear framework how the

class of in�nite volume Gibbs measures is to be de�ned, in mean �eld models this situation is

somewhat ambiguous and needs discussion.

If the in�nite volume Gibbs measure is unique (for given !), quasi by de�nition, (1) must hold.

So our problems arise from non-uniqueness. Hence the following recipe: modify �� in such a way

that uniqueness holds, while otherwise perturbing it in a minimal way. Two procedures suggest

themselves:

(i) Tilting, and

(ii) Conditioning

Tilting consists in the addition of a symmetry breaking term to the Hamiltonian whose strength

is taken to zero. Mostly, this term is taken linear so that it has the natural interpretation of a

magnetic �eld. More precisely, de�ne

�
fhg
�;� [!](�) �

��[!]
�
� e���

P
i2�

hi�i
�

��[!]
�
e
���
P

i2�
hi�i

� (2:22)

Here hi is some sequence of numbers that in general will have to be allowed to depend on ! if

anything is to be gained. One may also allow them to depend on � explicitly, if so desired. From

a physical point of view we might wish to add further conditions, like some locality of the !-

dependence; in principle there should be a way of writing them down in some explicit way. We

should stress that tilting by linear functions is not always satisfactory, as some states that one

might wish to obtain are lost; an example is the generalized Curie-Weiss model with Hamiltonian

HN (�) = �N
4
[mN (�)]

4 at the critical point. There, the free energy has three degenerate absolute

minima at �m�; 0, and +m�, and while we might want to think of tree coexisting phases, only the

measures centered at �m� can be extracted by the above method. Of course this can be remedied

by allowing arbitrary perturbation h(m) with the only condition that khk1 tends to zero at the

end.

By conditioning we mean always conditioning the macroscopic variables to be in some set

A. This appears natural since, in lattice models, extremal measures can always be extracted

from arbitrary DLR measures by conditioning on events in the tail sigma �elds; the macroscopic

variables are measurable with respect to the tail sigma �elds. Of course only conditioning on

12



events that do not have too small probability will be reasonable. Without going into too much of

a motivating discussion, we will adopt the following conventions. Let A be an event in the sigma

algebra generated by the macroscopic function. Put

f�;�(A) = � 1

�j�j ln��;�[!](A) (2:23)

We call A admissible for conditioning if and only if

lim
j�j"1

f�;�[!](A) = 0 (2:24)

We call A minimal if it cannot be decomposed into two admissible subsets. In analogy with (2.22)

we then de�ne

�A�;� [!](�) � ��;�[!] (�jA) (2:25)

We de�ne the set of all limiting Gibbs measures to be the set of limit points of measures �A�;� with

admissible sets A. Choosing A minimal, we improve our chances of obtaining convergent sequences

and the resulting limits are serious candidates for extremal limiting Gibbs measures, but we stress

that this is not guaranteed to succeed, as will become manifest in our examples. This will not mean

that adding such conditioning is not going to be useful. It is in fact, as it will reduce the disorder

in the metastate and may in general allow to construct various di�erent metastates in the case of

phase transitions. The point to be understood here is that within the general framework outlined

above, we should consider two di�erent notions of uniqueness:

(a) Strong uniqueness meaning that for almost all ! there is only one limit point �1[!], and

(b) Weak uniqueness10 meaning that there is a unique metastate, in the sense that for any choice

of A, the metastate constructed taking the in�nite volume limit with the measures �A�;� is the

same.

In fact, it may happen that the addition of a symmetry breaking term or conditioning does

not lead to strong uniqueness. Rather, what may be true is that such a �eld selects a subset of the

states, but to which of them the state at given volume resembles can depend on the volume in a

complicated way.

If weak uniqueness does not hold, one has a non-trivial set of metastates.

It is quite clear that a su�ciently general tilting approach is equivalent to the conditioning

approach; we prefer for technical reasons to use the conditioning in the present paper. We also

note that by dropping condition (2.24) one can enlarge the class of limiting measures obtainable

to include metastable states, which in many applications, in particular in the context of dynamics,

are also relevant.

10 Maybe the notion of meta-uniqueness would be more appropriate
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3. Properties of the induced measures.

In this section we collect a number of results on the distribution of the overlap parameters in

the Hop�eld model that were obtained in some of our previous papers [BG1,BG2,BG3]. We cite

these results mostly from [BG3] where they were stated in the most suitable form for our present

purposes and we refer the reader to that paper for the proofs.

We recall some notation. Let m�(�) be the largest solution of the mean �eld equation m =

tanh(�m). Note that m�(�) is strictly positive for all � > 1, lim�"1m�(�) = 1, lim�#1
(m�(�))2

3(��1) = 1

and m�(�) = 0 if � � 1. Denoting by e� the �-th unit vector of the canonical basis of IRM we set,

for all (�; s) 2 f�1; 1g � f1; : : : ;M(N)g,

m(�;s) � sm�(�)e�; (3:1)

and for any � > 0 we de�ne the balls

B(�;s)
� �

n
x 2 IRM

��kx�m(�;s)k2 � �
o

(3:2)

For any pair of indices (�; s) and any � > 0 we de�ne the conditional measures

�
(�;s)
N;�;�[!](A) � �N;�[!](A j B(�;s)

� ); A 2 B(f�1; 1gN ) (3:3)

and the corresponding induced measures

Q(�;s)
N;�;�[!](A) � QN;� [!](A j B(�;s)

� ); A 2 B(IRM(N)) (3:4)

The point here is that for � � c
p
�

m�(�)
, the sets B

(�;s)
� are admissible in the sense of the last section.

It will be extremely useful to introduce the Hubbard-Stratonovich transformed measureseQN;�[!] which are nothing but the convolutions of the induced measures with a Gaussian mea-

sure of mean zero and variance 1=�N , i.e.

eQN;�[!] � QN;�[!] ?N (0;
1I

�N
) (3:5)

We recall from [BGP1] that eQN;� [!] is absolutely continuous w.r.t. Lebesgue measure on IRM with

density given by eQN;� [!](d
Mx)

dMx
=

e��N�N;�[!](x)

ZN;�[!]
(3:6)

where

�N;�[!](x) � kxk22
2

� 1

�N

NX
i=1

ln cosh(�(�i; x)) (3:7)
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Similarly we de�ne the conditional Hubbard-Stratonovich transformed measures

eQ(�;s)
N;�;�[!](A) � eQN;� [!](A j B(�;s)

� ); A 2 B(IRM(N)) (3:8)

We will need to consider the Laplace transforms of these measures which we will denote by10

L(�;s)N;�;�[!](t) �
Z

e(t;x)dQ(�;s)
N;�;�[!](x) ; t 2 IRM(N) (3:9)

and eL(�;s)N;�;�[!](t) �
Z

e(t;x)d eQ(�;s)
N;�;�[!](x) ; t 2 IRM(N) (3:10)

The following is a simple adaptation of Proposition 2.1 of [BG3] to these notations.

Proposition 3.1: Assume that � > 1. There exist �nite positive constants c0; ~c � ~c(�); �c � �c(�)

such that, with probability one, for all but a �nite number of indices N , if � satis�es

1

2
m� > � > c

p
�

m�(�)
(3:11)

then, for all t with
ktk2p
N

<1,

i)

L(�;s)�;N;�[!](t)
�
1� e�~cM

� � e�
1

2N�
ktk22 eL(�;s)�;N;�[!](t) � e�~cM + L(�;s)�;N;�(t)

�
1 + e�~cM

�
(3:12)

ii) for any �; �� satisfying (3.11)

eL(�;s)�;N;��[!](t)
�
1� e��cM

� � eL(�;s)�;N;�[!](t) � e��cM + eL(�;s)�;N;��[!](t)
�
1 + e��cM

�
(3:13)

iii) for any �; �� satisfying (3.11)�����Z dQ(�;s)
N;�;�[!](m)m�

Z
d eQ(�;s)

N;�;��[!](z)z ; t

����� � ktk2e��cM (3:14)

A closely related result that we will need is also an adaptation of estimates from [BG3], i.e. it

is obtained combining Lemmata 3.2 and 3.4 of that paper.

Lemma 3.2: There exists a > 0, such that for all � > 1 and
p
� < a(m

�)2, if c0
p
�

m� <

� < m�=
p
2 then, with probability one, for all but a �nite number of indices N , for all � 2

f1; : : : ;M(N)g, s 2 f�1; 1g, for all b > 0 such that �+ b <
p
2m�,

1 �
Q�;N

�
B
(�;s)
�+b

�
Q�;N

�
B
(�;s)
�

� � 1 + e�c2�M (3:15)

10 This notation is slightly di�erent from the one used in [BG3].

15



where 0 < c2 <1 is a numerical constant.

We �nally recall our result on local convexity of the function �.

Theorem 3.3: Assume that 1 < � <1. If the parameters �; �; � are such that for � > 0,

inf
�

�
�(1� tanh2(�m�(1� �)))(1 + 3

p
�)

+ 2� tanh2(�m�(1� �))�(�; �m�=�)
�
� 1� �

(3:16)

Then with probability one for all but a �nite number of indices N , �N;�[!](m
�e1 + v) is a twice

di�erentiable and strictly convex function of v on the set fv : kvk2 � �g, and

�min

�r2�N;�[!](m
�e1 + v)

�
> � (3:17)

on this set.

Remark: This theorem was �rst obtained in [BG1], the above form is cited and proven in [BG2].

With � chosen as � = c
p
�

m� , the condition (3.16) means (i) For � close to 1:
p
�

(m�)2
small and, (ii)

For � large: � � c��1. The condition on � for large � seems unsatisfactory, but one may easily

convince oneself that it cannot be substantially improved.
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4. Brascamp-Lieb inequalities.

A basic tool of our analysis are the so-called Brascamp-Lieb inequalities [BL]. In fact, we need

such inequalities in a slightly di�erent setting than they are presented in the literature, namely for

measures with bounded support on some domain D � IRM . Our derivation follows the one given

in [H] (see also [HS]), and is in this context almost obvious.

Let D � IRM be a bounded connected domain. Let V 2 C2(D) be a twice continuously

di�erentiable function on D, let r2V denote its Hessian matrix and assume that, for all x 2 D,

r2V (x) � c > 0 (where we say that a matrix A > c, if and only if for all v 2 RM , (v;Av) � c(v; v)).

We de�ne the probability measure � on (D;B(D)) by

�(dx) � e�NV (x)dMxR
D
e�NV (x)dMx

(4:1)

Our central result is

Theorem 4.1: Let � the probability measure de�ned above. Assume that f; g 2 C1(D), and

assume that (w.r.g.)
R
D
d�(x)g(x) =

R
D
d�(x)f(x) = 0. Then����Z

D

d�(x)f(x)g(x)

���� � 1

cN

Z
D

d�(x) krf(x)k2krg(x)k2

+
1

cN

R
@D
jg(x)j krf(x)k2 e�NV (x)dM�1xR

D
e�NV (x)dMx

(4:2)

where dM�1x is the Lebesgue measure on @D.

Proof: We consider the Hilbert space L2(D; IRM ; �) of RM valued functions on D with scalar

product hF;Gi � R
D
d�(x)(F (x); G(x)). Let r be the gradient operator on D de�ned with a

domain of all bounded C1-function that vanish on @D. Let r� denote its adjoint. Note that

r� = �eNV (x)re�NV (x) = �r+N(rV (x)). One easily veri�es by partial integration that on this

domain the operator rr� � reNV (x)re�NV (x) = r�r +Nr2V (x) is symmetric and r�r � 0,

so that by our hypothesis, rr� � cN > 0. As a consequence, rr� has a self-adjoint extension

whose inverse (rr�)�1 exists on all L2(D; IRM ; �) and is bounded in norm by (cN)�1.

As a consequence of the above, for any f 2 C1(D), we can uniquely solve the di�erential

equation

rr�ru = rf (4:3)

for ru. Now note that (4.3) implies that r�ru = f + k, where k is a constant11. Hence for real

11 Observe that this is only true because D is connected. For D consisting of several connected components the

theorem is obviously false.
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valued f and g as in the statement of the theorem,Z
D

d�(x) (rg(x);ru(x)) =
Z
D

d�(x)eNV (x) div
�
e�NV (x)gru(x)

�
+

Z
D

d�(x)g(x)r�ru(x)

=
1

Z

Z
D

dMx div
�
e�NV (x)gru(x)

�
+

Z
D

d�(x)g(x)f(x)

(4:4)

where Z � R
D
dMx e�NV (x). Therefore, taking into account that ru = (rr�)�1rf ,����Z

D

d�(x)g(x)f(x)

���� � ����Z
D

d�(x)
�rg(x); (rr�)�1rf(x)�����

+
1

Z

����Z
D

dMx div
�
e�NV (x)gru(x)

�����
� 1

cN

Z
D

d�(x)krg(x)k2krf(x)k2

+
1

cNZ

Z
@D

jg(x)j krf(x)k2 e�NV (x)dM�1x

(4:5)

Note that in second term we used the Gauss-Green formula to convert the integral over a divergence

into a surface integral. This concludes the proof.}

Remark: As is obvious from the proof above and as was pointed out in [H], one can replace

the bound on the lowest eigenvalue of the Hessian of V by a bound on the lowest eigenvalue of

the operator rr�. So far we have not seen how to get a better bound on this eigenvalue in our

situation, but it may well be that this observation can be a clue to an improvement of our results.

The typical situation where we want to use Theorem 4.1 is the following: Suppose we are

given a measure like (4.1) but not on D, but on some bigger domain. We may be able to establish

the lower bound on r2V not everywhere, but only on the smaller domain D, but such that the

measure is essentially concentrated on D anyhow. It is then likely that we can also estimate away

the boundary term in (4.2), either because V (x) will be large on @D, or because @D will be very

small (or both). We then have essentially the Brascamp-Lieb inequalities at our disposal.

We mention the following corollary which shows that the Brascamp-Lieb inequalities give rise

to concentration inequalities under certain conditions.

Corollary 4.2: Let � be as in Lemma 4.3. Assume that f 2 C1(D) and that moreover

Vt(x) � V (x)� tf(x)=N for t 2 [0; 1] is still strictly convex and �min(r2Vt) � c0 > 0. Then

0 � ln

Z
D

d�(x)ef(x) �
Z
D

d�(x)f(x) � 1

2c0N
sup
t2[0;1]

Z
D

d�t(x)krfk22

+ sup
t2[0;1]

1

c0N

R
@D
jg(x)j krf(x)k2 e�NVt(x)dM�1xR

D
e�NVt(x)dMx

(4:6)

where �t is the corresponding measure with V replaced by Vt.
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Proof: Note that

ln IEV e
f = IEV f +

Z 1

0

ds

Z s

0

ds0
IEV

�
es
0f
�
f � IEV e

s0ff

IEV es
0f

�2�
IEV es

0f

= IEV f +

Z 1

0

ds

Z s

0

ds0IEVs0

�
f � IEVs0

f
�2 (4:7)

where by assumption Vs(x) has the same properties as V itself. Thus using (4.2) gives (4.7).}

Remark: We would like to note that a concentration estimate like Corollary 4.2 can also be derived

under slightly di�erent hypothesis on f using logarithmic Sobolev inequalities (see [Le]) which hold

under the same hypothesis as Theorem 4.1, and which in fact can be derived as a special case using

f = h2 and g = lnh2 in Theorem 4.1.

In the situations where we will apply the Brascamp-Lieb inequalities, the correction terms due

to the �nite domain D will be totally irrelevant. This follows from the following simple observation.

Lemma 4.3: Let B� denote the ball of radius � centered at the origin. Assume that for all

x 2 D, d � r2V (x) � c > 0. If x� denotes the unique minimum of V , assume that kx�k2 � �=2.

Then there exists a constant K <1 (depending only on c and d) such that if � � K
p
M=N , then

for N large enough R
@D

e�NV (x)dM�1xR
D
e�NV (x)dMx

� e��
2N=K (4:8)

The proof of this lemma is elementary and will be left to the reader.
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5. The convergence of the Gibbs measures.

After these preliminaries we can now come to the central part of the paper, namely the study

of the marginal distributions of the Gibbs measures �
(�;s)
N;�;�. Without loss of generality it su�ces to

consider the case (�; s) = (1; 1), of course. Let us �x I � IN arbitrary but �nite. We assume that

� � I, and for notational simplicity we put j�j = N + jIj. We are interested in the probabilities

�
(1;1)
�;�;�[!] (f�I = sIg) �

IE��nI e
1
2
�j�jkm�(sI ;��nI )k2

21Ifm�(sI ;��nI )2B
(1;1)
� g

IE�I IE��nI e
1
2
�j�jkm�(�I ;��nI )k2

21Ifm�(sI ;��nI )2B
(1;1)
� g

(5:1)

Note that kmI(�)k2 �
p
M . Now we can write

m�(�) =
N

j�jm�nI(�) +
jIj
j�jmI(�) (5:2)

Then
1Ifm�(sI ;��nI )2B

(1;1)
� g � 1Ifm�nI (�)2B

(1;1)
�+

g

1Ifm�(sI ;��nI )2B
(1;1)
� g � 1Ifm�nI (�)2B

(1;1)
��

g

(5:3)

where �� � ��
p
M jIj
N

. Setting �0 � N
j�j�, this allows us to write

�
(1;1)
�;�;�[!] (f�I = sIg) �

R
B
(1;1)
�+

dQ�nI;�0(m)e�
0jIj(mI(sI );m) e

�
jIj2

2j�j
kmI(sI )k22

2jIjIE�I

R
B
(1;1)
��

dQ�nI;�0(m)e�
0jIj(mI(�I );m) e

�
jIj2

2j�j
kmI(�I )k22

�
R
B
(1;1)
��

dQ�nI;�0(m)R
B
(1;1)
�+

dQ�nI;�0(m)

� L�=I;�;�+ [!](�0jIjmI(sI)) e
�
jIj2

2j�j
kmI(sI )k22

2jIjIE�IL�=I;�;�� [!](�0jIjmI(�I)) e
�
jIj2

2j�j
kmI (�I )k22

Q�nI;�0

�
B
(1;1)
�+

�
Q�nI;�0

�
B
(1;1)
��

�
(5:4)

and

�
(1;1)
�;�;�[!] (f�I = sIg) �

R
B
(1;1)
��

dQ�nI;�0(m)e�
0jIj(mI(sI );m) e

�
jIj2

2j�j
kmI(sI )k22

2jIjIE�I

R
B
(1;1)
�+

dQ�nI;�0(m)e�
0jIj(mI(�I );m) e

�
jIj2

2j�j
kmI(�I )k22

�
Q�nI;�0

�
B
(1;1)
��

�
Q�nI;�0

�
B
(1;1)
�+

�
=

L�=I;�;�� [!](�0jIjmI(sI)) e
�
jIj2

2j�j
kmI(sI )k22

2jIjIE�IL�=I;�;�+ [!](�0jIjmI(�I)) e
�
jIj2

2j�j
kmI(�I )k22

Q�nI;�0

�
B
(1;1)
��

�
Q�nI;�0

�
B
(1;1)
�+

�
(5:5)
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Now the term
jIj2

N
kmI(s)k22 is, up to a constant that is independent of the si, irrelevantly small.

More precisely, we have that

Lemma 5.1: There exist 1 > C; c > 0 such that for all I, M , and for all x > 0,

IP

"
sup

�I2f�1;1gI

jIj2

N

���kmI(s)k22 � M jIj
N

��� � jIjM
N

�q
jIj
N

+ x

�#
� C exp

�
�cM �p

1 + x� 1
�2� (5:6)

Proof: This Lemma is a direct consequence of estimates on the norm of the random matrices

obtained, e.g. in Theorem 4.1 of [BG6].}

Together with Proposition 3.1 and Lemma 3.2, we can now extract the desired representation

for our probabilities.

Lemma 5.2: For all � > 1 and
p
� < a(m

�)2, if c0
p
�

m� < � < m�=
p
2 then, with probability

one, for all but a �nite number of indices N , for all � 2 f1; : : : ;M(N)g, s 2 f�1; 1g,

(i)

�
(1;1)
�;�;�[!] (f�I = sIg) =

L(1;1)
�=I;�;�

[!](�0jIjmI(sI))

2jIjIE�IL(1;1)�=I;�;�
[!](�0jIjmI (�I))

+O(N�1=4)

(5:7)

and alternatively

(ii)

�
(1;1)
�;�;�[!] (f�I = sIg) =

eL(1;1)
�=I;�;�

[!](�0jIjmI(sI))

2jIjIE�I
eL(1;1)
�=I;�;�

[!](�0jIjmI (�I))

+O
�
e�O(M)

� (5:8)

We leave the details of the proof to the reader. We see that the computation of the marginal

distribution of the Gibbs measures requires nothing but the computation of the Laplace transforms

of the induced measures or its Hubbard-Stratonovich transform at the random points t =
P

i2I si�i.

Alternatively, these can be seen as the Laplace transforms of the distribution of the random variables

(�i;m).

Now it is physically very natural that the law of the random variables (�i;m) should determine

the Gibbs measures completely. The point is that in a mean �eld model, the distribution of the

spins in a �nite set I is determined entirely in terms of the e�ective mean �elds produced by the rest

of the system that act on the spins �i. These �elds are precisely the (�i;m). In a \normal" mean
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�eld situation, the mean �elds are constant almost surely with respect to the Gibbs measure. In the

Hop�eld model with subextensively many patterns, this will also be true, as m will be concentrated

near one of the values m�e� (see [BGP1]). In that case (�i;m) will depend only in a local and very

explicit form on the disorder, and the Gibbs measures will inherit this property. In a more general

situation, the local mean �elds may have a more complicated distribution, in particular they may

not be constant under the Gibbs measure, and the question is how to determine this. The approach

of the cavity method (see e.g. [MPV]) as carried out by Talagrand [T1] consists in deriving this

distribution by induction over the volume. [PST] also followed this approach, using however the

assumption of \self-averaging" of the order parameter to control errors. Our approach consists in

using the detailed knowledge obtained on the measures eQ, and in particular the local convexity to

determine a priori the form of the distribution; induction will then only be used to determine the

remaining few parameters.

Let us begin with some general preparatory steps which will not yet require special properties

of our measures. To simplify the notation, we we introduce the following abbreviations:

We write IE�N
for the expectation with respect to the measures eQ�nI;�;h[!] conditioned on

B� and we set �Z � Z � IE�N
Z. We will write IE�I for the expectation with respect to the family

of random variables �
�
i , i 2 I, � = 1; : : : ;M .

The �rst step in the computation of our Laplace transform consists in centering, i.e. we write

IE�N
e

P
i2I

�si(�i;Z) = e

P
i2I

�si(�i;IE�N
Z)
IE�N

e

P
i2I

�si(�i; �Z) (5:9)

While the �rst factor will be entirely responsible for the for the distribution of the spins, our main

e�orts have to go into controlling the second. To do this we will use heavily the fact, established

�rst in [BG1], that on B
(1;1)
� the function � is convex with probability close to one. This allows

us to exploit the Brascamp-Lieb inequalities in the form given in Section 3. The advantage of this

procedure is that it allows us to identify immediately the leading terms and to get a priori estimates

on the errors. This is to be contrasted to the much more involved procedure of Talagrand [T1] who

controls the errors by induction.

General Assumption: For the remainder of this paper we will always assume that the parameters

� and � of our model are such that the hypotheses of Proposition 3.1 and Theorem 3.3 are satis�ed.

All lemmata, propositions and theorem are valid under this provision only.

Lemma 5.3: Under our general assumption,

(i)

IE�I IE�N
e

P
i2I

�si(�i; �Z) = e
�2

2

P
i2I

s2i IE�N
k �Zk22 � eO(1=(�N)) (5:10)
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(ii) There is a �nite constant C such that

IE�I

"
ln

 
IE�N

e

P
i2I

�si(�i; �Z)

IE�I IE�N
e

P
i2I

�si(�i; �Z)

!#2
� C

N
(5:11)

Remark: The immediate consequence of this lemma is the observation that the family of random

variables
�
(�i; �Z)

	
i2I is asymptotically close to a family of i.i.d. centered Gaussian random variables

with variance UN � IE�N
k �Zk22. UN will be seen to be one of the essential parameters that we will

need to control by induction. Note that for the moment, we cannot say whether the law of the

(�i; �Z) converges in any sense, as it is not a priori clear whether UN will converge as N " 1,

although this would be a natural guess. Note that as far as the computation of the marginal

probabilities of the Gibbs measures is concerned, this question is, however, completely irrelevant,

in as far as this term is an even function of the si.

Remark: It follows from Lemma 5.3 that

ln IE�N
exp

 X
i2I

�si(�i; �Z)

!
=

�2

2
jIjIE�N

k �Zk22 +O
�

1
�N

�
+RN (5:12)

where

IE�IR
2
N � C

N
(5:13)

Proof: The proof of this Lemma relies heavily on the use of the Brascamp-Lieb inequalities,

Theorem 4.1, which are applicable due to our assumptions and Theorem 3.3. It was given in [BG1]

for I being a single site, and we repeat the main steps. First note that

IE�I IE�N
e

P
i2I

�si(�i; �Z) � IE�N
e
�2

2

P
i2I

s2i k �Zk
2
2

IE�I IE�N
e

P
i2I

�si(�i; �Z) � IE�N
e
�2

2

P
i2I

s2i k �Zk
2
2�

�4

4

P
i2I

s4i k �Zk
4
4

(5:14)

Note �rst that if the smallest eigenvalue of r2� � �, then the Brascamp-Lieb inequalities Theorem

4.1 yield

IE�N
k �Zk22 �

M

�N
+O(e��

2N=K) (5:15)

and by iterated application

IE�N
k �Zk44 � 4

M

�2N2
+O(e��

2N=K) (5:16)

In the bounds (5.14) we now use Corollary 4.2 with f given by �2jIj=2k �Zk22, respectively by

�2jIj=2k �Zk22 � �4jIj=4k �Zk44 to �rst move the expectation into the exponent, and then (5.15) and
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(5.16) (applied to the slightly modi�ed measures IE�N�tf=N , which still retain the same convexity

properties) to the terms in the exponent. This gives (5.10).

By very similar computations one shows �rst that

IE
�
IE�N

e

P
i2I

�si(�i; �Z) � IE�I IE�N
e

P
i2I

�si(�i; �Z)
�
� C

N
(5:17)

Moreover, using again Corollary 4.2, one obtains that (on the subspace �
 where convexity holds)

e��
2jIj=2�

� � IE�N
e

P
i2I

�si(�i; �Z) � e+�
2jIj=2�

� (5:18)

These bounds, together with the obvious Lipshitz continuity of the logarithm away from zero yield

(5.11). }

Remark: The above proof follows ideas of the proof of Lemma 4.1 on [T1]. The main di�erence

is that the systematic use of the Brascamp-Lieb inequalities that allows us to avoid the appearance

of uncontrolled error terms.

We now turn to the mean values of the random variables (�i; IE�N
Z). These are obviously ran-

dom variables with mean value zero and variance kIE�N
Zk2. Moreover, the variables (�i; IE�N

Z)

and (�j ; IE�N
Z) are uncorrelated for i 6= j. Now IE�N

Z has one macroscopic component, namely

the �rst one, while all others are expected to be small. It is thus natural to expect that these

variables will actually converge to a sum of a Bernoulli variable �1i IE�N
Z1 plus independent Gaus-

sians with variance TN � PM
�=2[IE�N

Z�]
2, but it is far from trivial to prove this. It requires in

particular at least to show that TN converges.

We will �rst prove the following proposition:

Proposition 5.4: In addition to our general assumption, assume that lim infN"1N1=4TN = +1,

a.s.. For i 2 I, set Xi(N) � 1p
TN

P
�=2 �

�
i IE�N

Z�. Then this family converges to a family of i.i.d.

standard normal random variables.

Remark: The assumption on the divergence of N1=4TN is harmless. We will see later that

it is certainly veri�ed provided lim infN"1N1=8IETN = +1. Recall that our �nal goal is to

approximate (in law)
PM

�=2 �
�
i IE�N

Z� by
p
TNgi, where gi is Gaussian. So if TN � N�1=4, thenPM

�=2 �
�
i IE�N

Z� is close to zero (in law) anyway, as is
p
TNgi, and no harm is done if we exchange

the two. We will see that this situation only arises in fact if M=N tends to zero rapidly, in which

case all this machinery is not needed.

Proof: To prove such a result requires essentially to show that IE�N
Z� for all � � 2 tend to zero

as N " 1. We note �rst that by symmetry, for all � � 2, IEIE�N
Z� = IEIE�N

Z2. On the other
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hand,
MX
�=2

[IEIE�N
Z�]

2 � IE

MX
�=2

[IE�N
Z�]

2 � �2 (5:19)

so that jIEIE�N
Z�j � �M�1=2.

To derive from this a probabilistic bound on IE�N
Z� itself we will use concentration of measure

estimates. To do so we need the following lemma:

Lemma 5.5: Assume that f(x) is a random function de�ned on some open neighborhood U � IR.

Assume that f veri�es for all x 2 U that for all 0 � r � 1,

IP [jf(x)� IEf(x)j > r] � c exp

�
�Nr2

c

�
(5:20)

and that, at least with probability 1 � p, jf 0(x)j � C, jf 00(x)j � C < 1 both hold uniformly in U .

Then, for any 0 < � � 1=2, and for any 0 < � < N �=2,

IP
h
jf 0(x)� IEf 0(x)j > �N��=2

i
� 32C2

�2
N � exp

�
��4N1�2�

256c

�
+ p (5:21)

Proof: Let us assume that jU j � 1. We may �rst assume that the boundedness conditions for

the derivatives of f hold uniformly; by standard arguments one shows that if they only hold with

probability 1 � p, the e�ect is nothing more than the �nal summand p in (5.21). The �rst step

in the proof consists in showing that (5.20) together with the boundedness of the derivative of f

implies that f(x) � IEf(x) is uniformly small. To see this introduce a grid of spacing �, i.e. let

U� = U \ �ZZ. Clearly

IP

�
sup
x2U

jf(x)� IEf(x)j > r

�
� IP

"
sup
x2U�

jf(x)� IEf(x)j

+ sup
x;y:jx�yj��

jf(x)� f(y)j+ jIEf(x)� IEf(y)j > r

#

� IP

�
sup
x2U�

jf(x)� IEf(x)j > r � 2C�

�
� ��1IP [jf(x)� IEf(x)j > r � 2C�]

(5:22)

If we choose � = r
4C

, this yields

IP

�
sup
x2U

jf(x)� IEf(x)j > r

�
� 4C

r
exp

�
�Nr2

4c

�
(5:23)
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Next we show that if supx2U jf(x)�g(x)j � r for two functions f , g with bounded second derivative,

then

jf 0(x)� g0(x)j �
p
8Cr (5:24)

For notice that ����1� [f(x+ �)� f(x)]� f 0(x)

���� � �

2
sup

x�y�x+�
f 00(y) � C

�

2
(5:25)

so that

jf 0(x)� g0(x)j � 1

�
jf(x+ �)� g(x+ �)� f(x) + g(x)j+ C�

� 2r

�
+ C�

(5:26)

Choosing the optimal � =
p
2r=C gives (5.24). It su�ces to combine (5.24) with (5.23) to get

IP
h
jf 0(x)� IEf 0(x)j >

p
8rC

i
� 4C

r
exp

�
�Nr2

4c

�
(5:27)

Setting r = �2

CN� , we arrive at (5.21). }

We will now use Lemma 5.5 to control IE�N
Z�. We de�ne

f(x) =
1

�N
ln

Z
B
(1;1)
�

dMze�Nxz�e��N��;N;M (z) (5:28)

and denote by IE�N ;x the corresponding modi�ed expectation. As has by now been shown many

times [T1,BG1], f(x) veri�es (5.20). Moreover, f 0(x) = IE�N ;xZ� and

f 00(x) = �NIE�N ;x (Z� � IE�N ;xZ�)
2

(5:29)

Of course the addition of the linear term to � does not change its second derivative, so that we

can apply the Brascamp-Lieb inequalities also to the measure IE�N ;x. This shows that

IE�N ;x (Z� � IE�N ;xZ�)
2 � 1

�N�
(5:30)

which means that f(x) has a second derivative bounded by c = 1
�
.

This gives the

Corollary 5.6: There are �nite positive constants c; C such that, for any 0 < � � 1
2
, for any �,

IP
h
jIE�N

Z� � IEIE�N
Z�j � N��=2

i
� CN � exp

�
�N1�2�

c

�
(5:31)
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We are now ready to conclude the proof of our proposition. We may choose e.g. � = 1=4

and denote by 
N the subset of 
 where, for all �, jIE�N
Z� � IEIE�N

Z�j � N�1=8. Then

IP [
c
N ] � O

�
e�N

1=2
�
.

We will prove the proposition by showing convergence of the characteristic function to that

of product standard normal distributions, i.e. we show that for any t 2 IRI , IE
Q

j2I e
itjXj(N)

converges to
Q

j2I e
� 1

2
t2j . We have

IE
Y
j2I

eitjXj(N) = IE�Ic

�
1I
N

IE�I e
i
P

j2I
tjXj(N)

+ 1I
c
N
IE�I e

i
P

j2I
tjXj(N)

�

= IE�Ic

241I
N

Y
��2

Y
j2I

cos

�
tjp
TN

IE�N
Z�

�35+O
�
e�N

1=2
� (5:32)

Thus the second term tends to zero rapidly and can be forgotten. On the other hand, on 
N ,

MX
�=2

(IE�N
Z�)

4 � N�1=4
MX
�=2

(IE�N
Z�)

2 � N�1=4TN (5:33)

Moreover, for any �nite tj , for N large enough,
��� tjp

TN
IE�N

Z�

��� � 1. Thus, using that j ln cos x �
x2=2j � cx4 for jxj � 1, and that

IE�Ic 1I
N
IE�e

i
P

j2I
tjXj(N)

� e
�
P

j2I
t2j=2 sup


N

24Y
j2I

exp

 
c
t4jN

�1=4

TN

!35 IP �(
N )
(5:34)

Clearly, the right hand side converges to e
�
P

j2I
t2j=2, provided only that N1=4TN " 1. Since this

was assumed, the Proposition is proven. }

We now control the convergence of our Laplace transform except for the two parameters

m1(N) � IE�N
Z1 and TN � PM

�=2 [IE�N
Z�]

2
. What we have to show is that these quantities

converge almost surely and that the limits satisfy the equations of the replica symmetric solution

of Amit, Gutfreund and Sompolinsky [AGS].

While the issue of convergence is crucial, the technical intricacies of its proof are largely

disconnected to the question of the convergence of the Gibbs measures. We will therefore assume

for the moment that these quantities do converge to some limits and draw the conclusions for the

Gibbs measures from the results of this section under this assumption (which will later be proven

to hold).

Indeed, collecting from Lemma 5.3 (see the remark following that lemma) and Proposition 5.4,

we can write

�
(1;1)
�;�;�[!] (f�I = sIg) =

e
�0N

P
i2I

si[m1(N)�1i+Xi(N)
p
TN ]+RN (sI )

2IIE�I e
�0
N

P
i2I

�i[m1(N)�1
i
+Xi(N)

p
TN ]+RN (�I )

(5:35)
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where
�0N ! �

RN (sI)! 0 in Probability

Xi(N)! gi in law

TN ! �r a.s.

m1(N)! m1 a.s.

for some numbers r;m1 and there fgigi2IN is a family of i.i.d. standard Gaussian random variables.

Putting this together we get that

Proposition 5.7: In addition to our general assumptions, assume that TN ! �r, a.s. and

m1(N)! m1, a.s. Then, for any �nite I � IN

�
(1;1)
�;�;� (f�I = sIg)!

Y
i2I

e�si[m1
��1i+gi

p
�r]

2 cosh
�
��i

�
m1

��1i + gi
p
�r
�� (5:36)

where the convergence holds in law with respect to the measure IP , and fgig22IN is a family of

i.i.d. standard normal random variables and f��1i gi2IN are independent Bernoulli random variables,

independent of the gi and having the same distribution as the variables �1i .

To arrive at the convergence in law of the random Gibbs measures, it is enough to show that

(5.36) holds jointly for any �nite family of cylinder sets, f�i = si;8i2Ikg; Ik � IN , k = 1; : : : ; ` (C.f.

[Ka], Theorem 4.2). But this is easily seen to hold from the same arguments. Therefore, denoting

by �
(1;1)
1;� the random measure

�
(1;1)
1;� [!](�) �

Y
i2IN

e��i[m1�
1
i [!]+

p
�rgi[!]]

2 cosh (�[m1�
1
i [!] +

p
�rgi[!]])

(5:37)

we have

Theorem 5.8: Under the assumptions of Proposition 5.7, and with the same notation,

�
(1;1)
�;�;� ! �

(1;1)
1;� ; in law, as � " 1 ; (5:38)

This result can easily be extended to the language of metastates. The following Theorem gives

an explicit representation of the Aizenman-Wehr metastate in our situation:

Theorem 5.9: Let ��(�)[!] denote the Aizenman-Wehr metastate. Under the hypothesis of

Proposition 5.7, for almost all !, for any continuous function F : IRk ! IR, and cylinder functions
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fi on f�1; 1gIi , i = 1; : : : ; k, one hasZ
M1(S1)

��(d�)[!]F (�(f1); : : : ; �(fk))

=

Z Y
i2I

dN (gi)F

 
IEsI1

fi(sI1)
Y
i2I1

e�[
p
�rgi+m1�

1
i [!]]

2 cosh (
p
�rgi +m1�

1
i [!])

; : : :

: : : ; IEsIk
fk(sIk )

Y
i2Ik

e�[
p
�rgi+m1�

1
i [!]]

2 cosh (
p
�rgi +m1�

1
i [!])

! (5:39)

where N denotes the standard normal distribution.

Remark: Modulo the convergence assumptions, that will be shown to hold in the next section,

Theorem 5.9 is the precise statement of Theorem 1.1. Note that the only di�erence from Theorem

5.8 is that the variables �1i that appear here on the right hand side are now the same as those on

the left hand side.

Proof: This theorem is proven just as Theorem 5.8, except that the \almost sure version" of the

central limit theorem, Proposition 5.4, which in turn is proven just as Lemma 2.1, is used. The

details are left to the reader.}

Remark: Our conditions on the parameters � and � place us in the regime where, according to

[AGS] the \replica symmetry" is expected to hold. This is in nice agreement with the remark in

[NS4] where replica symmetry is linked to the fact that the metastate is concentrated on product

measures.

Remark: One would be tempted to exploit also the other notions of \metastate" explained in

Section 2. We see that the key to these constructions would be an invariance principle associated

to the central limit theorem given in Proposition 5.4. However, there are a number of di�culties

that so far have prevented us from proving such a result. We would have to study the random

process

Xt
i (N) �

M(tN)X
�=2

�
�
i IE�tN

Z� (5:40)

(suitably interpolated for t that are not integer multiples of 1=N). If this process was to converge to

Brownian motion, its increments should converge to independent Gaussians with suitable variance.

But

Xt
i (N)�Xs

i (N) =

M(tN)X
�=M(sN)

�
�
i IE�tN

Z�

+

M(sN)X
�=2

�
�
i (IE�tN

Z� � IE�sN
Z�)

(5:41)
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The �rst term on the right indeed has the desired properties, as is not too hard to check, but the

second term is hard to control.

To get some idea of the nature of this process, we recall from [BG1,BG2] that IE�N
Z is

approximately given by c(�) 1
N

P
j2�nI �j (in the sense that the `2 distance between the two vectors

is of order
p
� at most). Let us for simplicity consider only the case I = f0g. If we replace IE�N

Z

by this approximation, we are led to study the process

Y t(N) � 1

t

�tNX
�=2

�
�
0

1

N

tNX
i=1

�
�
i (5:42)

for tN; �tN integer and linearly interpolated otherwise.

Proposition 5.10: The sequence of processes Y t(N) de�ned by (5.42) converges weakly to the

Gaussian process t�1B�t2 , where Bs is a standard Brownian motion.

Proof: Notice that �
�
0 �

�
i has the same distribution as �

�
i , and therefore Y t(N) has the same

distribution as eY t(N) � 1

tN

�tNX
�=2

tNX
i=1

�
�
i (5:43)

for which the convergence to B�t2 follows immediately from Donsker's theorem. }

At present we do not see how to extend this result to the real process of interest, but at least

we can expect that some process of this type will emerge.

As a �nal remark we investigate what would happen if we adopted the \standard" notion of

limiting Gibbs measures as weak limit points along possibly random subsequences. The answer is

the following

Proposition 5.10: Under the assumptions of Proposition 5.7, for any �nite I � IN , for any

x 2 IRI , for IP -almost all !, there exist sequences Nk[!] tending to in�nity such that for any

sI 2 f�1; 1gI
lim
k"1

�
(1;1)
Nk;�

[!](f�I = sIg)

=
Y
i2I

e�si[m1�
1
i [!]+

p
�rxi]

2 cosh(�[m1�
1
i [!] +

p
�rxi])

(5:44)

Proof: To simplify the notation we will write the proof only for the case i = f0g. The general case
di�ers only in notation. It is clear that we must show that for almost all ! there exist subsequences

Nk[!] such that X0(Nk)[!] converges to x, for any chosen value x. Since by assumption TN

converges almost surely to �r, it is actually enough to show that the variables Yk �
p
TNk

X0(Nk)

converge to x. But this follows from the following lemma:
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Lemma 5.11: De�ne Yk �
p
TNk

X0(Nk). For any x 2 IRI and any � > 0,

IP [Yk 2 (x0 � �; x0 + �) i.o. ] = 1 (5:45)

Proof: Let us denote by F� the sigma algebra generated by the random variables �
�
i ; � 2 IN; i � 1.

Note that

IP [Yk 2 (x0 � �; x0 + �) i.o. ] = IE (IP [Yk 2 (x0 � �; x0 + �) i.o. j F�]) (5:46)

so that it is enough to prove that for almost all !, IP [Yk 2 (x0 � �; x0 + �) i.o. j F�] = 1.

Let us de�ne the random variables

eYk � M(Nk)X
�=M(Nk�1)+1

�
�
0 IE�Nk

Z� (5:47)

Note �rst that

IE
�
Yk � eYk�2 = IE

M(Nk�1)X
�=2

�
IE�Nk

Z�

�2
�M(Nk�1)IE

�
IE�Nk

Z2

�2
� �2

Nk�1

Nk

(5:48)

Thus, if Nk is chosen such that
P1

k=1
Nk�1

Nk
<1, by the �rst Borel-Cantelli lemma,

lim
k"1

(Yk � eYk) = 0 a.s. (5:49)

On the other hand, the random variables eYk are conditionally independent, given F�. Therefore,

by the second Borel-Cantelli lemma

IP
heYk 2 (x0 � �; x0 + �) i.o. j F�

i
= 1 (5:50)

if
1X
k=1

IP
heYk 2 (x0 � �; x0 + �) j F�

i
=1 (5:51)

But for almost all !, eYk conditioned on F� converges to a Gaussian of variance �r (the proof is

identical to that of Proposition 5.3), so that for almost all !, as k " 1

IP
heYk 2 (x0 � �; x0 + �) j F�

i
! 1p

2��r

Z x+�

x��
dye�

y2

2�r > 0 (5:52)

which implies (5.51) and hence (5.50). Putting this together with (5.49) concludes the proof of the

lemma, and of the proposition. }
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Some remarks concerning the implications of this proposition are in place. First, it shows

that if the standard de�nition of limiting Gibbs measures as weak limit points is adapted, then we

have discovered that in the Hop�eld model all product measures on f�1; 1gIN are extremal Gibbs

states. Such a statement contains some information, but it is clearly not useful as information on

the approximate nature of a �nite volume state. This con�rms our discussion in Section 2 on the

necessity to use a metastate formalism.

Second, one may ask whether conditioning or the application of external �elds of vanishing

strength as discussed in Section 2 can improve the convergence behaviour of our measures. The

answer appears obviously to be no. Contrary to a situation where a symmetry is present whose

breaking biases the system to choose one of the possible states, the application of an arbitrarily

weak �eld cannot alter anything.

Third, we note that the total set of limiting Gibbs measures does not depend on the condition-

ing on the ball B
(1;1)
� , while the metastate obtained does depend on it. Thus the conditioning allows

us to construct two metastates corresponding to each of the stored patterns. These metastates are

in a sense extremal, since they are concentrated on the set of extremal (i.e. product) measures of

our system. Without conditioning one can construct other metastates (which however we cannot

control explicitly in our situation).
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6. Induction and the replica symmetric solution

We now conclude our analysis by showing that the quantities UN � IE�N
k �Zk22, m1(N) �

IE�N
Z1 and TN �PM

�=2[IE�N
Z�]

2 actually do converge almost surely under our general assump-

tions. The proof consist of two steps: First we show that these quantities are self-averaging and

then the convergence of their mean values is proven by induction. We will assume throughout this

section that the parameters � and � are such that local convexity holds. We stress that this section

is entirely based on ideas of Talagrand [T1] and Pastur, Shcherbina and Tirozzi [PST] and is mainly

added for the convenience of the reader.

Thus our �rst result will be:

Proposition 6.1: Let AN denote any of the three quantities UN , m1(N) or TN . Then there are

�nite positive constants c; C such that, for any 0 < � � 1
2
,

IP
h
jAN � IEAN j � N��=2

i
� CN � exp

�
�N1�2�

c

�
(6:1)

Proof: The proofs of these three statements are all very similar to that of Corollary 5.6. Indeed,

for m1(N), (6.1) is a special case of that corollary. In the two other cases, we just need to de�ne

the appropriate analogues of the `generating function' f from (5.28). They are

g(x) � 1

�N
ln IE�N

IE0�N
e�Nx( �Z; �Z0) (6:2)

in the case of TN and

~g(x) � 1

�N
ln IE�N

IE0�N
e�Nxk �Zk22 (6:3)

The proof then proceeds as in that of Corollary 6.6. We refrain from giving the details. }

We now turn to the induction part of the proof and derive a recursion relation for the three

quantities above. In the sequel it will be convenient to introduce a site 0 that will replace the set

I and to set �0 = �. Let us de�ne

uN (�) � ln IE�N
e��(�;Z) (6:4)

We also set vN (�) � ��(�; IE�N
Z) and wN (�) � uN (�) � vN (�). In the sequel we will need the

following auxiliary result

Lemma 6.2: Under our general assumptions

(i) 1
�
p
TN

d
d�
vN (�) converges weakly to a standard Gaussian random variable.
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(ii)
�� d
d�
wN (�)� ��2IEIE�N

k �Zk22
�� converges to zero in probability.

Proof: (i) is obvious from Proposition 5.4 and the de�nition of vN (�). To prove (ii), note that

wN (�) is convex and d2

d�2
wN (�) � ��

�
. Thus, if var (wN (�)) � Cp

N
, then var

�
d
d�
wN (�)

� � C0

N1=4

by a standard result similar in spirit to Lemma 5.5 (see e.g. [T2], Proposition 5.4). On the other

hand, jIEwN (�)� �2�2

2
IEIE�N

k �Zk22j � Kp
N
, by Lemma 5.3, which, together with the boundedness

of the second derivative of wN (�) implies that j d
d�
IEwN (�) � ��2IEIE�N

k �Zk22j # 0. This means

that var (wN (�)) � Cp
N

implies the lemma. Since we already know from G.11ter) that IER2
N � K

N
,

it is enough to prove var
�
IE�N

k �Zk22
� � Cp

N
. This follows just as the corresponding concentration

estimate for UN . }

We are now ready to start the induction procedure. We will place ourselves on a subspacee
 � 
 where for all but �nitely many N jUN � IEUN j � N�1=4, jTN � IETN j � N�1=4, etc. This

subspace has probability one by our estimates.

Let us note that by (iii) of Proposition 3.1, IE�N
Z� and

R
dQ(1;1)

N;�;�(m)m� di�er only by an

exponentially small term. Thus

IE�N
Z� =

1

N

X
i=1

�
�
i

Z
�
(1;1)
N;�;�(d�)�i +O

�
e�cM

�
(6:5)

and, by symmetry,

IEIE�N+1
(Z�) = IE��

Z
�
(1;1)
N+1;�;�(d�)�0 +O

�
e�cM

�
(6:6)

Using Lemma 5.2 and the de�nition of uN , this gives

IEIE�N+1
(Z�) = IE��

euN (1) � euN (�1)

euN (1) + euN (�1) +O
�
e�cM

�
(6:7)

where to be precise one should note that the left and right hand side are computed at temperatures

� and �0 = N
N
�, respectively, and that the value of M is equal to M(N + 1) on both sides; that

is, both sides correspond to slightly di�erent values of � and �, but we will see that this causes no

problems.

Using our concentration results and Lemma 5.3 this gives

IEIE�N+1
(Z�) = IE�� tanh

�
�(�1IEm1(N) +

p
IETNX0(N))

�
+O(N�1=4) (6:8)

Using further Proposition 5.4 we get a �rst recursion for m1(N):

m1(N + 1) =

Z
dN (g) tanh

�
�(IEm1(N) +

p
IETNg)

�
+ o(1) (6:9)
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Remark: The error term in (6.9) can be sharpened to O(N�1=4) by using instead of Lemma

5.3 a trick, attributed to Trotter, that we learned from Talagrand's paper [T1] (see the proof of

Proposition 6.3 in that paper).

We need of course a recursion for TN as well. From here on there is no great di�erence from

the procedure in [PST], except that the N -dependences have to be kept track of carefully. This

was outlined in [BG2] and we repeat the steps for the convenience of the reader. To simplify the

notation, we ignore all the O(N�1=4) error terms and put them back in the end only. Also, the

remarks concerning � and � made above apply throughout.

Note that TN = kIE�N
Zk22 � (IE�N

Z1)
2 and

IEkIE�N+1
Zk22 =

MX
�=1

IE

 
1

N + 1

NX
i=0

�
�
i ��;N+1;M (�i)

!2

=
M

N + 1
IE
�
�
(1;1)
�;N+1;M(�0)

�2
+

MX
�=1

IE�
�
0 �

(1;1)
�;N+1;M(�0)

 
1

N + 1

NX
i=1

�
�
i ��;N+1;M (�i)

! (6:10)

Using Lemma 5.2 as in the step leading to (6.7), we get for the �rst term in (6.10)

IE
�
�
(1;1)
�;N+1;M (�0)

�2
= IE tanh2

�
�(�1IE�N

Z1 +
p
IETN )

�
� IEQN (6:11)

For the second term, we use the identity from [PST]

MX
�=1

�
�
0

 
1

N

NX
i=1

�
�
i ��;N+1;M (�i)

!
=

P
�0
IE�N

(�0;X)e��0(�0;X)P
�0
IE�N

e��0(�0;X)

=��1
P

�=�1 uN
0(�)euN (�)P

�=�1 e
uN (�)

(6:12)

Together with Lemma 6.2 one concludes that in law up to small errors

MX
�=1

�
�
0

 
1

N + 1

NX
i=1

�
�
i ��;N+1;M (�i)

!
= �10IE�N

Z1 +
p
IETNXN

+ �IE�N
k �Zk22 tanh�

�
�10IE�N

Z1 +
p
IETNXN

� (6:13)

and so

IEkIE�N+1
Zk22 = �IEQN + IE

"
tanh�

�
�10IE�N

Z1 +
p
IETNXN

�
�
h
�10IE�N

Z1 +
p
IETNXN

i#
+ �IEIE�N

k �Zk22 tanh2 �
�
�10IE�N

Z1 +
p
IETNXN

�
(6:14)
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Using the self-averaging properties of IE�N
k �Zk22, the last term is of course essentially equal to

�IEIE�N
k �Zk22IEQN (6:15)

The appearance of IE�N
k �Zk22 is disturbing, as it introduces a new quantity into the system. For-

tunately, it is the last one. The point is that proceeding as above, we can show that

IEIE�N+1
kZk22 =�+ IE

"
tanh�

�
�1N+1IE�N

Z1 +
p
IETNXN

�
�
h
�10IE�N

Z1 +
p
IETNXN

i#
+ �IEIE�N

k �Zk22IEQN

(6:16)

so that setting UN � IE�N
k �Zk22, we get, subtracting (6.14) from (6.16), the simple recursion

IEUN+1 = �(1� IEQN ) + �(1 � IEQN )IEUN (6:17)

From this we get (since all quantities considered are self-averaging, we drop the IE to simplify the

notation), setting m1(N) � IE�N
Z1,

TN+1 = �(m1(N + 1))2 + �QN + �UNQN

+

Z
dN (g)[m1(N) +

p
TNg] tanh �(m1(N) +

p
TNg)

= m1(N + 1)(m1(N)�m1(N + 1)) + �UNQN + �TN (1�QN ) + �QN

(6:18)

where we used integration by parts. The complete system of recursion relations can thus be written

as

m1(N + 1) =

Z
dN (g) tanh �

�
m1(N) +

p
TNg

�
+O(N�1=4)

TN+1 = m1(N � 1)(m1(N)�m1(N + 1)) + �UNQN + �TN (1�QN ) + �QN +O(N�1=4)

UN+1 = �(1�QN ) + �(1 �QN)UN +O(N�1=4)

QN+1 =

Z
dN (g) tanh2 �

�
m1(N) +

p
TNg

�
+O(N�1=4)

(6:19)

If the solutions to this system of equations converges, than the limits r = limN"1 TN=�, q =

limN"1QN and m1 = limN"1m1(N) (u � limN"1 UN can be eliminated) must satisfy the equa-

tions

m1 =

Z
dN (g) tanh(�(m1 +

p
�rg)) (6:20)

q =

Z
dN (g) tanh2(�(m1 +

p
�rg)) (6:21)

r =
q

(1� � + �q)2
(6:22)
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which are the equations for the replica symmetric solution of the Hop�eld model found by Amit et

al. [AGS].

In principle one might think that to prove convergence it is enough to study the stability of

the dynamical system above without the error terms. However, this is not quite true. Note that

the parameters � and � of the quantities on the two sides of the equation di�er slightly (although

this is suppressed in the notation). In particular, if we iterate too often, � will tend to zero. The

way out of this di�culty was proposed by Talagrand [T1]. We will briey explain his idea. In

a simpli�ed notation, we are in the following situation: We have a sequence Xn(p) of functions

depending on a parameter p. There is an explicit sequence pn, satisfying jpn+1 � pnj � c=n and a

functions Fp such that

Xn+1(pn+1) = Fpn(Xn(pn)) +O(n�1=4) (6:23)

In this setting, we have the following lemma.

Lemma 6.3: Assume that there exist a domain D containing a single �xed point X�(p) of Fp.

Assume that Fp(X) is Lipshitz continuous as a function of X, Lipshitz continuous as a function of

p uniformly for X 2 D and that for all X 2 D, Fn
p (X) ! X�(p). Assume we know that for all n

large enough, Xn(p) 2 D. Then

lim
n"1

Xn(p) = X�(p) (6:24)

Proof: Let us choose a integer valued monotone increasing function k(n) such that k(n) " 1 as n

goes to in�nity. Assume e.g. k(n) � lnn. We will show that

lim
n"1

Xn+k(n)(p) = X�(p) (6:25)

To see this, note �rst that jpn+k(n) � pnj � k(n)
n

. By (6.23), we have that using the Lipshitz

properties of F

Xn+k(n)(p) = F k(n)
p (Xn(pn)) +O(n�1=4) (6:26)

where we choose pn such that pn+k(n) = p. Now since Xn(pn) 2 D,
���F k(n)

p (Xn(pn)�X�(p)
��� # 0 as

n and thus k(n) goes to in�nity, so that (6.26) implies (6.25). But (6.25) for any slowly diverging

function k(n) implies the convergence of Xn(p), as claimed. }

This lemma can be applied to the recurrence (6.18). The main point to check is whether

the corresponding F� attracts a domain in which the parameters m1(N); TN ; UN ; QN are a priori

located due tho the support properties of the measure eQ(1;1)
N;�;�. This stability analysis was carried

out (for an equivalent system) by Talagrand and answered to the a�rmative. We do not want to

repeat this tedious, but in principle elementary computation here.
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We would like to make, however, some remarks. It is clear that if we consider conditional

measures, then we can always force the parameters m1(N); RN ; UN ; QN to be in some domain.

Thus, in principle, we could �rst study the �xpoints of (6.18), determine their domains of attraction

and then de�ne corresponding conditional Gibbs measures. However, these measures may then be

metastable. Also, of course, at least in our derivation, do we need to verify the local convexity in

the corresponding domains since this was used in the derivation of the equations (6.18).
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