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TYPICAL PROFILES OF THE KAC-HOPFIELD MODEL

A. Bovierf, V. Gayrardi and P. Piccol|

1. Introduction

Mean Field models, random or not, are very important to explain
in a simple way the general phenomenon of phase transitions. How-
ever, for random systems, in general, their analysis is, as many of the
contributions in this volume confirm, not simple at all, a fact which
may justify the amount of effort spent on them. In spite of all that,
mean fields models are in many respects only poor caricatures of re-
alistic systems'and are unable to feature some of the most important
aspects of those; in particular, in a phase transition regime, they are
unable to properly account for the phenomenon of phase separation,
i.e. the observed feature that states of the system where two or more
phases coexist in seperate regions of space. This deficiency manifests
itself also in the fact that the canonical free energy is generaly not a
convex function of the order parameters, which in term means that the
usual formalism of thermodynamics cannot imediately used (e.g. the
isotherms are not monotone and thus cannot directly be used to deter-
mine the equations of state, and insisting on doing so would produce
totally unphysical effect, like regions of parameters where the pressure
is a decreasing function of the density) is solved in by the Maxwell-
construction, by which the free energy is simply replaced ad hoc by its
convex hull.

A step beyond mean field theory that allows one to incorporate the
phase separation phenomenon and more generally geometric effects in
phase transitions are Ginzburg-Landau or “phase-field models” (for a
recent exposition see e.g. [BS]). While they are of immense practical
importance, they are derived in an ad hoc way as models on a mesoscop-
ic scale, with general thermodynamic and symmetry consideration as
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main guiding principles and are not derived from microscopic Gibbsian
theories. For disordered systems, such theories are still in an embry-
onic state. It is thus greatly desirable to have microscopic models at
hand which allow the exact and rigorous computation of the Ginburg-
Landau free energy functionals, just as the Curie-Weiss model allows
the derivation of the van der Waals free energy. These models have been
introduced by M. Kac in the mid sixties, originally with the main inten-
tion to give a rigorous derivation for Maxwell-construction [KUH, LP].
Kac models are characterized by interactions of strength of order v but
of range of order v~ !, v being a small parameter. But by solving the
non-convexity pathology, the possibility of phase separation was as well
re-established, and in fact the most appealing feature of Kac-models
from a modern perspective is their close relation to Ginzburg-Landau
type theories. This aspect was investigated in great depth over the last
years, both from a static and dynamic point of view by Cassandro, de
Masi, Orlandi, Presutti, Triolo and others [ABCP, BCP, BPRS, CP,
CMP, COP, DGP, DMOPT1-6, LOP, OP, P1, P2 ]. In [COP], in par-
ticular, the structure of the typical mesoscopic configurations of the
system was analyzed in great detail and a large deviation principle was
proven where a Ginzburg-Landau free energy functional appears as rate
function. The multidimensional ferromagnetic case is as to now not so
well understood, but is a very active line of research [ABCP, BCP, BZ,
CP]. There are a lot of people working on this subject and new results
will certainly come soon.

Kac models are thus the natural candidates to study if results on
disordered mean field systems are to be extended to more realistic sit-
uations. As far as we know the first Kac version of disordered system
was considered by Pastur and Figotin [FP] for what is known as the
Hopfield model [Ho|. However they considered a finite number of pat-
terns and only obtained the convergence of the free energy to that of
the mean field model as v tends to zero. We studied the extension to a
number of pattern that diverge in [BGP3] and also proved a Lebowitz-
Penrose theorem, i.e. we showed that the free energy function (as a
function of the overlap parameter) converges to the convex hull of that
of the Hopfield model as v tends to one. A first step in the study of
typical configurations was done in [BGP4]. There is however a lot of
work to do on this model and there are more open questions than re-
al problems solved?. In the present paper we focus on reviewing the
results and methods in [BGP4].

2 While this review was being written, a number of papers on other disordered

Kac models has appeared. We mention a site-diluted model [B].
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Let us start by defining our model. Let (€2, F, IP) be a probability
space. Let & = {¢!'}icz ue v be a two-parameter family of independent,
identically distributed random variables defined on this space such that
Pl =1)=IP(¢ = -1) = 5.

We denote by o a function o : Z — {—1,1} and call 0;, i € Z the
spin at site . We denote by S the space of all such functions, equipped
with the product topology of the discrete topology in {—1,1}.

Let J, (¢t — j) =~J (v]i — j|), and

1, ifjz|<1/2
I(z) = {0, otherwise (1.1)

Note that other choices for the function J(x) are possible. They must
satisfy the conditions J(z) > 0, [ dzJ(z) =1, and must decay rapidly
to zero on a scale of order unity. For example, the original choice of
Kac [KUH] was J(z) = e/l and he used in a crucial way the fact
that it is the covariance of the Ornstein-Ulhenbeck Process to write
the Boltzmann factor as the Laplace transform of this process. That is
he used what is called the Hubbard-Stratonovich transformation.

The interaction between two spins at sites ¢ and j will be chosen
for given w € (2, as

M(v)

5 S LI oo (12)

and the formal Hamiltonian will be

M(~)
Jwle)=—5 Y Y W WL - f)oio; (1.3)
(1,7)€EZXZ p=1
Note that the parameter 7 introduces a natural length scale y~! into
our model which is the distance over which spins interact directly. We
will be interested later in the behavior of the system on that and larger
scales and will refer to it as the macroscopic scale, whereas the sites 7 of
the underlying lattice Z are referred to as the microscopic scale. In the
course of our analysis we will have to introduce two more intermediate,
mesoscopic scales, as it shall be explained later. We find it convenient
to measure distances and to define finite volumes in the macroscopic
rather than the microscopic scale, as this allows to deal with volumes
that actually do not change with ~.
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Let A = [A_, A\;] C IR be a macroscopic interval on the real line.
For points i € Z referring to sites on the microscopic scale we will
write

i€N iff A <~i< Ay (1.4)

Note that we will stick very strictly to the convention that the letters
1,7, k always refer to microscopic sites. The Hamiltonian corresponding
to a volume A (with free boundary conditions) can then be written as

1 M(v)

Hyalwl(o) = -3 Yo Y Wl -Gy (15)

(4,7)eAXA p=1

We shall also write Sy = X;ca{—1,1} and denote its elements by o,.
The interaction between the spins in A and those outside A will be
written as

M(v)

Wyalwl(on,one) == > > wllw]Jy (i — j)oio;  (1.6)

i€A jEAS p=1

The finite volume Gibbs measure for such a volume A with fixed exter-
nal configuration o,. is then defined by assigning to each oy € Sj the
mass

1

ZE,A;,A[W]

ggj\;’A[w] (op) = e BlHy a[w](0a)+W,a[w](oa,04¢)] (1.7)

where Zg"c Alw] is a normalizing factor usually called partition function.
We will also denote by

gg,%A[w](UA) = 4Zﬁ A[w]e_ﬁH'y,A[w](UA) (1.8)
,7,

the Gibbs measure with free boundary conditions. It is crucial to keep
in mind that we are always interested in taking the infinite volume
limit A 1 IR first for fixed v and to study the asymptotic of the result
as v | 0 (this is sometimes referred to as the ‘Lebowitz-Penrose lim-
it’ even if ‘Kac limit’ is more appropriate from an historical point of
view). In [BGP2] we have studied the distribution of the global ‘over-
laps’ mk (o) = ﬁ > ica &'oi under the Gibbs measure (1.7). Here we
want to analyze the distribution of local overlaps. To do this we will
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actually have to introduce two intermediate mesoscopic length scales,
1 < £(y) < L(y) < v~ !. Note that both £(y) and L(v) will tend to
infinity as v | 0 while £(y)/L(y) as well as yL(v) tend to zero. We will
assume to avoid an exaggerate use of integer part that ¢, L and !
are integer multiples of each other.

To simplify notations, the dependence on 7 of £ and L will not be
made explicit in the sequel. We now divide the real line into boxes
of length «¢ and L, respectively, with the first box, called 0 being
centered at the origin. The boxes of length /¢ will be called z,y, or z,
and labeled by the integers. That is, the box z is the interval of length
~v£ centered at the point vfz. No confusion should arise from the fact
that we use the symbol x as denoting both the box and its label, since
again x,y, z are used ezxclusively for this type of boxes. In the same
way, the letters r, s, t are reserved for the boxes of length vL, centered
at the points vLZ, and finally we reserve u,v,w for boxes of length
one centered at the integers. With these conventions, it makes sense to
write e.g. ¢ € z shorthand for o — £/2 < i < fz +{/2, etc.

In this spirit we define the M () dimensional vector my(z,o) and
mp,(r,0) whose p-th components are

1
mh(z,0) = 7 foai (1.9)
1€
and
mkh (r,0) = % foai (1.10)
i1€Er

respectively. They are called the local overlaps. Note that we have, for
instance, that

mh (r,o) = %Zmﬁ(m,a) (1.11)

TET

We will also have to be able to indicate the box on some larger scale
containing a specified box on the smaller scale. Here we write sim-
ply, e.g., r(z) for the unique box of length L that contains the box
x of length ¢. Expressions like z(7), u(y) or s(k) have corresponding
meanings.

The role of the different scales will be the following. We are inter-
ested in the typical ( with respect to the Gibbs measure) profiles of the

16/june/1997; 11:59 5



overlaps on the scale L, i.e. the function r — my,(r, o) for configura-
tions of o that are typical for the Gibbs measure. We will control these
functions within volumes on the macroscopic scale y~!. The smaller
mesoscopic scale £ enters here to express our system, on this scale, up
to some errors as an Hopfield model on each block of length ¢ with
interactions between these blocks. We will see that it is quite crucial
to use a much smaller scale for that approximation than the scale on
which we want to control the local overlaps. This was noted already in
[COP].

We want to study the probability distribution induced by the Gibbs
measure on the functions r — mp,(r) through the map defined by (1.10).
The corresponding measure space is for fixed v simply the discrete space
T, ={-1,-1+2/L,...,1-2/L, 1}MMN*Z  which should be equipped
with the product topology. Since this topology is quite non-uniform
with respect to 7y (note that both L and M tend to infinity as 7 | 0),
this is, however, not well adapted to take the limit v | 0. Thus we
replace the discrete topology on {—1,—1 + 2/L,...,1 — 2/L,1}M()
by the Euclidean /5-topology (which remains meaningful in the limit
v 1 0) and the product topology corresponding to Z is replaced by the
weak local Ly topology w.r.t. the measure yL ZTE‘; that is to say, a
family of profiles m7 (r) converges to the profile mp (r), iff for all finite
Re IR, YL o g g llm7(r) —mp(r)[2 L 0 as n T co. While for all
finite ~ this topology is completely equivalent to the product topology
of the discrete topology, the point here is that it is meaningful to ask
for uniform convergence with respect to the parameter ~.
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2. Block-spin approximations

This chapter is the first step to make clear the link between the
Kac-Hopfield model and the Hopfield model. Models, as the usual Ising
model, are not well adapted to what is called in the physics litterature
the “block spin transformation” in the sense that the resulting effective
interactions has a complicated expression. In Kac models this is usually
not too difficult as far as the system is in a volume which is not too
large.

Expressing the model in term of block spins, it is natural to intro-
duce the following quantities:

Bam) =20t Y Jule-y)im()ml) (1)
(z,y)EAXA

and

BN (m, ) = —yLL Y " Y I, (tx — Lr)(m(z), m(r)) (2.2)
zEAreAc

Note the J,; in (2.1) to put everything in the mesoscopic scale £. These
quantities are related to the original Hamiltonian via the following two
formulas where we introduce the relative errors AH and AW

Hya(04) =7 E; A(me(0)) + AHS A (on) (2.3)
and
Woya(oa,onc) =7 B (me(0),mp(0) + AWK (04, 0ac)  (2.4)

We have exhibited a y~" factor in front of EY ,(me(0)) to make clear
the scaling involved in the problem.

We consider only macroscopic volumes A of the form A = [A7, A 7]
with A* € Z with |A| > 1. For such volumes we set A = 9~ A U
OFTA, 0-A =[A" —1,17), and 8tA = (AT, A" + 1]. Thus, since the
interaction range is y~! we have Wy a(oa,one) = Wy a(oa,08a) and
AWf:/I\I(UA, O'Ac) = AWf:/I\I(UA, 0'3/\).

The following lemma is the basic result to control the block spin
approximation.

Lemma 2.1: For allé >0
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lP[sup e

up |AH)(0)] > 7@(7)8\/§(log2 +0) + 2\/§7M(7)]

A
< 16e %5

(2.5)
ii)

zp[ oup vmwf;i(amm)w(4wL<v)((1og2+5)+vM(v)>]
oESAUBA
< 86_%

(2.6)

The proof of (2.5) can be found in [BGP2], the one of (2.6) in
[BGP4]. Let us mention the important fact that since the parameter
M (), £(y) and L(7y) are chosen in such a way that a(vy) = yM(y) | 0,
v£(y) } 0 and vL() | 0, it follows from (2.5) and (2.6) that with IP-
probability very close to one the errors of the block spin approximations
is of order a small parameter times the volume (expressed in the macro-
scopic unit). This will allows us to control only the Gibbs-probability of
cylindrical events that have a basis with a diameter uniformly bound-
ed. The main problem is to obtain estimates for the infinite volume
Gibbs measure. In Kac models there are two ways of doing that. One
is to consider the infinite volume limit and after to take after the v | 0
namely the true ‘Kac-limit’. The other possible way is to take the in-
finite volume in a 7 dependent way, usually in a relatively slow way,
but at least the macroscopic volume are going to infinity. That is the
interaction length is negligible with respect to the volume, see [HL]. De-
pending on the events we consider this could be equivalent or not. For
the Lebowitz and Penrose theorem where events related to the global
overlaps is considered this is equivalent, a fact already noticed some
years ago by [COP1i] in the context of unbounded spins systems. For
local events the situation is not so clear.
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3. Local effective measures

In this chapter we present a very clever way, introduced by [COP],
to deal with the infinite volume problem mentioned above. It was
inspired by a fundamental work of Ruelle on superstability estimates.
The point is that if we are interested only in local observables, say a
cylindrical event with a base in a macroscopic box V, we will show
that at a distance R, with a Gibbs probability growing exponentially
to one when R 1 oo, there are two (macroscopic) blocks of length 1,
one on the left and one on the right of V', where the profiles are near an
equilibrium value of the Hopfield model. This will allow us to decouple
the system in an inside finite volume system and an outside infinite
volume one. To make this precise we imitate [COP] and define the
following random variables that will be crucial to describe the typical
configurations on the set 7,: Given ¢, L, u € Z and 0 € S let

N ] set if Vg ms) — mp r,o)lls < ¢
n(u,0) = ne,(u,0) = { 0 if vﬂi E“r‘E'u. [l ) (_ mw(r, V> ¢
(3.1)
This definition is unequivocal if ¢ is chosen small enough i.e. ( <
v2a(B). We do not write the explicit dependence of ¢, L when there
is no risk of confusion. For a given configuration o, n(u, o) determines
whether in the unit interval centered at w all the local overlap on the
scale L are within a (-neighborhood of the equilibrium. Note the fun-
damental fact that we ask that all blocks of length L within the block
of (microscopic ) length y~! are near equilibrium. This is crucial to
have a good control of the system on this scale.
For a given volume V = [v_,vy| C A, with |V| > 1, we set

ot — {inf{u > vy 1 n(u,0) # 0} (3.2)
oo if no such u exists

and

— {sup{u <wv_:n(u,0) # 0} (3.3)

—oo if no such u exists

for a given configuration o, 7+ indicates the position of the first unit
interval to the right, resp. the left, of V' where the configurations o is
close to equilibrium. There are analogous of stopping times, in Markov
chains theory, if we imagine the space Z of our process as the time
variable of a Markov chain. We define a partition of our configuration
space S according to the possible values of 7% and the possible values
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of n(7*). That is the atoms of the partition are
A(p®, st we) = {a €S: 15 =wy,n(tt,0) = sie“i} (3.4)

For a given integer R, the indices pu*,s* wy will run over the sets: p* €
{1,...,.M(y)}, st € {-1,1}and wy € [v,,v, +R],w_ € [v_ —R,v_].
In the sequel, if not otherwise specified, all sums and unions over these
indices run over the above sets. With an little abuse of notation we
denote by

Sg = U Ap*, 5T wy) (3.5)

pE st wy
0<*(wy—v4)<R

Notice that

S = AT(R)UA™(R) (3.6)
where
AT(R)={ceS:7" >v. + R} (3.7)
= {o’ €S : Vo, <w<v,+R n(w,o) = 0}
and
AT(R)={resSir” <v. - R} (3.8)

= {0’ S Vvi_RSvai n(w,a) = 0}
For given indices u*, s*, wy, it will be useful for the future to introduce
the following sets that contain A(u®,s™,w): let

~

A(p®, st we) = {a €S :n(wy,0) = sie“i} (3.9)

where the difference with A is just that on A we do not specify that
the equilibrium is reached for the first time moving on the left and on
the right of V', that is we specify only that at the points w4 we are at
the equilibrium and this could have happen before! We introduce for
future use the set

Ao(uiasi7w:|:)
={oeS:n(us,0) =0,Vuy,vy <uy <wyp,w_ <u_ <v_}
(3.10)
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which is nothing but the set A(u*,s*,w4) restricted to the volume
]’LU_, W4 [

We define also A = [w_ + ,wy — 3] and, associated to these
volumes, we deﬁne the Gibbs measure on A with mesoscopic boundary
conditions m* %) as the measure that assigns, to each oa € Sa, the
mass,

G4 wl(oa) = 7; ~6{Hy 2wl 0a)+ W alwl(eam®™ )}
RN
(3.11)
+ .+
where Z 5,7’,2 [w] is the corresponding normalization factor and
£ gy _ - .
W%A[W](UAam(ﬂ ’ )):_ZS a(B)&; o Z Jy (i = J)
ieA ico-
© Jeoma (3.12)
—Zs a(B f“al Z J, (i —j)
iEA JEOTA

The next proposition will make precise the above mentioned decoupling
between the inside and the outside.

Proposition 3.1. Let F be a cylinder event with base contained in
[v_,vy]. Then

i) there exists a positive constant ¢ such that, for all integer R, for all
€ > 0 there exists Qg with IP(Qg,) > 1 — SR2M?2e=°¢7 " such
that for all p*, s, wi, vy <wy < vy + Ryv- — R<w<v_ and
w € Qg For all A D [v_ — R,v; + R]

gﬁﬂ’,/\[w] (F n A(:ui’ 3i7 wﬂ:))
< GE N (W] (F N A (u, 5%, ws))
X Goyale] (A(uF, 5%, ws) )

6(8,3771(54-27@)

(3.13)
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Moreover

G lw) (FnA ,ui))
g“ﬁf @] (F 0 A2, 5%, wy))

X Gg,y,a W] (A(Mi = Ui)>

e(—8ﬁ771(§+27L))

(3.14)

here A = [w_ + 3, w; — 3] and C=Ce) = C(1+ vAM)(1 +¢).
ii) There exist a positive constant ¢’ and an ey > 0 such that for all

integer R, for all € < ey such that € > max(y{,ylog %, \ /%, al/3)

there exists Qg . with IP(Qg.e) > 1 —’y_lRe_C’622 and there exist a
finite positive constant c; and a positive constant c(3,€) such that
if L and ¢ are such that (3*yLc(B3,€) > 2cie then for all w € Qg
and A D [v_ — R,v; + R]

Gp,y,alw](F N SE) < exp (—BLRc(B, €)¢?) (3.15)
Corollary 3.2. Let F be a cylinder event with base con-
tained in [v_,vy|. Then there exist a positive constant ¢’ and an

€0 > 0 such that for all integer R, for all € < €y such that € >
max(’yﬁ,’ylog%”/%,al/i’), there exists Qp . with IP(Qrc) > 1 —

8RZM?2e='<Y"" and there exist a finite positive constant ¢ and c(0, €)
such that if (3yLc(B,€) > cie then for allw € Qg and

AD[v- —R,vy + R]

G,7,a (W] (F)
< ) 957’2 W] (F 1A% (u*, s, ws))
pt st
e Swy<n (3.16)

X Gapalw] (A(ut, 5%, w1) )

% e®BY 71 (¢+27L))

+ exp (—BLRC(B, e)C?’)
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and

Gg,y,AlW](F)
+ sj: °
> Y Gh R W (FNA (st ws)
ut ot
e (3.17)

% Gppali] (A, 5%, uz))

« (=867 (¢+29L))

and there exists u*, (u*, s*) such that

1

” SR (318)

98,v,Alw] (ﬁ(ui, 5%, Uj:))
Remark: As it become clear from its proof, the estimate (3.15), de-
pends only on the fact that there is a run of length R of n = 0 and
is rather independent of the volume where it happens. However, the
important fact to notice is that the IP-probability that such an even-
t occurs is of the form 1 — exp(—ce?y~!). We have put the entropy
factors R2M?, that are clearly irrelevant here and can be neglected by
changing c in ¢(1—¢) for some € > 0 as small as we want. An important
part of this work is to control precisely all these IP-probability and the
constraints on the volume that will appear later are coming precisely
from the control of similar IP-probabilities that is uniform with respect
to the various volumes that appear in the problem . In particular an
estimate like (3.15) is valid uniformly with respect to volumes A that
are of order exp —(c'e?y~!) for some positive constant c'.
Remark: The two estimates in (3.16) and (3.17) have the important
property that the upper bound and the lower bound have the same
order of magnitude. However the point is that the presence of the
:I:, S:I:

~

term Gg 4 a[w] (.A(u ,ui)> shows that to get a full large deviation

principle as in [COP] we need to control these terms in the infinite
volume limit. The lower bound (3.18) is rather weak but it occurs with
IP-probability which is also of order 1 — exp(—ce?y~!) and therefore is
true for all volumes A that are of order exp(c’e2y~1) for some positive
constant ¢’

Proof. The first assertion of Corollary 3.2 is immediate from (3.13)

and (3.15). To prove (3.18), we need to show that

sup sup G3,,AW] (ﬁ(ui, si, ui))
pt,st +(ur—vi)<R

Zspaz 519
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But from (3.15) we see that

5 <1 exp (~BLRexCe(()) < 1~ G a0](SF)
< Gpyalw] (ry Svi + R,7— 2 v_ — R)
<Y Geaalw] (o =us, T =uy)
+(ut—vi)<R (3.20)
< Y Gayalwl (n(uz, o) # 0,1(us,0) #0)

+(ur—v1)<R
< 4R*M? sup sup Gg,,A W] (fl(ui, si,ui)>
+(usr—vy)<RpE,st

which gives (3.19).
Proof of Proposition 3.1 part i): Let us set A°= A\ A. To prove
(3.13), we start by integrating on the spins configurations in A°:

G,y AWl (F N AW, 5%, ws))

+ .+

e #-ZEUA e_/B |:H’7’A[w](aA)+W'y,A[(U](O'A,m(“ s ))]
Zp,y,a[w]

X ZE e_ﬁ [Hv,AC[w](O'AC)'i‘[WV,A[w](JA,aAC)_W’Y,A[w](aA’m(ui,si))]]

agac

X H{UeFﬂA(ui,si,wi)}]

(3.21)
To continue we multiply and divide into the [E,, expectation by a
partition function on a volume A with mesoscopic boundary conditions
compatible with A(u*, sT, wy) to get

Goya W] (F N AL, 5%, wy))

1 - w](o w](o m(“i’si)
N R )
Zgya W]
x IE, .IE 1 o BlHy aclwl(oac)+Hy alw](Ga)+ Wy a[w](6a,0a0)]

T O g A lW]

TisernA(u*,s* )}e_ﬁ[Wv,A[W](UA,UAc)—Wv,A[w](Umm(“i’si))]
g KBS W4

« o TB[WralelEam® )W, alwl(@a,0a0)]

(3.22)
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Using the fact that
Toeaqt st we)y = Loneao(ut st wiy Lo c Rt s sy (3:23)

see (3.88).
We can reconstruct the Gibbs measures in A, to get:

G, a[w] (F N AT, sT,wy))

+ s:i:
= lEg-A gZN:A [w](O—A)]I{UAFﬂAomui,si,wi)}

LOEN RN () (V) P v (3.24)

o o= B[ Wralwl@aae)—Wy alwlleam )]

< et [WV,A[w](aA,mW*’Sin—Wv,A[w](aA,aAc)}]

Where 6, is the configuration that coincide with ¢ on A€ and & on
A.The important fact is that we have exhibited terms like:

Wy, alw](oa,5ac) = Wy,alw)(oa,me )] (3.25)

where the same configuration oo appears in the two terms of the pre-

vious difference and where Ga- are such that € ./T(ui, sT, w4 ) which

implies in particular that n(wy) = stet” and therefore we can expect

that these terms are small. In fact if 7 € .Z(ui, st wy)

Wy alw](0a,5ac) — Wy alw](oa, mE+)]

+ _+
+ [y, alwl(@a,m®™*7)) = Wy alw] (@4, 7a<)] |
+ _+
<2  sup ‘W%A[w](&A,QC)_W%A[w](5A,m(u ,s%)
geA(pt st wy)

)
< 2 sup AW;g[w](&A,aaA)‘ +2x
GES ’

s B )oa mu(Gea)) - Wy alul@a,mis )
GEA(pT, st wy)
(3.26)
and we have a very good control of the second term by Lemma 2.1 and
of the first one by the following one:
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Lemma 3.3: For any given v_ and vy, there exist positive constant
c and K such that, for all € > 0, for all integer R, there exists Qg

with IP[Qpr > 1 — 2KRQe_°‘"27_1 such that uniformly in p*, s, wy
such that 0 < £(wy —v1) < R and 0 : n(wx,0) = ster” we ha'ue

+ .+
VLYK Wl (oa, me(sa)) — Waalw)(oa,me )

<ML+ VM)V e

(3.27)

where A = [w_ + 1, wy — 3].

Remark: The point is that the set Qg . is independent of puE, st wy.
It would be clear later that R can be chosen not too large and will be
bounded by some power of y~!. Moreover, such a result is true also
uniformly with respect to the points v4 as far as there are in a volume
say centered at the origin of length bounded by exp{+cy~!(1 —¢€)|} for
some € > 0.

From this lemma and (3.25) we get immediately (3.13) and (3.14).
Proof. Let us set

W, alwl(oa, mt s >) A lwl(oa,m® o)

o (3.28)
alw](oa,mEo))

where

W alwl(oa,m® * N =-L> s"a(@E o7 > Jy(i—Lr)
1EA rcd— A
(3.29)

and

+ .
W;fA[w](aA,m(qu,s*)) = —LZ sTa(B)Er oy Z J,(i—Lr) (3.30)
i€A redtA

We will consider only the terms corresponding to the interaction with
the right part of A, the other one being similar. We have, us-
ing the Schwarz inequality and the definition of 1 (3.1): On the set
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{o € A(p*, s, wy)}, we have

B + gt
‘7 "By [wl(oa, mL(oara)) — WA [w](oa, m® ))‘

<L Y J(i—Lr)o; (&, [mL(T, Oorn) — m(’ﬁ’sﬂ])‘

1IEA redt A
(3.31)
<L Z ZJ (i — Lr)&o; HmL T, OatA) — m ")
redtA lliea 2
<CL Y DI Lr)éios|| =T (o)
redtA llieA 2
Define the y~! x y~! matrix with entries
M(v)
Bj=v ) &t (3.32)
pn=1

for ¢,7 € A. Using again the Schwarz inequality, we have

TH(o)=C¢L )

recdtA

D=

> > (&, &5)oi05Jy (i — Lr)Jy(j — Lr)

i€lwy—lwy —3]j€[wy—Lwy—3

<¢L Y |B Y (oudy(i—Lr))?

redtA i€lwy—lwy—3

<¢L Y |IBI®
recdt A
<¢@n7'IB|:
(3.33)
where we have used in the last inequality that #{r € 0TA} = (2yL)~!
Thus, using the Theorem 2.1 in [BG3] we get immediatly, for all € > 0,

2
P |sup T (0) > C(27) Y1 + VA M)VI+e| <2Kexp | ——
cES 2K~y

(3.34)
for some absolute constant K from which (3.27) follows.
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Proof of Proposition 3.1 part ii):

Using (3.6) the Lh.s. of (3.15) is bounded from above by

Gg,v A W] (AT(R)) + Gg,v a|w] (A7 (R)). We estimate the first term, the
second one being similar. Since the spin configuration are away from
the equilibria on a length R, we can decouple the interaction between
this part and the rest of the volume A, by making a rough estimate of
those interaction terms which are of order ¢y~! as we will prove later.
The fact that we have a run of n = 0 will give terms proportional to R
that will be dominant if R is chosen large enough. Let us first state as
a Lemma the fact that the interaction between a given volume and its
complementary is bounded by 2 ( one for the interaction with the left
part and one for the interaction with the right part).
Lemma 3.4: For any given v_ and vy, there exists a positive con-
stant c such that, for all € > 0, for all integer R, there exists Q0 . with
IPQR.] > 1 — 2Ke=°Y " such that for all pt, st wi,vy < wy <
vy +Rv-—R<w_<v_ andw € Qg

sup |W,, alw](oa,0an)| < v712(1 + VM/£)*(1 +€) (3.35)

where A = [w_ + 1, w; — 3.
Remark: Note that here also such an estimate is valid for volume
that are of order exp+c(1 — €)y~! for € > 0. Also, we assume that
M/t = a(v£)~! goes to zero. The proof of this lemma is simple, using
similar arguments as in the proof of the Lemma 3.18. It can be found
in [BGP4].

With this in mind, calling Ar = [vy, vy + R], we have, for all fixed
Ra

Gs,v,A (A+(R))
B 1
Z3,A
% e_'B[H"”AR(UAR)+W"”AR(UAR’UA\AR)]]I{UeAJr(R)}] (3_36)
1
71EUAR |:e_ﬁH'y,AR(0'AR)]I{O-EA+(R)}(O'):|
ﬁa'Y’AR

=77 G nn (AT(R))

IE,, [e_IBH«/,A\AR (oa\ag)

< 645’771

with IP-probability greater than 1 — K e~ for some positive con-
stants ¢ and K, where we have used the previous lemma to bound the
interaction between A and A \ Ag.
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To estimate the last term in (3.36), we express it in terms of block
spin variables on the scale £. Using (2.5) we get

Gs,v,05 (AT(R))

e

—1 L
< o267 AR|(4yL+yM) Eoag 7 E%ARI(T,:[(U))]I{"EAWR)} (3.37)
IEUARe_ﬁ7 E“/’AR(ml(a))

with IP-probability greater than 1 — e=cv ' 1Axl

We derive first a lower bound on the denominator in (3.37) which
will be given effectively by restricting the configurations to be in the
neighborhood of a constant profile near one of the equilibrium positions
sa(B)e*. We can choose without lost of generality to be s = 1,y = 1.
To make this precise, we define for any given p > 0 the balls

B/(j"s) = {m e IRM; ||m — m®)||, < p} (3.38)

Moreover,we will denote

B, = U BY-) (3.39)
(u,S)E{l,...,M}X{—l,l}
Obviously,
IE,, A SN C )
R
—By YEL A (me(o)) (3.40)
Z IEUARe Y Ap\Tte H ]I{m[(m,U)EBE,I’l)}

TEAR
It can easily be shown that, on the set {my(z,0) € B,,Vz € Agr},

’ 14

—Y B an (me(0) 2 5 Y (Imel, 0)|5 — 40°) (3.41)
TEAR
from which (3.40) yields
B,y O Phagmeo)
> =267 T|AR|P? IE, ez llme(@o)l3q (1)
ng {me(z,0) € B} (3.42)
= e_2ﬁ’771|AR|P2 H Zm,ﬁ,p (a(ﬁ)el)
TEAR
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Next we derive an upper bound for the numerator of the ratio in
(3.37). Using the inequality ab < (a? + b%) we get

_ 14
Y B an(me(0)) < 5 Y me(z, o)} (3.43)
TEAR

and whence

—By 'E¢ my(o
B,, e Bantm, . o

UAR

(3.44)

st my(z,0)||2
< IE,, " D eay, Ime@, )||2]I{06A+(R)}

Let us now recall that, by definition,
AT(R) = {0’ €S ‘ VueapIrey : inf [mB®) —mp(r, )|z > C} (3.45)
1,5
Using that mz(r,0) = £ 3, ., me(z,0) we have, by convexity
fm®) —my ()]s < + D [Im"*) —me(z,0)|2 (3.46)
Y — L = Y
so that
14
AT(R) C {0 €S ‘ VueapnIrew :inf — Z M%) — my(z,0)||2 > C}
w,s L

TET

(3.47)
We will use the following fact
Lemma 3.6: Let {Xy,k=1,2,...,K} be a sequence of real numbers
satisfying 0 < X < ¢ for some ¢ < 0co. Let 0 < ( < ¢ and assume that

1 K
“N "Xy > ¢ (3.48)
K; k

For 0 < 6 < (, define the set Vs ¢ = {k| X < 6C}. Then

¢(1—-9)

< k< : >
|{1_k_K Xk>5C}|_K c—oc

(3.49)
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Proof : Set Vi, ={1,..., K} \ Vs¢. Then

(3.50)

=;gc—&ﬂwy+w<
which, together with (3.49) implies the bound (3.50).

Let us denote by Vs ¢(r) the set of all subsets S C {z € r} with
LC(l s)

cardinality 7 >3— T respectively volume
¢(1—9)
S| >~L 3.51
5|2 L5 (351)

Then, since ||m(**) —my(z,0)||s < 2, Lemma 4.7 implies

A (R) C {a €S ‘ VucanTreudsevs o) ¢ Vacs » me(@, o) € Bgc}
(3.52)
Therefore

—1 5
IE. e P EY’AR(ml(U))]I{aeA+(R)}

UAR

£
< [ ¥ Secslmtols
>~ Ou
u€EAR

X ]I{Hreﬁsevs (r) VT €S, my(z,0) € Bs }

Bl m:zo‘2
HZ Z E, 62 zeu' @l H]I{mexa EBSC}

uEAR r€U SEV;s ¢ (r) zeS
(3.53)
Inserting this and (3.42) into (3.37) we have

Gs,7,anw] (AT(R))
< PV IARI(167E+4yM+4p%)

y Zz,,5¢
> > I 7 eee Uz, Gos 39

u€EAR TEU SEV5 ¢ (r) z€U\S ”3 p z€S

vy~ HAR|(16vL4+4y M +4p%) H Z Z Tél) TéZ)

uEAR r€U SEV;s ¢(r)
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where we have defined

C — ﬂ myl\T,0 2
Z% 5 5c =B, e [me(z, )HZ]I{mg( (3.55)

To bound from above Z, g we use an argument of Koch [K], see also
[BG1]:
We have

Zyg = IE,,e7 Ime@o)l}
M/2 3.56
_ (B¢ / o 3BUIzI3 Y07, logeosh(B(z,6:)) 4, (3.56)
IRM

27

Given § > 0 to be chosen later, we define
by 5.5(6:2) = = ~logeosh(B(z &) (357)

Ziem giki

therefore denoting A(z) =

ﬂf M/2
Z:z s= = / e—ﬁl(z,l—(l—&)A(a:)z)e—ﬁld)l,ﬁ,g(z)dz
’ 2'IT RM

< e PLinf.cpm ¢1¢,B,5(Z)(det(][ -(1- (S)A(ﬂlﬂ')))_l/2

the M x M matrix we get

(3.58)

it follows from the Theorem 4.1 in [BG6] that for € > 0 small enough,

(det(I — (1 = §)A(2))) > < (1 - (1 = )| A=) )~ ™/

. 3.59
< BUSE log(1-(1=8)[(1+y/F)*+4) (3.59)

2
with IP-probability greater than 1— K e~ ‘& for some absolute constant
K. Choosing

6 =6(e, 2\/7+ + 2¢)( 1+\/7 +e€)” (3.60)

log(1 — (1 —8)[(1 + @)2 +¢€])) = —loge (3.61)
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We assume that £ is chosen such that (recalling o = yM), then

M o
—=—10 3.62

when v | 0. We impose that

% <ce (3.63)

this implies that for v and € small enough, 6 ~ 2e. Moreover, if € and
~ are small enough, it is easy to check that

inf G0.0.5(2) > dp(a()) — ce (3.64)
z€IR

for some positive constant ¢. Therefore, if € is small enough

Zup < exp (=08 |99(a(B) ~ ce 51~ logd] ) (39

with IP-probability greater than 1 — K 6_%.

We need a lower bound on Z, s ,(a(8)e') we use the method of
[BGP4] with a little modification. Defining as it is standard for finding
lower bound for large deviations the so-called associated measure (cor-
responding to associated random variables, see [CT]): Let ﬁo,z be the
measure defined on {—1,+1}* through their expectation ﬁo,za given
by

—~

E, (eM(a(mel,mz(z,a))_)

Eow(-) =~ opta@ermimo)) (3.66)
Note the important fact that
IE,ePHaB)e"me(2:9)) — (cogh Ba(B))* (3.67)

It is easy to check that

Zz,5,0(a(B)e’)

1y~ BL 12
—pLd a(fB)e 5 lme(z,0)—a(B)e||5
= ¢ @@ E, oo I =e@lany 0 o) a@)etla<or

(3.68)
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Since

BL 12
5 lme(z,0)—a(B)e||5
ez M@ =a@ellaqy oo a@)etla<oy = Tijme(ao)—a(B)et 2<p}

(3.69)
we get the lower bound

Za g pla(B)et) > e P @@NIP  [imy(z,a) — a(B)e]2 < p]
(3.70)

To estimate from below the previous ,ﬁmﬂ probability, we start by
bounding from above

P, [|me(z,0) — a(B)e|s > p]
IE, [ezia Ba(B)E; o

L jim(e,0)—a(B)et |22 02} (3.71)

(cosh(Ba(B)))"

It is easy to check that

l —ﬁ—i—l my(z,0)—a ell|?
[, (2,0)—a(@)er32p2 < €47 T Falmelzo)malB)erly)

my(z.o 2
_ e pelmeenls S sa(@)etes B (a(e))?
(3.72)

Be 2
therefore, inserting this in (3.71) and regrouping the term e 2 (a(8))
with the term (cosh(Ba(8))) in the denominator of (3.71) we get

—_— p2
P, [[Ime(w, o) — a(B)e!||s > p] < e=Pt P @0 7,  (3.73)

Using the upper bound (3.65) we get

2
—B¢e |:p7 —ce—c% (1-log e):|

P, [[me(z,0) —a(B)e|2 > p] <e (3.74)

262

with IP-probability greater than 1 — Ke™ ¥ . From which we get,

‘ ~ . —B¢ é—ce—c%(l—log(e))
i Zega(B)e!) 2 0D (1‘6 | ]>

(3.75)
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62
with IP-probability greater than 1 — K R('yf)_le_lT. Therefore, as-
suming that p is such that
2

To>cet c%(l —loge) (3.76)

we get,
e(—{—ﬁlc% (1—log 6))

sup sup sup T(l) < H 5 (3.77)
uEAR €U SEV5 ¢ (r) rEu\S 1 — e BT

with IP-probability > 1 — KR(vf)"te

On the other hand, to bound Zg ; 5., we proceed as in [BG2] and
first note that using the Theorem 4. 1 of IBG6], we have if % and € are
small enough

sup |lme(z,0)[|3 < sup |A(z)[] < (1+ \/%)2 +e<2  (3.78)

TEAR TEAR

with [P-probability > 1 — K R(fyﬂ)_le_%. Next, we introduce the
lattice Wy ps with spacing 1/v/Z in IR and we denote by Wy 1/ (2) the
intersection of this lattice with the ball of radius 2 in IR™. We have

2 <o (311 (2)) 75

Now, we can cover the ball of radius 2 in IR™ with balls of radii p =
/M/L centered at the points of Wy ar(2). Assuming that 6 > p this
yields,

Zipsc < DL Mme Bs._,}Zwp.0(m)w]
meEW, nm(2)

1.
< X Tmen, pew (-0 (Eastmll- 7))
¢—p 2
meEW,, v (2)

(3.80)
It is rather tedious to check that it is possible to modify the Theorem 1
[BG3] (or Theorem 6.1 of [BG4]) by changing almost all the constants
and making different choices each time it is necessary to get that for

all € > 0, with IP-probability greater than 1 — K e_%, if 8 > 1, there
exists a strictly positive ¢(3, €), with ¢(8, €) > ¢(8)(1—g(e, B)) for some
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g(€,8) 1 0, where € | 0 and ¢(f) is defined in the Theorem 1 of [BG3],

such that if ¢ — p > ¢, /=2~ for some positive constant ¢ then
a(B)

©;,5(m)[w] — @5(a(B)) > (B, €)(6¢ — p)° (3.81)

2e2

Therefore, with IP-probability greater that 1 — R(v£) " 1Ke™ & we get

sup Z;,ﬁ,&(
r€EAR
< exp (5 (6(a(8)) + c(B, ) (6 — 5)* — 30* ~ 2 n (%))

(3.82)
Therefore, using (3.75) and (3.76), we get

sup LBt
zenn Zz,6,0(a(B)e)

< exp (=BL [c(8,) (6 — ) — e — % n (24)]) (1 - e‘“é)
2 (3.83)

with IP-probability greater that 1— R(v£)" 1K e~ ‘& . Thus the product
Tél)Tg) defined in (3.54) is bounded by

-1

Tél)Téz)
_ 2 R
< exp (=0 18] [e(8,0) 065" — e}~ Fn (R)]) 544
_1 o 2 _(’ye)_l
P e[ 55 (1-log o)) <1 _ e—ﬁé%)
with IP-probability greater that 1 — R(y£)"'Ke~ %
Hence calling
2\~ Ax] 1
(1 - e_ﬁlPT> =g~ 08 Azl (3.85)
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we get

1> > mrs

u€EAR TEU SEV; ¢(7)
< =—(r) 7 AR H
u€AR
—B+vYs §C— 05 —elp? - My (2
Z Z exp | =By "|S] |e(B,€) (6 — p)" —c5p ,Ben(M)
reu SeVs ¢(r)
< (=87 1ARI[YLCe(B,€)(5¢-5)])

y (‘ﬁfl'ARl[—c%ﬁz—%1n(%)—v|1n(vL)|—vLm72—ﬁma])
e
(3.86)
with IP-probability greater that 1 — R(fyé)—l Ke % . Now, if
2
Bt > log?2 (3.87)

we get

P CORIINY ) g
(1 = e‘ﬁlT> < exp [2'}/—1|AR|Z exp <—ﬁﬂz>] (3.88)

therefore the right hand side of (3.86) is bounded from above by

2
e(—ﬁv_lR [vLCc(ﬁ,e)(sc—ﬁ)z—c%ﬁz—% ln(%) - ln(vL)l—vL‘“TQ—ﬁe“’”T] )

(3.89)
We collect all the constraints on the various parameters we have in-
troduced, recalling that we have imposed (3.76) and (3.63). We first
assume that the various parameters are chosen in such a way that

15— M In (2) — yIn(yL) " + 4022 ¢ Lot
7 £oA (3.90)
< 57LCe(B,€) (¢ — )

Noticing that in (3.46) there is an exponential prefactor
eB7 HIARI(167£+47M+46%) | we assume also that

169+ 49 M + 45 < 4LCe(B, ) (5 — )’ (3.91)
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Let us note that it is precisely here that it is crucial to have two different

scales £ and L with L >> / to be able to satisfy this inequality (for

fixed ¢, § arbitrarily small). This was already observed in [COP].
Note that (3.91) implies that p has to satisfy p? << yL. Assuming

that
1 .M
S0C> =1/ (3.92)

and since from the Lemma 3.6, we need 6 < (, we can take § = (/2
2
and replace 6¢ — p by %.
Therefore a simple way to satisfy (3.91) is to impose

167L + 4y M < ing%(ﬂ, €) (3.93)
and
p* < %WLCE) (8¢ (3.94)

Since we have to satisfy also (3.76) and (3.63) which implies (1 —
log €) < ce? log € if we satisfy, (3.63) and

ce < pz 4i,ng5 (B,€) (3.95)

for some positive constant ¢, we get (3.76). Therefore if we assume
(3.63), (3.95), and

16v€ 4+ 4yM < ce (3.96)

we get (3.93).
To satisfy (3.90), we first note that since

p° = MMy (2—£> (3.97)

we can ignore the first term c3 5% in (3.90). Cutting the condition (3.90)
in three, and recalling (3.95) we impose, for some positive constant ¢

%ln (%)=_21In (2_@) < ce (3.98)
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In2
yIn(yL)~t + WLHT < ce (3.99)

and

1 g0
@e—ﬁ T < ce (3.100)

Taking into account of (3.63), since c?e?log -2- < c’e if € is small
enough, (3.95) implies (3.98). we consider (3.99). Now L < v~! which
is assumed already, implies vIn(yL)™! < 2y log% and (3.63) implies

In2
’yLHT < % < 22y < c?€? (3.101)
a
since T < 1, therefore (3.95) and
1
vlog — < ce (3.102)
Y

imply (3.99). Concerning (3.100), it is an immediate consequence of
=1 < c?¢% and (3.95). Therefore we remain with the conditions (3.63),
(3.95), (3.96) and (3.102). Note that to satisfy (3.96), we need 16v£ <
ce and to satisfy (3.63), we need v£ > ac™2¢~2. This impose

a < ce® (3.103)
and we get that £ has to be chosen in such a way that
ay e 2 <l <cey! (3.104)
Note that £p? > ce~! and therefore taking € small enough we get (3.87).
It is certainly better to choose £ = cey~! to have £p? > €3y~ note
that the choice £ = ay~le2 gives {p? > 2 which is not very good if
M = ay~! is bounded. Assuming (3.103), (3.96) is a consequence of
1694 < ce (3.105)

Collecting, if (3.63), (3.95),(3.105)and (3.102) are satisfied then

G,v,anlw] (AT(R)) < exp <—B7‘1R {vL%c(ﬂ, 6)4352D (3.106)
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&2

with IP-probability greater than 1 — R(y£) 1K e~k
Remark: We have made explicit all the various constraints on the
parameters € £, L ( 0 since depending on the kind of results we want
they can be chosen in various ways. Let us notice that we have insisted
to choose first € and for this choice, £, L {, § and p are choosen in that
order. This has been done to have always an uniformity on volume of
order exp(c(€)y~!) for all values of M that are such that yM | 0. A
possible procedure is the following: For a given e small enough, take
+ small enough such that o < € and 'ylog% < €. Then choose £ such

that £ = cey™!. To satisfy (3.95), take for example L = ¢y 'elog i
and (5 = log % and everything work perfectly.
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4. Self averaging properties of the free energy

In this chapter we study the self averaging properties of the free
energy of the Hopfield-Kac model with mesoscopic boundary condition-
s. This chapter is crucial to understand the volume restriction we will
impose. It is here that the main restrictions will come.

We denote the partition function on the volume A with boundary
condition s~a(B)e* on the left of A and sta(8)e*  on the right of A
by

+ .+
Z@e)
= ZEO'A B_ﬁ(H“”A(U)"i'Wv,A,B*A(UA|m(”_’S_))+W~,,A,3+A(UA)|m(”+’S+)))
(4.1)
and the corresponding free energy
+ s:t + si
FED = = = T g (4.2)

BIA|

To include the case of free boundary conditions, we set m(®% = 0.

We are interested in the behavior of the fluctuations of fé“ £
around it mean value. We will use the Theorem 6.6 of Talagrand [T]
that we state for the convenience of the reader. We denote by IM X
a median of the random variable X. Recall that a number x is called
the median of a random variable X if both IP[X > z] > % and IP[X <

) > 3.

Theorem 4.1. [T/ Consider a real valued function f defined on
[—1,+1]N. We assume that, for each real number a the set {f < a} is
convez. Consider a conver set B C [—1,+1]Y, and assume that for all
z,y € B, |f(z) — f(y)| < k|lz — yl|2 for some positive k. Let X denote
a random wvector with i.i.d. components {Xi}lgigN taking values in
[—1,+1]. Then for allt > 0,

PO - D) 2 < b4 e (—185) (49)

where b = IP [X ¢ B| and we assume that b < %
The first result of this chapter is the following proposition:
Proposition 4.2. . Ifv£, M /¢ and vM are small enough, then for all
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t > 0, there exists a universal numerical constant K such that
+ o+ + + -1
IPUf(AH 8 )—lEfé“ S )‘ZtﬂLK( /7—1|A|> }

» : (4.4)
< Kexp (-77|A|(,/1 g 1))

Remark: Note that in this proposition we have fixed A, (u*, s%).
Proof. Note first that the set {fa < a} is convex. This follows from
the fact that the Hamiltonian H., A is a convex function of the variable
&. The main difficulty that remains is to establish that fa is a Lipshitz
function of the independent random variables £ with a constant k that
is small with large probability. To prove the Lipshitz continuity of fa
it is obviously enough to prove the corresponding bounds for H, a (o)
and W%A,aiA(O'A |m(“i’si)).

Let us first prove that H, a(c) is Lipshitz in the random variable
€. Let us write £ = ¢[w] and € = €[w’]. Denoting by £#o the coordinate-
wise product of the two vectors {# and o and J, (i — j) the symmetric
y~YA| x y~|A| matrix with i, j entries, we have

|Hy,alwl(0) = Hyalo'

|3 (o e, ferr e
p=1

(4.5)
Since J, is a symmetric and positive definite matrix, its square root

Jﬁ}/ ? exists. Thus using the Schwarz inequality we may write

M
> (1640 - €40, Jy g0 + €4])
p=1
S 1922k — Ero)|al| I3[ e + ol (4.6)
p=1
<J I~
where
M 1/2
= <Z 13 -I—f”a y[EHo —I—é"a])) (4.7)
p=1
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and

o 1/2
g = (Z([&ﬂo— —éto), T,[e"o — é%—])) <lle—él.  (48)

pu=1

The last inequality in (4.8) follows since ||J,|| < 1.
On the other hand, by convexity

M

Z ol gho)+2) (EoT,E o)
= 2H, A[w](0) + 2H,,a[o](0)

(4.9)

Collecting, we get

|Hy a[w](0) —Hy alw')(0)] < V2(1€—Ell2 (Hy,alw](0) + Hy alw'](0)) '

(4.10)
This means that as in [T], we are in a situation where the upper bound
for the Lipshitz norm of Hy a[w](c) is not uniformly bounded. However
the estimates of Section 2, allow us to give reasonable estimates on the
probability distribution of this Lipshitz norm. Recalling (2.5) we have

P { sup |AH, A(0)] > v HA|(16(1 + c)vl + 47M)] < 16e7 " 1Al

gESA
(4.11)
Therefore, using (2.1) we get
P | sup [H(0)] 2 77 |AI(C+ (161 + )y + 4921)]
oesa (4.12)
<16e 1AL 1P| sup [yTIEY o (me(0))] > 07_14
oESA
To estimate this last probability, we notice that by convexity
2(me(z,0),me(y,0)) < [lme(z,0) |5 + [me(y, o)ll3 (4.13)

16/june/1997; 11:59 33



Therefore

B A(me(0))] = 1/2| Y Jye(z — y)(me(z, 0), me(y, o))

z,yEA
< /2 [lme(z,0)|3
zEA
(4.14)
Now we have
IP | sup £ [Ime(z,0)|3 >2Cy7|A
oESA rzEA
<2 1Alp lﬂ > lime(z,0)l5 > 2Cy7 1A (4.15)
zEA
M . >
<o71Al inf =207 1Al T [ et Xie. €6 7)
- 0st<1/2 zEA p=1
Using the well known inequality [BG1]
1 ’ 1
IEexp | t4| - Yo < 4.16
ou(ixew) )<ty

and choosing ¢t = 1/4, the r.h.s of (4.15) is bounded from above by

exp (—7‘1|A| <§ — (1+ M/2¢0) 1n2>> (4.17)

Collecting, we get

IP [sup ¢ Z lme(z,0)||2 > v A2 (2C + (1 + M/2¢) 1112)]

o€SA TzEA
< 6—0771|A|
(4.18)
which implies, if v£, yM and M/{ are small enough, that
P [sup |H, a(0)] > 77 HA|(de+ 1) | < 17~ 14 (4.19)
oESA
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which is the estimate we wanted.
To treat the boundary terms let us call W_ ,[w] (respectively

W;r Alw]) the terms corresponding to interactions with the left (respec-
tively right) part of the boundary 0A. We estimate first the Lipshitz
norm of W_, [w], the one of W;f Alw] being completely identical.

Woalwl(oa,m® *)) = W2\ [w)(oa,m * )]

<a@) Y os(ed &) > J(i—3)

i€A jeo—A
1/2 2\ /2
< a(B) (Z(&H —55)2) o DD Ki-4)
i€A ieA \jes—A
< y"2a(B)l1€ - €ll3
<~'?E - €13
(4.20)

where we have used the Schwarz inequality and

2

SIS R4 <o (4.21)

ieA \jeo—A
Therefore if we denote by

Op = {f € [—1,+1]7_1AM; sup |Hya(o)| < 7_1|A|(4c—|— 1)}

ogESA
(4.22)
Using (4.3), (4.19), (4.20) and some easy computations, we get

P Hfé“i’si) - IMfX‘i’si)‘ > t] < 68¢< 121 4 gy~ i Y 1A
(4.23)
Choosing c such that ¢ = WEH) we get

+ ¢t + ¢t
i - mus )

! 2 4.24
< 136 exp <—’YT|A|(\/E_1)> (4.24)
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Finally, the simple fact:

:I:Si is:t :I:Si :I:Si
Mfé“’ )_lEf(A#, )‘SZE(‘J(XL, )_Mféﬂ, )

)

> £ * £ *
:/ szfy o) e )‘Zt]dt
0
(4.25)
and easy estimates show that (4.24) implies that

e T —1
(ML) — BT < 26 (\/7—1|A|) (4.26)

and this implies the claim of Proposition 5.2.

The next step is to control the uniformity with respect the possible
boundary conditions, and the uniformity with respect to the possible
volumes that could occur in the problem. To be more explicit, since
we want to analyze the various Gibbs measures that appears in (3.16)
and (3.17) and those are related to the base of the cylindrical function
F we consider, we want to find the largest volume centered at the
origin where we have a good estimate of the deviation from the mean
of the free energy uniformly with respect to all the various mesoscopic
boundary conditions and all the possible subvolumes included in this
fixed volume.

Proposition 5.3. Given e > 0, § > 0 and Apax a macroscopic volume
centered at the origin such that

62

AmaX <
| | 64y(2log M + (34 6)logy~1)

(4.27)

then if v is small enough, with IP-probability greater than 1 — 4y119

+ _+ + _+
sup  sup (‘logZX‘ 0 )—lElogZX‘ ® )D < eyl (4.28)
pt, st ACAmax

Remark: Note that the previous estimate for the IP-probability allows
us to use the first Borel-Cantelli Lemma to get an almost sure result in
the case v = 1/n and n T co. The numerical constant 64 in (4.27) is not
relevant and is linked to the 16 in Talagrand’s result. The only relevant
fact is the scale (ylogy~!)~! in (4.27) where we could expect that the
almost sure fluctuations of the free energy around it mean value are of

order vy~ 1.
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Proof. We simply write:

T T
ZP[sup sup (‘logZX‘ 0 )—lElogZX‘ 0 )D Ze'y_l]
,ll;t,si AEAmax

| Amax|
<AM? Y (| Amax| — k| IP [[log 28,7 — Blog 28,7 | > ey
k=1

(4.29)
by fixing the length k£ of the subvolumes Ay, and using the fact that
the number of different volumes of fixed length k in Ay is just
||Amax| — k|- Using (4.4) we have, if |A| =k

+ * + *
1P [log 28" *) ~ IB10g 28| > thy ™" + 26(v/7F)|

-1 2 4.30
SKeXp{—74k(\/1+%—l)} (4:30)

we choose ¢t = t(k) such that

ty 'k 4+ 26(\/y k) = eyt (4.31)

that is t = ek 1(1 — 26e'y/vk). Using the fact that vk <
ce?(logy~1)~! we get, for all 0 < n < 1, if v is small enough,
t > ek~1(1 —n). On the other hand since for all z > 0, /1 +2 — 1 >
z/2(1 — x/2) we get immediately, for all € > 0 and -y small enough:

+ + 2(1 = n)2
lPHlongL’ )—lElongL’ )‘Zev_l]gexp—{ie( 77)}

64+vk
(4.32)
It remains to estimate the sum:
|Amax| 2 2
e“(1—mn)
Y =4M? Apax| — & ———— U 4.33
> el Hew—{ G h @)

k=1

since the term into the bracket in the previous exponential is an increas-
ing function of k it is easy to check that the previous sum is bounded
from above by

(1 —mn)€

AM?|Apax |? — 4.34
Ama? exp{ = ) (4:34)
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Therefore if

|A | < (1 — 77)262
T 64y(2log M + (3 + ) logy1)

(4.35)

we get ¥ < 4119,
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5. Typical profiles under the local Gibbs measures

We consider here the Gibbs measure with free boundary conditions,
in a macroscopic volume A = [v_,v,] included in the volume Ap,.x
centered around the origin of length

62

Apax| = 5.1
| | 64y(2log M + (3 + §) logy~1) (5:1)

As it is clear from the last chapter, this is a volume where the random
fluctuations of the difference between the free energy and its mean
are bounded by ey~!, uniformly in all possible volumes involved and
boundaries conditions. On a larger scale we expect that these random
fluctuations will become of order c¢y~! and will govern the typical con-
figurations of the Gibbs measure. Note that the fundamental fact that
allows [COP] to work in the infinite volume in the use of the symme-
try of the system on the global spin flip. In random system such a
symmetry does not exist. However, taking average over the disorder
restore this symmetry. Therefore, as far as we are in volume where it
is possible to replace the involved quantities by their averages, we can
expect to have similar behavior as in a tranlations invariant system.
Our main result is about the typical configurations:

Theorem 5.1. Given € > 0, assume that A C Apax, 8 > 1 and
yYM () L 0. Then we can find yv~1>> L > 1 and { | 0, such that on a
subset Q. C Q with IP(Q°) < v'*° we have that for all w € Q

G8,v,Alw] (ElueAng“,ﬁ(Ua o) = 0) < e IRO) (5.2)
where h(¢) = ¢(B,€)8¢3, and
G8,v,A (W] (EluEAné,f,(ua o) #ne p(u+1, 0)) <eer (5.3)

for some positive constant ¢ > £ (1 — 2yL)*(a(B8)? — 2()

Remark: In the ferromagnetic case, the event Juean; i(u,0) #
6.1, (u+1, o) occurs with Gibbs probability 1, on a scale which is of the

order e’ . Here we expect that such a result is true on macroscopic
volume which is roughly speaking of the order y~! with some logy~—!
and/or loglog~y~! corrections.

The proof of this theorem makes use of large deviation type es-
timates, that we will state now. We will consider events F' that are
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measurable with respect to the sigma-algebra generated by the vari-
ables {my (0, x)}zer with I = [u_,uy] C A, where |I| < 1/(v¥) is very
small compared to A. We call this sigma-algebra, the cylinder sigma-
algebra and I will be called the basis of the cylinder. Note that the
cylinder sigma-algebra generated by o; with ¢« € I will never be used

+  +
and there is no ambiguity. Let us define the functions UX "* and

st
Fage BY

U () =9t S yele — y) @) = me®)ll

4
T, yEA
\ () - m= g Y
+vl Y Tz -y 5 2
zEA,yEOA
and
+ s+ + gF
FEs  me) = UL (me) + 9 forp,p(me()) (5.5)
zEA
where

1 Bllmy(o,z)||2
fa.0.0(me(z)) = _@mE“e 2 Ime @ Ty (0,0)—ma(@) la<py  (5:6)

For any given § > 0 define the §-covering Fs of F as Fs = {o|3p1¢cF :
vaIHmZ(Ua J)) - m@(o—la x)“? < 5}

With these notations we have the following large deviation esti-
mates:

Theorem 5.2. Let F' and Fs be as defined above. Assume that A C
Amax Then there exist £,L,(, R all depending on v and a set Qp C €}
with IP[Q%] < v'+° such that for all w € Qp

~ 5 1nGpyalw](F) >

inf inf F®) (myg) — inf FbLL) (my)
“iasiai(wﬂ:_uﬂ:)SR myEF [w—,w1],8,7 my [w—,w4],8,7
—er({,L,M,(,R)

(5.7)
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and for any § > 0, for v small enough

~ 51 Gaalw](Fs) <
inf inf f(“i’si) (mg) + inf FLLLY) (my)
ui,si,ﬂ:(wi—upm)SR myEF [w—,w],8,7 my [w—,w4],8,7

+er(¢,L,M,(, R)
(5.8)
where er(¢, L, M,(,R) is a function of o = yM that tends to zero as
al 0.

Proof. Relative to the interval I, the base of the cylinder correspond-
ing to F, we introduce again the partition of the spin configuration
space S from Section 3. While we will use again the fondamental esti-
mate (3.15), we treat the terms corresponding to Sg somewhat differ-
ently. Let us introduce the constrained partition functions

26,4, [W](F) = Gg,,A[W](F) Zg y,a W] (5.9)

Just as in Proposition 4.1, for given € > 0, ¢ > 0 and L, calling f =
C(e) = (1 + /YM)(1 + €), we have that

Zg 4 (F N ‘A(.U'ia sj:, wy)) < 28~ A~ {n(w_,0o) = sTet b
X Z(Mi,si)(F)Z ({ ( — + ,u+ (5 10)
ﬁ"YaA :37'77A+ 77 w+) 0-) s € }) .

« 87 1(¢+27L)

and

Zgya(F NVA(WF, s7,ws)) > Zg oy a- ({n(w-,0) =s7e* })

£ * N
x ZY 3 (F) Zg it ((n(wy,0) = s*er ")) (5.11)

% e~ 8771 ({+29L)

where A = [w_+3,wy — 1] and A* are the two connected components
of the complement of A in A. Using the trivial observation that

Zgyn > Zgya(A(pE =1,8% =1,wy)) (5.12)
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this combines to

Gp,yoa (F OV A(RF, 57, ws))
Z(Mi,si) o
sva  (F)

”Y’
- (1)1)1)1)
ZﬁmA

Zpyn-({nlw_,0) = 5= 3) Zppae (s, 0) = st )
Zgyn-{n(w_,0) =e'}) Zg ya+({n(wy,s) = el})
X 6167_1(64‘2’711)

(5.13)

It is precisely at this step that [COP] used the symmetry of the
ferromagnetic system to simply replace the ratio of partition functions
on AT by one.

Here this is clearly impossible, the idea is to use the self averaging
property proved in the previous section. We have in fact an approxi-
mate symmetry on volume that are not too large.

Lemma 5.3: Givene > 0,6 > 0, let A = [A7,AT] C Amax, let
w_,wy € A, and A= = AT, w_ + 1], AT = [wy — 1,AT]. Then,
uniformly with respect to s*, u* and wi € Amax

+
‘m Zg o a+({n(wa, 0) = ste 1) —In Zg y ax({n(ws,0) = el})‘ <

ﬁv‘l [cg: + CL—le—ﬁL(CZ_%(l—log 9 4+ 16vL + 4,YM&L(1 —log 6)]
v

(5.14)
with probability greater than 1 — y(119)
Proof. We consider the case where AT = A~, the other one being
similar. Introducing a carefully chosen zero and using the triangle
inequality, we see that

0 Zg 0 ((n(w-,0) = s™e* }) = InZg 0 (In(w-,0) = ¢'})

< ‘ InZg o ({n(w-,0) = s7e })—1In Zg’)ﬁ::\f;)
+1In Zg’]’;’/\l’_l\)w_ —InZg ., A-{n(w_,0) = el})‘

+ |z ) — Bz )

+|EWm Z00 e ) mm 20 ‘
+|EmZQON iz ‘

(5.15)
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The third term on the right hand side of (5.15) is zero by symmetry,
while the second and fourth are bounded by the Proposition 4.2 by
~~le with probability at least 1 — v(*t%) . To bound the first term we
proceed as in the proof of Proposition 4.1, part i, that is we use the
same decomposition as in (3.24) and (3.26). Calling

DA,w,

’S HH T
=InZg - ({n(w-,0) = 57" }) (5.16)
0,0, ,s™ — u
— ané,v,:—\w_) —InZ, g~ {n(w_,0)=s"¢€" })

62"/

-1
this gives that, with IP-probability greater than 1 — 8K M2R%e~—x

sup sup ,[Dy_ - | <07 (CH 2L M) (517)
$T,u~ W—EAmax

The constrained partition function on the block w_ is easily dealt
with. First, we note that by (2.5) with probability greater than
1 — R?2exp(—cy~!) we can replace the Hamiltonian by its blocked ver-
sion on the scale L with an error of order y~(16yL + yM). Then we
can repeat what was done on the scale £ in (3.75) but here on the scale
L to get

inf inf InZ, g {n(w-,0)= sTet 1) >
ST L,u— ’LU—EAmax

— Byl [6(a(B)) + 24 e~ 1e—BL(¢’—8(e,L)— % (1-log ) (5.18)
+ 16vL + 4y M |

62
with IP-probability greater than 1 — 4M2y~2e~“%". To get an upper
bound we simply use (3.65) to get

sup  sup InZ, g,({n(w_,0)=s"e" })
ST L,uT w—EAmax

(5.19)
< By [¢(a(ﬁ)) ~eb(e, L)

(0%

7 (1~ log 6)}

é2
with IP-probability at least 1 — 4M2y~2e~ %",
Therefore, we get an upper bound

By {CCA +eL e P ST Al8 ) | 16qT, 4 47M%(1 — log 6)}
(5.20)
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for the first term on the right of (5.14). Putting all things together,
and noticing that the worst probability is 1 — ¥'*9, we arrive at the
assertion of the lemma.

Lemma 5.3 asserts that to leading order, only the first ratio of par-
tition functions is relevant in (5.13). On the other hand, using Propo-
sition 4.1, part (ii), we see that by choosing R large enough, we only
need to consider the case |A| < R. We use the block approximation on
the scale £ for those, committing an error at most of order 3y~ !(Rv£).
We will make this precise in the next lemma.

Lemma 5.4:  For any given (s*,p*,wy) and I C A C A and
any F' that is measurable with respect to the sigma algebra generated by
{me(o,x)}rer we have

Z(Hi 7Si) (F)

i Ba’YaA - (y'irs:t) 3 (1>1>1>1)
5 20D < = nf Fapp (me) +inf Falplm (me) (5.21)
7’77

+c (Al + |Al[yM|In 22| + |A|2)

and VY6 > 0, for sufficiently small v

+ s:t)

Z(“ N (Fs) £+
VI _PvA VO (n™,s7) . (1,1,1,1)
5 20D == b Fapp (me) +inf Fals,m (me) (5.22)
7’77

+c (|A|’y€+ |A|ly M| lnzﬁﬂ + |A|%)

with probability greater than 1 — e—cte’,

Proof. The first step is use the block approximation on the scale £:
Using Lemma 2.1,i) with § = 1, we see that for given F, u*,s*

and A, with IP-probability greater than 1 — 16e~ A"

pE,st)

Zé,%A (F)

<IE, ]I{mz(a)EF}e_ﬁv_1 [Ef"A (ml(a))—i—Ei:IA (mz(UA)’m(”jE ,Si))] (5-23)

—1
x B T40|Al(ve+y M)

and
+ Si
zg 3 (F)

> lEa11{77”(0)@@6_%71 [, atma(oN+EL K (me(oa)m® ™ D)] - (5.24)

—1
% e~ BY T40|A|(ve+vM)
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It is not difficult to check that
B (me(0)) + B&'pa (me(oa)m®™)

> ||me(f;, z)|l3 s [a(8))?

2
zEA rCEOA

=~/ Z J’yé(x . y) ||mz(0', il?) - mz(O', y)“%

4
z,yEA
5.25
Ime(o, @) — m®" <) 2 (5:2)
+ v Z Jy(z —y) 5
zEA,yEOA
1
Y Tule—v)5la(d)?
zEA,ycoA

= Ugi’si (me(oa)) — C(|A], B)

where C(|A[, B) is an irrelevant o-independent constant that will drop
out of all relevant formulas and may henceforth be ignored. For given
p, to be chosen later, we introduce a lattice Wy, , in IRM with spacing
p/ v/M. Then for any domain D C IRM , the balls of radius p centered

at the points of Wys, N D cover D. We choose p = 2\/%. With

probability greater than 1 — exp(—cf), fsg,,(me(z)) = oo if ||m||3 >
2, while the number of lattice points within the ball of radius 2 are
bounded by exp (M In 2£). But this implies that

-1 , pt st
. <1E"A]I{m(rr)eF}e_B7 [Pa(ma(oa) 4B (me(o)im ))]>

myEF 16
(5.26)

1g - = 5% M
< —8 inf, [#4500 (me) - 0], )] + 1] (31 2+ 2% )

and also, if § > 2 %,

- [J.i,s:t
. (E"A]I{ml(a)eme_ﬂ 17 [BAtme(oa)+ER ] 5 (me(oa)m ))]>

— . + Si M
> —y '8 inf [FRG7 (me) - €A B)] - A2
my
(5.27)
Treating the denominator in the first line of (5.13) in the same way and

putting everything together concludes the proof of the lemma.
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An immediate corollary of Lemmata 5.3 and 5.4 is
Lemma 5.5: For any A C Apax and any F that is measurable with
respect to the sigma algebra generated by {my(o, z)}zer,

sup  [vB8InGgya(F NA(E, s, wy))

s:thu':tawi
. ,8 1,1,1,1
+7;?EfFf(A“ﬁp (me) — inf F{ 57" (me)] (5.28)

< C(’YL+6+C+ |A|ve + |A|’yM|lnM| + |A|%)

1-{—6

with probability greater than 1 — for some finite positive numerical

constants c.
We are now set to prove the upper bound in Theorem 5.2. Using
the notation of Section 3 we have that

InGg A (F)
In (Gg,y,a(F N SR) + Gp,y,a(F N S))
<In2+max(InGg ,a(FNSg);InGs A (FNSE))

< In(8M?*2R) (5.29)

+ max [ sup InGgp . a(F N AT, s, wy));
“i’siﬁt(wi_uﬂ:)SR

(—e(8,)BLRC?) |
where we used (3.15) at the last step. It is clear that for a given F, L,

¢ we can always choose R in such a way that the previous maximum is
realized with the first term. This impose that

R> (5.30)

L¢P
On the other hand, in order for the error terms in (5.21) to go to zero,

we must assure that (note that |A| = |I|+2R is of order R) R(v£{+ %)
tends to zero. With a = yM, this means

R <7£—|— +a1n—> L0 (5.31)

We want to find the smallest possible R such that this true. Since
the minimum of the term into parenthesis occurs for v/ ~ /a if « is
small enough, R must satisfies R(y/a + alna) | 0, that is Ry/a | 0.
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(5.30) and (5.31) impose conditions on L and ¢, namely that

e 10 (5.32)

Of course we also need that ¢ | 0 and vL | 0, but clearly these con-
straints can be satisfied provided that o | 0 as v | 0. Thus the upper
bound of Theorem 5.2 follows.

To prove the lower bound, we will actually need to make use of the
upper bound. To do so, we need more explicit control of the functional
F, i.e. we have to use the explicit bounds on f; g ,(m¢(x)) in terms of
the function ®.

Lemma 5.6: The functional F defined in (5.5) satisfies

+ sj: 1
Fs me) > UL (me) 90 Y B p(me(z) — | Al0* (5.33)
TEA

and

1
inf P50 (me) < 8165 a(8)) + Al n2 (5.34)

2

where ¢g(a) = % — 37! Incosh(Ba).
Proof.

To get (5.34), just note that U is non-negative and is equal to zero
for any constant my, while from Lemma 3.1 it follows that

. In2
0l fe(me(z) < inf Bap(me(@) + 5
< B, 5(mIY) + 1?—; (5.35)
In2
= ds(a(0) + 5

This concludes the derivation of the upper bound. We now turn
to the corresponding lower bound. What is needed for this is an upper
bound on the partition function that would be comparable to the lower
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bound (5.12). Now

Zﬁ,%

> B, PPl

(u*,s%)

{n(wt,0)=s*ert}
Zg,y,A
—BH) (o
2o (ut o) Boe PN (| oy ot enty
> B, PPl

(ut,s%)

{n(wy,0)=ster™} (5.36)
2,7,
TBye PRGN (1 — Tgnms my—op)
(nt,s%)

1= Goyn ({n(w, o) = 0})] 7

{n(wi,0)=stert}

This is almost the same form as the one we want, except for the last
factor. The point is now that we want to use our upper bound from
Theorem 5.2 to show that Gg A ({n(w+, o) = 0}) is small, e.g. smaller
than 1/2. so that this entire factor is negligible on our scale. Remem-
bering our estimate (3.15), one may expect an estimate of the order
exp(—c2BL(e(C)), up to the usual errors. Unfortunately, these errors
are of order exp(+8y~1(¢ + L)) and thus may offset completely the
principal term. A way out of this apparent dilemma is given by our re-
maining freedom of choice in the parameters ¢ and L; that is to say, to
obtain the lower bound, we will use a C and a L in such that first they
still satisfy the requirement (5.32) while second ¢, L¢(e(¢) > v~ 1¢ + L.
This is clearly possible. With this in mind we get

Lemma 5.7: With the same probability as in Lemma 5.5,

LinGa o ({ng ; (ws, 0) = 0})
~21—90

B8
< —

2€(6C) + ¢ (YL + e+ ¢ + Ryl + RyM|In 28| + RY)
(5.37)

Proof. The proof of this Lemma is very similar to the proof of (ii)
of Proposition 4.1, except that in addition we use the upper bound of

Lemma 5.5 to reduce the error terms. We will skip the details of the
proof.
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Choosing L and ( appropriately, we can thus achieve that
[1—Gprn ({n(ws,0) =0})]"" <2 so that

Z6,~,A
<2 Z lEae—ﬁHA(UA)]I
(ut,s%)

< 2(2M)2e 8 TACH2YL)

{n(wi,0)=ster™}

(5.38)

sup | Zgya_({n(w-0) = s7e })
pt st

+ .\
ngv,,A )ZﬁmA+({7I(w+U) = sTeH b

(we will drop henceforth the distinction between L and L and ¢ and
¢). The first and third factor in the last line are, by Lemma 5.3,
independent of u*,s*, up to the usual errors. The second partition
function is maximal for (u*,s™) = (u~, s7), (this will be shown later).
Thus on a set of probability greater than 1 — v'*+9  which is uniform
with respect to u*, s*, wy we have

Z(“izi)(F)
Gpya (B NA(T, 5%, ws)) > %6
B,v,A

—c' By (¢+vL+e) (5.39)

for some numerical constant ¢, ¢’. Using the second assertion of Lemma
6.4 allows us to conclude the poof of Theorem 5.2.

We are now ready to prove Theorem 5.1:
Proof of Theorem 5.1: Notice first that the first assertion (5.2)
follows immediately from Lemma 6.7. Just note that

Gs,v,aw] (ElueAnng(u, o) = 0)

< Gsyalw] (Mg,ﬁ(u, s) = 0}) (5.40)

uEA
< |A|e—cﬁi53

for suitably chosen f}, 2. To prove (5.3), note that we need only consider
the case where both 7(u, o) and n(u + 1, 0) are non-zero. This follows

16/june/1997; 11:59 49



then simply from the upper bound of Theorem 6.2 and the lower bound

+ S:t
UL (me) > 390y Y Toe(m — y)Ime(e) — me(v)|3 (5.41)
rcuycu+l

Using convexity, we see that

VY Y Jyele — y)llme(e) — mae(y)ll3

rEuyeu+1l

> (0 Y DD lImel@) —me(y)ll3

rEu,s€u+l TET Yycs

|r—s|<(yL)—1-2
> (yL)? > %Zme(w) - %Zmz(y)
TETr yEs

rcu,sCu+t+l
Ir—s|<(vyL)~1-2

=Ly Y mer) = me )],

rcu,sCu+t+l
Ir—s|<(yL)—1-2

2 (5.42)

Therefore

inf inf
pE st men(u,me)#n(ut1,me)#0

Z ((a(ﬂ))2 - 26) (5.43)

rcu,scutl
Ir—s|<(vL)—1-2

> 41 -290)? ((a(8)) - )

+ s:t
U (my)

>

=

From here the proof of (5.3) is obvious.
This concludes our analysis of the Gibbs measure with free bound-
ary condition in volumes of order (y(2log M + (3 + 6) logy~1))~ L.

The next step is to consider the case of symmetric boundary con-
ditions, that is when the boundary conditions are the same on both
side of the volume A. We consider only the case where the volume A is
smaller than (y(2log M + (3 +6§)logy~!))~!. Since the random fluctu-
ations are negligeable here, the typical profile will be the constant one,
compatible with the boundary condition.

Theorem 5.8. Given €,9, assume that A C Ana.x and yM | 0. Then
there exist £, L, (, R all depending on vy and a set Qp C Q with IP[Q5] <
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v such that for all w € Qy

fY 75, ,s
= G wI(F)
1 1 (“>s>p’>s) _ 3 (1’1’]-’1)
- i(wil_rtfi)SR fm}flefF f[w*>w+]>ﬁ"y(me) 11’{7,15 f[w7>w+]aﬁ>7(m£)
—er({,L,M,(,R)
(5.44)
and for any § > 0, for v small enough
vy ,S, 4,8
- G (F)
. . (k,8,1,8) i (1,1,1,1)
S i(wil_r:-l‘fi)SR ng?EfF f[w—aw-F]uBfY(me) ]ﬁf F[w—aw+]7ﬁa’7(ml)
+er(¢,L,M,(, R)
(5.45)

where er(¢, L, M,(, R) is a function of a = yM that tends to zero as
al 0.

An immediate corollary of Theorem 5.8 is

Theorem 5.9. Given €,§, assume that A C Apax and yM | 0. Then
there ezist £, L, (, R all depending on vy and a set Qp C Q with IP[Q] <
9 such that for all w € Qy

Gy w] (Gueang  (u,0) # se ) < e7L9©) (5.46)

where h(¢) = ¢(B,€)(3.
Remark: Eq. (5.46) implies that with IP-probability one

lim G4 [w] (Vueane 1 (u,0) = set) =1 (5.47)

For the proof of these two theorems see [BGP4].

At last we consider the case of asymmetric boundary conditions.
In this case the typical profile will have to make a jump somewhere in
the volume A, to be compatible with the boundary conditions. This
comes from the interaction part of the potential.

Theorem 5.10. Given €,90, assume that A C Apn.x and YyM | 0.
Then there exist £,L,(, R all depending on v and a set Q2 C Q with
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IP[Q5] < v'*9 such that for all w € Qy

— LG w|(F)

Jé; Byv,A
> inf inf F(ﬁ’g’”’s)(m) mf]:(l’lﬂ’l)( 0) (5.48)
T t(wse-us)<R |meeF W+l [w_,wy]
+er(¢,L,M,(,R)
and for any 6 > 0, for v small enough,
— Bl géﬂ;,,u,S)[ |(Fs)
3 (f,5,1,5) 3 (1,1,2,1) 5.49
= i(wil—rifi)gfz J?efpf[w wi) (me) —inf 7 g (me) (5.49)

+er(¢,L,M,(, R)
where er(¢, L, M, ¢, R) is a function of a = yM that tends to zero as
al 0.

Finally, we want to give a characterization of the typical profile in
the case of asymmetric boundary conditions.
Let us define the following subset of spin configurations

E(H,S,IL,,SI) —
1,A =

{Eiuulo<u1;1<ezARV>\ <u<Up g, i(u,0) = set Vu0<v<>\+nc i(u,0) =s'e? }
(5.50)

Theorem 5.11. Given €,9, assume that A C Apn.x and YyM | 0.
Then there exist £,L,(, R all depending on v and a set Qx C Q with
IP[Q5] < v'*9 such that for all w € Qy

gl ] (B 0) > 1 - 2Re O (551)

the proof of this theorem can be found in [BGP4].
Remark: This theorem implies that for any volume A such that A C
Amax, we have IP-almost surely,

]:;m g(y" XJ' )S )[ ] (E;t’;\sﬁl’ )S )) =1 (552)
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(Here one may, to avoid complications with the “almost sure” state-
ment due to the uncountability of the number of possible sequences 7,
assume for simplicity that lim, o is understood to be taken along some
fixed discrete sequence, e.g. v, = 1/n. To show that the convergence
holds also with probability one for all sequences tending to zero, one
can use a continuity result as given in Lemma 2.3 of [BGP2]).

We are now ready to state a precise version of the main result of
this paper: We define the events

By = {0 ‘ Vueang 1,(u, o) = se"} (5.53)

and set
EO,A = U(MS)E(()I’LAS) (5.54)
ELA = U(u,s)#(ul,sI)E§tLAs,“ 8 ) (5.55)

This this notation we have

Theorem 5.12. For any macroscopic box V such that |V| <
(v(2log M + (3 + 68) logy~1)) ™, IP-almost surely,

lim lim gﬁ,.y,A[w] (EO,V U El,V) =1 (556)

740 ATZ

The proof is immediate and can be found in [BGP4].
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