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Abstract

We study the iteration of a transcendental entire function, f ; in par-

ticular, the fast escaping set, A(f). This set consists of points that

iterate to infinity as fast as possible, and plays a significant role in

transcendental dynamics.

First we investigate functions for which A(f) has a structure called

a spider’s web. We construct several new classes of function with

this property. We show that some of these classes have a degree of

stability under changes in the function, and that new examples of

functions with this property can be constructed by composition, by

differentiation, and by integration of existing examples. We use a

property of spiders’ webs to give new results concerning functions

with no unbounded Fatou components.

When A(f) is a spider’s web, it contains a sequence of fundamen-

tal loops. We next explore the structure of these fundamental loops

for functions with a multiply connected Fatou component, and show

that there exist functions for which some fundamental loops are ana-

lytic curves and approximately circles, while others are geometrically

highly distorted. We do this by introducing a real-valued function

which measures the rate of escape of points in A(f), and show that

this function has a number of interesting properties.

Next we study functions with a simply connected Fatou component

in A(f). We give an example of a function with this property, which

– in contrast to the only other known functions of this type – has no

multiply connected Fatou components. To do this we also prove a

new criterion for points to be in A(f).

Finally, we investigate the much studied Eremenko-Lyubich class of

transcendental entire functions with a bounded set of singular values.

We give a new characterisation of this class, and a new result regarding

direct singularities which are not logarithmic.
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Chapter 1

Introduction

1.1 Structure of this thesis

The structure of this thesis is as follows. In this introductory chapter we give

some of the history of the study of complex dynamics, along with some parts of

the classical theory of transcendental dynamics used in subsequent chapters. We

give a number of necessary definitions, and various useful and well-known results.

All new results are given in the four subsequent chapters, during which we

introduce additional background results and concepts when these are required.

At the end of the thesis we give a brief chapter containing interesting questions

and suggestions for further study. These questions arise from the earlier material.

1.2 Preliminary material

We first give some notation used throughout the thesis. We denote the com-

plex plane by C, and the Riemann sphere by Ĉ = C ∪ {∞}. For a disc in the

complex plane we define

B(ζ, r) = {z : |z − ζ| < r}, for ζ ∈ C, r > 0. (1.1)

In Section 5 only, we need to define a disc in the Riemann sphere. In the case
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that the centre of the disc is finite we use (1.1), and otherwise we define

B(∞, r) = { z : |z| > r}, for r > 0.

For an annulus we write

A(r1, r2) = {z : r1 < |z| < r2}, for 0 < r1 < r2.

We use the following notation for three special domains in the complex plane.

We denote the unit disc by

D = B(0, 1),

the punctured unit disc by

D∗ = B(0, 1)\{0},

and the left half-plane by

H = {z : Re(z) < 0}.

We denote the integers greater than zero by N.

We often use phrases such as ‘for r ≥ R0’. By this we mean that the condition

is satisfied by all values of r greater than or equal to R0.

If f is a transcendental entire function, then we denote by fn, n ∈ N, the nth

iterate of f . If D ⊂ C and n ∈ N, then we write f−n(D) to denote the set

{z : fn(z) ∈ D}.

We call a point z periodic if fn(z) = z, for some n ∈ N. We say that z is a

repelling periodic point if, in addition, |(fn)′(z)| > 1.

We frequently need to use the maximum modulus function. This is defined by
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M(r, f) = max
|z|=r
|f(z)|, for r ≥ 0. (1.2)

We sometime write this as M(r), provided that it is clear from the context which

function f is being considered. We write Mn(r, f) to denote repeated iteration

of M(r, f) with respect to the variable r.

We also use the minimum modulus function defined by

L(r, f) = min
|z|=r
|f(z)|, for r ≥ 0.

The order ρ(f) and lower order λ(f) of a transcendental entire function f are

defined by

ρ(f) = lim sup
r→∞

log logM(r, f)

log r
and λ(f) = lim inf

r→∞

log logM(r, f)

log r
. (1.3)

If f is a transcendental entire function, then ρ(f) = ρ(f ′); see, for example,

[35, p.286].

We note from, for example, [62] that if

f(z) =
∞∑
n=0

anz
n,

then

ρ(f) = lim sup
n→∞

n log n

log |an|−1
(1.4)

and

λ(f) = max
(np)

lim inf
p→∞

np log np−1

log |anp |−1
. (1.5)

We note that, in (1.5), the maximum is taken over all increasing sequences of

positive integers (np). We note also that it is explicitly shown in [62] that the

maximum is achieved.

Throughout the thesis we use the following well-known facts about the max-

imum modulus function M(r, f) of a transcendental entire function f .

Lemma 1.2.1. Suppose that f is a transcendental entire function, and define

φ(t) = logM(et, f). Then the following hold.
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(a) M(r, f) is a continuous function of r.

(b)
logM(r, f)

log r
→∞ as r →∞. (1.6)

(c)

if k > 1 then
M(kr, f)

M(r, f)
→∞ as r →∞. (1.7)

(d) φ(t) is a convex and increasing function of t.

(e) φ(t) has a derivative at all but at most a countable set of points.

We also use the following [27, Theorem 2.2], generally with n = 1.

Lemma 1.2.2. Let f be a transcendental entire function. Then there exists

R0 > 0 such that, for 0 < c′ < 1 < c and all n ∈ N,

M(rc, fn) ≥M(r, fn)c, for r > R0, (1.8)

and

M(rc
′
, fn) ≤M(r, fn)c

′
, for r > R

1/c′

0 . (1.9)

We also use a result similar to Lemma 1.2.2 which applies when f is a poly-

nomial.

Lemma 1.2.3. Let f be a non-constant polynomial, and suppose that 0 < c′ < c.

Then there exists R0 > 0 such that,

M(rc, f) ≥M(r, f)c
′
, for r > R0. (1.10)

Proof. This follows because there exist a > 0, n ∈ N and R′ > 0 such that

1

2
arn ≤M(r, f) ≤ 2arn, for r ≥ R′.
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We denote the inverse function of M , when this is defined, by M−1. For sim-

plicity we write M−n, for n ∈ N, to denote n repeated iterations of M−1. Observe

that M−1(r) is defined for r ∈ [|f(0)|, ∞) and is strictly increasing. Moreover,

by Lemma 1.2.1 (d) and [65, Theorem 7.2.2], we have that logM−1(es) is a con-

cave and increasing function of s. Also, if R0 is the constant from Lemma 1.2.2,

then it follows from (1.8) that

M−1(rc) ≤M−1(r)c, for r > max{M(R0), |f(0)|}, c > 1. (1.11)

1.3 History and background

In this section we give a brief outline of the history of the study of complex

dynamics, and some of the key developments which have motivated the research

in this thesis. Further details are given in subsequent sections.

The origins of the detailed study of complex dynamics lie with Fatou [43–45]

and Julia [61] in the early part of the last century. These early papers all consider

the iteration of rational functions. In this thesis we are concerned only with the

iteration of transcendental entire functions, which was considered by Fatou in

1926 [46]. An introduction to the theory of the iteration of transcendental entire

and transcendental meromorphic functions can be found in [18], and also in [94].

In honour of the two mathematicians noted in the previous paragraph, the

most fundamental objects of study in this field are named the Fatou and Julia

sets. The Fatou set F (f) is defined as the set of points z ∈ C such that (fn)n∈N is

a normal family in a neighbourhood of z. The Julia set J(f) is the complement

in C of F (f).

After the work of mathematicians such as Fatou, Julia, Lattès (who, for ex-

ample, gave a large family of rational functions for which the Julia set is the

whole complex plane [68]) and Ritt (who also studied the iteration of rational

maps [90]), the field of complex dynamics was relatively quiet in the 20th century

for several decades. An important exception to this observation is that of Baker,

who worked extensively in this area from the 1950s onwards. Baker proved a

number of important results on the iteration of transcendental entire functions,

and we often refer to these in this thesis. A summary of his life and work was
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given in [80].

A renaissance in the study of complex dynamics occurred in the 1980s. One

factor in this was, perhaps, the fact that improvements in computer technology

enabled mathematicians to experiment with and to illustrate some of the com-

plicated geometric objects involved in this study.

A second key factor was the introduction of new techniques from other areas

of mathematics, which enabled long-standing problems to be solved. Arguably

the most significant of these was Sullivan’s use of quasiconformal mappings in

[104] to show that it is not possible for a rational function to have a wandering

Fatou component. In other words, for a rational function all components of the

Fatou set are eventually periodic; see Section 1.5 for definitions of these concepts.

This result led to significantly increased interest in the study of the dynamics of

rational functions.

It is possible, however, for a transcendental entire function to have a wandering

Fatou component. Baker gave an example of a transcendental entire function with

this property in 1963 [5], although he did not show that the multiply connected

Fatou component of the function in this paper is bounded and hence wandering

until 1976 [7]. We give an example of a transcendental entire function with a

wandering Fatou component with novel properties in Chapter 4.

A third set which has generated significant interest is the escaping set I(f),

which was first investigated for a general transcendental entire function by Ere-

menko [39]. It is defined by

I(f) = {z : fn(z)→∞ as n→∞}.

Eremenko proved that if f is a transcendental entire function then I(f)∩ J(f) is

not empty, J(f) = ∂I(f), and I(f) has no bounded components. Eremenko also

conjectured that I(f) has no bounded components. This important conjecture –

which we refer to simply as Eremenko’s conjecture – remains open, and attempts

to resolve it have led to significant progress in the study of transcendental dy-

namics. We discuss the escaping set and Eremenko’s conjecture in more detail in

Section 1.6.

In general, one can often gain a better understanding of a set by studying
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some of its subsets. Rippon and Stallard, first in [82] and then more fully in [86],

took this approach by considering a subset of the escaping set known as the fast

escaping set, A(f). Much of the work in this thesis relates to A(f). This set was

introduced by Bergweiler and Hinkkanen [25], and can be defined by

A(f) = {z : there exists ` ∈ N such that |fn+`(z)| ≥Mn(R), for n ∈ N};
(1.12)

see [86] for this form of the definition of A(f). Here R > 0 can be taken to be

any value such that M(r) > r for r ≥ R. For simplicity, we only write down

this restriction on R in formal statements of results – elsewhere this should be

assumed to be true.

As observed in [86], since |f(z)| < M(r), for |z| < r, the conditions ` ∈ N and

n ∈ N in (1.12) could be replaced by the conditions ` ≥ 0 and n ≥ 0. We have

chosen to write ` ∈ N and n ∈ N in order to be consistent with the definition

given in [86].

The arguments in [86] regarding the properties of A(f) were frequently based

on properties of the set

AR(f) = {z : |fn(z)| ≥Mn(R), for n ∈ N},

where R > 0 is such that M(r) > r for r ≥ R. Many of the arguments use the

fact that AR(f) is closed, together with the set equality

A(f) =
∞⋃
`=0

f−`(AR(f)).

An important result is the following [86, Theorem 1.1] (see also [82, Theo-

rem 1]).

Theorem 1.3.1. Let f be a transcendental entire function, and let R > 0 be

such that M(r, f) > r for r ≥ R. Then each component of AR(f) is closed and

unbounded, and hence each component of A(f) is unbounded.

This result provides a partial result regarding Eremenko’s conjecture; since

A(f) ⊂ I(f), and since it follows from [39] that A(f) is not empty, then I(f)
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certainly has at least one unbounded component. We discuss the fast escaping

set in more detail in Section 1.7.

Many of the results in [86] relate to a structure known as spider’s web, which

is defined as follows. A set E is a spider’s web if E is connected and there exists

a sequence of bounded simply connected domains (Gn)n∈N such that

∂Gn ⊂ E, Gn ⊂ Gn+1, for n ∈ N, and
⋃
n∈N

Gn = C. (1.13)

It was shown in [86] that there are many transcendental entire functions f for

which AR(f) has this structure; for example, this is the case when f has a multiply

connected Fatou component. As noted in [86] – and see also [83] – there are also

many transcendental entire functions, f , such that f has no multiply connected

Fatou components and AR(f) is a spider’s web. For example, if f has sufficiently

small growth, then AR(f) is a spider’s web; see Theorem 1.9.2 (b), below, for a

precise statement of this condition. Bergweiler and Eremenko showed [22] (see

also [23]) that there are functions of arbitrarily small growth – and hence functions

which satisfy this condition – for which the Fatou set is empty.

If AR(f) is a spider’s web then A(f) and I(f) are also spiders’ webs [86, com-

ments following Theorem 1.4], f has no unbounded Fatou components, see Theo-

rem 1.9.1(d) below, and Eremenko’s conjecture holds. We note that, trivially, the

whole complex plane is a spider’s web. However, if AR(f) is a spider’s web, then

it cannot equal the whole complex plane since, for example, there exist periodic

points, by Theorem 1.4.1(e). We give details of the intricate topological structure

of an AR(f) spider’s web in Section 1.9.

In Chapter 2 we give a number of new classes of functions for which AR(f) is

a spider’s web, including the simple example f(z) = cos z + cosh z.

To understand the structure of AR(f) spiders’ webs, Rippon and Stallard [86]

introduced fundamental holes and fundamental loops. When AR(f) is a spider’s

web, we define the fundamental hole HR as the component of AR(f)c that contains

the origin, and the fundamental loop LR by LR = ∂HR. Since AR(f) is closed,

we have that LR ⊂ AR(f). We use the following theorem, which is part of [86,

Lemma 7.2].
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Theorem 1.3.2. Let f be a transcendental entire function, let R > 0 be such

that M(r, f) > r for r ≥ R, and let AR(f) be a spider’s web. Then

fn(HR) = HMn(R) and fn(LR) = LMn(R), for n ∈ N.

Our notation here differs slightly from that in [86]. For R > 0 fixed, Rippon

and Stallard define sets

AmR (f) = {z : |fn(z)| ≥Mn+m(R), n ∈ N}, for m ≥ 0,

and define the sequence of fundamental holes to be the components of AmR (f)c

that contain the origin. Denoting this sequence by (H ′m)m≥0, we observe that

these notations are related by the equation

HMm(R) = H ′m, for m ≥ 0.

In Chapter 3 we investigate the structure of these fundamental loops for func-

tions with a multiply connected Fatou component. We discuss spiders’ webs in

more detail in Section 1.9.

Suppose that f is a transcendental entire function and that f ′(z) = 0. Then

we say that z is a critical point, and w = f(z) is a critical value of f . We call a

curve Γ : (0, 1)→ C an asymptotic curve with asymptotic value a if, as t→ 1, we

have both Γ(t)→∞ and f(Γ(t))→ a. The set formed by the union of the critical

and finite asymptotic values of a transcendental entire function f coincides with

the set of singularities of the inverse function, and is denoted by sing(f−1).

If f is a transcendental entire function such that sing(f−1) is bounded, then we

say that f belongs to the Eremenko-Lyubich class, B. This class was introduced

to complex dynamics in [41]. A particularly important result given in this paper

is [41, Theorem 1] that F (f) ∩ I(f) = ∅, for f ∈ B.

Examples of functions in this class include functions in the exponential family

{f : f(z) = λ exp(z), λ 6= 0},
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and functions in the cosine family

{f : f(z) = cos(αz + β), α 6= 0}.

Functions in the Eremenko-Lyubich class have a number of strong properties

outside a bounded domain which includes sing(f−1). As a result, this class has

been widely studied. Papers which study the structure of the escaping set for

functions in this class include the important paper [91] discussed in Section 1.6,

and Rempe’s paper [77], the results of which explain the observation that there

are striking similarities between the Julia sets of many transcendental entire func-

tions. Papers which concern the dimensions of the Julia set and the escaping

set include Stallard’s result [102] that the Julia sets of functions in this family

have Hausdorff dimension strictly greater than one, and Barański, Karpińska,

and Zdunik’s paper [12] which generalised this result to show that the Julia sets

of functions in this family have hyperbolic dimension strictly greater than one.

Bishop [29] gave an example of a function in this class with a wandering Fatou

component. Finally, papers studying the value distribution of functions in this

class include [66], which concerns the Nevanlinna deficiency of functions in this

class, [67], which gives results on the fixed points of functions in this class, and [73]

which concerns the Nevanlinna deficiency of the derivatives of some functions in

this class. We refer to the papers themselves for the definitions of some of these

terms.

In Chapter 5 we give a new characterisation of this class of functions.

1.4 The Fatou and Julia sets

Fundamental properties of the Fatou and Julia sets of a transcendental entire

function are given in the following theorem; see, for example, [18, Lemma 1,

Lemma 2, Lemma 3, Theorem 3 and Theorem 4]. Here we say that a set S is

completely invariant if z ∈ S implies f(z) ∈ S, and f(z) ∈ S implies z ∈ S.

Recall also that a set is perfect if it is closed, non-empty and has no isolated

points.
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Theorem 1.4.1. Suppose that f is a transcendental entire function. Then the

following hold.

(a) F (f) = F (fn) and J(f) = J(fn), for n ≥ 2.

(b) F (f) and J(f) are completely invariant.

(c) Either J(f) = C or int(J(f)) = ∅.

(d) J(f) is perfect.

(e) J(f) is the closure of the set of repelling periodic points of f .

The first example of a transcendental entire function for which J(f) = C was

given by Baker [6], who showed that, for a suitable value of k > 0, this is the case

for f(z) = kzez.

A useful sufficient condition for a point to lie in the Fatou set can be obtained

from Montel’s Theorem. There are a number of versions of this result, we use the

simplest; see, for example, [93, p.54].

Theorem 1.4.2 (Montel). Suppose that V is a family of analytic functions on a

domain ∆. Suppose also that there exist distinct points w1, w2 ∈ C such that

g(w) /∈ {w1, w2}, for all g ∈ V and w ∈ ∆.

Then V is a normal family in ∆.

When f is a transcendental entire function and z ∈ C, then we can often

show that z ∈ F (f) by applying Theorem 1.4.2 with V = {fn}n∈N, and with ∆ a

neighbourhood of z.

A complementary property of transcendental entire functions, which reflects

the chaotic nature of the Julia set, is the following well-known result [83, Lemma 2.1].

Theorem 1.4.3. Let f be a transcendental entire function, let K be a compact

set with K ∩ E(f) = ∅ and let ∆ be a neighbourhood of z ∈ J(f). Then there

exists N ∈ N such that fn(∆) ⊃ K, for n ≥ N .
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Here

E(f) = {z : O−(z) is finite} (1.14)

and

O−(z) = {w : fn(w) = z, for some n ∈ N}.

It follows from the big Picard theorem that the set E(f) contains at most one

point.

1.5 Fatou components

Since F (f) is open, it consists of at most countably many connected compo-

nents, called Fatou components. Suppose that U = U0 is a Fatou component.

We denote by Un the Fatou component containing fn(U), for n ∈ N. For n ∈ N,

we have that Un\fn(U) can contain at most one point [56, Corollary 3]. If U is

bounded, then fn : U → Un is a proper map and so Un = fn(U) [56, Corollary 1].

Note that if U and V are domains and f : U → V is continuous, then f is a proper

map of U onto V if and only if the preimage of every relatively compact subset of

V is a relatively compact subset of U . If f is a transcendental entire function and

U and V are bounded domains, then it follows from the open mapping theorem

that f is a proper map of U onto V if and only if f(∂U) = ∂V .

Fatou components may be classified as follows. If Up = U , for some least

p ∈ N, then we say that U is periodic, with period p. If U is not periodic, but Uq

is periodic, for some q ∈ N, then we say that U is pre-periodic. The remaining

possibility is that Un = Um implies that n = m; we call such a component

wandering. These components are often called wandering domains. As noted

earlier, Sullivan [104] showed that it is not possible for a rational function to

have wandering Fatou components. It has further been shown that there are a

number of classes of transcendental entire functions which do not have wandering

Fatou components. For example, Eremenko and Lyubich [41], and also Goldberg

and Keen [48], showed that this is the case for transcendental entire functions for

which sing(f−1) is finite, and Stallard [101] showed that this is the case for entire
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and meromorphic functions of the form

f(z) = z +R(z)eP (z),

where P is a non-constant polynomial and R is a non-constant rational function.

Note that the proofs of all these results use Sullivan’s ideas.

There exists a well-known classification of periodic Fatou components; see,

for example, [18, Theorem 6]. We do not need this classification here, as we are

primarily interested in wandering Fatou components.

We distinguish between Fatou components which are simply connected and

those which are multiply connected. The following important result regarding

multiply connected Fatou components was proved by Baker [9, Theorem 3.1]. We

often use this result without comment. Note that we say that a set U surrounds

a set V if and only if V is contained in a bounded component of C\U . We also

write dist(z, U) = infw∈U |z − w|.

Theorem 1.5.1. Suppose that f is a transcendental entire function and that U is

a multiply connected Fatou component of f . Then each Un is bounded and multiply

connected, Un+1 surrounds Un for large n, and dist(0, Un)→∞ as n→∞.

An immediate corollary of Theorem 1.5.1 is that all multiply connected com-

ponents of a transcendental entire function are wandering. It also follows that if

U is a multiply connected Fatou component, then Un = fn(U), for n ∈ N.

Zheng [107] showed that, if U is a multiply connected Fatou component, then

for sufficiently large values of n, Un contains an annulus A(rn, Rn), such that

Rn/rn →∞ as n→∞. This result was strengthened by Bergweiler, Rippon and

Stallard in a recent paper [27] which gave a detailed study of the dynamics of a

transcendental entire function in a multiply connected Fatou component. We use

the following result, which is given in [27, comments following Theorem 1.2].

Theorem 1.5.2. Suppose that f is a transcendental entire function with a mul-

tiply connected Fatou component U = U0, and let z0 ∈ U be fixed. Then there

exists α > 0 such that, for large n, the maximum annulus centred at the origin,

contained in Un and containing fn(z0), is of the form

Bn = A(rann , r
bn
n ), where rn = |fn(z0)|, 0 < an < 1− α < 1 + α < bn. (1.15)
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We use a number of other results from [27]; see Section 3.2.

The first example of a transcendental entire function with a multiply con-

nected Fatou component was constructed by Baker in [5]. This function has the

form

f(z) = cz2

∞∏
n=1

(
1 +

z

an

)
.

The sequence of positive real numbers (an)n∈N is chosen so that the annuli

An = A(a2
n, a

1
2
n+1)

have the property f(An) ⊂ An+1, for n ∈ N. The existence of multiply connected

Fatou components can be shown to follow from this fact; see Figure 1.1 for an

illustration of the dynamics of this function. In this figure a multiply connected

Fatou component, labeled U , is shown being mapped by iterates of f to multiply

connected Fatou components which surround U . All these Fatou components

are shown in grey. The figure is schematic, and it should not be interpreted, for

example, that the boundaries of the Fatou components are smooth. For simplicity,

Figure 1.1 suggests that these Fatou components are doubly connected. However,

it was recently shown by Bergweiler and Zheng [28] that they are in fact infinitely

connected.

Other papers giving functions with multiply connected wandering Fatou com-

ponents include:

• Baker’s paper [10], in which it is shown that multiply connected wandering

Fatou components may occur for functions of any order;

• Hinkkanen’s paper [57], in which it is shown that multiply connected wan-

dering Fatou components may occur for functions of arbitrarily small growth;

• Bergweiler’s paper [20], which is further discussed below (see text before

Figure 1.3);

• Bergweiler, Rippon and Stallard’s paper [27, Section 10], in which examples

of transcendental entire functions with multiply connected wandering Fatou

components of different geometries are given;
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U 

Figure 1.1: Multiply connected wandering Fatou components.

• and Kisaka and Shishikura’s paper [63], which gave the first example of a

transcendental entire function with a doubly connected wandering Fatou

component.

A recent paper which gives a transcendental entire function with a multiply con-

nected Fatou component is [30]. The transcendental entire function in [30] has

a Julia set of Hausdorff dimension 1. This resolved a long-standing question

whether, for a transcendental entire function f , it was always the case that the

Hausdorff dimension of J(f) is strictly greater than 1.

An example of transcendental entire function with a simply connected wan-

dering Fatou component is

f(z) = z − 1 + e−z + 2πi,

which was introduced by Herman, quoted in [103] and described in detail by

Baker [9].

It was shown in [9] that, for n ∈ Z, f has a simply connected wandering
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Fatou component which contains a unique 2nπi translation of the real line. On

iteration of f , each of these wandering Fatou components is translated by 2πi.

See Figure 1.2 for an illustration of the dynamics of f . In this figure a simply

connected Fatou component, labeled U , is shown being mapped by iterates of f to

further simply connected Fatou components. Each iteration translates a simply

connected Fatou component by 2πi. All these Fatou components are shown in

grey. The figure is schematic, and it should not be interpreted, for example, that

the boundaries of the Fatou components are smooth.

0 

-2πi 

2πi 

U 

Figure 1.2: Simply connected wandering Fatou components.

Other functions with simply connected wandering Fatou components include:

• the function f(z) = 2− log 2 + 2z − exp(z) discussed in [19];

• a function constructed in [40] using approximation theory, which has a

wandering Fatou component which is not in the escaping set;

• and the function f(z) = z + λ sin(2πz) + 1, for certain values of λ ∈ C,

discussed in [55, p.106].
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We give an explicit construction of a new example of a transcendental entire func-

tion with this property in Chapter 4. Note that the function in [20], mentioned

earlier, has both simply and multiply connected wandering Fatou components;

see Figure 1.3 for an illustration of the dynamics of this function. In this figure

a simply connected Fatou component, labeled V and shown in black, is shown

being mapped by iterates of f to further simply connected Fatou components.

A multiply connected Fatou component, labeled U and shown in grey, is shown

being mapped by iterates of f to further multiply connected Fatou components.

The figure is schematic, and it should not be interpreted, for example, that the

boundaries of the Fatou components are smooth.

V 
U 

Figure 1.3: Both simply and multiply connected wandering Fatou components.

1.6 The escaping set and Eremenko’s conjectures

In this section we briefly discuss some important properties of the escaping

set, I(f). Fundamental properties of the escaping set of a transcendental entire

function are given in the following theorem; the first two parts of this theorem
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follow immediately from the definition of I(f), the remainder of the theorem is

proved in the seminal paper of Eremenko [39].

Theorem 1.6.1. Suppose that f is a transcendental entire function. Then the

following hold.

(a) I(f) = I(fn), for n ≥ 2.

(b) I(f) is completely invariant.

(c) J(f) ∩ I(f) 6= ∅.

(d) J(f) = ∂I(f).

(e) I(f) has no bounded components.

If U is a Fatou component such that U∩I(f) 6= ∅, then it follows by normality

that U ⊂ I(f). We call a Fatou component in I(f) escaping. Note, however, that

it is not necessarily true that the boundary of an escaping Fatou component must

lie in I(f). For example, the function f(z) = z + 1 + e−z has an escaping Fatou

component the boundary of which contains periodic points; see [86, remark after

Theorem 1.2].

We recall Eremenko’s conjecture [39] that I(f) contains no bounded compo-

nents. One noteworthy result regarding this conjecture is [85, Theorem 4.1(c)]

that I(f) ∪ {∞} is connected. Hence, if there exists a transcendental entire

function f such that I(f) has a bounded component, then I(f) must be very

complicated topologically.

Fatou [46] noted that for many transcendental entire functions, such as

fλ(z) = λ sin z, for λ ∈ R,

there is a set S of curves with the following property. If Γ ∈ S, then fnλ (z)→∞
as n → ∞, for z ∈ Γ. He also asked if this was the case in general. Eremenko

made this conjecture more precise in [39], by asking if it was the case that every

point in I(f) can be joined to infinity by a curve in I(f); this is sometimes called

the strong form of Eremenko’s conjecture.
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Arguably the most significant results regarding Eremenko’s conjectures were

given by Rottenfusser, Rückert, Rempe and Schleicher [91]. First [91, Theo-

rem 1.1] they gave an example of a transcendental entire function, f ∈ B, such

that every path-connected component of J(f) is bounded. Together with the

fact that F (f) ∩ I(f) = ∅, for f ∈ B, this result shows that the strong form of

Eremenko’s conjecture does not hold in general.

On the other hand, they also showed that the strong form of Eremenko’s

conjecture does hold for a large class of functions [91, Theorem 1.2].

Theorem 1.6.2. Suppose that f ∈ B is a function of finite order, or more

generally a finite composition of such functions. Then every point z ∈ I(f) can

be connected to infinity by a curve γ such that fn(w)→∞ uniformly for w ∈ γ.

1.7 The fast escaping set

In this section we briefly discuss some important properties of the fast escaping

set, A(f). In fact, A(f) has several properties corresponding to the properties of

I(f) given in Theorem 1.6.1.

Theorem 1.7.1. Suppose that f is a transcendental entire function. Then the

following hold.

(a) A(f) = A(fn), for n ≥ 2.

(b) A(f) is completely invariant.

(c) J(f) ∩ A(f) 6= ∅.

(d) J(f) = ∂A(f).

(e) A(f) has no bounded components.

The first part of this theorem was shown in [82]. The second part was stated

in [25] and proved in [82]. The relationships between A(f) and J(f) were proved

in [25] and [82]. The fact that all the components of A(f) are unbounded was

proved in [82] and implies that I(f) has at least one unbounded component, as

noted earlier; see also [86] for a detailed account of all these properties of A(f).
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We call a Fatou component in A(f) fast escaping. The following results give

three important properties of fast escaping Fatou components. The first property

is part of [86, Theorem 4.4].

Theorem 1.7.2. Suppose that f is a transcendental entire function and that U

is a multiply connected Fatou component of f . Then U ⊂ A(f).

The second is a version of [86, Theorem 1.2].

Theorem 1.7.3. Suppose that f is a transcendental entire function and that

R > 0 is such that M(r) > r for r ≥ R. If U is a simply connected Fatou

component of f that meets AR(f), then U ⊂ AR(f).

Recall from the previous section that if U is Fatou component in I(f), then

it is not necessarily true that the boundary of U must lie in I(f).

The third property, which was also proved in [25], is [86, Corollary 4.2].

Theorem 1.7.4. Suppose that f is a transcendental entire function and that U

is a Fatou component of f with U ∩ A(f) 6= ∅. Then U is wandering.

In the proof of Theorem 4.1.1 we construct a transcendental entire function

with a simply connected fast escaping Fatou component, and no multiply con-

nected Fatou components.

Suppose that 0 < ε < 1, and define µ(r) = εM(r), for r > 0. Rippon and Stal-

lard proved the following alternative characterisation of A(f) [86, Theorem 2.7].

Theorem 1.7.5. Suppose that f is a transcendental entire function and that

R > 0 is sufficiently large to ensure that µ(r) > r, for r ≥ R. Then

A(f) = {z : there exists ` ∈ N such that |fn+`(z)| ≥ µn(R), for n ∈ N}.

To prove Theorem 4.1.1 we require a stronger version of this result, in which

ε is taken to be a function of r. This is given in Theorem 4.1.2.

1.8 Cantor bouquets

Before discussing spiders’ webs, we first briefly describe a contrasting struc-

ture, which has been known for much longer.
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Devaney and Krych [36] studied the Julia set of many functions in the expo-

nential family. They showed that the Julia set of one of these functions is a closed

set consisting of an uncountable union of disjoint unbounded curves. Devaney

and Tangerman [37] first used the name Cantor bouquet for this structure, and

showed that there is a large class of functions, including many exponentials such

as f(z) = 1
4
ez, for which the Julia set is a Cantor bouquet. For a general study

of Cantor bouquets, including a precise definition, we refer to [11].

All of these functions are in the class B, for which it is known [41] that

I(f) (and hence A(f)) is a subset of J(f). Schleicher and Zimmer [95] studied

the whole exponential family, and showed that every point in the escaping set

of any function in this family lies on an unbounded curve in the escaping set.

Rottenfusser and Schleicher [92] showed that the same is true for functions in the

cosine family. Clearly the strong form of Eremenko’s conjecture holds in both

these cases.

As mentioned earlier, it was shown in [91, Theorem 1.2] that the strong form

of Eremenko’s conjecture holds for a large class of functions in the class B, which

includes functions in the exponential and cosine families discussed above. For

many of these functions the Julia set is a Cantor bouquet containing the escaping

set. In other cases, however, the escaping set and the Julia set are both connected.

For example, for f(z) = ez, it was shown by Misiurewicz [72] that J(f) = C, and,

more recently, by Rempe [78] that I(f) is connected. For all of these functions,

each point in A(f) lies on an unbounded curve in A(f), and all other points in

I(f) and J(f) are endpoints of these curves [79].

1.9 Spiders’ webs

As noted earlier, it was shown in [86] that AR(f), A(f) and I(f) can have

a structure known as a spider’s web, and that if AR(f) is a spider’s web then

so are A(f) and I(f) and, in many cases, so is J(f) – see Theorem 1.9.1(c).

We observe that the spider’s web structure has several differences to the Cantor

bouquet structure described in the previous section. In particular, the Cantor

bouquet structure is closed and has uncountably many components with a sin-

gle unbounded complementary component, whereas the spider’s web structure
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is connected with infinitely many complementary components, each of which is

bounded – see Theorem 1.9.1(a). Note that a spider’s web may contain a subset

that is a Cantor bouquet, although no examples have yet been given of functions

for which the Julia set or escaping set is known to be a spider’s web containing

a Cantor bouquet.

Functions for which AR(f) is a spider’s web have a number of strong dynamical

properties. First, since I(f) is also a spider’s web, I(f) is connected. Since I(f) is

unbounded, it follows at once that Eremenko’s conjecture holds in a particularly

strong way whenever AR(f) is a spider’s web.

As mentioned earlier, if AR(f) is a spider’s web then it has an intricate topo-

logical structure, as shown by the following result.

Theorem 1.9.1. Let f be a transcendental entire function, let R > 0 be such

that M(r, f) > r for r ≥ R, and let AR(f) be a spider’s web. Then the following

hold.

(a) A(f)c has uncountably many components, each of which is compact.

(b) A(f)c has singleton periodic components which are dense in J(f).

(c) If f has no multiply connected Fatou components, then each of

AR(f) ∩ J(f), A(f) ∩ J(f), I(f) ∩ J(f) and J(f)

is a spider’s web.

(d) The function f has no unbounded Fatou components.

The first of these properties is a combination of [74, Theorem 1.2] and [86,

Theorem 1.6(a)], the second is part of [74, Theorem 1.6]. The final two properties

are [86, Theorem 1.5].

Theorem 1.9.1(d) provides a link between the study of AR(f) spiders’ webs

and another major open question in the field of transcendental dynamics. Baker’s

conjecture, which arises from [8], is that if the order of a transcendental entire

function f is less than 1
2
, then f has no unbounded Fatou components. A survey

of progress on this question was given in [58]. It is known [106] that there are no
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unbounded periodic Fatou components for functions of order less than 1
2
, and so

it remains to show that such functions have no unbounded wandering domains.

As described in [58], there are many papers showing that no such domains exist

if the function also satisfies various regularity conditions. We strengthen some

results on these classes of functions in Section 2.7.

The strongest results showing that functions of very small growth have no

unbounded wandering domains were given – subsequent to the survey [58] – in [59]

and [84]. It is still not known, however, whether the result holds even for all

functions of order zero. It was observed in [84] that the techniques used to obtain

all these partial results on Baker’s conjecture were in fact sufficient to imply the

stronger result that AR(f) is a spider’s web.

It has recently been shown, however, that there are functions for which Baker’s

conjecture holds but AR(f) is not a spider’s web. In [88] it was shown that if f

is a transcendental entire function of order less than 1
2

and with all its zeros on

the negative real axis, then all components of F (f) are bounded. Moreover, I(f)

is a spider’s web and so Eremenko’s conjecture holds. On the other hand, it was

shown in [87, Theorem 1.2] that there exist functions in this class for which A(f)

is not a spider’s web. We note that the results in [88] do not require a regularity

condition of the form discussed in the previous paragraph.

In view of these strong dynamical properties, it is desirable to determine func-

tions for which AR(f) is a spider’s web. In [86, Section 8] several classes of such

functions were given. These were derived using the following [86, Theorem 1.9].

Theorem 1.9.2. Let f be a transcendental entire function and let R > 0 be such

that M(r, f) > r for r ≥ R. Then AR(f) is a spider’s web if one of the following

holds:

(a) f has a multiply connected Fatou component;

(b) f has very small growth; that is, there exist m ≥ 2 and r0 > 0 such that

log logM(r, f) <
log r

logm r
, for r > r0,

where logm is the mth iterated logarithm;
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(c) f has order less than 1
2

and regular growth;

(d) f has finite order, Fabry gaps and regular growth;

(e) f has a sufficiently strong version of the pits effect and has regular growth.

A definition of regular growth is given in Section 2.2, along with a number of

new results regarding regular growth. We define Fabry gaps in Section 2.6. For

a definition of the pits effect we refer to [86, Section 8].

A further class of transcendental entire functions for which AR(f) is a spider’s

web was given by Mihaljević-Brandt and Peter [70].

In Chapter 2 we give several new classes of transcendental entire functions

with this property.

As noted in Section 1.3, the structure of AR(f) spiders’ webs can be un-

derstood through fundamental holes and fundamental loops. In Chapter 3 we

investigate the structure of these fundamental loops for functions with a multiply

connected Fatou component. We show that there exist transcendental entire func-

tions for which some fundamental loops are analytic curves and approximately

circles, while others are geometrically highly distorted. We do this by introducing

a real-valued function which measures the rate of escape of points in A(f), and

show that this function has a number of interesting properties.

In Section 6.2 we conjecture that there is a family of functions for which

J(f)∩A(f) is a spider’s web of positive area, but not the whole complex plane.
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Chapter 2

Entire functions for which the

escaping set is a spider’s web

2.1 Introduction

In this chapter we give several new classes of examples of transcendental entire

functions such that AR(f) is a spider’s web. Recall that if AR(f) is a spider’s

web, then so are I(f) and A(f). We show that some of these classes have a

degree of stability under changes in the function. We show that new examples

of functions for which I(f) and A(f) are spiders’ webs can be constructed by

composition, by differentiation, and by integration of existing examples. Finally,

we use a property of spiders’ webs to give new results concerning functions with

no unbounded Fatou components.

This chapter is structured as follows. First, in Section 2.2, we prove several

new results concerning regular growth conditions, which we use in later sections.

These results may also be of independent interest.

In Section 2.3, we demonstrate a technique for constructing new transcenden-

tal entire functions for which AR(f) is a spider’s web by taking finite compositions

of functions that satisfy a minimum modulus condition and a regularity condition.

In Section 2.4, we show that in certain circumstances when AR(f) is a spider’s

web, then so is AR(P (f(Q(z)), z)), where P,Q are polynomials, and so also is

AR(f + h), where the entire function h has smaller growth, in some sense, than

f . These results allow us to construct a large class of functions for which AR(f)
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is a spider’s web. They also show that the property of having an AR(f) spider’s

web can be stable under changes in f , unlike many other dynamical properties.

In Section 2.5, we establish a technique for constructing a large class of tran-

scendental entire functions of finite order for which AR(f) is a spider’s web, by

modifying the power series of a transcendental entire function of finite order.

This technique is a generalisation of the method used to construct some of the

examples in [86]. We show that this class of examples can be extended by dif-

ferentiation or integration. By combining the results of Sections 2.3, 2.4 and 2.5,

we give an unexpectedly simple function for which AR(f) is a spider’s web.

In Section 2.6, we present a technique for constructing new transcendental

entire functions, of infinite order and with large gaps in their power series, for

which AR(f) is a spider’s web.

Finally, in Section 2.7, we relate our results to previous work on classes of

transcendental entire functions which have no unbounded Fatou components.

2.2 New results on regularity

In this section we set out conditions which ensure that AR(f) is a spider’s

web. Many of these conditions require some form of regularity of growth. We

prove several new results concerning forms of regularity of growth, which enable

us to construct examples of functions with an AR(f) spider’s web later in the

chapter.

A pair of conditions that are together necessary and sufficient for AR(f) to

be a spider’s web were obtained in [86, Theorem 8.1]. Note that the sequence

(Gn)n≥0 in the statement of this theorem is not the same as the sequence (Gn)n∈N

in (1.13).

Theorem 2.2.1. Let f be a transcendental entire function and let R > 0 be such

that M(r, f) > r for r ≥ R. Then AR(f) is a spider’s web if and only if there

exists a sequence (Gn)n≥0 of bounded simply connected domains such that, for

n ≥ 0,

Gn ⊃ B(0,Mn(R, f)) (2.1)
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and

Gn+1 is contained in a bounded component of C\f(∂Gn). (2.2)

This result is very general, and so, in order to construct examples, the follow-

ing, more readily applicable, sufficient conditions for AR(f) to be a spider’s web

were established in [86, Corollary 8.3].

Lemma 2.2.2. Let f be a transcendental entire function and let R > 0 be such

that M(r, f) > r for r ≥ R. Then AR(f) is a spider’s web if, for some real

number m > 1,

(a) there exists R0 > 0 such that, for r ≥ R0,

there exists ρ ∈ (r, rm) with L(ρ, f) ≥M(r, f), and (2.3)

(b) f has regular growth in the sense that there exists a sequence (rn)n≥0 with

rn > Mn(R, f) and M(rn, f) ≥ rmn+1, for n ≥ 0. (2.4)

We use the following condition, which is stronger than the regularity condition

of Lemma 2.2.2(b), in order to construct a new class of functions with an AR(f)

spider’s web. We define a transcendental entire function f to be ψ-regular if, for

m > 1, there exist an increasing function ψm and Rm > 0 such that, for r ≥ Rm,

ψm(r) ≥ r and M(ψm(r), f) ≥ (ψm(M(r, f)))m. (2.5)

For given m > 1 we call ψm a regularity function for f .

This condition is slightly stronger than one used in [84, Theorem 5] in connec-

tion with transcendental entire functions with no unbounded Fatou components.

That version did not require the regularity function to be increasing. However,

all the regularity functions used in [84,86] are, in fact, increasing.

We also use the following condition, which is stronger than ψ-regularity, in

order to construct several classes of functions with an AR(f) spider’s web. Sup-

pose that c > 0. We define a transcendental entire function f to be log-regular,
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with constant c, if the function φ(t) = logM(et, f) satisfies

φ′(t)

φ(t)
≥ 1 + c

t
, for large t. (2.6)

By Lemma 1.2.1(e) there may be a countable set of points at which the derivative

φ′(t) fails to exist. At these points we understand φ′(t) to be the right-hand

derivative.

We say that f is log-regular if it is log-regular with constant c, for some c > 0.

We observe also that in our choice of terminology we do not intend to suggest that

a log-regular function is a ψ-regular function with log as the regularity function.

The condition (2.6) was used by Anderson and Hinkkanen in [3, Theorem 2],

also in connection with transcendental entire functions with no unbounded Fa-

tou components. The name log-regular was suggested by Aimo Hinkkanen in a

private communication. The condition was also used in [86, Section 8] in order

to construct classes of functions with an AR(f) spider’s web.

We now state three new results concerning ψ-regularity and log-regularity.

The first concerns the composition of ψ-regular functions.

Theorem 2.2.3. Let f1, f2, . . . , fk be transcendental entire functions. Suppose

that, for j ∈ {1, 2, . . . , k}, fj is ψ-regular, each with regularity function ψm for

m > 1. Let g = f1◦f2◦· · ·◦fk. Then, for any c > 1, g is ψ-regular with regularity

function cψm for m > 1.

In particular it follows that ψ-regularity is preserved under iteration.

Corollary 2.2.4. If f is a ψ-regular transcendental entire function, then so is

fn for n ∈ N.

The second result relates to the composition of entire functions, one of which

is log-regular.

Theorem 2.2.5. Let f1, f2, . . . , fk be non-constant entire functions such that,

for some j ∈ {1, 2, . . . , k}, fj is a log-regular transcendental entire function. Let

g = f1 ◦ f2 ◦ · · · ◦ fk. Then g is log-regular.
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In particular it follows that log-regularity is preserved under iteration.

Corollary 2.2.6. If f is a log-regular transcendental entire function, then so is

fn for n ∈ N.

Note that Theorem 2.2.3 requires all functions to be ψ-regular transcendental

entire functions, whereas Theorem 2.2.5 requires just one to be a log-regular

transcendental entire function and the others only to be entire.

The third result shows that if f is log-regular, then so is any transcendental

entire function with similar growth.

Theorem 2.2.7. Let f and g be transcendental entire functions. If f is log-

regular and there exist a1, a2 ≥ 1 and R0 > 0 such that

M(ra1 , g) ≥M(r, f) and M(ra2 , f) ≥M(r, g), for r ≥ R0, (2.7)

then g is log-regular.

We need three preparatory lemmas to prove these results. The first lemma is

a version of [89, Corollary 4.3], and gives a necessary condition and a sufficient

condition for f to be log-regular.

Lemma 2.2.8. Let f be a transcendental entire function.

(a) If f is log-regular, with constant c, then there is an R0 > 0 such that, if k > 1

and d = kc, then

M(rk, f) ≥M(r, f)kd, for r ≥ R0. (2.8)

(b) If (2.8) holds for some d, k > 1 and R0 > 0, then f is log-regular.

The second lemma comes from Wiman-Valiron theory, (see, for example, [51]),

which was first used in connection with the escaping set by Eremenko [39]. We

first need to introduce some terminology. Let g(z) =
∑∞

n=0 anz
n be a transcen-

dental entire function. Define

µ(r) = sup
n
|an|rn = |aN |rN , for r > 0, (2.9)

to be the maximal term of the power series, and call N = N(r) the central index;

if (2.9) holds for several N , we take N(r) to be the largest of these. Note that
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N(r) is increasing and N(r) → ∞ as r → ∞. Wiman-Valiron theory uses µ(r)

to give results about the behaviour of g near points z(r), r > 0, that satisfy

|z(r)| = r and |g(z(r))| = M(r, g). (2.10)

A key result of Wiman-Valiron theory is the following.

Lemma 2.2.9. Suppose that g is a transcendental entire function and α > 1
2
.

For r > 0, let z(r) be a point satisfying (2.10), and define

D(r) = B

(
z(r),

r

(N(r))α

)
, r > 0.

Then there exists a measurable set E ⊂ (0,∞) with∫
E

1/t dt <∞ (2.11)

such that, for r /∈ E and z ∈ D(r),

g(z) =

(
z

z(r)

)N(r)

g(z(r))(1 + ε), (2.12)

where ε = ε(r, z)→ 0 uniformly with respect to z as r →∞, r /∈ E. In particular,

if r is sufficiently large and r /∈ E, then

g(D(r)) ⊃ {w : |w| = M(r, g)}. (2.13)

We use Lemma 2.2.9 to prove a result on the behaviour of the maximum

modulus of the composite of two entire functions.

Lemma 2.2.10. Suppose that f is a non-constant entire function and g is a

transcendental entire function. Then, given ν > 1, there exist R0, R1 > 0 such

that

M(νr, f ◦ g) ≥M(M(r, g), f) ≥M(r, f ◦ g), for r ≥ R0, (2.14)
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and

M(νr, g ◦ f) ≥M(M(r, f), g) ≥M(r, g ◦ f), for r ≥ R1. (2.15)

Proof. We first prove (2.14). Let α > 1
2
, and let N(r), E and D(r) be related

to g as in Lemma 2.2.9. It follows from (2.11), and the fact that N(r) → ∞ as

r →∞, that, for sufficiently large r, there exists r′ ∈ (r, ν+1
2
r)\E, with

D(r′) ⊂ B(0, νr) and g(D(r′)) ⊃ {w : |w| = M(r′, g)}. (2.16)

Let w be such that |w| = M(r′, g) and |f(w)| = M(M(r′, g), f). Then, by (2.16),

there is a z ∈ D(r′) with g(z) = w. Hence

|(f ◦ g)(z)| = M(M(r′, g), f) > M(M(r, g), f),

since r′ > r and f is not constant. The first part of (2.14) now follows, by the

first part of (2.16). The second part of (2.14) is immediate.

Equation (2.15) follows in the same way if f is transcendental. Otherwise,

suppose that f is a polynomial. Then, for sufficiently large r, since f is not

constant,

f(B(0, νr)) ⊃ {w : |w| = M(r, f)}. (2.17)

Let w be such that |w| = M(r, f) and |g(w)| = M(M(r, f), g). Then, by (2.17),

there is a z ∈ B (0, νr) with f(z) = w. Hence

|(g ◦ f)(z)| = M(M(r, f), g).

The first part of (2.15) follows. The second part of (2.15) is immediate.

In passing, we note a related result discussed by Bergweiler and Hinkkanen [25,

Lemma 1] that, if we also have g(0) = 0, then

M(6r, f ◦ g) ≥M(M(r, g), f), for r > 0.

Now we are ready to prove Theorems 2.2.3, 2.2.5 and 2.2.7.
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Proof of Theorem 2.2.3. Suppose that m > 1. We note first a general result.

Suppose that f is a ψ-regular transcendental entire function with regularity func-

tion ψm, and let λ > 1. Then, for sufficiently large r, by (1.7) and (2.5),

M(λψm(r), f) ≥ λmM(ψm(r), f) ≥ (λψm(M(r, f)))m . (2.18)

Hence λψm is also a regularity function for f .

We next claim that the following statement is true. Suppose that g1 and g2

are ψ-regular transcendental entire functions each with regularity function ψm,

and that a > 1. Then g1 ◦ g2 is a ψ-regular transcendental entire function with

regularity function aψm.

We note that, for sufficiently large r,

M(aψm(r), g1 ◦ g2) ≥M(M(ψm(r), g2), g1) by Lemma 2.2.10

≥M((ψm(M(r, g2)))m, g1) by (2.5)

≥M(ψm(M(r, g2)), g1)m by (1.8)

≥ (ψm(M(M(r, g2)), g1))m
2

by (2.5)

≥ (ψm(M(r, g1 ◦ g2)))m
2

since ψm is increasing

≥ (aψm(M(r, g1 ◦ g2)))m by (2.5).

Hence g1◦g2 is ψ-regular with regularity function aψm, which completes the proof

of our claim.

We now let a = c1/(k−1) > 1. We apply the statement above with g1 = f1

and g2 = f2 to deduce that f1 ◦ f2 is a ψ-regular transcendental entire function

with regularity function aψm. Since, by (2.18), we have that aψm is a regularity

function for f3, we may apply the statement above once again, with g1 = f1 ◦ f2

and g2 = f3 to deduce that f1◦f2◦f3 is a ψ-regular transcendental entire function

with regularity function a2ψm. We continue to apply the statement above, and

after k − 1 applications in total, we deduce that f1 ◦ f2 ◦ · · · ◦ fk is a ψ-regular

transcendental entire function with regularity function ak−1ψm. This completes

the proof, since ak−1 = c.

Proof of Theorem 2.2.5. It is sufficient to prove the result for k = 2. Suppose
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then that k = 2.

We consider first the case that f2 is a log-regular transcendental entire func-

tion. By Lemma 2.2.8(a) applied to f2, there are k, d > 1 and r1 > 0 such that

M(rk, f2) ≥M(r, f2)kd, for r ≥ r1. (2.19)

We consider the cases that f1 is a transcendental entire function and that f1

is a polynomial separately. Suppose that f1 is a transcendental entire function.

Choose ν such that 1 < ν < d, put k′ = kν > 1 and d′ = d
ν
> 1. Then, for

sufficiently large r,

M(rk
′
, f1 ◦ f2) ≥M(νrk, f1 ◦ f2)

≥M(M(rk, f2), f1) by Lemma 2.2.10

≥M(M(r, f2)kd, f1) by (2.19)

≥M(M(r, f2), f1)kd by (1.8)

≥M(r, f1 ◦ f2)k
′d′ by choice of k′, d′.

Thus f1 ◦ f2 is log-regular by Lemma 2.2.8(b).

On the other hand, suppose that f1 is a polynomial. With the constants ν, d, k

and k′ defined above, choose d′′ such that ν < d′′ < d, and set d# = kd′′

k′
> 1.

Then, for sufficiently large r,

M(rk
′
, f1 ◦ f2) ≥M(M(r, f2)kd, f1) as above

≥M(M(r, f2), f1)kd
′′

by Lemma 1.2.3

≥M(r, f1 ◦ f2)k
′d# by choice of d#.

Once again, f1 ◦ f2 is log-regular by Lemma 2.2.8(b). This completes the proof

in the case that f2 is a log-regular transcendental entire function.

The remaining case is that f1 is a log-regular transcendental entire function

but f2 is not. By Lemma 2.2.8(a) applied to f1, there are k, d > 1 and r1 > 0

such that

M(rk, f1) ≥M(r, f1)kd, for r ≥ r1. (2.20)
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We consider the cases that f2 is a transcendental entire function and that f2

is a polynomial separately. Suppose that f2 is a transcendental entire function.

Choose ν such that 1 < ν < d, put k′ = kν > 1 and d′ = d
ν
> 1. Then, for

sufficiently large r,

M(rk
′
, f1 ◦ f2) ≥M(νrk, f1 ◦ f2)

≥M(M(rk, f2), f1) by Lemma 2.2.10

≥M(M(r, f2)k, f1) by (1.8)

≥M(M(r, f2), f1)kd by (2.20)

≥M(r, f1 ◦ f2)k
′d′ by choice of k′, d′.

Thus f1 ◦ f2 is log-regular by Lemma 2.2.8(b).

On the other hand, suppose that f2 is a polynomial. With the constants ν, d

and k defined above, choose k′′ and k# such that k < k′′ < k# < kd, and set

d# = kd
k#

> 1. Then, for sufficiently large r,

M(rk
#

, f1 ◦ f2) ≥M(νrk
′′
, f1 ◦ f2)

≥M(M(rk
′′
, f2), f1) by Lemma 2.2.10

≥M(M(r, f2)k, f1) by Lemma 1.2.3

≥M(M(r, f2), f1)kd by (2.20)

≥M(r, f1 ◦ f2)k
#d# by choice of k#, d#.

Once again, f1 ◦ f2 is log-regular by Lemma 2.2.8(b). This completes the proof

of the lemma.

Proof of Theorem 2.2.7. Suppose that f is log-regular with constant c, and a1, a2

are as in (2.7). Choose k > 1 sufficiently large that kc > a1a2. Set

d = kc, k′ = a1a2k > 1 and d′ =
d

a1a2

> 1.
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Then, for sufficiently large r,

M(rk
′
, g) = M(ra1a2k, g)

≥M(ra2k, f) by (2.7)

≥M(ra2 , f)kd by (2.8)

≥M(r, g)kd by (2.7)

= M(r, g)k
′d′ by choice of k′, d′.

Hence g is log-regular by Lemma 2.2.8(b).

We now prove several useful corollaries of Theorem 2.2.7. The first relates to

the derivatives and integrals of log-regular functions.

Corollary 2.2.11. Let f be a transcendental entire function. Then f is log-

regular if and only if f ′ is log-regular.

Proof. Suppose that r > 0, and that z is such that |z| = r and M(r, f) = |f(z)|.
Then

rM(r, f ′) ≥
∣∣∣∣∫ z

0

f ′(z)dz

∣∣∣∣ = |M(r, f)− f(0)|.

Hence, by (1.6) and (1.8), for sufficiently large r,

M(r2, f ′) ≥ rM(r, f ′) + |f(0)| ≥M(r, f). (2.21)

Next, suppose that r > 0, and that z is such that |z| = r and M(r, f ′) = |f ′(z)|.
Then, by applying Cauchy’s estimate on a circle centre z and radius r, we deduce

that M(2r, f)/r ≥M(r, f ′). We deduce that, for sufficiently large r,

M(r2, f) ≥M(2r, f)/r ≥M(r, f ′). (2.22)

The result follows by Theorem 2.2.7, with a1 = a2 = 2.

The remaining corollaries of Theorem 2.2.7 are used later to give stability

results about AR(f) spiders’ webs. While they could be combined, they are stated

separately for clarity. The first concerns addition of a function to a log-regular

function.
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Corollary 2.2.12. Let f be a log-regular transcendental entire function, and let

h be an entire function. Suppose that there exist a ∈ (0, 1) and R0 > 0 such that

aM(r, f) ≥M(r, h), for r ≥ R0. (2.23)

Then g = f + h is log-regular.

Proof. Suppose that r ≥ R0, and that zf , zg and zh are points of modulus r such

that M(r, f) = |f(zf )|, M(r, g) = |g(zg)| and M(r, h) = |h(zh)|. Then

(1 + a)M(r, f) ≥M(r, f) +M(r, h)

= |f(zf )|+ |h(zh)|

≥ |f(zg)|+ |h(zg)|

≥ |g(zg)|

= M(r, g).

Moreover

(1− a)M(r, f) ≤M(r, f)−M(r, h)

= |f(zf )| − |h(zh)|

≤ |f(zf )| − |h(zf )|

≤ |g(zf )|

≤ |g(zg)|

= M(r, g).

The result now follows by (1.8), and Theorem 2.2.7 with a1 = a2 = 2.

Note that, by (1.6), if h is a polynomial, then (2.23) is satisfied for any tran-

scendental entire function f and any a ∈ (0, 1).

The second corollary concerns a case where log-regularity is preserved under

multiplication.

Corollary 2.2.13. Let f be a log-regular transcendental entire function. Then

g(z) = zf(z) is log-regular.
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Proof. By (1.8) and (1.6), for sufficiently large r, M(r2, f) ≥M(r, f)2 ≥M(r, g).

Also, for sufficiently large r, M(r, g) ≥ M(r, f). The result follows, by Theo-

rem 2.2.7 with a1 = 1 and a2 = 2.

Our final corollary is quite general.

Corollary 2.2.14. Let f be a log-regular transcendental entire function. Let

P (w, z) be a polynomial of degree at least one in w, and let Q(z) be a polynomial

of degree at least one. Then g(z) = P (f(Q(z)), z) is log-regular.

Proof. Suppose that

P (f(Q(z)), z) = af(Q(z))N1zN2 + h(z) = g0(z) + h(z),

where N1 is the highest power of w in P (w, z), N2 is the highest power of z

corresponding to f(Q(z))N1 , and a 6= 0. By Theorem 2.2.5, the function z 7→
af(Q(z))N1 is log-regular. By Corollary 2.2.13, applied N2 times, g0 is log-regular.

Since, by (1.6), we have

1

2
M(r, g0) ≥M(r, h), for large r,

the result follows by Corollary 2.2.12.

2.3 Using composition to give functions for which AR(f)

is a spider’s web

In this section we demonstrate that AR(g) is a spider’s web if g = f1◦f2◦· · ·◦fk,
and the entire functions fj, j ∈ {1, 2, . . . , k}, satisfy certain conditions. We need a

preparatory lemma before we can state the results. This lemma is a generalisation

of Lemma 2.2.2, in which condition (a) is relaxed slightly although condition (b)

is unchanged. Condition (a) was also used, independently, in [70].

Lemma 2.3.1. Let f be a transcendental entire function and let R > 0 be such

that M(r, f) > r for r ≥ R. Then AR(f) is a spider’s web if, for some real

number m > 1,
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(a) there exists R0 > 0 such that, for r ≥ R0, there is a simply connected domain

G = G(r) with

B(0, r) ⊂ G ⊂ B(0, rm) and |f(z)| ≥M(r, f), for z ∈ ∂G, (2.24)

and

(b) f has regular growth in the sense that there exists a sequence (rn)n≥0 with

rn > Mn(R, f) and M(rn, f) ≥ rmn+1, for n ≥ 0. (2.25)

Proof. Let m and R0 be as in (a), and choose (rn)n≥0 satisfying (2.25) with

rn > R0 for n ≥ 0. For n ≥ 0, let Gn = G(rn).

First, by (2.24) and (2.25),

Gn ⊃ B(0, rn) ⊃ B(0,Mn(R, f)), for n ≥ 0, (2.26)

and so (Gn) satisfies (2.1).

Second, by (2.24) and (2.25), if z ∈ ∂Gn then |f(z)| ≥ M(rn, f) ≥ rmn+1.

Thus f(Gn) contains B(0, rmn+1), since f maps points of B(0,Mn(R, f)) into

B(0,Mn+1(R, f)) ⊂ B(0, rmn+1). Now Gn+1 is contained in B(0, rmn+1) and so

is contained in a bounded component of C\f(∂Gn). Thus (Gn) satisfies (2.2).

Hence, by Theorem 2.2.1, AR(f) is a spider’s web.

We require one additional lemma in order to establish that certain classes of

functions satisfy Lemma 2.3.1(b), for m > 1.

Lemma 2.3.2. Let f be a transcendental entire function. If f is ψ-regular, or if

f is log-regular, then f satisfies Lemma 2.3.1(b), for m > 1.

Proof. Firstly, it was shown in [86, Section 8] that if f is ψ-regular, then it

satisfies Lemma 2.3.1(b), for m > 1. Secondly, it was shown in [84, Section

7] that if f is log-regular with constant c, then f is ψ-regular with regularity

function ψm(r) = rm
1/c

, for m > 1; see also Lemma 2.2.8. These two observations

complete the proof of the lemma.
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We note that if P is a non-constant polynomial, then P satisfies Lemma 2.3.1(a)

for m > 1, taking G(r) = B(0, rα), where α ∈ (1,m), and a suitable R0.

We now state the main results of this section. The first relates to the compo-

sition of ψ-regular functions, and the second relates to the composition of entire

functions, one of which is log-regular.

Theorem 2.3.3. Let f1, f2, . . . , fk be transcendental entire functions which sat-

isfy the hypothesis of Lemma 2.3.1(a) for some m > 1. Suppose that, for

j ∈ {1, 2, . . . , k}, fj is ψ-regular, with regularity function ψm for m > 1. Let

g = f1 ◦ f2 ◦ · · · ◦ fk. Then AR(g) is a spider’s web, where R > 0 is such that

M(r, g) > r for r ≥ R.

Theorem 2.3.4. Let f1, f2, . . . , fk be non-constant entire functions. Suppose

that, for j ∈ {1, 2, . . . , k}, fj satisfies the hypothesis of Lemma 2.3.1(a) for

some m > 1. Suppose also that, for some j ∈ {1, 2, . . . , k}, fj is a log-regular

transcendental entire function. Let g = f1 ◦ f2 ◦ · · · ◦ fk. Then AR(g) is a spider’s

web, where R > 0 is such that M(r, g) > r for r ≥ R.

We need one further lemma before we can prove these results. This lemma

also concerns the composition of entire functions.

Lemma 2.3.5. Let f1, f2, . . . , fk be non-constant entire functions. Suppose also

that, for j ∈ {1, 2, . . . , k}, fj satisfies the hypothesis of Lemma 2.3.1(a) with

m = mj > 1. Let g = f1 ◦ f2 ◦ · · · ◦ fk. Then g satisfies the hypothesis of

Lemma 2.3.1(a) with m = m1m2 . . .mk.

Proof. It is sufficient to prove the result for k = 2. The result is immediate if f1

and f2 are both polynomials. Otherwise, let m1 and m2 be as given.

Consider first the case that f2 is a transcendental entire function; the reader

may wish to refer to Figure 2.1 at this point, which shows a simplified version of a

horizontal slice through some of the domains used in the proof. The boundaries of

the discs constructed in the proof are shown as solid lines, and labeled below. The

boundaries of the simply connected domains constructed in the proof are shown
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rm1 r rm1m2 M(r, f2) M(r, f2)m1 M(M(r, f2), f1) 

∂G2 ∂G3 ∂G1 f2(∂G2) 
f1(∂G1) = 
f1 o f2(∂G3) 

Figure 2.1: A slice through parts of the boundaries of some of the domains used
in the proof of Lemma 2.3.5.

as dashed lines and labeled above. For sufficiently large r, let G1 = G1(r) be a

simply connected domain such that

B(0,M(r, f2)) ⊂ G1 ⊂ B(0,M(r, f2)m1), (2.27)

and

|f1(z)| ≥M(M(r, f2), f1), for z ∈ ∂G1. (2.28)

For sufficiently large r, let G2 = G2(r) be a simply connected domain such that

B(0, rm1) ⊂ G2 ⊂ B(0, rm1m2), (2.29)

and

|f2(z)| ≥M(rm1 , f2), for z ∈ ∂G2. (2.30)

If f2(z) ∈ ∂G1 then, by (2.27), |z| ≥ r, and so there is a component G3 of f−1
2 (G1)

which contains B(0, r). We observe that it follows from the open mapping theo-
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rem that

f2(z) ∈ ∂G1, for z ∈ ∂G3. (2.31)

If z ∈ ∂G2 then, by (2.30) and (1.8),

|f2(z)| ≥M(rm1 , f2) ≥M(r, f2)m1 , for large r. (2.32)

If z ∈ ∂G3 then, by (2.27) and (2.31), |f2(z)| ≤ M(r, f2)m1 . Hence, by the

maximum principle, if z ∈ G3 then |f2(z)| < M(r, f2)m1 . Thus ∂G2 ∩G3 = ∅, by

(2.32), and so B(0, r) ⊂ G3 ⊂ B(0, rm1m2), by (2.29). Also, if z ∈ ∂G3 then, by

(2.28) and (2.31),

|(f1 ◦ f2)(z)| ≥M(M(r, f2), f1) ≥M(r, f1 ◦ f2). (2.33)

We note that G3 is simply connected; this follows from the maximum principle

and the fact that G1 is simply connected. Hence f1 ◦ f2 satisfies Lemma 2.3.1(a),

with m = m1m2.

Secondly, we consider the case where f2 is a polynomial. Choose m′ such that

m′ > m1. For sufficiently large r, let G1 and G3 be the domains from the first

part of the proof, and let G2 = B(0, rm
′
). Since f2 is a polynomial, for sufficiently

large r,

|f2(z)| ≥M(r, f2)m1 , for z ∈ ∂G2.

As in the first part of the proof, ∂G2 ∩G3 = ∅, and so B(0, r) ⊂ G3 ⊂ B(0, rm
′
).

Also, if z ∈ ∂G3 then |(f1 ◦ f2)(z)| ≥ M(r, f1 ◦ f2). Hence f1 ◦ f2 satisfies

Lemma 2.3.1(a), with m = m′ > m1, in particular with m = m1m2.

In particular it follows from Lemma 2.3.5 that the property of satisfying

Lemma 2.3.1(a) for some m > 1 is preserved under iteration.

Corollary 2.3.6. If f is a transcendental entire function that satisfies Lemma 2.3.1(a)

for some m > 1, then so is fn for n ∈ N.

We are now able to prove Theorems 2.3.3 and 2.3.4.

Proof of Theorem 2.3.3. By Lemma 2.3.5, g satisfies Lemma 2.3.1(a) for some

m > 1. By Theorem 2.2.3, g is ψ-regular. Hence, by Lemma 2.3.2, it satisfies
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Lemma 2.3.1(b) for m > 1. The result follows by Lemma 2.3.1.

Proof of Theorem 2.3.4. As in the proof of Theorem 2.3.3, g satisfies Lemma 2.3.1(a)

for some m > 1. By Theorem 2.2.5, g is log-regular. Hence, by Lemma 2.3.2, it

satisfies Lemma 2.3.1(b) for m > 1. The result follows by Lemma 2.3.1.

Rippon and Stallard [89, Example 6.1] gave an example of a ψ-regular func-

tions which is not log-regular. This example has order zero, and so satisfies

Lemma 2.3.1(a) for some m > 1; see Lemma 2.5.2. This shows that there is a

situation in which Theorem 2.3.3 can be applied, but not Theorem 2.3.4.

Finally, we note that the conditions of Theorem 2.3.4 are satisfied by many

of the examples in [86, Section 8], and all the examples in this chapter (see

Sections 2.5 and 2.6).

2.4 Stability of AR(f) spiders’ webs

Many known dynamical properties of a transcendental entire function f are

unstable under relatively small changes in f . For example, the functions

f1(z) = e−z,

f2(z) = f1(z) + z + 2πi− 1,

and

f3(z) = f1(z) + z + 1,

all have very different Fatou sets (see, for example, [18, Section 4]). In this section

we prove results which show that, in certain circumstances, AR(f) spiders’ webs

can be very stable. The first result concerns composition with polynomials.

Theorem 2.4.1. Suppose that f is a log-regular transcendental entire function

which satisfies Lemma 2.3.1(a) for some m0 > 1. Let P (w, z) be a polynomial of

degree at least one in w, and let Q(z) be a polynomial of degree at least one.

Let g(z) = P (f(Q(z)), z). Then AR(g) is a spider’s web, where R > 0 is such

that M(r, g) > r for r ≥ R.
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Proof. By Corollary 2.2.14, g is log-regular. Thus, by Lemma 2.3.2, it satis-

fies Lemma 2.3.1(b) for m > 1. Hence we need only prove that g satisfies

Lemma 2.3.1(a) for some m > 1.

As in the proof of Corollary 2.2.14, let

g(z) = af(Q(z))N1zN2 + · · · ,

where N1 is the highest power of w in P (w, z), and N2 is the highest power of

z corresponding to f(Q(z))N1 . By Lemma 2.3.5, f ◦Q satisfies Lemma 2.3.1(a).

Hence, there is an m1 > 1 such that, for sufficiently large r, there is a simply

connected domain G = G(r) with B(0, rm1) ⊂ G ⊂ B(0, rm1
2
) and

|f(Q(z))| ≥M(rm1 , f ◦Q), for z ∈ ∂G. (2.34)

Hence, when z ∈ ∂G, for sufficiently large r,

|g(z)| ≥ 1

2
|a|M(rm1 , f ◦Q)N1rN2 by (2.34) and (1.6)

≥ 2|a|M(r, f ◦Q)N1rN2 by (1.8)

≥M(r, g) by (1.6).

Thus g satisfies Lemma 2.3.1(a) with m = m2
1, so the proof is complete.

The second result concerns addition of an entire function to a transcendental

entire function with an AR(f) spider’s web.

Theorem 2.4.2. Suppose that f is a log-regular transcendental entire function

which satisfies Lemma 2.3.1(a) for some m > 1, and that h is an entire function.

Suppose also that there exist a ∈ (0, 1) and R0 > 0 such that

aM(r, f) ≥M(rm, h), for r ≥ R0. (2.35)

Let g = f+h. Then AR(g) is a spider’s web, where R > 0 is such that M(r, g) > r

for r ≥ R.

Proof. First we note that, for sufficiently large r, aM(r, f) ≥M(r, h). Hence, by

Corollary 2.2.12, g is log-regular and so, by Lemma 2.3.2, it satisfies Lemma 2.3.1(b)
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form > 1. Thus, by Lemma 2.3.1, it remains to prove that g satisfies Lemma 2.3.1(a)

for some m > 1.

By hypothesis, for sufficiently large r, there is a simply connected domain

G = G(r) with B(0, rm) ⊂ G ⊂ B(0, rm
2
) and

|f(z)| ≥M(rm, f), for z ∈ ∂G. (2.36)

Thus, when z ∈ ∂G, for sufficiently large r,

|g(z)| ≥ |f(z)| − |h(z)|

≥ (1− a)M(rm, f) by (2.35), and (2.36)

≥ (1 + a)M(r, f) by (1.8)

≥M(r, g).

Hence g satisfies Lemma 2.3.1(a) with m replaced by m2, so the proof is complete.

Remark 2.4.1. Using the same method of proof it can be shown that in The-

orem 2.4.2 the function h can also be of the form h(z) = f(z)/(z − c), where

f(c) = 0. First we note that, for large values of r, we have

1

2
M(r, g) ≤M(r, f) ≤ 2M(r, g).

The fact that g is log-regular then follows by Theorem 2.2.7. The fact that g

satisfies Lemma 2.3.1(a) for some m > 1 follows from the observation that, for

large values of r, we have

r

2
M(r, h) ≤M(r, f) ≤ 2rM(r, h).

Finally, we note that the conditions on f in Theorems 2.4.1 and 2.4.2 are

satisfied by functions in many of the classes given in [86, Section 8], in particular

functions which satisfy Theorem 1.9.2 parts (c), (d) and (e); this follows from

remarks in [86, Section 8]. These conditions are also satisfied for all the examples
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in this chapter. It can be shown that these conditions are also satisfied by the

functions in [70]. So we can produce new functions for which AR(f) is a spider’s

web by taking these known examples and applying Theorems 2.4.1 and 2.4.2.

2.5 Functions of finite order for which AR(f) is a spider’s

web

In this section we develop a technique which enables us to take a transcenden-

tal entire function of finite order, modify its power series, and produce a class of

transcendental entire functions of finite order for which AR(f) is a spider’s web.

From the exponential function we obtain a class of such functions (Example 2.5.1)

which contains the function

f(z) =
1

2
(cos z

1
4 + cosh z

1
4 ) =

∞∑
n=0

zn

(4n)!
(2.37)

given in [86, Section 8], together with the related functions

f(z) =
∞∑
n=0

zpn

(qn)!
, p, q ∈ N, p/q <

1

2
, (2.38)

suggested by Halburd and also mentioned in [86, Section 8]. We obtain another

class (Example 2.5.3) from the error function (see [1, p.297])

erf(z) =
2√
π

∞∑
n=0

(−1)n

n!(2n+ 1)
z2n+1. (2.39)

Recall that the order ρ(f) and lower order λ(f) of a transcendental entire

function f are defined in (1.3).

We use the following three lemmas, all discussed in [86, Corollary 8.3 and the

following remarks]. The first is from [58, p.205], and gives a sufficient condition

for a transcendental entire function to be log-regular.

Lemma 2.5.1. If f is a transcendental entire function of finite order and positive

lower order, then f is log-regular.
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The second is from, for example, [4, Satz 1].

Lemma 2.5.2. If f is a transcendental entire function of order less than 1
2
, then

f satisfies Lemma 2.3.1(a) for some m > 1.

The third follows from Lemma 2.5.1, Lemma 2.5.2 and Lemma 2.3.1.

Lemma 2.5.3. If f is a transcendental entire function of order less than 1
2

and

positive lower order, then AR(f) is a spider’s web, where R > 0 is such that

M(r, f) > r for r ≥ R.

We use the following operator to produce classes of functions which satisfy

the conditions of Lemma 2.5.3. For n,m ∈ N, let Tn,m be defined by

Tn,m(f(z)) =
1

m

m∑
k=1

f(e
2πik
m z

n
m ), (2.40)

where f is an entire function, and we choose a consistent branch of the mth root

for each term in the sum.

If f is a transcendental entire function, then the Tn,m operator extracts from

the power series of f only those terms with exponents which are multiples of m,

and these exponents are multiplied by n/m (see (2.41) below). For example, if

f(z) = ez, then

T2,3(f(z)) = 1 +
z2

3!
+
z4

6!
+ · · · .

We note in passing that the Tn,m operator has some appealing properties; for

example, T1,m ◦ T1,n = T1,nm and also Tn,m(f(zm)) = f(zn).

The following result concerns a key property of this operator, namely its effect

on the order of a function.

Theorem 2.5.4. If f is a transcendental entire function of order ρ(f) and n,m ∈ N,

then Tn,m(f) is a well-defined entire function of order at most n
m
ρ(f).

Proof. First, we consider the action of Tn,m on the power series f(z) =
∑∞

l=0 alz
l.

Since we have a consistent choice of the mth root, the sum of the complex roots

of unity is zero, and with p = l/m, we obtain

Tn,m(f(z)) =
1

m

m∑
k=1

∞∑
l=0

ale
2πikl
m z

ln
m =

∞∑
l=0

alz
ln
m

m∑
k=1

1

m
e

2πikl
m =

∞∑
p=0

apmz
pn. (2.41)
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Hence the value of Tn,m(f) is independent of the choice of the mth root, and this

power series has infinite radius of convergence.

We deduce from (1.4), with k = pm, that

ρ(Tn,m(f)) = lim sup
p→∞

pn log pn

log |apm|−1

≤ lim sup
k→∞

(kn/m) log(kn/m)

log |ak|−1

=
n

m
lim sup
k→∞

k log k

log |ak|−1

=
n

m
ρ(f),

as required.

We now seek to use this operator, together with Lemma 2.5.3, to generate

transcendental entire functions for which AR(f) is a spider’s web. It is possible

for the function Tn,m(f) to be simply a polynomial when f is a transcendental

entire function. For example, if f(z) = z exp(z2) then T1,2(f(z)) = 0, because

the power series of f has only odd powers of z which are eliminated by the T1,2

operator.

Even if Tn,m(f) is transcendental, Tn,m(f) may not have positive lower order

when f does. For example, if g is a transcendental entire function of order less

than 1 and lower order zero, then f(z) = g(z2) + z exp(z2) has both order and

lower order 2, but T1,2(f(z)) = T1,2(g(z2)) = g(z) has order less than 1 and lower

order zero, reasoning as in the previous paragraph.

The following lemma gives two sufficient conditions for Tn,m(f) to have posi-

tive lower order.

Lemma 2.5.5. Let f(z) =
∑∞

p=0 apz
p be a transcendental entire function, and

let n,m ∈ N.

(a) If

lim inf
p→∞

p log p

log |apm|−1
> 0, (2.42)

then Tn,m(f) has positive lower order.

(b) If Tn,m(f) has positive lower order, and g(z) =
∑∞

p=0 bpz
p is a transcendental
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entire function with |bp| ≥ |ap| for p sufficiently large, then Tn,m(g) has positive

lower order.

Proof. For part (a) we note, by (2.41) and with np = np in (1.5), that

λ(Tn,m(f)) ≥ lim inf
p→∞

np log(n(p− 1))

log |apm|−1
= n lim inf

p→∞

p log p

log |apm|−1
> 0.

Part (b) follows immediately from (1.5).

We now give some explicit examples of classes of functions for which AR(g) is

a spider’s web. The first example includes (2.37) as a special case.

Example 2.5.1. Let g = Tn,m(f), where f(z) = exp(z) and where m > 2n.

Then AR(g) is a spider’s web, where R > 0 is such that M(r, g) > r for r ≥ R.

Proof. The exponential function has order 1, and satisfies (2.42) for m > 1. Thus

g has order less than 1
2

by Theorem 2.5.4. The result follows by Lemma 2.5.5(a)

and Lemma 2.5.3.

The second example illustrates the use of both parts of Lemma 2.5.5.

Example 2.5.2. Let g = Tn,m(f), where f(z) = z exp (z2)+exp(z), m > 4n and

m is odd. Then AR(g) is a spider’s web, where R > 0 is such that M(r, g) > r

for r ≥ R.

Proof. The function z 7→ z exp (z2) has order 2, and satisfies (2.42) when m is

odd. Thus g has order less than 1
2

by Theorem 2.5.4, and the result follows by

Lemma 2.5.5(b), with comparison function z 7→ z exp (z2), and Lemma 2.5.3.

The technique of this section can be applied any transcendental entire function

of finite order, provided its power series satisfies (2.42) for some m ∈ N. We

illustrate this with the error function.

Example 2.5.3. Let g = Tn,m(f), where f(z) = erf(z), m > 4n and m is odd.

Then AR(g) is a spider’s web, where R > 0 is such that M(r, g) > r for r ≥ R.

Proof. By (2.39) and (1.4), f has order 2, and satisfies (2.42) whenm is odd. Thus

g has order less than 1
2

by Theorem 2.5.4. The result follows by Lemma 2.5.5(a)

and Lemma 2.5.3.
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Our final example combines earlier results to give an unexpectedly simple

function with an AR(g) spider’s web.

Example 2.5.4. Let g(z) = cos z+ cosh z. Then AR(g) is a spider’s web, where

R > 0 is such that M(r, g) > r for r ≥ R.

Proof. This follows from Theorem 2.3.4 and the function f defined in (2.37), since

g(z) = 2f(z4).

Illustrating the A(g) spider’s web for this function is difficult. We note that

any point which iterates to the real line is certainly in A(g); this is because g

achieves its maximum modulus on the positive real line, and all points on the

real line map under g to the positive real line. In Figure 2.2 points in black rep-

resent those which iterate close to the real line, and so these points approximate

a subset of A(g). Indeed, in much of the figure A(g) appears to have non-empty

interior, particularly near the origin. This is an artifact of the level of approxima-

tion required to obtain visible details elsewhere in the figure, and should not be

interpreted as being the case. The scale of this figure has both real and imaginary

parts between 0 and 5.

Our goal in this section has been to produce a class of log-regular transcen-

dental entire functions of order less than 1
2
, which, by Lemmas 2.5.2 and 2.3.1,

have an AR(f) spider’s web. Finally, we show that this class can be extended by

differentiation or integration, thus giving a further method of constructing AR(f)

spiders’ webs.

Theorem 2.5.6. Let f be a log-regular transcendental entire function of order

less than 1
2
, and let g be the derivative of f or an integral of f . Then AR(g) is a

spider’s web, where R > 0 is such that M(r, g) > r for r ≥ R.

Proof. We observe that g has the same order as f , and is log-regular by Corol-

lary 2.2.11. By Lemma 2.3.2 and Lemma 2.5.2, the hypotheses of Lemma 2.3.1

are satisfied. The result follows by Lemma 2.3.1.
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Figure 2.2: An approximation to part of A(g), where g(z) = cos z + cosh z.

2.6 A function of infinite order with gaps for which AR(f)

is a spider’s web

We recall that a transcendental entire function f has Fabry gaps if

f(z) =
∞∑
k=1

akz
nk

and nk/k → ∞ as k → ∞. By a result of Fuchs [47], an entire function f

of finite order with Fabry gaps satisfies Lemma 2.3.1(a) for m > 1. This fact

was used by Wang in [105, Theorem 1] to describe a class of entire functions

with no unbounded Fatou components. Thus if f is also log-regular then, by
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Lemma 2.3.2 and Lemma 2.3.1, AR(f) is a spider’s web. This fact was pointed

out by Rippon and Stallard in Theorem 1.9.2(d). They gave an example of such

a function [86, Example 1], shown to be log-regular by using Lemma 2.5.1.

It was also pointed out in [105] and in [86, Section 8] that, by a result of

Hayman [50], Lemma 2.3.1(a) holds in the case of certain functions of infinite

order with gaps:

Lemma 2.6.1. Let f(z) =
∑∞

k=1 akz
nk be a transcendental entire function where,

for some α > 2,

nk > k log k (log log k)α, for large k. (2.43)

Then f satisfies Lemma 2.3.1(a) for m > 1.

Wang [105, Theorem 2] used this result to show that if f satisfies (2.43)

and has a property equivalent to log-regularity, then f has no unbounded Fatou

components.

Suppose that g is a transcendental entire function of infinite order generated

by omitting terms from the power series of another transcendental entire function,

f say, and g satisfies (2.43). If g is also log-regular, then AR(g) is a spider’s web,

by Lemma 2.3.2 and Lemma 2.3.1. If f has infinite order, then it does not seem

straightforward to check that such a function g is log-regular. In this section we

demonstrate a method for achieving this, and then give an explicit example of

such a function.

We start with a general result.

Theorem 2.6.2. Suppose that f(z) =
∑∞

n=0 anz
n is a log-regular transcendental

entire function and there exists N0 ∈ N such that

0 < an+1 ≤ an, for n ≥ N0. (2.44)

Suppose also that g is a transcendental entire function with

g(z) =
∞∑
k=1

ankz
nk , (2.45)
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where, for some M > 1 and α > 2,

1 <
nk+1

nk
< M, for large k, (2.46)

and

nk > k log k(log log k)α, for large k. (2.47)

Then g is log-regular and AR(g) is a spider’s web, where R > 0 is such that

M(r, g) > r for r ≥ R.

Proof. By Lemma 2.6.1, g satisfies Lemma 2.3.1(a) for m > 1. To complete the

proof, we use Theorem 2.2.7 to show that g is log-regular.

Without loss of generality, by adding a polynomial, we can assume by Corol-

lary 2.2.14 that N0 = 0 and (2.46) holds for k ≥ 1. Because an > 0 for n ≥ 0,

M(r, f) = f(r) > g(r) = M(r, g), for r > 0.

Thus it remains to show that there exist a > 1 and R0 > 0 such that

M(ra, g) ≥M(r, f), for r ≥ R0. (2.48)

Choose a′ > 1 and K > 1 sufficiently large such that

nk+1

nk
<

1

2
(1 + a′) < a′, and Knk > nk+1 − nk, for k ≥ 1. (2.49)

Now let µ = 1
2
(a′ − 1) > 0, and define

M(ra
′
, g) =

∞∑
k=1

Ak, Ak = ankr
a′nk , (2.50)

M(r, f) =

an1−1∑
n=0

anr
n +

∞∑
k=1

Bk, Bk = ankr
nk + · · ·+ ank+1−1r

nk+1−1. (2.51)

Because the an are decreasing,

Bk < (nk+1 − nk) ankrnk+1 , for r > 1 and k ≥ 1. (2.52)
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Thus, if r > max{1, K
1
µ}, then, by (2.50) and (2.49),

Bk < (nk+1 − nk) rnk+1−a′nkAk < Knkr−nkµAk < Ak, for k ≥ 1. (2.53)

Thus, by (2.50) and (2.51),

M(ra
′
, g) > M(r, f)−

an1−1∑
n=0

anr
n, for r > max{1, K

1
µ}. (2.54)

Finally, for any a > a′ we can choose r sufficiently large such that

M(ra, g) ≥ 2M(ra
′
, g) by (1.7)

> 2M(r, f)− 2

an1−1∑
n=0

anr
n by (2.54)

≥M(r, f) by (1.6).

This proves (2.48) as required.

In the rest of this section we construct an explicit example of a transcendental

entire function f of infinite order, defined by a gap series, for which AR(f) is a

spider’s web. First we need a simple result about functions of infinite order.

Lemma 2.6.3. Let f and g be transcendental entire functions, and suppose that

f has infinite order. If there exist a,R0 > 0 such that

M(ra, g) ≥M(r, f), for r ≥ R0,

then g has infinite order.

Proof. By (1.3),

ρ(g) = lim sup
r→∞

log logM(ra, g)

log ra
≥ 1

a
lim sup
r→∞

log logM(r, f)

log r
=

1

a
ρ(f),

and the result follows.

The next lemma is needed in the construction of our example.
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Lemma 2.6.4. Let g(z) =
∑∞

n=0 anz
n be a transcendental entire function, with

an ∈ R for n ≥ 0, a1 ≤ 1, and

0 < (n+ 1)an+1 ≤ nan, for n ≥ 1. (2.55)

Then f(z) = exp(g(z)) has power series f(z) =
∑∞

n=0 bnz
n, where

0 < bn+1 ≤ bn, for n ≥ 1. (2.56)

Proof. Clearly bn > 0 for n ≥ 0. Since f ′(z) = g′(z)f(z) we have

∞∑
n=0

(n+ 1)bn+1z
n =

∞∑
k=0

(k + 1)ak+1z
k

∞∑
l=0

blz
l. (2.57)

Equating powers of z gives

(n+ 1)bn+1 =
n∑
l=0

(n+ 1− l)an+1−lbl, for n ≥ 0. (2.58)

Hence, for n ≥ 1,

(n+ 1)bn+1 =
n−1∑
l=0

(n+ 1− l)an+1−lbl + a1bn (2.59)

≤
n−1∑
l=0

(n− l)an−lbl + bn, by (2.55) and as a1 ≤ 1 (2.60)

= nbn + bn, by (2.58), (2.61)

which proves that (2.56) holds.

Finally, as promised, we give our explicit example.

Theorem 2.6.5. Let

f(z) = exp(ez − 1) =
∞∑
n=0

bnz
n and g(z) =

∞∑
n=0

bn2zn
2

.

Then g is a log-regular transcendental entire function of infinite order, and AR(g)
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is a spider’s web, where R > 0 is such that M(r, g) > r for r ≥ R.

Proof. We can see that f is log-regular because φ(t) = logM(et, f) = (ee
t − 1)

and
φ′(t)

φ(t)
> et ≥ 2

t
, for t ≥ 1.

Conditions (2.46) and (2.47) are satisfied, and the coefficients bn are decreasing

because the function z 7→ ez − 1 satisfies the conditions of Lemma 2.6.4. Hence,

by Theorem 2.6.2, g is log-regular and AR(g) is a spider’s web.

Finally, f has infinite order. We see from the proof of Theorem 2.6.2 that f

and g satisfy (2.48). Hence, by Lemma 2.6.3, g has infinite order.

Clearly this approach can be used with the function f of Theorem 2.6.5 to give

a class of functions with AR(f) spiders’ webs, by suitably selecting terms from

the power series of f . We can also use Lemma 2.6.4 to find other transcendental

entire functions which can be manipulated in this way to give further classes of

examples.

Remark 2.6.1. We note in passing that, in Theorem 2.6.5, bn = Bn/n!, where

(Bn) are the Bell numbers (see, for example, [17]). Thus, by (2.56), we have

Bn+1 ≤ (n+ 1)Bn, for n ≥ 1.

In fact the more precise estimates

2Bn < Bn+1 < (n+ 1)Bn, for n ≥ 2,

hold (see [32, Corollary 8]). These can be deduced in a straightforward way from

the identity

Bn+1 =
n∑
k=0

(
n

k

)
Bk, for n ≥ 0, (2.62)

which follows from (2.58).
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2.7 Transcendental entire functions with no unbounded

Fatou components

As mentioned in the introduction, Baker [8] posed the question of whether

the Fatou set of a transcendental entire function of sufficiently small growth

can have any unbounded components. By Theorem 1.9.1(d), all the examples

in this chapter have no unbounded Fatou components. In this section we give

two results on functions with no unbounded Fatou components, which generalise

existing results of this type.

Our first class of functions with no unbounded Fatou components consists of

functions formed by composition of ψ-regular functions.

Theorem 2.7.1. Let f1, f2, . . . , fk be transcendental entire functions which sat-

isfy Lemma 2.3.1(a) for some m > 1. Suppose that, for j ∈ {1, 2, . . . , k}, fj is

ψ-regular, with regularity function ψm for m > 1. Let g = f1 ◦ f2 ◦ · · · ◦ fk. Then

every component of F (g) is bounded.

Proof. By Theorem 2.3.3, AR(g) is a spider’s web, and the result follows by

Theorem 1.9.1(d).

To compare Theorem 2.7.1 to previous results, we need the following lemma,

which is part of [84, Theorem 6]. This gives a sufficient condition for a transcen-

dental entire function to be ψ-regular. We note that although the full statement

of [84, Theorem 6] supposes order less than 1
2
, in order to establish a part of the

result we do not use, finite order is sufficient for the proof of the part of the result

we do use.

Lemma 2.7.2. Let f be a transcendental entire function of finite order. Suppose

that there exist n ∈ N and q ∈ (0, 1) such that

M(r, f) ≥ expn+1((logn r)q), for large r. (2.63)

Then f is ψ-regular with regularity function given, for m > 1, by

ψm(r) = expn((log r)p), where pq > 1.
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The next result now follows from Lemma 2.7.2 and Theorem 2.7.1.

Corollary 2.7.3. Let f1, f2, . . . , fk be transcendental entire functions of finite

order which satisfy Lemma 2.3.1(a) for some m > 1. Suppose that there exist

n ∈ N and q ∈ (0, 1) such that, for j ∈ {1, 2, . . . , k},

M(r, fj) ≥ expn+1((logn r)q), for large r. (2.64)

Let g = f1 ◦ f2 ◦ · · · ◦ fk. Then every component of F (g) is bounded.

Rippon and Stallard, in [84, Theorem 6], showed that if f is a transcendental

entire function of order less than 1
2
, which satisfies (2.63) for some n ∈ N and

q ∈ (0, 1), then f has no unbounded Fatou components. By Lemma 2.5.2 this is

included in Corollary 2.7.3, with k = 1.

Corollary 2.7.3, with n = 1, includes a result of Singh in [96, Theorem 1]. (We

note that the statement of [96, Theorem 1] omits the requirement of finite order,

but this was assumed in the proof of [96, Lemma 1].)

Our second class of functions with no unbounded Fatou components consists

of functions formed by composition of entire functions, one of which is log-regular.

Theorem 2.7.4. Let f1, f2, . . . , fk be entire functions. Suppose that, for j ∈
{1, 2, . . . , k}, fj satisfies Lemma 2.3.1(a) for some m > 1. Suppose also that,

for some j ∈ {1, 2, . . . , k}, fj is a log-regular transcendental entire function. Let

g = f1 ◦ f2 ◦ · · · ◦ fk. Then every component of F (g) is bounded.

Proof. By Theorem 2.3.4, AR(g) is a spider’s web, and the result follows by

Theorem 1.9.1(d).

As noted in Section 2.2, this result differs from Theorem 2.7.1 in that only

one function in the composition needs to satisfy the regularity condition and be

transcendental.

The final result follows from Theorem 2.7.4 and Lemma 2.5.2.

Corollary 2.7.5. Let f1, f2, . . . , fk be transcendental entire functions of order

less than 1
2
. Suppose that, for some j ∈ {1, 2, . . . , k}, fj is log-regular. Let

g = f1 ◦ f2 ◦ · · · ◦ fk. Then every component of F (g) is bounded.
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This corollary generalises a result of Anderson and Hinkkanen in [3, Theo-

rem 2], which states that if a log-regular function has order less than 1
2
, then

it has no unbounded Fatou components. Anderson and Hinkkanen’s result is

included in Corollary 2.7.5 with k = 1.

Cao and Wang [33] developed a similar result to Corollary 2.7.5, concerning

composition of transcendental entire functions. They set g = f1 ◦ f2 ◦ · · · ◦ fk,
where f1, f2, . . . , fk are transcendental entire functions of order less than 1

2
, at

least one of which has positive lower order, and showed that g has no unbounded

Fatou components. By Lemma 2.5.1, Cao and Wang’s result is included in Corol-

lary 2.7.5. We note that it is possible to construct a class of log-regular functions

of lower order zero and any given finite order, in particular order less than 1
2
.

This shows that there are situations in which Corollary 2.7.5 can be applied but

not the result of [33].
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Chapter 3

On fundamental loops and the

fast escaping set

3.1 Introduction

As noted in Section 1.3, the structure of AR(f) spiders’ webs can be un-

derstood through fundamental holes and fundamental loops. Recall that, when

AR(f) is a spider’s web, we define the fundamental hole HR as the component of

AR(f)c that contains the origin, and the fundamental loop LR by LR = ∂HR.

By Theorem 1.9.2, AR(f) is a spider’s web whenever f is a transcendental

entire function with a multiply connected Fatou component. In this chapter we

give the first results on the properties of fundamental loops in this case. The first

of these gives information on the location of some fundamental loops.

Theorem 3.1.1. Suppose that f is a transcendental entire function. Then there

exists R′ = R′(f) > 0 such that the following holds. If U is a multiply connected

Fatou component of f , such that U surrounds the origin and dist(0, U) > R′, then

there exist 0 < R1 < R2 such that

(a) LR1 = ∂intU ;

(b) LR2 = ∂outU ;

(c) if LR is a fundamental loop such that LR ∩ U 6= ∅, then LR ⊂ U . Moreover,

this condition occurs if and only if R1 < R < R2.
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Here ∂outU is defined as the boundary of the unbounded component of C\U ,

and ∂intU is defined as the boundary of the component of C\U that contains the

origin. The related set ∂innU is defined in [27] as the boundary of the component

of C\U that contains the origin.

These subsets of the boundary are illustrated in Figure 3.1. A multiply con-

nected Fatou component U is shown in grey, with the origin at the centre of the

diagram. Here ∂outU is shown dashed and ∂intU is shown dotted. The set ∂innU

consists of ∂intU , plus the boundary of the ‘pinch’ shown at the bottom of the

inner boundary. Note that ∂outU does include the boundary of the ‘pinch’ shown

at the top of the outer boundary. It is not known if it is possible for a multiply

connected Fatou component to have a ‘pinch’. Note also that, in this figure, U

surrounds a component of the complement of U which does not contain the origin;

the boundary of this set lies outside ∂outU ∪ ∂innU .

U 

∂outU 

∂intU 

. 

Figure 3.1: Subsets of the boundary of a multiply connected Fatou component.

Recall that, in general, if U is a Fatou component, we write Un, n ≥ 0,

for the Fatou component containing fn(U). Note that, by Theorem 1.5.1, if V

is a multiply connected Fatou component then there is an N ∈ N such that,
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for n ≥ N , Vn is a multiply connected Fatou component which satisfies the

hypotheses of Theorem 3.1.1.

Using Theorem 3.1.1 we prove the following result.

Theorem 3.1.2. Suppose that f is a transcendental entire function and that LR

is a fundamental loop of f . Then either LR ⊂ F (f) or LR ⊂ J(f).

We observe that both alternatives in the conclusion of Theorem 3.1.2 are

possible. This follows from Theorem 3.1.1.

A second consequence of Theorem 3.1.1 is that when a fundamental loop lies

within a multiply connected Fatou component, U , it is often possible to say more

about the nature of this set. In fact, there is a close relationship between some

fundamental loops of f and some level sets of the function h that was introduced

by Bergweiler, Rippon and Stallard in [27], and used to prove many geometric

properties of multiply connected Fatou components. The function h is defined

by

h(z) = lim
n→∞

log |fn(z)|
log |fn(z0)|

, for z ∈ U, some z0 ∈ U. (3.1)

It is shown in [27, Theorem 1.1] that this limit exists, and that the function h is

non-constant, positive and harmonic. As observed in [27], the function h defined

in (3.1) depends on the choice of z0. However, if z0 is replaced by another point

z′0 ∈ U , then the resulting function is just h scaled by a positive factor equal to

1/h(z′0).

Our result is as follows.

Theorem 3.1.3. Suppose that f is a transcendental entire function. Then there

exists R′ = R′(f) > 0 such that the following holds. If U is a multiply connected

Fatou component of f , such that U surrounds the origin, dist(0, U) > R′, and h

is as defined as in (3.1), then

(a) if LR ⊂ U is a fundamental loop, then h(z) is constant on LR and so LR is

a piecewise analytic Jordan curve;

(b) if Γ is a level set of h, then Γ has a component γ which surrounds the origin

and there is a fundamental loop LR such that LR ⊂ γ.
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The situation of Theorem 3.1.3 is illustrated in Figure 3.2. A multiply con-

nected Fatou component U is shown, with a fundamental loop LR which is con-

tained in U . The function h is constant on LR.

U . 

LR 

Figure 3.2: A fundamental loop contained in a multiply connected Fatou compo-
nent.

It follows from these results that the fundamental loops of a transcendental

entire function can have very varied geometrical properties. For example, consider

the transcendental entire function f given in [27, Example 3]. The construction of

this function is too intricate to give here, but it is shown in [27] that this function

has a multiply connected Fatou component U with the property that

lim
n→∞

max{log |z| : z ∈ ∂outUn}
min{log |z| : z ∈ ∂outUn}

=∞.

By Theorem 3.1.1, there is a fundamental loop of f which coincides with ∂outUn,

and so is far from circular for large values of n. However, there are also fun-

damental loops of f which lie inside Un, for each n ∈ N. By Theorem 3.1.3(a)

these are analytic Jordan curves, and by [27, Theorem 7.1] can be approximately
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circular.

A key tool in the proofs of these theorems is a function RA, defined in (3.22)

below, which for a point z is the largest R such that z ∈ AR(f). In general this

function can only be defined in a subset of A(f). In Section 3.7 we show that,

subject to a certain normalisation, this definition can in fact be extended in a

natural way to the whole complex plane. We show that, in this case, there is an

alternative characterisation of A(f). We also show that the function RA has a

number of interesting properties.

The structure of this chapter is as follows. First, in Section 3.2, we state a

number of results required in the proof of our main theorems. With the exception

of Lemma 3.2.4, these are all known results. n Section 3.3 we give some results

regarding the hyperbolic metric, used only in this chapter. In Section 3.4 we

prove a new result, which states that if a transcendental entire function has a

certain property with respect to a nested sequence of bounded simply connected

domains, then there is a fixed point which has a certain ‘attracting’ property.

This may be of independent interest. In Section 3.5 we show that the function

RA can be defined in certain multiply connected Fatou components, and prove

several preparatory lemmas. In Section 3.6 we prove Theorems 3.1.1, 3.1.2 and

3.1.3. Finally, in Section 3.7 we state and prove several results regarding the case

when RA can be defined in the whole complex plane.

3.2 Background results

We require a number of additional results from [27] concerning multiply con-

nected Fatou components. We require part of [27, Theorem 1.5].

Lemma 3.2.1. Suppose that f is a transcendental entire function with a multiply

connected Fatou component U , and let z0 ∈ U . For large n ∈ N, let rn, an and

bn be as defined in (1.15), and let an denote the smallest value such that

{z : |z| = rann } ∩ ∂innUn 6= ∅.

63



Then there exist a ∈ [0, 1) and b ∈ (1,∞] such that, as n→∞,

an → a, an → a, and bn → b. (3.2)

We also need the following [27, Theorem 1.3] which shows that any compact

subset of U eventually iterates into the maximal annulus Bn.

Lemma 3.2.2. Let f, U, z0 be as in Lemma 3.2.1. For large n ∈ N, let rn, an, bn

and Bn be as in (1.15). Then, for each compact set C ⊂ U , there exists N ∈ N
such that

fn(C) ⊂ Cn ⊂ Bn, for n ≥ N, (3.3)

where

Cn = A
(
ran+2πδn
n , rbn(1−3πδn)

n

)
, with δn = 1/

√
log rn. (3.4)

Figure 3.3 gives a useful illustration of these sets. A multiply connected Fatou

component Un is shown. The annulus Bn has a dashed boundary, and the slightly

smaller annulus Cn has a dotted boundary.

Un 

. 

fn(z0) 
. 

Figure 3.3: Annuli within a multiply connected Fatou component.
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We also need the following, which shows that within Cn the modulus of f is

very close to the maximum modulus, for large values of n. This is summarised

from [27, Theorem 5.1(b)].

Lemma 3.2.3. Let f, U and z0 be as in Lemma 3.2.1. For large n ∈ N, let

rn, an and bn be as in (1.15), and let δn = 1/
√

log rn. Then, there exists N such

that for n ≥ N , and m ∈ N,

log |fm(z)| ≥ (1− δn) logM(|z|, fm), for z ∈ A
(
ran+2πδn
n , rbn−2πδn

n

)
. (3.5)

The following is a consequence of these lemmas.

Lemma 3.2.4. Let f and U be as in Lemma 3.2.1, let z ∈ U and let 0 < c < 1.

Then there exists N ∈ N such that

|fn+m(z)| ≥Mm(|fn(z)|c), for n ≥ N, m ∈ N. (3.6)

Proof. Fix z0 ∈ U , and let βn = 1 − 1/
√

log rn, where rn = |fn(z0)|, for n ∈ N.

Choose R > 1 sufficiently large that Mn(R) → ∞ as n → ∞ and also, by (1.6),

that M(r) > r2, for r ≥ R.

Now, as mentioned in Section 1.7, we have that U ⊂ A(f). Hence there exists

` ∈ N such that rn+` ≥ Mn(R), for n ∈ N. Since Mn(R) > R2n , for n ∈ N, we

have
1√

log rn
< 2

1
2

(`−n), for large values of n.

We note that

log(1− x) > −2x, for 0 < x <
1

2
. (3.7)

It follows that

log βn > −2
1
2

(`−n+2), for large value of n.

Hence, we can choose N ∈ N sufficiently large that

∞∑
k=N

log βk > log c,
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or equivalently that
∞∏
k=N

βk > c. (3.8)

Now let z ∈ U . We can further assume that N is sufficiently large that

|fn(z)|c > R0, for n ≥ N,

where R0 is the constant from Lemma 1.2.2. We note, by (3.2), that

bn − 2πδn > bn(1− 3πδn), for large values of n,

and so

Cn ⊂ A
(
ran+2πδn
n , rbn−2πδn

n

)
, for large values of n,

where Cn is defined in (3.4). Hence, we can assume, by Lemma 3.2.2 and

Lemma 3.2.3, that N is sufficiently large that

log |fn+1(z)| ≥ βn logM(|fn(z)|), for n ≥ N. (3.9)

Hence, by (3.9) and (1.9),

|fn+1(z)| ≥M(|fn(z)|)βn ≥M(|fn(z)|βn), for n ≥ N. (3.10)

By repeated application of (3.10) and (1.9), and by (3.8), we have that

|fn+m(z)| ≥Mm(|fn(z)|
∏m−1
k=0 βn+k) ≥Mm(|fn(z)|c), for n ≥ N, m ∈ N,

as required.

We also need the following [86, Theorem 2.3].

Lemma 3.2.5. Let f be a transcendental entire function and let η > 1. There

exists R′0 = R′0(f) > 0 such that if r > R′0, then there exists

z′ ∈ A(r, ηr) ∩ A(f)
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with

|fn(z′)| > Mn(r, f), for n ∈ N,

and hence

z′ ∈ Ar(f) and M(ηr, fn) > Mn(r, f), for n ∈ N.

3.3 The hyperbolic metric and hyperbolic distance

In this chapter, we use the hyperbolic metric and hyperbolic distance; a de-

tailed account of these topics can be found in, for example, [64], and we give here

only the detail we require. We say that a domain V is hyperbolic if ∂V contains

at least two points. For a hyperbolic domain V , we write [w, z]V for the hyper-

bolic distance between w and z in V , and we let ρV denote the density of the

hyperbolic metric in V . We use the following results, which are well-known.

Lemma 3.3.1. Suppose that U is a hyperbolic domain and that U ′ is a domain

contained in U . Then

[w, z]U ≤ [w, z]U ′ , for w, z ∈ U ′.

Lemma 3.3.2. Suppose that U is a hyperbolic domain, and that f : U → f(U)

is analytic. Then

[f(w), f(z)]f(U) ≤ [w, z]U , for w, z ∈ U,

with equality if and only if f is conformal.

We also use the following, which is well-known and follows in a straightforward

way from [52, Theorem 9.14].

Lemma 3.3.3. Suppose that U is an unbounded hyperbolic domain. Then there

exist R > 2 and C > 0 such that

ρU(z) ≥ C

|z| log |z|
, for |z| ≥ R.
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3.4 A map on a nested sequence of domains

In this section we prove a result about the existence and properties of a fixed

point for certain transcendental entire functions. This may be of independent

interest. The main result of this section is as follows.

Theorem 3.4.1. Suppose that f is a transcendental entire function, and that

(Gn)n≥0 is a sequence of bounded simply connected domains such that

Gn ⊂ Gn+1 and f(∂Gn) = ∂Gn+1, for n = 0, 1, 2, · · · . (3.11)

Suppose also that
∞⋃
n=0

Gn = C. (3.12)

Then there exists α ∈ G0, a fixed point of f , such that, if K ⊂ G0 is compact,

then

[α, fn(z)]Gn → 0 as n→∞, uniformly for z ∈ K.

To prove Theorem 3.4.1 we require the following lemma, which is a new result.

Lemma 3.4.2. Suppose that (Bn)n≥0 is a sequence of analytic functions from D
to D. Suppose also that there exist α ∈ D and λ ∈ (0, 1) such that

Bn(α) = α and |B′n(α)| ≤ λ, for n = 0, 1, 2, · · · . (3.13)

Then, if K ′ is a compact subset of D,

Bn ◦ · · · ◦B0(z)→ α as n→∞, uniformly for z ∈ K ′.

Proof. By conjugating with a Möbius map if necessary, we may assume that

α = 0, and so we may define functions Cn : D→ C by

Cn(z) =
Bn(z)

z
, for n = 0, 1, 2, · · · , z ∈ D.

We note that

|Cn(0)| = |B′n(0)| ≤ λ < 1, for n = 0, 1, 2, · · · . (3.14)

68



By Schwarz’ lemma applied to Bn, we have that

|Cn(z)| < 1, for n = 0, 1, 2, · · · , z ∈ D. (3.15)

It follows from (3.15), by Montel’s theorem, that the family {Cn}n∈{0,1,··· } is a

normal family of maps from D to D.

Suppose that K ′ ⊂ D is compact. By a normal family argument, and by

(3.14), it follows that there exists µ < 1 such that

|Cn(z)| < µ, for n = 0, 1, 2, · · · , z ∈ K ′,

in which case

|Bn(z)| < µz, for n = 0, 1, 2, · · · , z ∈ K ′. (3.16)

The assertion of the lemma follows at once from (3.16).

We note that an alternative proof of this lemma, which uses a result of Bear-

don and Carne [15, p.217], is given in [99].

We now prove Theorem 3.4.1.

Proof of Theorem 3.4.1. By (3.11), the triple (f,G0, G1) is a polynomial-like map

in the sense of Douady and Hubbard [38]. (Explicitly, this means that f is an

entire function, and G0 and G1 are domains such that f is a proper map of

G0 onto G1. See Section 1.5 for the definition of a proper map.) Since every

polynomial-like map has a fixed point [13, Lemma 3] (see also [42, Lemma 3]),

there exists a point α ∈ G0 such that f(α) = α.

For n = 0, 1, 2, · · · , let φn : D→ Gn be a Riemann map such that φn(0) = α.

By Lemma 3.3.2 we have that

[α, fn(z)]Gn = [0, φ−1
n ◦ fn(z)]D, for z ∈ G0. (3.17)

Hence it suffices to show that [0, φ−1
n ◦ fn(z)]D → 0 as n → ∞, uniformly for

z ∈ K.
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Define functions Bn : D→ D by

Bn = φ−1
n+1 ◦ f ◦ φn, for n = 0, 1, 2, · · · .

Then Bn is a proper map, by the definition of a proper map, and since φn and

φn+1 are conformal. Moreover, Bn(0) = 0. It follows that, for n = 0, 1, 2, · · · , we

have that Bn is a finite Blaschke product

Bn(z) = cnz
qn

pn∏
k=0

(
z − ak,n
1− ak,nz

)mk,n
, for z ∈ D, (3.18)

where pn ∈ {0, 1, 2, · · · }, qn,mk,n ∈ N, |cn| = 1, 0 < |ak,n| < 1, and ak,n = ak′,n

implies that k = k′, for n ∈ {0, 1, 2, · · · }, and k ∈ {0, 1, · · · , pn}. (These facts are

given in, for example, [54, p.35].)

Let q be the multiplicity of the fixed point of f at α. Since Bn is conformally

conjugate to f , we have that q is also the multiplicity of the fixed point of Bn at

the origin; see, for example, [14, Lemma 2.6.1]. It follows that

qn = q, for n = 0, 1, 2, · · · . (3.19)

We claim that there exists N ∈ {0, 1, 2, · · · }, such that pn 6= 0, for n ≥ N .

This follows from (3.12) and (3.19), and from the fact that f is transcendental

and so cannot be q to 1 in the whole complex plane. Without loss of generality,

we may assume that N = 0.

We claim that there exists λ ∈ (0, 1) such that

|B′n(0)| ≤ λ, for n = 0, 1, 2, · · · . (3.20)

Suppose first that q ≥ 2. Then B′n(0) = 0, for n = 0, 1, 2, · · · .
Suppose, on the other hand, that q = 1. Then

|B′n(0)| =
pn∏
k=0

|ak,n|mk,n < 1, for n = 0, 1, 2, · · · . (3.21)

For n = 0, 1, 2, · · · , and k = 0, 1, 2, · · · , pn, set αk,n = φn(ak,n). Then f(αk,n) = α,
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and so φ−1
n+1(αk,n) is a zero of Bn+1. By renumbering the sequences if necessary,

we can assume that

αk,n = αk,n+1 = φn+1(ak,n+1), for n = 0, 1, 2, · · · , k = 0, 1, 2, · · · , pn.

Now, by (3.11), [αk,n, α]Gn ≥ [αk,n+1, α]Gn+1 . Hence, by Lemma 3.3.2, we have

that |ak,n+1| ≤ |ak,n|.
Moreover, mk,n and mk,n+1 are both equal to the multiplicity of the zero αk,n

of f(z)− α, and so mk,n = mk,n+1. Thus, by (3.21),

|B′n+1(0)| ≤ |B′n(0)|, for n = 0, 1, 2, · · · .

This establishes (3.20).

Let K ⊂ G0 be compact. By Lemma 3.4.2, applied with K ′ = φ−1
0 (K), we

obtain that

[0, Bn−1 ◦ · · · ◦B1 ◦B0 ◦ φ−1
0 (z)]D → 0 as n→∞, uniformly for z ∈ K.

The result follows by (3.17), since

Bn−1 ◦ · · · ◦B1 ◦B0 ◦ φ−1
0 = φ−1

n ◦ fn.

Remark 3.4.1. In our application of Theorem 3.4.1, the hypothesis (3.12) holds.

However this hypothesis is actually not necessary in Theorem 3.4.1 as it can be

deduced from (3.11) by using a normal family argument; we omit the details.

3.5 The function RA defined in a multiply connected Fatou

component

The main role of this section is to introduce the function RA, which plays a

key role in the proof of Theorem 3.1.1. Before stating and proving a sequence of

lemmas, we outline how these results are used.
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Suppose that U is a multiply connected Fatou component which surrounds

the origin. We show that if U is sufficiently far from the origin, then we can

define a real-valued function RA which, for each z ∈ U , is the largest value of

R such that z ∈ AR(f); see (3.22) below. It turns out that this function has a

close relationship to fundamental loops. Indeed, where defined, RA is strictly less

than R in HR, and is at least equal to R on LR. We then prove that the function

RA has certain continuity properties, and shares level sets with the function h

defined in (3.1). These facts allow us to show that;

(a) on ∂intU , RA is equal to its infimum in U ;

(b) on ∂outU , RA is at least equal to its supremum in U ;

(c) RA does not achieve a maximum or a minimum in U .

Because of the close relationship between the function RA and the definition of

fundamental loops, properties (a), (b) and (c) above can then be used to prove

Theorem 3.1.1 parts (a), (b) and (c) respectively. Theorems 3.1.2 and 3.1.3 then

follow quickly.

We start with a simple lemma.

Lemma 3.5.1. Suppose that f is a transcendental entire function and that AR(f)

is a spider’s web. Then f has a fixed point.

Proof. Suppose that HR is a fundamental hole of f . By Theorem 1.3.2 we have

that the triple (f,HR, f(HR)) is a polynomial-like map. The result follows be-

cause, as noted in the proof of Theorem 3.4.1, every polynomial-like map has a

fixed point.

The following lemma is central to our results.

Lemma 3.5.2. Suppose that f is transcendental entire function. Then there

exists R′ = R′(f) > 0 such that the following holds. Suppose that U is a mul-

tiply connected Fatou component of f , which surrounds the origin and satisfies

dist(0, U) > R′. Define Gn as the complementary component of Un which

contains the origin, for n = 0, 1, 2, · · · . Then

(a) Gn ⊂ Gn+1, for n = 0, 1, 2, · · · ;
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(b) f(∂Gn) = ∂Gn+1, for n = 0, 1, 2, · · · ;

(c) for all z ∈ U there exists R = R(z) such that z ∈ AR(f).

Proof. First we note by Theorem 1.9.2 that there exists R1 > 0 such that AR1(f)

is a spider’s web. Hence, by Lemma 3.5.1, f has a fixed point α.

We now use properties of multiply connected Fatou components to establish

a suitable value for R′. Let V be a multiply connected Fatou component of f .

By Theorem 1.5.1 there is an N1 ∈ N such that fN1(V ) surrounds both the origin

and α, and also fn+1(V ) surrounds fn(V ) for n ≥ N1.

Choose R2 > 0 such that Mn(R2)→∞ as n→∞. Then, by Theorem 1.7.2,

there is an N2 ∈ N such that fN2(V ) ⊂ AR2(f). Set N3 = max{N1, N2}, and let

R′ = max {|z| : z ∈ fN3(V )}.
Suppose that U is any multiply connected Fatou component such that U

surrounds the origin and satisfies dist(0, U) > R′. It follows from our choice of

R′ that U surrounds fN3(V ); see Figure 3.4. We now show that the results of the

lemma follow from this fact.

U 

fN3(V) 

.  . 

Figure 3.4: The construction in the proof of Lemma 3.5.2.
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Since U surrounds α, then U1 = f(U) surrounds α by the argument principle.

Moreover, U1 cannot meet either fN3+1(V ) or U , since ∂U1 ⊂ J(f). Hence, by

the maximum principle, U1 surrounds both fN3+1(V ) and U . Inductively, Uk

surrounds both fN3+k(V ) and Uk−1, for k ∈ N. Parts (a) and (c) of the lemma

follow from this fact and the choice of N3.

Finally we establish part (b). Choose n = 0, 1, 2, · · · . Since f(Gn) is open and

connected, and its boundary is in J(f), it cannot meet the boundary of Gn+1.

Now, α ∈ Gn, and so f(Gn) ∩Gn+1 6= ∅. Hence ∂f(Gn) must lie in Gn+1, and so

f(∂Gn) ⊂ Gn+1.

Moreover, f is a proper map on the Fatou component Un, and so

f(∂Gn) ⊂ f(∂Un) = ∂Un+1.

Thus ∂f(Gn) = ∂Gn+1, as required.

Suppose that U is a multiply connected Fatou component which surrounds the

origin, and that dist(0, U) > R′, where R′ is the constant from Lemma 3.5.2. Sup-

pose that z ∈ U , and let Xz = {R ≥ 0 : z ∈ AR(f)}. We see by Lemma 3.5.2(c)

that Xz is not empty. Moreover, if R /∈ Xz, then z /∈ AR(f) and so there is an

n ∈ N such that |fn(z)| < Mn(R). It follows by Lemma 1.2.1(a) that we may

choose ε sufficiently small that

|fn(z)| < Mn(R− ε),

and so z /∈ AR−ε(f). We deduce that Xz is a non-empty closed interval.

We may, therefore, introduce a new function RA defined by

RA(z) = max{R : z ∈ AR(f)}, for z ∈ U. (3.22)

We note that it is possible here to define the function RA in a larger set.

However, for our current purposes a definition only in U is sufficient. We explore

a definition of the function RA in the whole complex plane in the next section.

The function RA has some strong continuity properties, and shares level sets
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with the function h.

Lemma 3.5.3. Suppose that f and U are as in Theorem 3.1.1, and that RA

is as in (3.22). Then RA is upper semicontinuous in U and continuous in U .

Moreover, if h is as in (3.1), then there exists a continuous strictly increasing

function φ : R→ R such that

RA(z) = φ(h(z)), for z ∈ U. (3.23)

Proof. We first prove that RA is upper semicontinuous in U . Suppose that z ∈ U
and that ε > 0. By the definition of RA, we have that z /∈ ARA(z)+ε(f). Hence

there is an N ∈ N such that |fN(z)| < MN(RA(z) + ε). By continuity, there

exists a δ > 0 such that

|fN(z′)| < MN(RA(z) + ε), for z′ ∈ B(z, δ).

Hence RA(z′) < RA(z) + ε, for all z′ ∈ U ∩ B(z, δ). This completes the proof

that RA is upper semicontinuous in U .

To prove that RA is continuous in U we need to prove that RA is lower

semicontinuous at z ∈ U . Suppose, to the contrary, that RA is not lower semi-

continuous at z. Then there exists ε > 0 such that the following holds. If ∆ ⊂ U

is a neighbourhood of z, then there is a z′ ∈ ∆ such that RA(z)− ε > RA(z′), in

which case z′ /∈ ARA(z)−ε(f). There exists, therefore, a sequence (zk)k∈N of points

of U , distinct from but tending to z, and a sequence (nk)k∈N of integers such that

|fnk(zk)| < Mnk(RA(z)− ε), for k ∈ N.

Hence, for each k ∈ N,

|fnk(zk)| < Mnk(RA(z)− ε) < Mnk(RA(z)) ≤ |fnk(z)|,

which implies that

logMnk(RA(z))

logMnk(RA(z)− ε)
<

log |fnk(z)|
log |fnk(zk)|

, for k ∈ N. (3.24)
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We now establish a contradiction by showing that the right-hand side of (3.24)

has an upper bound which tends to 1 as k →∞, but the left-hand side is greater

than some c > 1, for sufficiently large values of k. Note that we can assume that

nk →∞ as k →∞.

We may assume that ε is sufficiently small that Mn(RA(z) − ε) → ∞ as

n→∞. Hence we can choose N large enough that MN(RA(z)− ε) > R0, where

R0 is the constant from Lemma 1.2.2. Set

r = MN(RA(z)− ε) and c =
logMN(RA(z))

log r
> 1.

It follows by repeated application of (1.8) that we have

logMm(rc) ≥ c logMm(r), for m ∈ N.

Hence
logMm+N(RA(z))

logMm+N(RA(z)− ε)
=

logMm(rc)

logMm(r)
≥ c > 1, for m ∈ N.

This establishes our claim regarding the left-hand side of (3.24).

To establish our claim regarding the right-hand side of (3.24) we use some

techniques from [81], though we give the full details for completeness.

Choose any w1, w2 ∈ J(f) with w1 6= w2, and put G = C\{w1, w2}. Note

that, by Lemma 3.3.1 and Lemma 3.3.2,

[z, zk]U ≥ [fnk(z), fnk(zk)]fnk (U) ≥ [fnk(z), fnk(zk)]G =

∫
Γk

ρG(z) |dz|, for k ∈ N,

where Γk is a hyperbolic geodesic in G joining fnk(z) to fnk(zk). Let R and C

be the constants from Lemma 3.3.3 applied with U = G.

Choose K sufficiently large such that

|fnk(z)| > |fnk(zk)| > 2R, for k ≥ K.
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We then have, by Lemma 3.3.3,

[z, zk]U ≥
∫

Γk

ρG(z) |dz| ≥ C

∫ |fnk (z)|

|fnk (zk)|

dr

r log r
= C log

(
log |fnk(z)|
log |fnk(zk)|

)
. (3.25)

Hence
log |fnk(z)|
log |fnk(zk)|

≤ exp([z, zk]U/C), for k ∈ N. (3.26)

As k → ∞, zk → z and so [z, zk]U → 0. Hence the right-hand side of (3.26) is

indeed bounded above by a term tending to 1 as k → ∞. This completes the

proof that RA is continuous in U .

Finally we need to prove that there exists a real function φ which satisfies

(3.23). Our method of proof is as follows. Suppose that w, z ∈ U . We claim that

h(w) < h(z) if and only if RA(w) < RA(z). This, combined with the fact that

both h and RA are continuous in U , proves that RA(z) = φ(h(z)), for z ∈ U ,

where φ is continuous and strictly increasing.

Let w, z ∈ U . Suppose first that RA(w) < RA(z) = r, say. Then, there is an

N ∈ N such that

|fn(z)| ≥Mn(r) > |fn(w)|, for n ≥ N.

Assume also that N is sufficiently large that |fn(w)| > R0, for n ≥ N , where R0

is the constant in Lemma 1.2.2. Set

c =
logMN(r)

log |fN(w)|
> 1.

Then, by (1.8),

MN+m(r) = Mm(|fN(w)|c) ≥Mm(|fN(w)|)c ≥ |fN+m(w)|c, for m ∈ N.

Hence

h(w)

h(z)
= lim

m→∞

log |fN+m(w)|
log |fN+m(z)|

≤ lim
m→∞

log |fN+m(w)|
log |MN+m(r)|

≤ 1

c
< 1,
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and so h(w) < h(z). This completes the first part of the proof.

Suppose next that h(w) < h(z). The proof is complete if we can show that

RA(w) < RA(z). Choose c such that h(w)/h(z) < c < 1. Choose N ′ sufficiently

large such that

|fn(z)|c > |fn(w)|, for n ≥ N ′.

By Lemma 3.2.4, there exists N > N ′ such that

|fN+m(z)| ≥Mm(|fN(z)|c), for m ∈ N.

Hence

RA(fN(z)) ≥ |fN(z)|c > |fN(w)| ≥MN(RA(w)). (3.27)

Set R = M−N(|fN(z)|c), and note that R > RA(w) by (3.27). Then

|fN+m(z)| ≥Mm(|fN(z)|c) = MN+m(R), for m ∈ N.

Hence RA(z) ≥ R > RA(w) as required. This completes the proof of the lemma.

Remark 3.5.1. In fact, with the conditions of Lemma 3.5.3, the stronger result

holds that RA is continuous in U\∂outU . This follows from Lemma 3.5.4 below,

but is not pertinent to the proofs of the results of this chapter.

We use Lemma 3.5.3 to prove the following result regarding the values of

the function RA in U . The reader may wish to refer to Figure 3.1 to recall the

boundary sets involved in this lemma.

Lemma 3.5.4. Suppose that f and U are as in Theorem 3.1.1 and that RA is as

in (3.22). Set

R1 = R1(U) = inf
z∈U

RA(z) and R2 = R2(U) = sup
z∈U

RA(z). (3.28)

Then

(a) RA(z) = R1, for z ∈ ∂U\∂outU ;
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(b) RA(z) ≥ R2, for z ∈ ∂outU ;

(c) R1 < RA(z) < R2, for z ∈ U .

Proof. First, suppose that z ∈ ∂intU . Choose w ∈ U . By Lemma 3.2.2 applied

with C = {w}, there exists N ∈ N such that |fn(w)| > |fn(z)|, for n ≥ N , in

which case RA(z) ≤ RA(w). Hence RA(z) ≤ R1. Equality follows by the upper

semicontinuity of RA at z ∈ U .

We now show, more generally, that RA(z) = R1 for z ∈ ∂U\∂outU , by showing

that RA is constant on this set. Suppose also that there exist points z1, z2 ∈
∂U\∂outU with

RA(z1) = R > ρ > RA(z2), for some ρ.

Choose N ∈ N such that MN(ρ) > R0, where R0 is the constant from

Lemma 1.2.2. Set c = logMN(R)/ logMN(ρ) > 1. Then, for all sufficiently

large n ∈ N, we have by (1.8),

|fn(z2)|c < (Mn(ρ))c = (Mn−N(MN(ρ)))c ≤Mn−N((MN(ρ))c) = Mn(R) ≤ |fn(z1)|.
(3.29)

We now claim that, for sufficiently large values of n,

rann ≤ |fn(z)| ≤ rann , for z ∈ ∂U\∂outU, (3.30)

where an is as in Lemma 3.2.1. This fact is in part of the proof of [27, Theorem

1.6], but we give a brief justification for completeness. Suppose that K is a

component of ∂U\∂outU and γ is a Jordan curve in U that contains K in its

interior int(γ). For large n we have, by Lemma 3.2.2, that fn(γ) ⊂ Cn ⊂ Bn,

where Cn is the annulus defined in (3.4); see also Figure 3.3. Hence

fn(int(γ)) ⊂ {z : |z| < rbnn },

and (3.30) follows by the definitions of an and an, and the fact that fn(z) /∈ Bn,

for z ∈ ∂U\∂outU . This completes the proof of our claim regarding equation

(3.30).

Now, by Lemma 3.2.1, both an and an tend to a as n→∞. Hence, for large
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values of n ∈ N, by (3.30),

|fn(z2)|c ≥ rcann ≥ rann ≥ |fn(z1)|, (3.31)

which is a contradiction to (3.29). This completes the proof of part (a) of the

lemma.

Next, suppose that z ∈ ∂outU . Choose w ∈ U . By Lemma 3.2.2 applied with

C = {w}, there exists N ∈ N such that |fn(z)| > |fn(w)|, for n ≥ N , in which

case RA(z) ≥ RA(w). Thus RA(z) ≥ R2 and this completes the proof of part (b)

of the lemma.

Finally, suppose that there exists z ∈ U such that RA(z) = R2, in which case

RA achieves a maximum in U at z. Then h also achieves a maximum in U at z, by

Lemma 3.5.3. This is a contradiction, because h is harmonic in U . For a similar

reason, RA cannot equal R1 and so achieve a minimum in U . This completes the

proof of the lemma.

3.6 Proofs of Theorem 3.1.1, Theorem 3.1.2 and Theo-

rem 3.1.3

In this section we prove Theorem 3.1.1, and then show that this can be used

to prove Theorem 3.1.2 and Theorem 3.1.3. We begin by proving the following

result. Recall that R1 = R1(U) = infz∈U RA(z).

Lemma 3.6.1. Suppose that f and U are as in Theorem 3.1.1, and let G0 be the

complementary component of U containing the origin. Then G0 ⊂ AR1(f)c.

Proof. Suppose, to the contrary, that there exists z0 ∈ G0 such that z0 ∈ AR1(f).

Recall that Un = fn(U), Gn is the component of C\Un containing the origin, and

∂intUn = ∂Gn. Let rn = dist(0, ∂intUn) and let zn = fn(z0) ∈ Gn, for n ∈ N.

The reader may wish to refer to Figure 3.5 at this point.
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Un 

∂intUn 

. 
Gn 

rn 

. zn 

Figure 3.5: The construction used in the proof of Lemma 3.6.1.

In view of Lemma 3.5.2(a) and (b), we can apply Theorem 3.4.1, with Gn as

above and with K = {z0}. We obtain that f has a fixed point α ∈ G0 such that

[α, zn]Gn → 0 as n→∞.

We claim that there exists N ∈ N such that |zn| < rn/2 for n ≥ N . Suppose,

to the contrary, that |zn| > rn/2 infinitely often. For these values of n, let γn be

a curve in Gn joining α and zn such that

2[α, zn]Gn ≥
∫
γn

ρGn(w)|dw|.

Recall (for example, [34, Theorem 4.3]) that

ρGn(w) ≥ 1

2 dist(w, ∂Gn)
, for w ∈ Gn.
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We can assume that n is sufficiently large that |α| < rn/4. Let

γ′n = γn ∩B(0, rn/2).

Note that dist(w, ∂Gn) ≤ 2rn, for w ∈ γ′n. Moreover the length of γ′n is certainly

at least equal to rn/4. Hence

2[α, zn]Gn ≥
∫
γ′n

ρGn(w)|dw| ≥ 1

4rn

∫
γ′n

|dw| ≥ 1

4rn

rn
4

=
1

16
,

which is a contradiction. Thus our claim is established.

We now set η = 3/2 and τ = rN/2. By Lemma 3.2.5 and the above, there

exists N ∈ N such that the following conditions both hold. Firstly, there exists

z′ ∈ A(τ, ητ) such that z′ ∈ Aτ (f). Secondly, |zN | < τ .

We have supposed that z0 ∈ AR1(f), and so this second condition implies that

MN(R1) < τ . Suppose that there exists w ∈ ∂intUN ∩Aτ (f). Since w = fN(w′),

for some w′ ∈ ∂intU , then

w′ ∈ AM−N (τ)(f).

This is impossible since M−N(τ) > R1, but RA(w′) = R1, by Lemma 3.5.4(a).

Hence we have that ∂intUN ∩ Aτ (f) = ∅. This is a contradiction because ∂intUN

surrounds z′, but Aτ (f) has no bounded components by Theorem 1.3.1.

We now prove Theorem 3.1.1.

Proof of Theorem 3.1.1. First we let R′ be the constant from Lemma 3.5.2. Sup-

pose that U is a multiply connected Fatou component of f , such that U surrounds

the origin and dist(0, U) ≥ R′. Let R1 = R1(U) and R2 = R2(U) be the constants

from (3.28). Part (a) of the theorem, that ∂intU is the fundamental loop LR1 ,

follows because ∂intU ⊂ AR1(f), by Lemma 3.5.4(a), but the bounded component

of C\∂intU is in AR1(f)c, by Lemma 3.6.1.

Part (b) of the theorem, that ∂outU is the fundamental loop LR2 , follows im-

mediately from Lemma 3.5.4(b) and (c).

82



Finally we prove part (c) of the theorem. Suppose that LR is a fundamental

loop, and that z ∈ LR ∩ U . Now z ∈ AR(f), and so RA(z) ≥ R. Moreover,

RA(w) < R, for w ∈ HR ∩ U . Hence, by the continuity of RA in U , RA(z) = R.

Thus, by Lemma 3.5.4(c), R1 < RA(z) = R < R2.

Recall that RA(w) = R1, for w ∈ ∂U\∂outU . It follows, by the upper semi-

continuity of RA in U , that LR ∩ ∂U\∂outU = ∅.
It remains to show that LR ∩ ∂outU = ∅. Suppose, to the contrary, that

LR intersects ∂outU . We recall from Theorem 1.3.2 that, in general, if Lρ is a

fundamental loop then f(Lρ) = LM(ρ). By Lemma 3.2.2, applied to any closed

subset of LR ∩U , there exists N ∈ N such that LMn(R) ∩Cn 6= ∅, where Cn is the

annulus defined in (3.4), for n ≥ N .

Next choose η > 1. We can assume that N is sufficiently large that, for

n ≥ N and z ∈ Un, we have that |z| > max{R0, R
′
0}, where R0 is the constant

from Lemma 1.2.2 and R′0 is the constant from Lemma 3.2.5. We can also assume

that N is sufficiently large that the conclusions of Lemma 3.2.3 can be applied.

Define cn = bn − 2πδn − δ2
n, for n ∈ N. We can further assume that N is

sufficiently large that we have both

bN(1− 3πδN) < cN < bN − 2πδN

and

ηr
bN (1−3πδN )
N < r

cN (1−δN )
N .

The first inequality is easy to satisfy since, by Lemma 3.2.1, bn → b > 1, as

n→∞. The second can be satisfied since

ηrbn(1−3πδn)
n = rbn(1−3πδn)+log η δ2n

n ,

and

cn(1− δn) = bn(1− (2π/bn + 1)δn) + δ2
n(2π − 1 + δn),

and since δn → 0 and bn → b > 1 as n→∞.

Consider the fundamental loop LMN (R). Since LMN (R) ∩ CN 6= ∅, there is a
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point on LMN (R) of modulus less than r
bN (1−3πδN )
N . Hence

MN(R) < r
bn(1−3πδN )
N . (3.32)

Moreover, by assumption we have that LMN (R)∩ ∂outUN 6= ∅, and so there is

a point on LMN (R) of modulus greater than rbNN . Hence LMN (R) surrounds points

in UN which lie at all radii in (r
bN (1−3πδN )
N , rbNN ). In particular, there exists a point

z ∈ HMN (R) ∩ UN , such that |z| = rcNN . (3.33)

Then, by Lemma 3.2.3, Lemma 1.2.2 and Lemma 3.2.5, we have that, for m ∈ N,

|fm(z)| ≥M(rcNN , fm)1−δN

≥M(r
cN (1−δN )
N , fm) ≥M(ηr

bN (1−3πδN )
N , fm)

≥Mm(r
bN (1−3πδN )
N , f).

Hence z ∈ Aρ(f), where ρ = r
bN (1−3πδN )
N . This is in contradiction to (3.32), since

z /∈ AMN (R)(f) by (3.33). This completes the first half of the proof of part (c).

Finally, suppose that R1 < R < R2. Then, by the continuity of RA and the

definitions of R1 and R2, there exists z ∈ U such that RA(z) = R. Hence the

fundamental loop LR must intersect U , and so LR ⊂ U . This completes the

proof.

Next we prove Theorem 3.1.2, which states that if f is a transcendental entire

function and that LR is a fundamental loop of f , then either LR ⊂ F (f) or

LR ⊂ J(f).

Proof of Theorem 3.1.2. Suppose first that z ∈ LR ∩ U , where U is a simply

connected Fatou component of f . Since LR ⊂ AR(f), we have that U ⊂ AR(f),

by Theorem 1.7.3. This is a contradiction since LR = ∂HR and HR ⊂ AR(f)c.

Hence LR cannot intersect any simply connected Fatou component of f .

Next suppose that z ∈ LR ∩ U , where U is a multiply connected Fatou

component of f . Then there exists N ∈ N such that dist(0, UN) > R′, where R′

is the constant from Theorem 3.1.1 and UN = fN(U). Then fN(LR) = LMN (R) is
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a fundamental loop which intersects UN and so, by Theorem 3.1.1, is contained

in UN . The result follows.

Finally we prove Theorem 3.1.3, which relates fundamental loops lying in U

to level sets of h.

Proof of Theorem 3.1.3. First suppose that LR ⊂ U is a fundamental loop. Then,

because of the continuity of RA in U , we have RA(z) = R, for z ∈ LR. Hence,

by Lemma 3.5.3, h is also constant on LR. This completes the first part of the

proof.

Suppose next that Γ is a level set of h. By Lemma 3.5.3, Γ is also a level set

of RA, and so RA(z) = R, say, for z ∈ Γ. Now R1 < R < R2, where R1 and R2

are as in (3.28), and so, by Theorem 3.1.1, there is a fundamental loop LR ⊂ U .

The result follows, since LR ⊂ Γ, again by Lemma 3.5.3.

3.7 The function RA defined in C

The function RA played a key role in proving Theorem 3.1.1. In general,

however, RA(z) cannot be defined for many values of z ∈ A(f); consider, for

example, f(z) = ez and z = log 2π + iπ/2. In this section we show that, with a

certain normalisation of f , the definition of RA(z) can be extended in a natural

way to all z ∈ C. The function RA then has several interesting properties.

First we adopt the normalisation f(0) = 0. We observe that, by Lemma 3.5.1,

all transcendental entire functions for which AR(f) is a spider’s web have a fixed

point and so, in this case, this normalisation is merely a change of coordinates.

This suggests that this normalisation is not entirely unnatural when AR(f) is a

spider’s web. Even when f does not have a fixed point the normalisation f(0) = 0

is not as limiting as it might seem. If f(z) has no fixed point, then f(z) has the

form f(z) = z + exp(h(z)), for some entire function h. It then follows from

Picard’s Theorem that f 2 has fixed points. We choose α, a fixed point of f 2, and

replace f by g where g(z) = f 2(z + α) − α. Then g(0) = 0, and the sets A(f)

and A(g) differ only by a translation, since A(f 2) = A(f) by Theorem 1.7.1(a).

Suppose that f is a transcendental entire function and that f(0) = 0. Suppose

that r is such that Mn(r, f) → ∞ as n → ∞. Clearly M(r, f) > r, and so, by
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Lemma 1.2.1(a), we may choose ε > 0 such that M(r − ε, f) > r. It follows that

Mn(r − ε, f)→∞ as n→∞.

Consider the set

Yf = {r ≥ 0 : Mn(r) 9∞ as n→∞}.

Clearly Yf 6= ∅, and it follows from the previous paragraph that Yf is closed.

Thus Yf has a maximum.

Hence, with the normalisation f(0) = 0 we can define

Rf = max{r ≥ 0 : Mn(r) 9∞ as n→∞}. (3.34)

The following gives an alternative characterisation of A(f) as a continuous limit

of the closed sets AR(f).

Theorem 3.7.1. Suppose that f is a transcendental entire function, that f(0) =

0, and that Rf is as defined in (3.34). Then

A(f) =
⋃
R>Rf

AR(f). (3.35)

Proof. If z ∈
⋃
R>Rf

AR(f), then z ∈ AR(f) for some R such that Mn(R) → ∞
as n→∞, and so z ∈ A(f) by definition.

Now, suppose that z ∈ A(f). Then, by (1.12), f `(z) ∈ AR(f), for some

R > Rf and some ` ∈ N. Note next that, since f(0) = 0, we have that M−n(r)

is defined for all r ≥ 0 and n ∈ N. Hence we can set R′ = M−`(R), and we note

that R′ > Rf . Then z ∈ AR′(f) and so z ∈
⋃
R>Rf

AR(f), as required.

For a transcendental entire function f with f(0) = 0, we extend the definition

of RA to the whole complex plane by setting

RA(z) =

max{R : z ∈ AR(f)}, for z ∈ A(f),

Rf , for z /∈ A(f).
(3.36)

The existence of the maximum, for z ∈ A(f), follows from Lemma 1.2.1(a) and

(3.35), in the same way as the existence of the maximum in (3.22).
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We require the following result.

Lemma 3.7.2. Suppose that f is a transcendental entire function and that f(0) = 0.

Then

Mn(RA(z)) = RA(fn(z)), for z ∈ A(f), n ∈ N. (3.37)

Proof. Choose n ∈ N. Suppose that z ∈ A(f), and set RA(z) = ρ1 and

RA(fn(z)) = ρ2. By the definition of RA(z) we have that

|fm(fn(z))| = |fm+n(z)| ≥Mm+n(ρ1) = Mm(Mn(ρ1)), for m ∈ N,

and so ρ2 ≥Mn(ρ1). It follows that M−n(ρ2) is defined and greater than or equal

to ρ1. By the definition of RA(fn(z)) we have that

|fm(z)| = |fm−n(fn(z))| ≥Mm−n(ρ2) = Mm(M−n(ρ2)), for m ≥ n,

and so ρ1 ≥M−n(ρ2). The result follows.

If f satisfies the normalization f(0) = 0, then a stronger version of Lemma 3.5.3

holds.

Theorem 3.7.3. Suppose that f is a transcendental entire function and that

f(0) = 0. Then

(a) RA is upper semicontinuous in C;

(b) RA is nowhere continuous in A(f) ∩ J(f);

(c) RA is constant in a simply connected Fatou component of f ;

(d) RA is continuous in A(f)c ∪ F (f).

Proof. Part (a) follows in exactly the same way as the first part of the proof of

Lemma 3.5.3, and so we omit the details.

Now we prove part (b). Observe that, in general, if w ∈ A(f), n > 1 and

fn(w′) = w, then

RA(w′) = M−n(RA(w)) < M−1(RA(w)) < RA(w). (3.38)
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Suppose that z ∈ A(f) ∩ J(f) and assume first that z /∈ E(f), where E(f)

is as defined in (1.14). Let ∆ be a neighbourhood of z, sufficiently small that

∆ ∩E(f) = ∅. Then, by Theorem 1.4.3, there is an n > 1 such that fn(∆) ⊃ ∆.

Hence, since z cannot be periodic, there is a z′ ∈ ∆ with z′ 6= z and such that

fn(z′) = z. Hence, by (3.38),

RA(z′) < M−1(RA(z)) < RA(z). (3.39)

This shows that RA is not continuous at z in the case that z /∈ E(f), since ∆ was

arbitrary.

In the case that z ∈ E(f), we first observe that f(z) /∈ E(f). Let ∆ be

a neighbourhood of z, sufficiently small that f(∆) ∩ E(f) = ∅. By the same

argument as above, there is a z′ ∈ ∆ such that

RA(f(z′)) < M−1(RA(f(z))) < RA(f(z)). (3.40)

Equation (3.39) now follows from (3.40) and (3.37). This completes the proof of

part (b).

Next we prove part (c). Suppose that U is a simply connected Fatou compo-

nent and that z1, z2 ∈ U are such that r = RA(z1) > RA(z2). First we observe that

z1 ∈ Ar(f). Hence U ⊂ Ar(f), by Theorem 1.7.3, and in particular z2 ∈ Ar(f).

From this it follows that RA(z2) ≥ r, which is a contradiction. This completes

the proof of part (c).

Finally we prove part (d). The result when z ∈ A(f)c is immediate from

part (a), and the fact that RA achieves its global minimum of Rf everywhere

in A(f)c. If z ∈ A(f) ∩ F (f), then we can assume that z is in a multiply

connected Fatou component of f , since in a simply connected Fatou component

RA is constant, by part (c), and so continuous. The proof follows in exactly the

same way as the second part of the proof of Lemma 3.5.3.

In a multiply connected Fatou component, we can say more about the prop-

erties of the function RA.

Theorem 3.7.4. Suppose that f is a transcendental entire function and that

f(0) = 0. Then the function v = − logRA is subharmonic in F (f).
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Remark 3.7.1. It follows from Theorem 3.7.3(d) and Theorem 3.7.4 that 1/RA

is in the class PL in each component of F (f). Here (see [16]), a function u in

a domain D is said to be in the class PL if u is continuous and non-negative

in D, and log u is subharmonic in the part of D where u > 0. This class is

a generalisation of functions of the form |φ|, where φ is analytic in D. The

weaker result that 1/RA is subharmonic in F (f) also follows from Theorem 3.7.4,

since 1/RA(z) = exp(v(z)) and by [76, Corollary 2.6.4], which states that if u is

subharmonic in a domain then so is exp ◦ u.

Remark 3.7.2. It seems natural to ask if v is harmonic in F (f). This cannot be

the case in general. For, by the last statement of Lemma 3.5.3, if v is harmonic

in a multiply connected Fatou component U which satisfies the conditions of

Theorem 3.1.1, then there is a continuous function ψ : R→ R such that

v(z) = ψ(h(z)), for z ∈ U. (3.41)

If v is harmonic, then – since h is also harmonic – we can differentiate (3.41) to

obtain that ψ′′(h(z)) = 0, for z ∈ U . Hence v is a linear function of h in U .

Now, v is finite in U . In [27, Example 2 and Theorem 1.6] it is shown that there

exist transcendental entire functions such that h is unbounded in U . For these

functions the relationship between h and v cannot, therefore, be linear, and so v

is not harmonic in U .

In order to prove Theorem 3.7.4 we need three further lemmas. The first

concerns repeated iteration of the function M−1.

Lemma 3.7.5. Suppose that f is a transcendental entire function and that f(0) =

0. For each n ∈ N, define the function vn by

vn(z) = − logM−n(|fn(z)|), for z ∈ Dn = {z : fn(z) 6= 0}. (3.42)

Then vn is subharmonic in Dn.

Proof. Since ψ(s) = logM−1(es) is a concave and increasing function of s, we

have (see, for example, [65, Theorem 7.2.1]) that

ψn(s) = logM−n(es)
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is also a concave function of s, for n ∈ N. Now, for each n ∈ N, log |fn(z)| is a

harmonic function of z in Dn, since fn(z) 6= 0 in Dn. The result follows since

vn(z) = − logM−n(exp(log |fn(z)|)) = −ψn(log |fn(z)|),

is a convex function of a harmonic function; see e.g. [76, p.47], which states that

a convex function of a harmonic function is subharmonic.

Note that, if f(0) = 0, then 0 /∈ A(f) and so vn(z) is defined for all z ∈ A(f)

and n ∈ N.

The second lemma gives an alternative characterisation of the function RA in

A(f). Here we say that a sequence of real numbers, (tn)n∈N, is non-increasing if

tn+1 ≤ tn, for n ∈ N.

Lemma 3.7.6. Suppose that f is a transcendental entire function and that f(0) =

0. Then, for each z ∈ A(f), (M−n(|fn(z)|))n∈N is a non-increasing sequence, with

limit RA(z).

Proof. Suppose that z ∈ A(f). Since M(|fn(z)|) ≥ |fn+1(z)| we have that

M−n(|fn(z)|) ≥M−(n+1)(|fn+1(z)|), for n ∈ N. (3.43)

Hence the sequence (M−n(|fn(z)|))n∈N is non-increasing. In addition, since

|fn(z)| ≥ Mn(RA(z)), for n ∈ N, we have that

M−n(|fn(z)|) ≥ RA(z), for n ∈ N.

So limn→∞M
−n(|fn(z)|) exists and is at least RA(z). It follows from (3.43) and

the definition of AR(f) that if this limit is R, then z ∈ AR(f). This completes

the proof.

We also need a result on subharmonic functions. Suppose that D is a domain,

and u : D → [−∞,∞) is a function which is locally bounded above in D. The

upper semicontinuous regularization of u is the function u∗ : D → [−∞,∞)

defined by

u∗(z) = lim sup
w→z

u(w).
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It can be shown that u∗ is the least upper semicontinuous function on D such that

u∗ ≥ u; see, for example, [76, p.62]. The result we require is the following [76,

Theorem 3.4.2(a)].

Lemma 3.7.7 (Brelot-Cartan Theorem). Suppose that D is a domain, that V is

a family of subharmonic functions on D and that u = supv∈V v is locally bounded

above on D. Then u∗ is subharmonic on D.

We now give the proof of Theorem 3.7.4, that the function v(z) = − logRA(z)

is subharmonic, for z ∈ F (f).

Proof of Theorem 3.7.4. Suppose that z ∈ A(f)c ∩ F (f). The result follows be-

cause RA is constant in a neighbourhood of z. On the other hand, suppose that

we have z ∈ A(f)∩F (f), and let U be the Fatou component containing z. Since

RA is constant in any simply connected Fatou component, we can assume that

U is multiply connected. Observe that, by Lemma 3.5.4, applied, if necessary,

to UN for some large N , there exists R1 > 0 such that RA(z) ≥ R1, for z ∈ U .

Hence v is bounded above in U .

Let vn be as defined in Lemma 3.7.5. Then, by Lemma 3.7.6 and Lemma 3.7.5,

vn is a non-decreasing sequence of subharmonic functions, converging pointwise in

U to v. Hence, supn∈N vn = v. By Lemma 3.7.7, applied with V = {vn : n ∈ N},
v∗ is subharmonic in U . By Theorem 3.7.3 part (d), v is continuous in U , and so

v∗ = v there. This completes the proof.

Another advantage of the normalisation f(0) = 0 is that, if this condition is

satisfied, then the conclusions of Theorems 3.1.1 and 3.1.3 hold for any multiply

connected Fatou component which surrounds the origin, without the additional

restriction of being a sufficient distance from the origin. This fact follows from

the proof of Theorem 3.1.1 and from the following version of Lemma 3.5.2.

Lemma 3.7.8. Suppose that f is a transcendental entire function and that f(0) =

0. Suppose that U is a multiply connected Fatou component of f which surrounds

the origin, and define Gn as the complementary component of Un which contains

the origin, for n = 0, 1, 2, · · · . Then

(a) Gn ⊂ Gn+1, for n = 0, 1, 2, · · · ;
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(b) f(∂Gn) = ∂Gn+1, for n = 0, 1, 2, · · · ;

(c) for all z ∈ U there exists R = R(z) such that z ∈ AR(f).

Proof. Parts (a) and (b) follow as in the proof of Lemma 3.5.2, since the origin

is a fixed point of f . Part (c) follows from Theorem 3.7.1.

Given a transcendental entire function f and N ∈ N, it is not hard to show

that there is a point z ∈ A(f) such that |fn+1(z)| is small compared to |fn(z)|,
for n ≤ N . Hence RA(z) can be much smaller than |z|. It does seem reasonable,

however, to expect that Mn(RA(z)) should be comparable to |fn(z)|, for large

values of n ∈ N. We use results from [27] to prove the following.

Theorem 3.7.9. Suppose that f is a transcendental entire function, that f(0) =

0, and that z is in a multiply connected Fatou component of f . Then

lim
n→∞

log |fn(z)|
logMn(RA(z))

= 1. (3.44)

Proof. Let U be the Fatou component containing z. It follows from (3.37) that

we need to prove that

lim
n→∞

log |fn(z)|
logRA(fn(z))

= 1. (3.45)

By definition |fn(z)| ≥ RA(fn(z)), for n ∈ N. Suppose that, contrary to (3.45),

there exists 0 < c < 1 and a sequence of natural numbers (nk)k∈N such that

|fnk(z)|c > RA(fnk(z)), for k ∈ N, and nk → ∞ as k → ∞. Then, by the

definition of RA, for each k ∈ N there exists mk ∈ N such that

|fnk+m(z)| < Mm(|fnk(z)|c), for m ≥ mk. (3.46)

Since nk → ∞ as k → ∞, we see that (3.46) is contrary to Lemma 3.2.4. This

completes the proof of Theorem 3.7.9.

Remark 3.7.3. If f is a transcendental entire function and f(0) 6= 0, then

the conclusions of Theorem 3.7.4 and Theorem 3.7.9 still hold for a multiply

connected Fatou component U which satisfies the conditions of Theorem 3.1.1.

This is readily seen from a review of the proofs of these results.
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The relationship between h and RA may be closely related to the growth of

M(r) for values of r close to Rf , and so it seems unlikely that, in general, there

is a simple form for the function φ defined in (3.23). It is possible , however, to

obtain bounds on the relationship between RA and h. In the following result we

consider only the case when h(z) > 1. The case when h(z) < 1 is similar, and it

follows from Lemma 3.5.3 that RA(z0) = RA(z) when h(z) = 1.

Lemma 3.7.10. Suppose that f is a transcendental entire function with f(0) = 0,

that U is a multiply connected Fatou component of f with z, z0 ∈ U , and that h

is defined as in (3.1). Suppose also that h(z) > 1 and that RA(z0) > R0, where

R0 is the constant from Lemma 1.2.2. Then

logRA(z0) < logRA(z) ≤ h(z) logRA(z0). (3.47)

Proof. Since h(z) > 1 we have that |fn(z0)| < |fn(z)|, for large values of n ∈ N.

Hence logRA(z0) ≤ logRA(z), and equality is impossible by the last statement

of Lemma 3.5.3.

To prove the right-hand inequality, we proceed as follows. For each n ∈ N,

set

αn =
log |fn(z)|
log |fn(z0)|

,

and so αn → h(z) as n → ∞. Since h(z) > 1, there is an N ∈ N such that

αn > 1, for n ≥ N . Hence, for n ≥ N , by repeated application of (1.11),

logM−n(|fn(z)|) = logM−n(|fn(z0)|αn) ≤ αn logM−n(|fn(z0)|). (3.48)

Observe that the smallest term to which we apply (1.11) has r replaced by

M−(n−1)(|fn(z0)|) = M(M−n(|fn(z0)|)) ≥M(RA(z0)).

This explains the condition RA(z0) > R0 in the statement of the lemma. The

result follows by letting n→∞ in (3.48), and by Lemma 3.7.6.

The following simple result shows that, in a sense, if we replace z and z0 in

(3.47) with fn(z) and fn(z0), and take the limit as n→∞, then the central term

tends to its upper bound.
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Lemma 3.7.11. Suppose that f is a transcendental entire function with f(0) = 0,

that U is a multiply connected Fatou component of f with z, z0 ∈ U , and that h

is defined as in (3.1). Then

logRA(fn(z)) ∼ h(z) logRA(fn(z0)), as n→∞. (3.49)

Proof. By Theorem 3.7.9 we have

1 = lim
n→∞

log |fn(z0)|
logRA(fn(z0))

lim
n→∞

logRA(fn(z))

log |fn(z)|

= lim
n→∞

log |fn(z0)|
log |fn(z)|

lim
n→∞

logRA(fn(z))

logRA(fn(z0))

=
1

h(z)
lim
n→∞

logRA(fn(z))

logRA(fn(z0))
,

and the result follows. Note that the existence of these limits follows from The-

orem 3.7.9 and the existence of the function h defined in (3.1).
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Chapter 4

Simply connected fast escaping

Fatou components

4.1 Introduction

In this chapter we give an example of a transcendental entire function with a

simply connected fast escaping Fatou component, but with no multiply connected

Fatou components. We also give a new criterion for points to be in the fast

escaping set.

As noted earlier, the first example of a simply connected fast escaping Fatou

component was given by Bergweiler [20], using a quasi-conformal surgery tech-

nique from [63]. This function also has multiply connected Fatou components.

In fact, in [20], the properties of the multiply connected Fatou components are

used to show that the simply connected Fatou components are fast escaping. A

similar example was given in [75, Example 6.3].

This prompts the question of whether a transcendental entire function can

have simply connected fast escaping Fatou components without having multiply

connected Fatou components. We answer this in the affirmative, using a direct

construction and Theorem 1.5.2 to prove the following.

Theorem 4.1.1. There is a transcendental entire function with a simply con-

nected fast escaping Fatou component, and no multiply connected Fatou compo-

nents.
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To prove Theorem 4.1.1 we require a new sufficient condition for points to be

in A(f), which may be of independent interest.

Theorem 4.1.2. Suppose that f is a transcendental entire function. Suppose

also that there exists R0 > 0 and a nonincreasing function ε : [R0,∞) → (0, 1)

such that

ε(Mn(r)) ≥ ε(r)n+1, for r ≥ R0 and n ∈ N. (4.1)

Define η(r) = ε(r)M(r), for r ≥ R0. Then there exists R1 ≥ R0 such that

A(f) = {z : there exists ` ∈ N such that |fn+`(z)| ≥ ηn(R′), for n ∈ N},

for R′ ≥ R1.

Note that this is a generalisation of Theorem 1.7.5, which is obtained from

Theorem 4.1.2 when ε is constant.

4.2 The definition of the function

In this section we define a transcendental entire function, f , which has all the

properties defined in Theorem 4.1.1. Since f is very complicated, we first outline

informally the construction of f , starting with simpler functions which only have

some of these properties. We then give the full construction. A detailed proof of

Theorem 4.1.1 is given in subsequent sections.

Consider first a transcendental entire function defined by a product;

g(z) = z
∞∏
k=1

(
1 +

z

ak

)2

, 0 < a1 < a2 < · · · .

The sequence (an)n∈N can be chosen so that the following holds: we can define

another sequence, (bn)n∈N, such that bn is approximately equal to an, −bn is close

to a critical point of g, and g(−bn) is close to −bn+1. It can then be shown that a

small disc centred at −bn is mapped by g into a small disc centred at −bn+1. By

Montel’s theorem, these discs must be in the Fatou set of g. Moreover, these discs

cannot be in multiply connected Fatou components of g since, by [27, Theorem

1.2], any open set contained in a multiply connected Fatou component of g must,
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after a finite number of iterations of g, cover an annulus surrounding the origin.

Finally, it can be shown, by comparing |g(−bn)| to M(bn, g) = g(bn), that these

discs are contained in fast escaping Fatou components of g.

However, g does not have all the properties asserted in Theorem 4.1.1. In

particular, by considering the behaviour of g in large annuli which omit the zeros

of g, it can be shown that g has multiply connected Fatou components. Thus g

has very similar properties to the example in [20].

We note that no zero of g can be in a multiply connected Fatou component,

since 0 is a fixed point. In order to prevent the existence of multiply connected

Fatou components, we add further zeros to the function, along the negative real

axis. This requires some care. The addition of too many zeros – for example,

spaced linearly along the negative real axis – leads to a breakdown of other parts

of the construction. The addition of a zero with modulus insufficiently distant

from an leads to a similar breakdown.

We use Theorem 1.5.2 to show that only a relatively small number of addi-

tional zeros are required. In particular, suppose that h is a transcendental entire

function with h(0) = 0 and with zeros of modulus 0 < r0 < r1 < r2 < · · · .
Then, by Theorem 1.5.2, h has no multiply connected Fatou components if

limk→∞ log rk+1/ log rk exists and is equal to 1.

To use this result, we need to understand the behaviour of log an+1/ log an, for

large n. From the recursive definition that we use to ensure that the sequences

(an)n∈N and (bn)n∈N have the required properties, (see (4.35)), we find that, for

large n, log an+1/ log an is close to n3. See (4.36) for a precise statement of how

the term n3 arises here.

This suggests the following. Define µn = n3/n, for n ∈ N. To simplify some

displays we set µn,m = µmn , and observe that µn,0 = 1 and µn,n = n3, for n ∈ N.

We now define a more complicated transcendental entire function

h(z) = z

∞∏
k=1

k−1∏
l=0

(
1 +

z

a
µk,l
k

)2

, 0 < a1 < a2 < · · · .

The sequence (an)n∈N in this definition is not the same as in the definition of g,

but serves the same purpose, and is chosen similarly. This function has zeros of
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modulus

· · · , an, aµnn , aµn,2n , · · · , aµn,n−1
n , an+1, a

µn+1

n+1 · · · .

Since it is readily seen that µn → 1 as n → ∞, this function does not have

multiply connected Fatou components. However, two further adjustments are

required. Firstly, the zero of modulus a
µn,n−1
n is sufficiently close to the zero of

modulus an+1 that the original construction breaks down. We resolve this by

omitting this zero. Secondly, the value of log an+1/ log an is not close enough to

n3, for large n, to ensure that limk→∞ log ak+1/ log a
µk,k−2

k = 1. We resolve this by

adding one additional zero, which serves no other purpose in the construction.

This zero is defined using two additional sequences, (αn)n∈N and (βn)n∈N, which

we choose to keep log an+1/ log an sufficiently close to n3.

Now we are able to indicate the form of the function f in Theorem 4.1.1. Let

f be the transcendental entire function;

f(z) = z
∞∏
k=3


(

1 +
z

aβkk

)2αk k−2∏
l=0

(
1 +

z

a
µk,l
k

)2

 , (4.2)

where 0 < a3 < a4 < · · · , αn ∈ {0, 1, 2, . . .}, βn ∈ R, for n ∈ N. Again, the

sequence (an)n∈N in this definition is not the same as that in the definition of

g or h, but serves the same purpose, and is chosen similarly. The related se-

quence (bn)n∈N, discussed after the definition of g, is defined for f by (4.34). The

sequences (αn)n∈N and (βn)n∈N are the two sequences mentioned at the end of

the previous paragraph. In Section 4.6, at the end of this chapter, we give the

definition of the various sequences in (4.2), and we prove a number of estimates

on the modulus of the zeros of f .

The structure of the proof of Theorem 4.1.1 is as follows. In Section 4.3, we

show that there are no multiply connected Fatou components of f . In Section 4.4

we show that there are intervals on the negative real axis each contained in some

Fatou component of f . Finally, in Section 4.5 we prove Theorem 4.1.2 and then

use this to show that these Fatou components of f are fast escaping. It is clear

that Theorem 4.1.1 follows from these results.
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Remark 4.2.1. Rippon and Stallard asked [86, Question 1] if there can be

unbounded fast escaping Fatou components of a transcendental entire function.

It can be shown that the Fatou components of the function f are all bounded.

Indeed, it is straightforward to prove that the number of zeros of f in the disc

{z : |z| < r} is O(log r), and hence that logM(r, f) = O((log r)2). It follows,

by Theorem 1.9.2(b) and Theorem 1.9.1(d), that the set A(f) is a spider’s web

and that f has no unbounded Fatou components.

4.3 There are no multiply connected Fatou components

In this section we prove the following result.

Lemma 4.3.1. The transcendental entire function f does not have multiply con-

nected Fatou components.

Proof. Observe that, for large n, in the closed annulus A(an, an+1) there are zeros

of f on the negative real axis of modulus an, a
µn
n , a

µn,2
n , . . . , a

µn,n−2
n and an+1. Note

also that 0 is a fixed point of f , and so all zeros of f lie in A(f)c. Now, by (4.36),

an+1 ≤ an
3+2/n
n < (aµn,n−2

n )µn,2+2/n.

Hence, for large n, there is at least one zero of f in any annulus A(r, rµn,2+2/n),

for an ≤ r ≤ an+1. Note that µn,2 + 2/n → 1 as n → ∞. It follows that, given

d > 1 there exists R > 0 such that

A(r, rd) ∩ A(f)c 6= ∅, for r ≥ R. (4.3)

Now, by Theorem 1.5.2, if f has a multiply connected Fatou component, then

there is a d > 1, and a sequence (ri)i∈N, tending to infinity, such that the annuli

A(ri, r
d
i ) are contained in multiply connected Fatou components of f . This is

a contradiction, by (4.3) and Theorem 1.7.2. Hence there can be no multiply

connected Fatou components of f .
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4.4 There are simply connected Fatou components

Next we show that f has simply connected Fatou components.

Lemma 4.4.1. Define Bn = {z : |z + bn| < δnbn}, where δn = n−9. Then, for

large n, we have f(Bn) ⊂ Bn+1, and Bn is contained in a simply connected Fatou

component of f .

Proof. Suppose that z ∈ Bn, in which case z = −bn + wbn where |w| < δn. We

assume throughout this section that n is sufficiently large for various estimates

to hold.

We consider the quotient of f(z) and −bn+1, gathering together the terms in

the product for f(z) which also occur in the product for bn+1, and the terms in

the product for f(z) which do not occur in the product for bn+1. By (4.2), (4.34)

and (4.35),
f(z)

−bn+1

= I1I2, (4.4)

where

I1 = (1− w)

(
1 + w

bn
an − bn

)2 n−1∏
k=3


(

1 + w
bn

aβkk − bn

)2αk k−2∏
l=0

(
1 + w

bn

a
µk,l
k − bn

)2

 ,

(4.5)

and

I2 =
n−2∏
l=1

(
1 +

z

a
µn,l
n

)2 ∞∏
k=n

(
1 +

z

aβkk

)2αk ∞∏
k=n+1

k−2∏
l=0

(
1 +

z

a
µk,l
k

)2

.

To consider the terms I1 and I2 we make use of the facts that, as z → 0, we

have

log(1 + z) = z +O(|z|2), (4.6)

and

log(1 + z) = O(z). (4.7)

Here we take the branch of the logarithm with argument close to zero.
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First we consider I1. It follows from (4.5) and (4.6) that

log I1 = η +O(ι),

where

η = −w

(
1 + 2

bn
bn − an

+ 2
n−1∑
k=3

{
αk

bn

bn − aβkk
+

k−2∑
l=0

bn

bn − a
µk,l
k

})
,

and

ι = |w|2
1 + 2

(
bn

bn − an

)2

+ 2
n−1∑
k=3

αk
(

bn

bn − aβkk

)2

+
k−2∑
l=0

(
bn

bn − a
µk,l
k

)2


 .

Now, for large n,

|η| = |w|

∣∣∣∣∣1 + 2
bn

bn − an
+ 2

n−1∑
k=3

{
αk

bn

bn − aβkk
+

k−2∑
l=0

bn

bn − a
µk,l
k

}∣∣∣∣∣
= |w|

∣∣∣∣∣1− Tn + 2
n−1∑
k=3

{
αk

(
1 +

aβkk
bn − aβkk

)
+

k−2∑
l=0

(
1 +

a
µk,l
k

bn − a
µk,l
k

)}∣∣∣∣∣ by (4.34)

= 2|w|

(
n−1∑
k=3

{
αk

aβkk
bn − aβkk

+
k−2∑
l=0

a
µk,l
k

bn − a
µk,l
k

})
by (4.29)

≤ 2n2|w|

(
αn−1a

βn−1

n−1

bn − aβn−1

n−1

+
a
µn−1,n−3

n−1

bn − a
µn−1,n−3

n−1

)

≤ 4n2|w|

(
αn−1a

βn−1

n−1

an − aβn−1

n−1

+
a
µn−1,n−3

n−1

an − a
µn−1,n−3

n−1

)
by (4.34)

≤ 8n2|w|
(
exp(−e(n−1)/2) + exp(−e(n−1)/2)

)
by (4.39)

≤ |w| exp(−en/4).

Note that the cancellation in the second line occurs because, due to the choice of

bn and Tn, −bn is very close to a critical point of f .

We next consider ι. We observe that bn/(an − bn) = Tn/2 < n3. Hence, for
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large n,

ι ≤ |w|2
(

1 + 2n6 + 6n4

(
bn

bn − a
µn−1,n−3

n−1

)2
)

by (4.25)

≤ |w|2
(

1 + 2n6 + 12n4

(
1

1− aµn−1,n−3

n−1 /an

)2
)

by (4.34)

≤ |w|2
(

1 + 2n6 + 12n4

(
1 + 4

a
µn−1,n−3

n−1

an

))
≤ |w|2

(
1 + 2n6 + 24n4

)
by (4.39)

≤ |w|2n7

< n−11.

It follows that

|I1 − 1| < n−10, for large n. (4.8)

Now we consider I2. For large n we have

log I2 = 2

(
n−2∑
l=1

log

(
1 +

z

a
µn,l
n

)
+
∞∑
k=n

αk log

(
1 +

z

aβkk

)
+

∞∑
k=n+1

k−2∑
l=0

log

(
1 +

z

a
µk,l
k

))

= O

(
n−2∑
l=1

|z|
a
µn,l
n

+
∞∑
k=n

αk
|z|
aβkk

+
∞∑

k=n+1

k−2∑
l=0

|z|
a
µk,l
k

)
by (4.7)

= O

(
n−2∑
l=1

an

a
µn,l
n

+
∞∑
k=n

αkan

aβkk
+

∞∑
k=n+1

k−2∑
l=0

an

a
µk,l
k

)
by (4.34)

= O

(
n exp(−en/2) +

∞∑
k=n+1

αkan

aβkk
+

∞∑
k=n+1

kan
ak

)
by (4.38)

= O

(
n exp(−en/2) +

∞∑
k=1

(
αn+kan

a
n3k/2k
n

+
(n+ k)an

a
n3k/2k
n

))
by (4.36)

= O

(
n exp(−en/2) +

∞∑
k=1

(
a−n

3k/2k+1

n (αn+k + n+ k)
))

= O
(
n exp(−en/2)

)
by (4.37).
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Thus, for sufficiently large n,

|I2 − 1| ≤ exp(−en/4).

This, together with (4.8), establishes the first part of the lemma. It follows from

Montel’s theorem that, for large n, Bn is contained in a Fatou component, which

must be simply connected by Lemma 4.3.1.

Remark 4.4.1. Let Vn be the Fatou component containing Bn. These Fatou

components are distinct. For, suppose that Vm = Vn with m 6= n. Because all

the coefficients of z in (4.2) are real, the Fatou set F (f) must be invariant under

reflection in the real axis. Hence, all points on the negative real axis between Bn

and Bm must be in Vm, as otherwise Vm would be multiply connected. This is a

contradiction since these points include the zeros of f .

4.5 The simply connected Fatou components are fast es-

caping

In this section we first prove Theorem 4.1.2, and then we use this result to

prove the following.

Lemma 4.5.1. Let Vn, n ∈ N, be the simply connected Fatou components defined

at the end of Section 4.4. Then Vn ⊂ A(f), for large n.

Proof of Theorem 4.1.2. Fix r0 ≥ R0 such that M(r) > r, for r ≥ r0. Whenever

r ≥ r0 there is a unique n ∈ N such that Mn−1(r0) ≤ r < Mn(r0). Hence, since

ε is nonincreasing, by (4.1) and (1.6)

ε(r)r ≥ ε(Mn(r0))Mn−1(r0) ≥ ε(r0)n+1Mn−1(r0)→∞ as n→∞.

Hence

ε(r)r →∞ as r →∞. (4.9)

By (1.6) and (4.9) we see that, given k > 0, we can ensure that

logM(ε(r)R)

log(ε(r)R)
> k, for large r, R ≥ r. (4.10)
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A little algebra shows that this is equivalent to

M(ε(r)R)
− log ε(r)
log(ε(r)R) > ε(r)−k, for large r, R ≥ r. (4.11)

In (1.8) we replace c with logR/ log(ε(r)R), and replace r with ε(r)R. We obtain,

using (4.11) with k = 3, that there exists R1 ≥ R0 such that

M(R) ≥ ε(r)−3M(ε(r)R), for R ≥ r ≥ R1. (4.12)

We can assume that R1 is sufficiently large that M(r) > r, for r ≥ R1/ε(r), and

also, by (4.9), that η(r) > r, for r ≥ R1.

We claim next that we have

ηk(r) ≥ ε(r)−k−1Mk(ε(r)r) > Mk(ε(r)r), for r ≥ R1, k ∈ N. (4.13)

This can be seen by induction. When k = 1 we have, by (4.12),

η(r) = ε(r)M(r) ≥ ε(r)−2M(ε(r)r), for r ≥ R1.

Hence, by induction, for r ≥ R1,

ηk+1(r) = ε(ηk(r))M(ηk(r))

≥ ε(Mk(r))M(ηk(r)) as ε is nonincreasing

≥ ε(r)k+1M(ηk(r)) by (4.1)

≥ ε(r)k+1M(ε(r)−k−1Mk(ε(r)r)) by (4.13)

≥ ε(r)k+1ε(r)−3k−3Mk+1(ε(r)r) by repeated use of (4.12)

≥ ε(r)−(k+1)−1Mk+1(ε(r)r) as required.

(Note that in the penultimate step above we have also made use of the fact that

ε(r) r ≤ M(ε(r)r), for r ≥ R1.)

It follows from (4.13) that, for r ≥ R1, ηn(r)→∞ as n→∞. Define

A′(f) = {z : there exists ` ∈ N such that |fn+`(z)| ≥ ηn(R′) for n ∈ N},
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for R′ ≥ R1. We complete the proof by showing that A′(f) = A(f).

First, suppose that z ∈ A(f), in which case for some ` ∈ N we have

|fn+`(z)| ≥Mn(R), for n ∈ N,

and someR withM(r) > r, for r ≥ R. ChooseK ∈ N such thatMK(R) = R′ ≥ R1.

Then

|fn+`+K(z)| ≥Mn+K(R) = Mn(R′) ≥ ηn(R′), for n ∈ N.

Hence z ∈ A′(f).

Conversely, suppose that z ∈ A′(f), in which case for some ` ∈ N and R′ ≥ R1

we have

|fn+`(z)| ≥ ηn(R′), for n ∈ N.

Choose K ∈ N so that MK(ε(R′)R′) = R ≥ R1. Then, by (4.13).

|fn+`+K(z)| ≥ ηn+K(R′) ≥Mn+K(ε(R′)R′) ≥Mn(R), for n ∈ N.

Hence z ∈ A(f).

Finally, we give the

Proof of Lemma 4.5.1. For some large R0 define, for r > R0,

ε(r) =
1

16n6
, for an−1(1 + δn−1) < r ≤ an(1 + δn), (4.14)

where δn = n−9 as in Lemma 4.4.1. Define also η(r) = ε(r)M(r), for r ≥ R0.

Suppose that x′ ∈ Bn ∩ R ⊂ Vn, for some n, where Bn is as defined in the

statement of Lemma 4.4.1 . We can assume that n is chosen sufficiently large for

the various estimates in this section to hold. We claim that x′ ∈ A(f), and so,

by Theorem 1.7.3, Vn ⊂ A(f).

Our approach to proving this claim is as follows. Set x = −x′, recalling that
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x > 0. We first show that

|f(x′)| ≥ 1

144n6
M(x). (4.15)

It follows from this, and since f(x′) ∈ Bn+1 ∩ R, that

|fm(x′)| ≥ ηm(x), for m ∈ N. (4.16)

Second, we show that ε satisfies (4.1). Thus, by (4.16) and Theorem 4.1.2,

x′ ∈ A(f), as required.

First we need to establish (4.15). We consider the quotient of |f(x′)| and

M(x) = f(x), gathering together the terms in the products for these quantities

prior to the nth term, the nth term, and the remaining terms. We obtain

|f(x′)|
M(x)

= J1J2J3, (4.17)

where

J1 =
n−1∏
k=3


(
aβkk − x
aβkk + x

)2αk k−2∏
l=0

(
a
µk,l
k − x
a
µk,l
k + x

)2
 ,

J2 =

(
an − x
an + x

)2

,

and

J3 =
∞∏

k=n+1


(
aβkk − x
aβkk + x

)2αk k−2∏
l=0

(
a
µk,l
k − x
a
µk,l
k + x

)2

(
aβnn − x
aβnn + x

)2αn n−2∏
l=1

(
a
µn,l
n − x
a
µn,l
n + x

)2

.

We consider these three terms separately. We note that

log
1− x
1 + x

> −4x, for 0 < x <
1

2
. (4.18)
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Hence, for large n,

log J1 = 2

(
n−1∑
k=3

αk log

(
1− aβkk /x
1 + aβkk /x

)
+

n−1∑
k=3

k−2∑
l=0

log

(
1− aµk,lk /x

1 + a
µk,l
k /x

))

> −8

(
n−1∑
k=3

αka
βk
k

x
+

n−1∑
k=3

k−2∑
l=0

a
µk,l
k

x

)
by (4.18)

> −16

(
n−1∑
k=3

αka
βk
k

an
+

n−1∑
k=3

k−2∑
l=0

a
µk,l
k

an

)
by (4.34)

> −16n2

(
αn−1a

βn−1

n−1

an
+
a
µn−1,n−3

n−1

an

)
≥ −16n2 exp(−e(n−1)/2) by (4.39).

It follows that by choosing n large we may assume that J1 ≥ 1
2
.

Secondly, recalling that x = bn + ωbn, with |ω| < δn = n−9, we have for large

n, by (4.26),

J2 =

(
an − bn − ωbn
an + bn + ωbn

)2

=

(
2− ωTn

2Tn + 2 + ωTn

)2

≥
(

1

3Tn

)2

≥ 1

36n6
.
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Thirdly we have, for large n,

1

2
log J3 =

∞∑
k=n+1

(
αk log

(
1− x/aβkk
1 + x/aβkk

)
+

k−2∑
l=0

log

(
1− x/aµk,lk

1 + x/a
µk,l
k

))

+ αn log

(
1− x/aβnn
1 + x/aβnn

)
+

n−2∑
l=1

log

(
1− x/aµn,ln

1 + x/a
µn,l
n

)

> −4

(
∞∑

k=n+1

(
αkx

aβkk
+
kx

ak

)
+
αnx

aβnn
+ n

x

aµnn

)
by (4.18)

> −8

(
∞∑
k=1

(
αn+kan

a
βn+k
n+k

+
(n+ k)an
an+k

)
+
αnan

aβnn
+ n

an
aµnn

)
by (4.34)

> −8

(
∞∑
k=1

an
an+k−1

(
αn+kan+k−1

a
βn+k
n+k

+
(n+ k)an+k−1

an+k

)
+ 2n exp(−en/2)

)
by (4.38)

> −8

(
∞∑
k=1

an
an+k−1

(n+ k + 1) exp(−e(n+k)/2) + 2n exp(−en/2)

)
by (4.39)

> −8 exp(−en/2)

(
∞∑
k=1

(n+ k + 1)
an

an+k−1

+ 2n

)

> −8 exp(−en/2)

(
∞∑
k=2

(n+ k + 1)a
2(k−1)

n3(k−1)
−1

n+k−1 + 4n

)
by (4.36)

> −8 exp(−en/2)

(
∞∑
k=2

(n+ k + 1)a
− 1

2
n+k−1 + 4n

)

> −8 exp(−en/2)

(
∞∑
k=2

(n+ k + 1) exp(−en+k−1/2) + 4n

)
by (4.37)

> − exp(−en/4).

Thus, for large n, we have J3 ≥ 1
2
. This establishes our first claim.

To complete the proof of the lemma, we need to show that ε satisfies (4.1).

We claim that, for large n,

M(an(1 + δn)) ≤ an+2.
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To do this, we consider the quotient of f(2bn) and an+1, gathering together

the terms in the products for these quantities prior to the nth term, the nth term,

and the remaining terms (which occur only in the product for f(2bn)). We obtain

f(2bn)

an+1

= K1K2K3, (4.19)

where

K1 =
n−1∏
k=3


(

2bn + aβkk
bn − aβkk

)2αk k−2∏
l=0

(
2bn + a

µk,l
k

bn − a
µk,l
k

)2
 ,

K2 =
2Tn+1

Tn+1 + 2

(
an

an − bn

)2(
1 +

2bn
an

)2

,

K3 =
∞∏

k=n+1


(

1 +
2bn

aβkk

)2αk k−2∏
l=0

(
1 +

2bn

a
µk,l
k

)2


(

1 +
bn

aβnn

)2αn n−2∏
l=1

(
1 +

2bn

a
µn,l
n

)2

.

It follows by (4.34) and (4.39) that each term being squared in the product

in K1 is less that 4. Hence, by (4.25) we have that K1 < 212n4
.

It follows by (4.26) and (4.34) that K2 < 50n6.

A calculation almost identical to that for I2 shows that K3 < 2; we omit the

details. It follows that f(2bn)/an+1 < 224n4
. Hence, by (4.34), (4.36) and (4.37),

M(an(1 + δn)) ≤M(2bn) = f(2bn) < 224n4

an+1 ≤ a2
n+1 ≤ an+2, (4.20)

as required.

Suppose then that r is such that an−1(1 + δn−1) < r ≤ an(1 + δn). Since ε is

nonincreasing, we deduce that, for k ∈ N,

ε(Mk(r)) ≥ ε(Mk(an(1 + δn))),

≥ ε(an+2k), by (4.20)

=
1

144(n+ 2k)6
≥ 1

(144n6)k+1
= ε(r)k+1.

Thus ε satisfies (4.1). This completes the proof of Lemma 4.5.1 and hence the

proof of Theorem 4.1.1.
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4.6 Appendix: defining the sequences

In this section we first define the sequences (αn)n∈N and (βn)n∈N, and then

define the sequences (an)n∈N and (bn)n∈N.

Recall from Section 4.2 that µn = n3/n and µn,m = µmn ; we also define, for

n ≥ 3,

σn =
n−2∑
l=1

µn,l = µn
µn,n−2 − 1

µn − 1
. (4.21)

We define (αn)n∈N to be a sequence of integers and (βn)n∈N to be a sequence of

real numbers. Assume that N0 is even and chosen sufficiently large for subsequent

estimates to hold. Set

2αn =



0, for n < N0,

N3
0 + 2N2

0 + 6N0 + 2, for n = N0,

3n2 + n+ 6, for n > N0, n even,

3n2 + n+ 4, for n > N0, n odd.

(4.22)

Note that αn is an integer, for n ∈ N. Set

βn =


0, for n < N0,

1
αn

(n4 − σn), for n ≥ N0, n even,

1
αn

(n
3(2n−1)

2
− σn), for n ≥ N0, n odd.

We observe that these choices imply that

τn =
2

n3
(αnβn + σn) (4.23)

satisfies

τn =

2n, for n ≥ N0, n even,

2n− 1, for n ≥ N0, n odd,
(4.24)

and

2αn = 3n2 + n+ 3 + τn − τn−1, for n > N0. (4.25)
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We also define a sequence of integers (Tn)n∈N by

Tn =

n3 + 2n− 3, for n even,

n3 + 2n− 2, for n odd.
(4.26)

Next we prove a result which gives various relationships between these sequences.

Lemma 4.6.1. The following all hold for the choice of sequences above:

αn ∼
3

2
n2, βn ∼

2

3
n2, as n→∞, (4.27)

2
n∑
k=3

αk = n3 + 2n2 + 4n+ 2 + τn, for n ≥ N0, (4.28)

1 + 2
n−1∑
k=3

αk +
n−1∑
k=3

k−2∑
l=0

2 = n3 + τn−1 = Tn, for n > N0, (4.29)

and

µn,2 < βn < µn,n−3, for large n. (4.30)

Proof. The first half of (4.27) is immediate from (4.22). Now, by (4.22), (4.23)

and (4.24),

βn ∼
2n

3

(
n− σn

n3

)
, as n→∞. (4.31)

We have that
x

2
≤ log(1 + x) ≤ x, for 0 < x <

1

2
. (4.32)

Putting x = µn − 1, we obtain

3

n
log n ≤ µn − 1 ≤ 6

n
log n, for large n. (4.33)

Hence, by (4.21),

σn
n3

=
µn
µn,n

µn,n−2 − 1

µn − 1
∼ 1

µn(µn − 1)
= O

(
n

log n

)
as n→∞,
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and the second half of (4.27) follows by (4.31).

We can see that (4.28) holds by induction. For, it is immediately satisfied

when n = N0. When n = m > N0 we have, by (4.25) and (4.28) with n = m− 1,

2
m∑
k=3

αk = 2αm + 2
m−1∑
k=3

αk = m3 + 2m2 + 4m+ 2 + τm.

Finally (4.29) follows from (4.24), (4.26), and (4.28), and (4.30) follows from

(4.27).

Next we define the sequence (an)n∈N recursively, and for each n ∈ N put

bn = an −
2

Tn + 2
an =

Tn
Tn + 2

an. (4.34)

Choose a3 and N1 large, and set an+1 = an
3

n , for 3 ≤ n < N1. We assume that a3

and N1 are chosen sufficiently large for various estimates in the sequel to hold.

For n ≥ N1, we define

an+1 =
(Tn+1 + 2)

Tn+1

bn

(
1− bn

an

)2 n−1∏
k=3


(

1− bn

aβkk

)2αk k−2∏
l=0

(
1− bn

a
µk,l
k

)2

 .

(4.35)

Finally in this section we prove a set of inequalities which concern the growth

of the sequence (an), and the ratios of these numbers to the modulus of the other

zeros of f . Note that (4.27) and (4.37) imply that the product in (4.2) is locally

uniformly convergent in C ; see, for example, [2, Theorem 6 p.192].

Lemma 4.6.2. The following inequalities hold for the sequence (an) defined

above. For n ≥ 3,

an
3−2/n
n ≤ an+1 ≤ an

3+2/n
n , (4.36)

an > exp(en), (4.37)
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and, for large n,

an
aµnn
≤ exp(−en/2),

αnan

aβnn
≤ exp(−en/2), (4.38)

a
µn,n−2
n

an+1

≤ exp(−en/2),
αna

βn
n

an+1

≤ exp(−en/2). (4.39)

Proof. First, assume that (4.36) holds for 3 ≤ n ≤ m. Equation (4.37) follows

for 3 ≤ n ≤ m by a simple induction. Hence, for sufficiently large m, by (4.27),

(4.33), (4.36) and (4.37):

am
aµmm

= a1−µm
m ≤ exp(em(1− µm)) ≤ exp(−em/2);

αmam

aβmm
≤ 3m2a1−m2/2

m ≤ exp(−em/2);

a
µm,m−2
m

am+1

≤ (aµm,m−2
m )1−µm,2+ 2

m ≤ exp(em(1− µm,2 +
2

m
)) ≤ exp(−em/2);

αma
βm
m

am+1

≤ 3m2am
2−m3+2/m

m ≤ exp(−em/2).

It remains to prove (4.36). We can assume, by taking N1 sufficiently large, that

(4.36) holds for 3 ≤ n ≤ m − 1, for some large m. We can assume also that

m is sufficiently large that (4.29), (4.30) and various other estimates used in the

following hold. We need to prove that (4.36) holds for n = m. Now, by (4.35),

am+1 =
(Tm+1 + 2)

Tm+1

bκmm

(
1− bm

am

)2
L1∏m−1

k=3

{
a2αkβk
k

∏k−2
l=0 a

2µk,l
k

}
= km

aκmm

a
2αm−1βm−1

m−1

∏m−3
l=1 a

2µm−1,l

m−1

L1

L2

= km
aκmm

a
(m−1)3τm−1

m−1

L1

L2

, (4.40)

where, by (4.34),

km =
(Tm+1 + 2)

Tm+1

(
Tm

Tm + 2

)κm ( 2

Tm + 2

)2

,
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L1 =
m−1∏
k=3


(

1− aβkk
bm

)2αk k−2∏
l=0

(
1− a

µk,l
k

bm

)2
 ,

by (4.23) again,

L2 = a2
m−1

m−2∏
k=3

{
a2αkβk
k

k−2∏
l=0

a
2µk,l
k

}

= a2
m−1

m−2∏
k=3

a
2(1+αkβk+

∑k−2
l=1 µk,l)

k by gathering powers

= a2
m−1

m−2∏
k=3

a2+k3τk
k by (4.21) and (4.23),

and, by (4.29),

κm = 1 + 2
m−1∑
k=3

αk +
m−1∑
k=3

k−2∑
l=0

2 = m3 + τm−1 = Tm.

Note that the calculation of L1 in the first step follows by writing terms of (4.35)

such as (
1− bm

ak

)2

in the form (
bm
ak

)2(
1− ak

bm

)2

.

We now estimate the terms in this equality. Firstly, by (4.26), and noting that

(Tm/(Tm + 2))Tm > 1/e2, we obtain

1

8
m−6 < km < 8m−6.

Secondly, by (4.36), with n = m− 1,

a
(m−1)3

m−1 ≤ a
(1− 2

(m−1)4
)−1

m ≤ a
1+ 4

(m−1)4

m ,
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and so, by (4.24),

aκmm

a
(m−1)3τm−1

m−1

≥ a
κm−τm−1−

4τm−1

(m−1)4

m = a
m3− 4τm−1

(m−1)4

m ≥ a
m3− 1

m
m .

Similarly, by (4.24) and (4.36),

aκmm

a
(m−1)3τm−1

m−1

≤ a
m3+ 1

m
m .

Thirdly, we consider L1. For large m we have

logL1 = 2
m−1∑
k=3

αk log

(
1− aβkk

bm

)
+ 2

m−1∑
k=3

k−2∑
l=0

log

(
1− a

µk,l
k

bm

)

≥ 2mαm−1 log

(
1−

a
βm−1

m−1

bm

)
+m2 log

(
1−

a
µm−1,m−3

m−1

bm

)

> −4m
αm−1a

βm−1

m−1

bm
− 2m2a

µm−1,m−3

m−1

bm
by (3.7)

> −8m
αm−1a

βm−1

m−1

am
− 4m2a

µm−1,m−3

m−1

am
by (4.34)

≥ −8m2 exp
(
−e

m−1
2

)
by (4.39).

It follows that, for large m, we have 1
2
< L1 < 1.

Finally, we consider L2. For large m we have

L2 = a2
m−1a

2+(m−2)3τm−2

m−2

m−3∏
k=3

a2+k3τk
k

< a2
m−1a

2+(m−2)3τm−2

m−2 a
(2+(m−3)3τm−3)(m−5)
m−3

< a2
m−1a

2m4

m−2a
2m5

m−3 by (4.24)

< a2
m−1a

8m
m−1a

32/m
m−1 by (4.36)

< a16m
m−1

< a64/m2

m by (4.36).

Hence 1 < L2 < a
64/m2

m .
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Thus, by (4.40), for sufficiently large m,

am+1 ≥
1

16
m−6a

m3− 1
m
− 64
m2

m ≥ a
m3− 2

m
m ,

and similarly,

am+1 ≤ 8m−6a
m3+ 1

m
m ≤ a

m3+ 2
m

m .

This completes the proof of Lemma 4.6.2.
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Chapter 5

A new characterisation of the

Eremenko-Lyubich class

5.1 Introduction

Recall from Section 1.3 that the Eremenko-Lyubich class of transcendental

entire functions consists of those with a bounded set of singular values. In this

chapter we give a new characterisation of this class of functions. We also give a

new result regarding direct singularities which are not logarithmic.

Note that this chapter is of a slightly different character to the rest of the

thesis; although the Eremenko-Lyubich class of functions has been much studied

in complex dynamics, here our domain of study is complex analysis.

As elsewhere in this thesis, we assume that f is a transcendental entire func-

tion. An important property of functions in the Eremenko-Lyubich class is that

they are expanding, in the following sense. Define

DR = {z : |f(z)| > R}, for R > 0.

If f ∈ B, then it follows easily from [41, Lemma 1] that there is a constant R0 > 0

such that ∣∣∣∣z f ′(z)

f(z)

∣∣∣∣ ≥ 1

4π
(log |f(z)| − logR0), for z ∈ DR0 . (5.1)

This property has many applications in complex dynamics and value distribution
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theory; for example, it was used in [41] to show that functions in the Eremenko-

Lyubich class cannot have escaping Fatou components.

Define also

ηf = lim
R→∞

inf
z∈DR

∣∣∣∣z f ′(z)

f(z)

∣∣∣∣ . (5.2)

It follows from (5.1) that if f is a transcendental entire function in the Eremenko-

Lyubich class, then ηf = ∞. The first main result of this chapter is the following,

which shows that this property has a strong converse.

Theorem 5.1.1. Suppose that f is a transcendental entire function. Then, either

ηf =∞ and f ∈ B, or ηf = 0 and f /∈ B.

It is clear that if f has an unbounded set of critical values, then ηf = 0. Thus

the proof of Theorem 5.1.1 requires detailed analysis of the behaviour of functions

with an unbounded set of asymptotic values. Since every asymptotic value of f

gives rise to a transcendental singularity of f−1, we need a number of results on

singularities of the inverse function. In particular we require the following result

on the density of transcendental singularities of a certain type, which may be of

independent interest. Definitions of terms used in the statement of this theorem

are given in Section 1.3 and Section 5.2.

Theorem 5.1.2. Suppose that f is a transcendental entire function, with a di-

rect non-logarithmic singularity with projection a ∈ Ĉ. Then at least one of the

following holds:

(i) a is the limit of critical values of f ;

(ii) every neighbourhood of this singularity contains a neighbourhood of another

transcendental singularity of f−1 that is either indirect or logarithmic, and

whose projection is different from a.

We observe that Theorem 5.1.2 is complementary to the following result of

Bergweiler and Eremenko [24, Theorem 5], which has almost the same hypothesis

although in this result the projection of the transcendental singularity must be

finite.
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Theorem 5.1.3. Suppose that f is a transcendental entire function, with a direct

non-logarithmic singularity with projection a ∈ C. Then every neighbourhood of

this singularity is also a neighbourhood of other direct singularities of f−1 with

projection a.

Taken together, these results show that if a ∈ C is the projection of a direct

non-logarithmic singularity and is not the limit of critical values, then there is an

infinite number of singularities both over a and over points arbitrarily close to a.

We mention two examples of transcendental entire functions with direct non-

logarithmic singularities which illustrate some of the possibilities described above.

Example 5.1.1. Heins [53, p.435] gave the example f1(z) = ez sin(ez), which has

precisely one direct non-logarithmic singularity over ∞. Since the set of critical

values of f1 is unbounded, case (i) of Theorem 5.1.2 holds for this function. This

example also shows that Theorem 5.1.3 cannot be strengthened to a ∈ Ĉ.

Example 5.1.2. Herring [56] gave the example f2(z) =
∫ z

0
exp(−et) dt. This

function has no critical points. It follows from results in [56] that f2 has a direct

non-logarithmic singularity over∞, every neighbourhood of which contains a left

half-plane. It also follows that within each set

Ak = {z : Re(z) > 0, | Im(z)− 2kπ| ≤ π/2}, for k ∈ Z,

there is a neighbourhood of a logarithmic singularity with projection

αk = α + 2kπi, where α ∈ C is constant.

Moreover, each neighbourhood of the direct non-logarithmic singularity over ∞
contains neighbourhoods of these logarithmic singularities. Hence case (ii) of

Theorem 5.1.2 holds for f2.

The structure of this chapter is as follows. In Section 5.2 we give details

of Iversen’s classification of singularities. We then prove Theorem 5.1.2 in Sec-

tion 5.3. Finally, in Section 5.4, we use Theorem 5.1.2 to prove Theorem 5.1.1.
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5.2 Singularities of the inverse function

We recall Iversen’s classification of singularities; see, for example, [21], [24],

and [60]. Note that the definitions of this section coincide with those in Sec-

tion 1.3, but we require slightly more detail to classify transcendental singulari-

ties.

Suppose that f is a transcendental entire function, and suppose that a ∈ Ĉ.

For each r > 0, we can choose a component U(r) of f−1(B(a, r)) so that r1 < r2

implies that U(r1) ⊂ U(r2). Then we have two possibilities:

(a) ∩r>0U(r) consists of a single point w, say, or

(b) ∩r>0U(r) = ∅.

In the first case, if f ′(w) = 0, then w is a critical point of f , a is a critical value

of f , and we say that the singularity is algebraic. A simple example is when

f(z) = exp(z2). This function has a critical point at the origin, with critical

value equal to 1.

In the second case we say that the choice r 7→ U(r) defines a transcendental

singularity of f−1, and we say that a is the projection of the transcendental

singularity or equivalently that the transcendental singularity is over a. Any of

the sets U(r) is called a neighbourhood of the transcendental singularity. Note

that, by a compactness argument, we have that dist(U(r), 0) → ∞ as r → 0.

A simple example is when f(z) = exp(z). This function has a transcendental

singularity over the origin.

We say that a transcendental singularity over a point a is direct if there exists

r > 0 such that f(z) 6= a, for z ∈ U(r). Otherwise we call the transcenden-

tal singularity indirect. A simple example of a direct singularity occurs when

f(z) = exp(z), which has a direct singularity over the origin. An example of an

indirect singularity occurs when

f(z) =
sin z

z
,

which can be seen to have two indirect singularities over the origin.
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In order to give a more detailed classification of direct singularities, we need an

additional definition. Suppose that V and W are domains, and that φ : V → W

is an analytic function such that the following holds. For each w ∈ W there exists

an open neighbourhood of w, ∆ ⊂ W , such that each connected component of

φ−1(∆) is mapped conformally by φ onto ∆. Then we say that φ : V → W is a

covering map.

We call a direct transcendental singularity over a point a logarithmic if, for

some r > 0, the restriction f : U(r) → B(a, r)\{a} is a covering map, and U(r)

is simply connected. If a transcendental singularity is direct but not logarithmic,

we use the term direct non-logarithmic.

Recall from Section 1.3 that a curve Γ : (0, 1) → C is an asymptotic curve

with asymptotic value a if, as t → 1, we have both Γ(t) → ∞ and f(Γ(t)) → a.

Given a transcendental singularity over a point a it is possible to construct an

asymptotic curve with asymptotic value a, and vice versa; see [21, p.356] for

details.

5.3 Direct non-logarithmic transcendental singularities

In this section we prove Theorem 5.1.2. We need the following theorem of

Heins [53, Theorem 4′].

Theorem 5.3.1. Suppose that f is a transcendental entire function, D ⊂ C is a

domain, and W is a component of f−1(D). Then either fW , the restriction of f

to W , has finite constant valence in D, or else there is at most one point of D at

which the valence of fW is finite.

Here the valence of a point a ∈ D is the number of solutions of f(z) = a, for

z ∈ W . It follows from Theorem 5.3.1 that there cannot be two distinct points

a, a′ ∈ D such that f(z) ∈ {a, a′} has no solutions, for z ∈ W .

We also need the following result, and two corollaries of it. This seems to be

well-known, and follows from results such as [71, Example 4.2]. See also [108,

Theorem 6.1.1] for a detailed proof.

Theorem 5.3.2. Suppose that W ⊂ C is a domain, and that g : W → D∗ is a

covering map. Then exactly one of the following holds:
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(i) there exists a conformal map φ : W → H such that g = exp ◦ φ;

(ii) there exists a conformal map φ : W → D∗ such that g = (φ)m, for some

m ∈ N.

The first corollary is similar to [108, Theorem 6.2.2], and differs from that

result in that it specifies the location of the neighbourhoods of the singularities,

which is necessary for the proof of Theorem 5.1.2. We give a proof for complete-

ness.

Corollary 5.3.3. Suppose that f is a transcendental entire function with a tran-

scendental singularity which is not logarithmic, over a point a ∈ Ĉ. Then at least

one of the following holds:

(i) a is the limit of critical values of f ;

(ii) every neighbourhood of this singularity contains a neighbourhood of another

transcendental singularity of f−1 whose projection is different from a.

Proof. Suppose that, contrary to the conclusion of the corollary, we can choose a

sufficiently small r > 0 such that there are no critical points of f in

W = U(r)\{z : f(z) = a},

and all transcendental singularities of f−1 with a neighbourhood contained in U(r)

have projection a. It follows that the restriction of f , fW : W → B(a, r)\{a} is

a covering map.

Let h be a conformal map from B(a, r)\{a} to D∗. We apply Theorem 5.3.2

with g = h◦fW . If case (i) of the theorem holds, then W is simply connected, and

the singularity is logarithmic, which is a contradiction. If case (ii) of the theorem

holds, then the conformal mapping φ has a punctured disc in the Riemann sphere

as its domain, and at the puncture φ has a removable singularity. Hence, since

fW = h−1 ◦ (φ)m, the singularity is algebraic; this is also a contradiction.

The second corollary of Theorem 5.3.2 is similarly straightforward, and we

omit the proof.
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Corollary 5.3.4. Suppose that f is a transcendental entire function with a log-

arithmic singularity over a point a ∈ Ĉ. Then there exist a neighbourhood of

the singularity, W = U(r), and conformal maps h : B(a, r)\{a} → D∗ and

φ : W → H such that h ◦ f = exp ◦ φ.

We now prove Theorem 5.1.2.

Proof of Theorem 5.1.2. Suppose that f has a direct non-logarithmic singularity

over a point a ∈ Ĉ, and that a is not the limit of critical values of f . The existence

of transcendental singularities, over points other than a, in any neighbourhood

of this direct non-logarithmic singularity follows from Corollary 5.3.3; we need

to show that in any neighbourhood of this singularity there are singularities over

points other than a, which are either logarithmic or indirect.

The structure of the proof is as follows. We assume the contrary, and con-

struct a sequence of direct non-logarithmic singularities the projections of which

have a limit. We show that this limit is itself the projection of a direct non-

logarithmic singularity, and use the comment after Theorem 5.3.1 to obtain a

contradiction. Figure 5.1 illustrates the points and sets constructed, and is in-

tended to be consulted alongside the text. On the right-hand side of the figure we

see some of the asymptotic values constructed in the proof, and discs surrounding

these. In particular D is the disc with centre a′, shown with dashed boundary.

Contained in D is a disc with centre aN , shown with dotted boundary. On the

left-hand side of the figure, using corresponding styles of lines for the boundaries,

are the components of the preimages of these sets used in the proof; for example

f(W ) = D. We also show the asymptotic curve Γ constructed in the proof.

Let r0 > 0 be such that there are no critical values of f in B(a, r0) and also,

since the transcendental singularity is assumed to be direct, such that f(z) 6= a,

for z in the neighbourhood U(r0). Suppose also that r0 is sufficiently small that all

transcendental singularities, over points other than a and with a neighbourhood

contained in U(r0), are direct non-logarithmic.

Let (Rn) be any increasing sequence of positive real numbers such thatRn → ∞
as n → ∞. Recalling the definition of a neighbourhood of a transcendental sin-

gularity from Section 5.2, we construct a sequence of neighbourhoods of direct

non-logarithmic singularities Wn(rn), with projection an say, such that, for n ≥ 0,
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a = a0 

a1 

aN 

a’ 

r0 

D 

f 

Γ 

W0 (r0) 

W1(r1) 

 

WN(rN) 

W 

Figure 5.1: The construction used in the proof of Theorem 5.1.2.

• Wn+1(rn+1) ⊂ Wn(rn) ⊂ U(r0);

• Wn+1(rn+1) ∩B(0, Rn+1) = ∅;

• B(an+1, rn+1) ⊂ B(an, rn);

• an+1 6= a;

• the equation f(z) = an has no solutions for z ∈ Wn(rn);

• rn → 0 as n→∞.

We set W0(r0) = U(r0), a0 = a, note that r0 and R0 are already defined, and

then construct this sequence inductively. By assumption, Wn(rn) is a neighbour-

hood of a direct non-logarithmic singularity. Hence we can use Corollary 5.3.3
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to choose a transcendental singularity with projection an+1 say and with neigh-

bourhoods Wn+1(r), r > 0, such that

Wn+1(r′n+1) ⊂ Wn(rn), for some r′n+1 > 0,

and also such that 0 < |an+1 − an| < rn/2.

Next, recalling from Section 5.2 that dist(Wn+1(r), 0) → ∞ as r → 0, we

choose r′′n+1 > 0 such thatWn+1(r′′n+1)∩B(0, Rn+1) = ∅. By assumptionWn+1(r′n+1)

is a neighbourhood of a direct singularity with projection an+1. Hence, there ex-

ists rn+1 with

0 < rn+1 < min{r′n+1, r
′′
n+1, |an+1 − an|/4}

such that f(z) = an+1 has no solutions for z ∈ Wn+1(rn+1). Finally, both

B(an+1, rn+1) ⊂ B(an, rn) and an+1 6= a, by the choice of an+1 and rn+1. This

completes the construction.

Let a′ = limn→∞ an, which exists by our choice of rn. Note that, by construc-

tion, a′ 6= a. Let Γ be a curve produced inductively by joining a point in Wn(rn)

to a point in Wn+1(rn+1) using a curve lying in Wn(rn). By construction, Γ is

an asymptotic curve with asymptotic value a′. Hence a′ is the projection of a

transcendental singularity of f−1 which, by assumption, is direct non-logarithmic.

Choose r > 0 sufficiently small that D = B(a′, r) ⊂ B(a, r0), and such that

f(z) = a′ has no solutions in W , where W is the component of f−1(D) which has

unbounded intersection with Γ.

Now, by construction, a′ ∈ B(an, rn), for n ∈ N, and so there is an N > 0

such that a′ ∈ B(aN , rN) ⊂ D and also a′ 6= aN . Note that WN(rN) ⊂ W , since

the intersection of Γ and WN(rN) is unbounded. Then a′ and aN are two distinct

points in B(aN , rN) such that f(z) ∈ {a′, aN} has no solutions in WN(rN), which

is contrary to Theorem 5.3.1.

5.4 Proof of the main result

In this section we prove Theorem 5.1.1. We need the following, [34, Theo-

rem I.2.2].
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Theorem 5.4.1. Suppose that W ⊂ Ĉ is simply connected and ∂W has more

than one point. Let ψ be a conformal map from W to D, and let Γ be a Jordan

arc in W except for one endpoint z0 ∈ ∂W . Then the curve ψ(Γ) terminates in

a point s0 ∈ ∂D, and ψ−1(s)→ z0 as s→ s0 inside any Stolz angle at s0.

Here a Stolz angle at s0 ∈ ∂D is a set of the form;

{s ∈ D : | arg(1− s0s)| < α, |s− s0| < d}, for 0 < α < π/2, d < 2 cosα.

We also need the following result, which is a version of [21, Theorem 1] that

includes some assertions that appear only in the proof of that result; see also, [108,

Theorem 6.2.3].

Theorem 5.4.2. Suppose that f is a transcendental entire function with an in-

direct singularity with projection a ∈ Ĉ. Suppose that a is not the limit of critical

values of f . Then there exists a sequence of asymptotic values (an), which con-

verge to a, a sequence of disjoint unbounded simply connected domains (Un) such

that Dn = f(Un) is a disc with an ∈ ∂Dn, and a sequence of asymptotic curves

(Γn) such that Γn ⊂ Un, f(Γn) is a radius of Dn ending at an, and f is univalent

in Un.

Finally, we need the following lemma.

Lemma 5.4.3. Let f be a transcendental entire function. Suppose that for every

R > 0 there exist r > 0, a0 ∈ C with |a0| > R, an asymptotic curve Γ′ with

asymptotic value a0, W a simply connected neighbourhood of Γ′, and an analytic

map φ, univalent on W , such that φ(Γ′) is an interval (−∞, x0), and

f(z) = reφ(z) + a0, for z ∈ W. (5.3)

Then ηf = 0.

Proof. Suppose that ηf 6= 0. Then there exist ε, R > 0 such that∣∣∣∣z f ′(z)

f(z)

∣∣∣∣ > ε, for |f(z)| > R. (5.4)
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Choose a0 such that |a0| > 2R, let h = φ−1 and put t = φ(z). Then, as z → ∞
along Γ′, by (5.3) and (5.4),

ε <

∣∣∣∣z φ′(z)reφ(z)

reφ(z) + a0

∣∣∣∣ =

∣∣∣∣h(t)
φ′(h(t))ret

ret + a0

∣∣∣∣ =

∣∣∣∣ h(t)ret

h′(t)(ret + a0)

∣∣∣∣ ∼ ∣∣∣∣h(t)ret

h′(t)a0

∣∣∣∣ . (5.5)

Hence, for sufficiently large negative values of t,∣∣∣∣h′(t)h(t)

∣∣∣∣ < 2ret

ε|a0|
. (5.6)

Without loss of generality, by choosing an unbounded subset of Γ′ and relabeling,

if necessary, we can assume that (5.6) applies for all t ∈ (−∞, x0) and that 0 /∈ W .

Since W is simply connected, we can define a branch of the logarithm, L, in W .

Then, by (5.6), ∣∣∣∣ ddtL(h(t))

∣∣∣∣ < 2ret

ε|a0|
. (5.7)

We set ζ = L(h(t)) and integrate (5.7), to obtain

2r

ε|a0|

∫ x0

−∞
et dt >

∫ x0

−∞

∣∣∣∣ ddtL(h(t))

∣∣∣∣ dt ≥ ∣∣∣∣∫ x0

−∞

d

dt
L(h(t)) dt

∣∣∣∣ =

∣∣∣∣∫
L(Γ′)

dζ

∣∣∣∣ . (5.8)

Now, L(Γ′) is an unbounded curve, and so the right-hand side of (5.8) is infi-

nite. However, the left-hand side of (5.8) is finite. This contradiction completes

the proof.

We now prove Theorem 5.1.1.

Proof of Theorem 5.1.1. As mentioned in the introduction, it is clear that if

f ∈ B then ηf =∞. Suppose, then, that ηf 6= 0. It is immediate from (5.2) that

the set of critical values of f is bounded. To complete the proof, we show that

f cannot have an unbounded set of finite asymptotic values, and so f ∈ B, and

hence ηf = ∞. To achieve this we show first that f cannot have an unbounded

set of projections of logarithmic singularities. We then show that f cannot have

an unbounded set of projections of indirect singularities. Finally, we show that
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f cannot have an unbounded set of projections of direct non-logarithmic singu-

larities.

Our first claim then is that f cannot have an unbounded set of projections

of logarithmic singularities. Figure 5.2 illustrates some of the sets and functions

used in the next part of the proof.

a0  

f 

Γ 

W 

 

Γ’ 

 

 
 

(Γ) 

(Γ’) 

Figure 5.2: The sets and functions used in part of the proof of Theorem 5.1.1.

Suppose that, for every R > 0, f has a logarithmic singularity with projection

a0 ∈ C, such that |a0| > R. Noting that a0 is finite, we apply Corollary 5.3.4

to obtain a simply connected neighbourhood, W = U(r), of the singularity, and

a conformal map φ : W → H such that (5.3) holds for some r > 0. Let Γ be an

asymptotic curve in W associated with the logarithmic singularity.

Put t = φ(z) and let

s = σ(t) =
1− t
1 + t

.

Then ψ = σ ◦ φ is a conformal mapping of W to D. Moreover ψ(Γ) is a curve in
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D tending to −1.

We now construct another curve to ∞ in W which satisfies the hypotheses of

Lemma 5.4.3. Let Γ′ = φ−1((−∞, 0)). Then γ = ψ(Γ′) is a curve in D tending to

−1 within a Stolz angle. By Theorem 5.4.1, ψ−1(s)→∞ as s→ −1 along γ, and

so Γ′ is an asymptotic curve. Moreover, ret + a0 → a0 as t → −∞ along φ(Γ′),

and so Γ′ has asymptotic value a0. A contradiction follow by Lemma 5.4.3, since

we have assumed that |a0| > R. This establishes our initial claim.

We next show that f cannot have an unbounded set of projections of indirect

singularities. Suppose that, for every R > 0, f has an indirect singularity with

projection a ∈ C, such that |a| > 2R. By Theorem 5.4.2, f has an asymptotic

value a0, with |a0| > R, an asymptotic curve Γ′ associated with a0, and an

unbounded simply connected domain W containing Γ′ such that f is univalent

in W . Moreover, f(W ) is a disc, D, with a0 ∈ ∂D, and f(Γ′) is a radius in D

ending at a0.

Without loss of generality, by composing with a rotation if necessary, assume

that the centre of D is at a0 + ex0 , for some x0 ∈ R. Define a branch of the

logarithm, L1, such that ψ(w) = L1(w − a0) is a univalent map on D. Let φ

be the univalent map φ = ψ ◦ f . Note that φ(Γ′) = (−∞, x0), and (5.3) holds

with r = 1. A contradiction follows by Lemma 5.4.3, since we have assumed that

|a0| > R. This establishes our second claim.

Finally we show that the projections of direct non-logarithmic singularities are

bounded. This follows immediately from the fact that the projections of other

types of transcendental singularities are bounded and from Theorem 5.1.2. This

completes the proof.

Remark 5.4.1. It seems possible to generalise the result of Theorem 5.1.1 to

transcendental meromorphic functions with direct tracts (see, for example, [26]

for more background on this concept). We have not done this here, for reasons

of simplicity. However, the proof seems to work similarly, although a number of

results used in this chapter need to be generalised. In addition, we need to replace

Theorem 5.3.1 with [31, Corollary 1], and [41, Lemma 1] with [26, Lemma 6.3].
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Chapter 6

Questions for further research

6.1 Introduction

In this final chapter we briefly consider three areas of further study, which

arise from or are closely related to the work in this thesis.

6.2 Some families of transcendental entire functions

For n ∈ N, let ωn = e2πi/n be an nth root of unity. Consider the collection of

families of transcendental entire functions defined by

E =
∞⋃
n=1

En,

where

En = {f : f(z) =
n∑
k=1

ak exp(ωknz), where ak 6= 0 for k = 1, 2, · · · , n}, for n ∈ N.

The collection E forms a natural generalisation of the families E1 and E2, the

dynamics of which have been studied extensively. The family E1 is the well-known

exponential family, defined in Section 1.3. The family E2 consists of functions of

the form

f(z) = αez + βe−z, α 6= 0, β 6= 0,
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and so, up to a conjugacy, is the same family as the cosine family, also defined in

Section 1.3. It can be shown that

E ∩B = E1 ∪ E2.

The size of the Julia sets of functions in E1 and E2 was considered by Mc-

Mullen [69]. In particular he proved the following results. Here dimH V denotes

the Hausdorff dimension of a set V .

Theorem 6.2.1. If f ∈ E1, then dimH J(f) = 2.

Theorem 6.2.2. If f ∈ E2, then J(f) has positive area.

In fact, it can be seen from the constructions in [69] that these results hold,

more strongly, with J(f) replaced by J(f) ∩ A(f). The following question is

suggested by an analysis of McMullen’s proof of Theorem 6.2.2.

Question 1. Is it true that if f ∈ En, for n ≥ 2, then J(f) ∩ A(f) has positive

area?

We recall from Section 1.8 that Schleicher and Zimmer [95] showed that if

f ∈ E1, then J(f) ∩ I(f) is contained in a Cantor bouquet. Rottenfusser and

Schleicher [92] showed that the same is true when f ∈ E2. In Example 2.5.4,

however, it was shown that for the function

g(z) = cos z + cosh z,

we have that AR(g) is a spider’s web. We observe that g ∈ E4. This suggests the

following question.

Question 2. Is it true that if f ∈ En, for n ≥ 3, then AR(f) is a spider’s web?

We note that it can be shown that all functions in E are log-regular. Hence, by

a remark in [89], functions in E do not have multiply connected Fatou components.

Suppose that f ∈ En, for n ≥ 3. It follows that if Question 2 is answered in the

affirmative, then, by Theorem 1.9.1(c), both J(f) and J(f) ∩ I(f) are spiders’

webs. Moreover, if Question 1 is also answered in the affirmative, then J(f) is a

spider’s web with positive area.
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In a forthcoming paper, we hope to give positive answers to both Question 1

and Question 2, and so give the first result concerning the size of a spider’s web

Julia set.

Schleicher and Zimmer [95] showed that if f ∈ E1 then the Julia set of f

contains dynamic rays. Roughly speaking, a dynamic ray is an unbounded curve

of points which escape to infinity in a precisely defined manner. Rottenfusser

and Schleicher [92] showed that if f ∈ E2 then the Julia set of f contains a set

with similar properties. If f ∈ En, for n ≥ 2, then in very large parts of the

plane f behaves similarly to a function in E1 of large modulus. This suggests the

following question.

Question 3. Suppose that f ∈ E. Is it possible to define unbounded curves,

contained in J(f)∩I(f), with some of the properties of the dynamic rays discussed

in [92] and [95]?

If Question 2 and Question 3 were both answered in the affirmative, then this

would show that it is possible for a spider’s web Julia set to have a subset with

some of the dynamical properties of a Cantor bouquet.

The following question seems to be a natural consequence of Question 3.

Question 4. Suppose that f ∈ E. Is it the case that the strong form of Eremenko’s

conjecture holds for f?

6.3 A partition of the fast escaping set

The definition of the fast escaping set leads to a natural partition of A(f) into

two completely invariant components. Firstly we define

A′(f) = {z ∈ A(f) : there exists N ∈ N s.t. |fn+1(z)| = M(|fn(z)|), for n ≥ N}.

The set A′(f) consists of points which, after at most a finite number of iterations,

always achieve the maximum possible growth. These points can perhaps truly be

described as escaping ‘as fast as possible’.

It is possible to construct functions for which A′(f) is not empty. For ex-

ample, suppose that fλ(z) = λez, for λ > 0. It is easy to see that there exists
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β = β(λ) ≥ 0 such that

A′(fλ) = {z : fnλ (z) ≥ β, for some n ∈ N}, (6.1)

and so A′(fλ) consists of an unbounded interval of the real line together with all

the preimages of this interval. Indeed, any transcendental entire function which

has only positive non-zero real coefficients in its power series expansion satisfies

(6.1), for some β ≥ 0.

Question 5. Is it the case that A′(f) consists of, at most, a countable union of

analytic curves?

It is also possible to construct functions for which A′(f) = ∅. For example,

if f(z) = iez, then f achieves its maximum modulus only on the positive real

axis, but the image of any point on the real axis is imaginary. It follows that

A′(f) = ∅.
Finally, it may be possible to show that A′(f) can have unexpected properties.

Hardy [49] introduced the function

f(z) = exp(ez
2

+ sin z).

Question 6. Is it the case, as seems likely, that A′(f) is totally disconnected, in

which case A′(f) – in contrast to A(f) – may contain bounded components?

Finally, we define

A′′(f) = A(f)\A′(f).

The set A′′(f) can be described as the set of points which escape quickly, but not

quite as fast as possible.

Question 7. Is it the case that if f is a transcendental entire function, then

A′′(f) 6= ∅?

Question 8. Is it possible to use the properties of A′(f) and A′′(f) to obtain

further information on the structure or properties of A(f) and I(f)?
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6.4 The behaviour of Mn(RA(z)) as n→∞

In Theorem 3.7.9 we showed that if f is a transcendental entire function with

f(0) = 0, and z is in a multiply connected Fatou component of f , then

lim
n→∞

log |fn(z)|
logMn(RA(z))

= 1.

The only known examples of functions with simply connected fast escaping

Fatou components are given in [20], [75] and Chapter 4. It can be shown that,

for the example in Chapter 4, if z is in one of the simply connected fast escaping

Fatou components, then we have the stronger result that

lim
n→∞

|fn(z)|
Mn(RA(z))

= 1. (6.2)

The example in [20] is not given in an explicit form, so it seems harder to check

if (6.2) applies in this case. However, the following question does appear natural.

Question 9. Does a result similar to (6.2) hold, in general, for simply connected

fast escaping Fatou components?
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[45] P. Fatou. Sur les équations fonctionnelles. Bull. Soc. Math. France, 48:208–

314, 1920.

138
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