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Abstract

The aim of the paper is to provide the mathematical foundation of e�ective

numerical algorithms for the optimal design of periodic binary gratings. Special

attention is paid to fast and reliable methods for the computation of di�raction ef-

�ciencies and of the gradients of certain functionals with respect to the parameters

of the non{smooth grating pro�le. The methods are based on a generalized �nite

element discretization of strongly elliptic variational formulations of quasi periodic

transmission problems for the Helmholtz equation in a bounded domain coupled

with boundary integral representations in the exterior. We prove uniqueness and

existence results for quite general situations and analyse the convergence of the nu-

merical solutions. Furthermore, explicit formulas for the partial derivatives of the

re
ection and transmission coe�cients with respect to the parameters of a binary

grating pro�le are derived. Finally, we brie
y discuss the implementation of a gradi-

ent type algorithm for solving optimal design problems and present some numerical

results.

1 Introduction

The practical application of di�ractive optics technology has driven the need for mathe-

matical models and numerical codes both to provide rigorous solutions of the full electro-

magnetic vector-�eld equations for complicated grating structures, thus predicting per-

formance given the structure, and to carry out optimal design of new structures.

The aim of the present paper is to provide the mathematical foundation of e�ective

numerical algorithms for the optimal design of periodic binary gratings. Special attention

is paid to fast and reliable methods for the computation of di�raction e�ciencies and of

the gradients of certain functionals with respect to the parameters of the non{smooth

grating pro�le.

The case of periodic gratings corresponds to quasi{periodic transmission problems for

the Helmholtz equation in the whole plane. Special mathematical di�culties are associ-

ated with the numerical solution of these problems due to the highly oscillatory nature

of waves and interfaces. Various methods based on Rayleigh expansion, ordinary dif-

ferential and integral equations and on analytical continuation have been proposed (cf.

the monograph [22] and the recent papers [23], [7]), which turned out to be e�cient for

solving the direct di�raction problem in the case of smooth interfaces between di�erent

materials. The situation is much worse for binary structures whose surface pro�le is given

by a piecewise constant function. Here the mathematical complexities are ampli�ed by

singularities of the solutions caused by the non-smooth grating pro�le. Recently, a new

variational approach was proposed by Bao and Dobson ([12], [4], [6], [15]) which appears

to be well adapted to very general di�raction structures as well as complex materials.

Furthermore, this approach may be generalized to the three-dimensional case and can be

used in gradient methods for solving optimal design problems. However, the mathemat-

ical foundation of this approach seems to be incomplete; in particular, it does not cover

all materials occuring in practice and excludes the so{called Rayleigh frequencies.

In the present paper a uni�ed analysis is carried out both for the TE and the TM

case leading to more general solvability results and to a rigorous convergence analysis

for coupled �nite element/boundary element solution methods. It turns out that the

approach by Bao and Dobson results in fact from the coupling of the variational method
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for the Helmholtz equation in a bounded domain with the integral representation for

solutions satisfying the radiation condition. This coupling leads here to nonsymmetric,

but strongly elliptic variational formulations of both problems allowing the application

of well established techniques to their study. Moreover, this technique can be applied to

more general problems including the so-called conical di�raction on periodic gratings and

various di�raction problems for biperiodic gratings. This will be the topic of a forthcoming

paper.

The obtained results are used to derive explicit formulas for the partial derivatives of

the re
ection and transmission coe�cients with respect to the parameters of a binary

grating pro�le. This allows us to compute the gradients for a general class of functionals

involving the Rayleigh coe�cients of both TE and TM modes. It is proved that these

functionals are C1 so that gradient type methods can be applied to �nd local minima of

functionals characterizing desired optical properties of binary gratings. There have been

a number of papers from the engineering community that are concerned with optimal

design of periodic gratings. In these papers descent methods based on simple di�erence

quotients were used which, however, are very expensive for a large number of parameters.

So far rigorous gradient formulas were obtained only for the TE case; see [12], [6], where

interface mixture problems have been studied.

The outline of the paper is as follows. In Section 2 we formulate the di�raction prob-

lems and reduce them to strongly elliptic variational formulations in a bounded domain.

This will be used in Section 3 to study existence and uniqueness questions for the con-

tinuous direct and adjoint problems. Further we investigate the regularity of the TM

solution on the non{smooth grating pro�le. In Section 4 we consider problems connected

with the optimization of grating e�ciencies. We prove explicit formulas for the partial

derivatives of the re
ection and transmission coe�cients with respect to the height and

the transition points of the binary grating pro�le. These formulas are applied to evaluate

the gradient of a typical functional occuring in the optimal design of binary gratings.

Finally, in Section 5 we study the numerical solution of the di�raction problems. Us-

ing the strong ellipticity of the variational formulations a uni�ed convergence analysis is

performed for the Galerkin approximation of the equations with truncated hypersingular

boundary operators. Furthermore, we study the generalized FEM with minimal pollution

for the Helmholtz equation, leading to essentially better numerical results.

2 Preliminaries

2.1 The Helmholtz equation

Suppose that the whole space is �lled with nonmagnetic material with a dielectric coef-

�cient function �, which in Cartesian coordinates (x1; x2; x3) does not depend on x3, is

2�-periodic, �(x1 + 2�; x2) = �(x1; x2), and homogeneous above and below certain inter-

faces. This paper is mainly concerned with the solution of optimal design problems by

varying the form of the upper interface, denoted in the sequel by �0 or �. The lower

interface will be denoted by �1. The surfaces �0 and �1 will be assumed to be given by

x2 = fj(x1) for certain 2�{periodic functions fj , j = 0; 1. The material in the region

G+ above the grating surface �0 has the constant dielectric coe�cient � = �+, whereas

the medium in G� below �1 is homogeneous with � = ��. The medium in the region G0
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between �0 and �1 may be inhomogeneous with �0 = �, where we assume for simplicity

that the function �0 is piecewise smooth with jumps at certain interfaces �j , j = 2; : : : ; `.

Assume the grating is illuminated by a monochromatic plane wave

~Ei = ~A exp(i�x1 � i�x2) exp(�i!t) ; ~H i = ~B exp(i�x1 � i�x2) exp(�i!t) ; (2.1)

with � 6= 0. Here, the complex amplitude vector ~A is perpendicular to the wave vector
~k = (�;��; 0), and ~B = (!�)�1~k� ~A with the everywhere constant magnetic permeability

�.

The incident wave ( ~Ei; ~H i) will be di�racted by the grating, and the total �elds will be

given by
~Eup = ~Ei + ~Erefl ; ~Hup = ~H i + ~Hrefl

in the region G+, by ~Eint and ~H int in G0 and by

~Edown = ~Erefr ; ~Hdown = ~Hrefr

in the region G�. Dropping the factor exp(�i!t), the incident, di�racted and total �elds

satisfy the time{harmonic Maxwell equations

r� ~E = i!� ~H ; r � ~E = 0 ; r� ~H = �i!� ~E ; r � ~H = 0 :

Additionally the tangential components of the total �elds are continuous when crossing

an interface between two continous media

� � ( ~E1 � ~E2) = 0 ; � � ( ~H1 � ~H2) = 0 on �j ; (2.2)

where � is the unit normal to the interface �j. The periodicity of �, together with the

form of the incident wave, imply that the physical solutions ~E and ~H are independent of

x3 and must be � quasi{periodic in x1, i.e.

~E(x1 + 2�; x2) = exp(2�i�) ~E(x1; x2) ~H(x1 + 2�; x2) = exp(2�i�) ~H(x1; x2) :

Further, ~E and ~H can be represented as the superposition of solutions corresponding to

the TE case (Field Transverse Electric), where

~Ei = (0; 0; A3) exp(i�x1 � i�x2) ; ~H i = �(!�)�1(�A3; �A3; 0) exp(i�x1 � i�x2)

and to the TM case (Field Transverse Magnetic) with

~Ei = (A1; A2; 0) exp(i�x1 � i�x2) ; ~H i = (!�)�1(0; 0; �A1 + �A2) exp(i�x1 � i�x2) :

Denote by ui the normed transverse component ~Ei �~x3 for TE or ~H i �~x3 for TM. Obviously

ui = exp(i�x1 � i�x2) with k+ = !(��+)1=2, � = k+ sin �, � = k+ cos �, and the angle

of incidence � 2 (��=2; �=2). Then the di�raction problem for periodic gratings and

incoming �elds (2.1) splits into two scalar problems associated with the TE and TM

mode:

The � quasi{periodic functions u�(x1; x2) and u0(x1; x2) equal to either the transverse

component ~E � ~x3 for TE or ~H � ~x3 for TM in G� and G0, resp., are easily seen to satisfy,

in either case, the Helmholtz equations

�u� + (k�)2u� = 0 inG� ;

�u0 + (k0)
2 u0 = 0 inG0 ;

(2.3)
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where k� = !(���)1=2 are constants and k0 = !(��0)
1=2.

The boundary conditions (2.2) are translated into transmission conditions for the un-

knowns u� and u0 in the following way:

(i) TE mode:

u+ + ui = u0 ; @(u+ + ui)=@� = @u0=@� on �0 ;

u� = u0 ; @u�=@� = @u0=@� on �1 ;

u0j
+

�j
= u0j

�

�j
; @u0=@�j

+

�j
= @u0=@�j

�

�j
j = 2; ::; ` ;

(2.4)

with the incoming wave ui = exp(i�x1 � i�x2), where u0j
�

�j
denote the limits if u0 ap-

proaches �j , j = 2; : : : ; `, from above or below, respectively.

(ii) TM mode:

u+ + ui = u0 ; (k+)�2 @(u+ + ui)=@� = k�2 @u0=@� on �0 ;

u� = u0 ; (k�)�2 @u�=@� = k�2 @u0=@� on �1 ;

u0j
+

�j
= u0j

�

�j
; (k�2 @u0=@�)j

+

�j
= (k�2 @u0=@�)j

�

�j
j = 2; ::; ` :

(2.5)

Note that the components of the �elds ~E, ~H in the x1x2{plane can then be computed

from the transverse components. We shall assume throughout that the grating material

satis�es

�+ > 0 ; Re �� > 0 ; Im �� � 0 ; (2.6)

Re �0(x1; x2) > 0 ; Im �0(x1; x2) � 0 : (2.7)

Note that the case Im � > 0 accounts for materials which absorb energy.

2.2 The radiation condition

Because the domain is unbounded in the x2{direction, a radiation condition on the scat-

tering problem must be imposed at in�nity, namely that the di�racted �elds u� remain

bounded and that they should be representable as superpositions of outgoing waves.

De�ne the coe�cients

��n = ��n (�) := exp(i
�=2)j(k�)2 � (n � �)2j1=2 ; n 2Z; (2.8)

where


� = arg((k�)2 � (n+ �)2) ; 0 � 
�j < 2� :

Note that �+0 = � and that, for real k�,

��n =

�
((k�)2 � (n+ �)2)1=2 ; k� > jn+ �j ;
i((n+ �)2 � (k�)2)1=2 ; k� < jn+ �j :

Since the � quasi{periodic functions u� are analytic for x2 > maxf0 resp. x2 < minf1
they can be expressed as a sum of plane waves (cf. [21], [9]):

u+ =
X
n2Z

n
A+
n exp(i(n+ �)x1 + i�+n x2) +B+

n exp(i(n+ �)x1 � i�+n x2)
o

for x2 > maxf0 ;

(2.9)

4



u� =
X
n2Z

n
A�

n exp(i(n+ �)x1 � i��n x2) +B�

n exp(i(n+ �)x1 + i��n x2)
o

for x2 < minf1 ;

(2.10)

where A�

n , B
�

n are complex numbers. The physics of the problem imposes the obvious

condition that the di�racted �eld remains bounded as jx2j ! 1. Thus we will insist

that u� satisfy the outgoing wave condition (OWC) B�

n = 0, i.e. they are composed of

bounded outgoing plane waves in G�, plus the incident incoming wave ui in G+:

u+ � ui =
X
n2Z

A+
n exp(i(n+ �)x1 + i�+n x2) ; x2 > maxf ;

u� =
X
n2Z

A�

n exp(i(n+ �)x1 � i��n x2) ; x2 < minf1 :
(2.11)

Since ��n is real for at most �nitely many n, there are only a �nite number of propagating

plane waves in the sums of (2.11). Note that physically the case ��n = 0 corresponds to a

plane wave propagating parallel to the grating. The remaining waves may be called surface

waves for the grating since they propagate in the x1{direction and are exponentially

decayed as jx2j ! 1.

In the following we will use the integral representation for � quasi{periodic solutions of

the Helmholtz equation satisfying the OWC. These representations are the basis for the

treatment of di�raction problems with integral equation methods (cf. [23], [21], [9]). We

assume that

(k�)2 6= (n+ �)2 for all n 2Z: (2.12)

and introduce the � quasi{periodic fundamental solutions

	�(x) =
i

2

X
n2Z

H
(1)

0

�
k�
q
(x1 � 2�n)2 + x22

�
exp(2�in�)

=
i

2�

X
n2Z

exp(i(n+ �)x1 + i��n jx2j)
��n

;
(2.13)

where H
(1)

0 is the �rst Hankel function of order zero. Note that for �xed �� and incidence

angle � condition (2.12) is violated for a discrete set of frequencies !j, !j !1, referred

to as Rayleigh frequencies and corresponding to physically anomalous behaviour �rst

observed by Wood.

It is well known that under condition (2.12) the series in (2.13) converge uniformly in

compact subsets of IR2nf0g and that the di�erence 	�(x)� log jxj=� is smooth ([7], [9]).

Let us introduce two simple curves �� which are the restriction to the strip f0 � x1 � 2�g
of the graph of smooth periodic functions lying in G�, resp. The single and double layer

potentials are de�ned by

V �'(x) :=

Z
��

	�(x� y)'(y) ds ;

K�'(x) :=

Z
��

@

@�y
	�(x� y)'(y) ds ;
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where the normals � to �� are directed away from the grating pro�le. Then the � quasi{

periodic functions u� solve the Helmholtz equation

�u� + (k�)2u� = 0

and satisfy the outgoing wave condition i� the representations

u� =
1

2

�
K�u� � V �

@u�

@�

�
(2.14)

are valid in the corresponding exterior domains. Using the jump relations for the poten-

tials and their normal derivatives one obtains the well-known relations between the values

of u� and their normal derivatives for x 2 ��:

u�(x)�K�u�(x) + V �
@u�

@�
(x) = 0 ;

D�u�(x) +
@u�

@�
(x) + (K�)0

@u�

@�
(x) = 0 ; (2.15)

with (K�)0 the transpose to the double layer potential operators andD� the hypersingular

integral operators

(K�)0'(x) =
@

@�

Z
��

	�(x� y)'(y) ds ;

D�'(x) = �
@

@�

Z
��

@

@�y
	�(x� y)'(y) ds :

2.3 Variational formulation

We are interested in � quasi{periodic solutions u�, u0 to the TE di�raction problem

(2.3), (2.4), and the TM di�raction problem (2.3), (2.5) ful�lling the radiation condition

(2.11). For the variational approach to these problems we follow a procedure which couples

the variational method for the transmission problem near the inhomogeneities with the

integral equation method in the exterior domain. This procedure was introduced in [10]

as a symmetric method for coupling �nite elements and boundary elements which, in case

of self-adjoint boundary value problems, yields symmetric matrices and allows a simple

error analysis. In our case the method results in strongly elliptic variational formulations,

obtained recently by Bao and Dobson ([12], [5], [6]) using a di�erent approach.

Fix numbers b > maxf0 and a < minf1, and let 
 = (0; 2�) � (a; b), 
� = 
 \ G�,


0 = 
\G0, �
+ = fx2 = bg\
, �� = fx2 = ag\
 ; see Fig. 1. With a solution of (2.3)

we associate the function

u =

8<:
exp(�i�x1) (u+ + ui) in 
+ ;

exp(�i�x1)u0 in 
0 ;

exp(�i�x1)u� in 
� :

(2.16)

de�ned in 
, which is 2�{periodic in x1. To formulate the di�erential problem for u we

de�ne r� = r+ i(�; 0), �� = r� � r� = �+ 2i�@x1 � �2, and let

k =

8<:
k+ = !(��+)1=2 in 
+ ;

k0 = ! (��0)
1=2 in 
0 ;

k� = !(���)1=2 in 
� :

(2.17)
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Figure 1: Problem geometry

Let further Hs
p(
), s � 0, denote the restriction to 
 of all functions in the Sobolev

space Hs(IR2) which are 2�{periodic in x1. Obviously, Hs
p(
) can be identi�ed with

the Sobolev space Hs(T � (a; b)), where T stands for the unit circle. Then (Hs
p(
))

0,

the dual space with respect to the scalar product in L2(
), is isomorphic to the space

H�s



(T� IR) = ff 2 H�s(T� IR) : supp f 2 
g .

The TE di�raction problem can now be formulated as follows. Due to (2.3) the function

u 2 H1
p (
) has to satisfy the di�erential equation

(�� + k2)u = 0 in 
 (2.18)

and the transmission conditions (2.4). Integration by parts results in the variational

relation Z



r�u � r�'�
Z



k2u �'�
Z
�+

@u

@�
�'�

Z
��

@u

@�
�' = 0 ; (2.19)

for all ' 2 H1
p (
). Having in mind that u� satisfy the OWC and are smooth on �� we use

relation (2.15), characterizing the exterior �elds. Since �� are straight lines, the integral

operators are very simple. So (K�)0 = 0 and

D�'(x) =
1

2�i

2�Z
0

X
n2Z

��n exp (i(n+ �)(x1 � y1))'(y1) dy1 :

Note that even for Rayleigh frequencies, i.e. condition (2.12) does not hold, we obtain

that the functions u� described in (2.9) and (2.10) satisfy the equality

D�u�(x) +
@u�

@�
(x) = 0 ; x 2 �� :
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Thus one gets in the general case

@u

@�

����
�+

= exp(�i�x1)
�@u+
@�

+
@ui

@�

�
= � exp(�i�x1)D+u+ � i� exp(�i�b)

@u

@�

����
��

= � exp(�i�x1)D�u� ;

relating the normal derivatives of u with its boundary values.

Let us de�ne the operators T�� acting on 2�-periodic functions on IR by

(T�� v)(x) := �
X
n2Z

i��n v̂n exp(inx) ; v̂n = (2�)�1
2�Z
0

v(x) exp(�inx) dx ; (2.20)

which are periodic pseudodi�erential operators of order 1; see e.g. [14]. In the following the

action of these operators on boundary values uj�� 2 H
s�1=2
p (��) of functions u 2 Hs

p(
)

is denoted by T�� u. Obviously T�� maps Hs
p(�

�) isomorphically onto Hs�1
p (��) for any

s 2 IR if condition (2.12) holds.

With this notations one gets evidently

exp(�i�x1)D+u+ = exp(�i�x1)D+( exp(i�x1)u)� exp(�i�x1)D+ui

= T+
� u+ i� exp(�i�b) ;

exp(�i�x1)D�u� = T�� u ;

leading to the nonlocal boundary conditions

@u

@�

����
�+

= �T+
� u� 2i� exp(�i�b) ;

@u

@�

����
��

= �T�� u (2.21)

Thus the coupling of the transmission problem in 
 and the integral representation for

the exterior domain results in the variational formulation for the TE di�raction problem

(2.3), (2.4), (2.11)

BTE(u; ') :=

Z



r�u � r�'�
Z



k2 u �'+

Z
�+

(T+
� u) �'+

Z
��

(T�� u) �'

= �
Z
�+

2i� exp(�i�b) �' ; 8' 2 H1
p (
) : (2.22)

Similarly, the TM di�raction problem (2.3), (2.5), (2.11) can be formulated as follows

(cf. [6], [5]). Find u 2 H1
p (
) that satis�es

BTM(u; ') :=

Z



1

k2
r�u � r�'�

Z



u �'+
1

(k+)2

Z
�+

(T+
� u) �'+

1

(k�)2

Z
��

(T�� u) �'

= �
1

(k+)2

Z
�+

2i� exp(�i�b) �' ; 8' 2 H1
p (
) : (2.23)

This formulation will be written also as the equation

r� � [(1=k2)r�u] + u = 0 in 
 (2.24)
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with the boundary conditions (2.21).

Obviously, by

BTE(u; ') = (BTE u; ')L2(
) ; BTM(u; ') = (BTM u; ')L2(
) ; (2.25)

the forms BTE and BTM generate bounded linear operators BTE resp. BTM acting on

H1
p (
). Since ��� Z

��

(T�� u) �'
��� � c kukH1(
)k'kH1(
)

it is clear that these operators map H1
p (
) boundedly into its dual:

BTE;BTM : H1
p (
) �! (H1

p (
))
0 :

For the calculation of gradients of re
ection and transmission coe�cients in Sec. 4.

solutions of the corresponding adjoint problems are needed. The adjoint TE problem

seeks v 2 H1
p (
) such that

BTE('; v) = ('; f+)L2(�+) + ('; f�)L2(��) ; for all ' 2 H1
p (
) ; (2.26)

where f� 2 H
�1=2
p (��). Note that this problem is equivalent to

(�� + �k2)v = 0 in 
 ; ((T�� )
� + @=@�)v = f� on �� ;

where the adjoint of the boundary operator is given by

(T�� )
�v =

X
n2Z

i ��n v̂n exp(inx1) : (2.27)

Moreover, if v is a solution of the adjoint problem (2.26), then the function w = �v solves

the boundary value problem

(��� + k2)w = 0 in 
 ; (T�
�� + @=@�)w = f� on �� :

The analogue of (2.26) in the TM case reads as follows: Find v 2 H1
p (
) such that

BTM('; v) = ('; f+)L2(�+) + ('; f�)L2(��) ; for all ' 2 H1
p (
) ; (2.28)

which is equivalent to

r� � ((1=�k2)r�v) + v = 0 in 
 ; ((T�� )
� + @=@�)v = (k�)2 f� on �� ;

and w = �v solves

r�� � ((1=k2)r��w) + w = 0 in 
 ; (T�
�� + @=@�)w = (k�)2 f� on �� :
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3 Solvability and regularity of the di�raction prob-

lem

3.1 Strong ellipticity of the variational forms

Here we consider an arbitrary grating characterized by a piecewise smooth function � in


 which is constant near the upper and lower boundaries ��. We are interested in the

existence and uniqueness of solutions for ranges of ! and incident angles �. Recall that

k2 = !2�� with � = �� in 
�, � = �0 in 
0, and that � = k+ sin �. The results are

essentially based on the strong ellipticity of the variational forms BTE and BTM . We call

a bounded sesquilinear form a(�; �) given on some Hilbert space X strongly elliptic if there

exist a complex number �, j�j = 1, a constant c > 0 and a compact form q(�; �) such that

Re a(�u; u) � ckuk2X � q(u; u) ; 8 u 2 X :

Theorem 3.1 Suppose that k satis�es condition (2.6). Then the sesquilinear form BTE

is strongly elliptic over H1
p (
). If additionally condition (2.7) holds then the form BTM

is strongly elliptic, too.

Proof.

TE mode: Split the sesquilinear form BTE = B1 �B2 with the compact form

B2(u; ') = !2�

Z



� u �' ; such that jB2(u; ')j � c1!
2kukL2(
)k'kL2(
) : (3.1)

The form ReB1(exp(i�=4)u; u) is coercive over H
1
p (
). Indeed, from condition (2.6) one

gets 0 � arg ((k�)2 � (n + �)2) � � with sharp inequalities for nonreal k�. Therefore

��=4 � arg (exp(�i�=4)��n ) � �=4 and for any u 2 H1
p(
)

Re
�
exp(i�=4) (T�� u; u)L2(��)

�
� 0 :

Suppose now that there exists a sequence fujg with kujkH1(
) = 1 and weakly converging

in H1
p (
) such that

ReB1(exp(i�=4)uj; uj) �! 0 as j !1 :

Since

Re exp(i�=4)

Z



jr�uj2 = (
p
2=2)

Z



(jruj2 + �2juj2)

one gets krujkL2(
) ! 0. Hence uj is a Cauchy sequence in H1
p (
), and consequently

this sequence converges strongly in H1
p (
) to a function u0 = const. But for constant

functions there holds

Re
�
exp(i�=4)(T+

� u0; u0)
�
= (

p
2=2) k+ cos � ju0j2

implying u0 = 0, which contradicts the assumption kujkH1(
) = 1. Thus we obtain

ReB1(exp(i�=4)u; u) � c kuk2H1(
)

10



for any u 2 H1
p (
) and ! > 0.

Remark that under the condition (2.12) there exist constants such that

c1 ! � j��n j � c2 (jnj+ !)

which implies even

Re
�
exp(i�=4) (T�� u; u)L2(��)

�
� c !kuk2

H1=2(��)
:

Hence if �0 2 (0; �=2) is some maximum incidence angle and !0 > 0 is chosen small

enough then the estimate

ReB1(exp(i�=4)u; u) � c !kuk2H1(
) (3.2)

is valid, where the constant c does not depend on the frequencies ! with 0 < ! � !0 and

on the incidence angles � with j�j � �0.

TM mode: Decompose the sesquilinear form BTM = B1 �B2 with

B1(u; ') =

Z



1

k2
r�u � r�'+

1

(k+)2

Z
�+

(T+
� u) �'+

1

(k�)2

Z
��

(T�� u) �' ;

and the compact form B2 satis�es

jB2(u; ')j � kukL2(
)k'kL2(
) : (3.3)

Similar to the previous considerations one can prove the existence of an angle � such

that Re B1(exp(i�)u; u) is coercive over H1
p (
). First we consider the arguments of

�i��n =(k
�)2. For k� real we have

arg (� i��n =(k
�)2) 2 f��=2; 0g : (3.4)

If arg (k�)2 = � = � � � , � 2 (0; �), then

arg (� i��n =(k
�)2) 2 (�=2 � �; � � �) :

In view of (2.7) there exists � such that max(arg k2) � � < � and � > � � �=2. Then

arg
exp(i�=2)��n

i (k�)2
2
�
�
�

2
+
�

4
;
�

2
� �

�
:

Since

arg
exp(i�=2)�+n

i (k+)2
2
�
�
�

4
;
�

2

�
it is clear that

Re (k�)�2( exp(i�=2)T�� u; u) � 0 :

On the other hand we have

Re

Z



1

k2
exp(i�=2) jr�uj2 � c1 !

�2(kruk2L2(
) + �2 kuk2L2(
)) ;

such that the same arguments as before imply the coerciveness of ReB1(exp(i�=2)u; u).
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Again, under the condition (2.12) one obtains

Re (k�)�2( exp(i�=2)T�� u; u) � c !�1kuk2
H1=2(��)

;

such that for some maximum incidence angle �0 2 (0; �=2) and !0 > 0 su�ciently small

ReB1(exp(i�=2)u; u) � c !�1kuk2H1(
) (3.5)

for all frequencies ! with 0 < ! � !0 and for all incidence angles � with j�j � �0.

Remark 3.1 Obviously the results of Theorem 3:1 remain true if k is replaced by the

complex conjugate k. Furthermore, the function �0 (cf. (2:17)) can be chosen quite

arbitrarily. In the TE case it su�ces that �0 2 L1(
), whereas in the TM case one has

to suppose that ��10 2 L1(
) and arg �0 2 [0; � � �].

3.2 Existence and uniqueness of the variational solution

Several existence and uniqueness results for the problem of di�raction by periodic gratings

are known ([7], [9], [1]). Here we give some results for the variational formulations in both

TE and TM modes in the general case (2.6), (2.7). Note that existence and uniqueness

results were proved for TE polarization in [12] and for the TM case in [5], the latter under

the restriction Re k2 > 0.

From the estimates (3.1), (3.2) and (3.3), (3.5) one obtains a �rst uniqueness result for

all su�ciently small frequencies !.

Theorem 3.2 Choose some maximum incidence angle �0 2 (0; �=2). Then under the

assumptions of Theorem 3:1 there exists a frequency !0 > 0 such that the variational

problem (2:22) resp. (2:23) admits a unique solution u 2 H1
p (
) for all incidence angles

� with j�j � �0 and all frequencies ! with 0 < ! � !0. Moreover, let S be an arbitrary

set of interfaces �j, j = 1; : : : ; `, lying in the strip a < ~a < x2 < ~b < b, and for �xed

� = f�j; j = 1; : : : ; `g 2 S let u� denote the corresponding variational solution of the TE

or TM di�raction problem. Then ku�kH1
p(
)

� c, where c is independent of � 2 [��0; �0],
! 2 (0; !0] and � 2 S.

Let us assume that the piecewise smooth interfaces �j, j = 1; : : : ; `, may only intersect

with angles di�erent from 0 and 2�. Using (2.4) and the elliptic regularity of the Laplacian

it can be shown by standard methods that the inverse of the operator BTE, if it exists,
maps boundedly

B�1TE : L2(
)�H1=2(�+)�H1=2(��)! H2
p(
) : (3.6)

Corollary 3.1 Under the assumptions of Theorem 3:2 the solution of the TE di�raction

problem (2:22) satis�es ku�kH2
p(
)

� c uniformly in � 2 [��0; �0], ! 2 (0; !0] and �.

Remark 3.2 The results of Theorem 3:2 and Corollary 3:1 extend to the variational

solutions of the adjoint problems (2:26) resp. (2:28).

We now study the uniqueness of the di�raction problems in the case that the frequency

! is arbitrary, but the grating geometry is �xed. Introduce the set of exceptional values

(the Rayleigh frequencies), where condition (2.12) is violated:

R(�) = f(!; �) : 9n 2Z such that (n+ !(��+)1=2 sin �)2 = !2���g : (3.7)
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Theorem 3.3 (i) For all but a sequence of countable frequencies !j , !j !1, the di�rac-

tion problem (2:22) resp. (2:23) has a unique solution u 2 H1
p (
).

(ii) If for (!0; �0) =2 R(�) the di�raction problem (2:22) resp. (2:23) is uniquely solvable

then the solution u depends analytically on ! and � in a neighbourhood of this point.

Proof. In view of the proof of Theorem 3.1 the operators BTE and !2BTM can be repre-

sented in the form

BTE = ATE � !2�� ; !2BTM = ATM � !2 ; (3.8)

where the operators ATE and ATM generated by the forms

(ATEu; ')=

Z



r�u � r�'+

Z
�+

(T+
� u) �'+

Z
��

(T�� u) �'

(ATMu; ')=

Z



(��)�1r�u � r�'+ (��+)�1
Z
�+

(T+
� u) �' + (���)�1

Z
��

(T�� u) �'

are invertiblemappings fromH1
p (
) onto (H

1
p (
))

0. Recall that � = !(��+)1=2 sin �. Hence

BTE and !2BTM are compact perturbations of invertible operator functions depending on

! > 0. Moreover, for any �xed �, j�j < �=2, from the de�nition (2.20) of T�� follows

that these functions depends analytically on ! =2 R(�). Thus by [16], Theorem I.5.1, the

number of linearly independent solutions of the equationBTE(u; ') = 0 resp. BTM(u; ') =

0, ' 2 H1
p (
), is constant for all ! 2 IR+nR(�) with the possible exception of certain

isolated points in that domain. Consequently, due to (3.2) and (3.5) the operators BTE
and BTM are invertible with the possible exception of a discrete set in IR+nR(�). Thus

assertion (i) is proved if we show that !0 2 R(�) cannot be an accumulation point of this

set. Since � is �xed it follows from the de�nition of ��n that in some neighbourhood of

!0 2 R(�) the operator BTE resp. BTM can be expanded into a Puiseux series of the form

1X
j=1

(! � !0)
j=2Aj ;

where the branch of the root is chosen as in (2.8). Replacing (!�!0)
1=2 by � one obtains

an analytic operator function in a neighbourhood of � = 0, and applying Theorem I.5.1

of [16] to that operator function gives the result. Assertion (ii) follows immediately from

the fact that the inverse of an analytic operator function is also analytic.

Remark 3.3 A less precise version of Theorem 3:3 (i) was stated for TE polarization

in [12] and for the TM case in [5]. The above arguments also �ll a gap in the proofs of

those results. We are grateful to Professor I.C. Gohberg for discussing this topic and for

pointing out that Theorem I.5.1 in [16] can be generalized to analytic operator functions

with algebroid branching points.

The analytic dependence of solutions was known only for the special case of TE polariza-

tion and perfectly conducting gratings (see [18]). Note that the non{smooth behaviour of

e�ciencies at (!0; �0) 2 R(�), known as Wood anomalies, is caused by the non{analytic

dependence of the inverse operators.

Finally we give a simple proof of an uniqueness result if the imaginary part of the

dielectric constant of one of the grating materials is positive. For some special cases this

was shown in [1], [7].
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Lemma 3.1 Suppose that k is piecewise constant with nonnegative imaginary part and

that Imk(x) > 0 for all x from some subdomain 
1 � 
 with piecewise smooth boundary.

Then the operator BTE is invertible for all ! > 0. If 
1 contains a curve connecting the

boundary points (0; c) and (2�; c) then the operator BTM is invertible, too.

Proof. Suppose that BTEu = 0. Then

ImBTE(u; u) = Im
�
�
Z



k2juj2 +
Z
�+

(T+
� u) �u+

Z
�+

(T�� u) �u
�

= �
Z



Im k2juj2 � Re
X
n2Z

�+n jû
+
n j

2 �Re
X
n2Z

��n jû
�

n j
2 = 0 ;

where û�n are the Fourier coe�cients of uj��. It follows from (2.8) that all terms of this

expression vanish since they are nonnegative. Thus if k� > 0 then û�n = 0 for all n with

jn + �j < k�, and if Im k� > 0 then û�n = 0 for all n. Additionally we obtain u(x) = 0

for x 2 
1, such that in any subdomain of 
, where k is constant, u solves a Helmholtz

equation with the conditions u = @u=@� = 0 on some part of the boundary in view of the

transmission conditions (2.4). Therefore u must vanish everywhere.

The case BTMu = 0 can be considered analogously. Using (3.4) the conclusions con-

cerning û�n follow immediately. Further, from

Im

Z



1

k2
jr�uj2 = Im

Z



1

k2
jr(u exp(i�x1)j2 = 0

one gets u exp(i�x1) = const in 
1. Since u is 2�-periodic in x1 and 
1 ranges from the

left to the right boundary of 
 we derive u = 0.

Remark 3.4 Any solution of the homogeneous equations BTEu = 0 and BTMu = 0 has

vanishing Rayleigh coe�cients A�

n = 0 for all n with ��n =
p
(k�)2 � (n+ �)2 > 0.

3.3 Additional regularity for the TM di�raction problem

For the calculation of gradients of re
ection and transmission coe�cients for TM polari-

sation with respect to variations of the non{smooth grating surface �0 in Sec. 4 we need

auxiliary results about the regularity of the solution near this surface. We will restrict

here to the case that � is constant is some neighbourhood below the grating surface and

that the other interfaces �j, j = 1; : : : ; `, do not intersect and are smooth. Then the

solutions of the equations (2.24) and (2.21) are su�ciently regular everywhere with the

exception of a neighbourhood of �0 which will be denoted in the sequel by �. Since the

regularity of the solution is a local problem we may simplify the notations further by

assuming that G0 = ;.
Consider the transmission problem (2.24), (2.21), or equivalently (cp. (2.3), (2.5),

(2.16)),

�u� + (k�)2u� = 0 in 
� ;

u+ � u� = �ui ; @u+=@� � C@u�=@� = �@ui=@� on � ; (3.9)
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where C = (k+=k�)2 6= 1, and u� are � quasiperiodic in x1 and satisfy the radiation

condition (2.11). Note that the right{hand sides of (3.9) are (in�nitely) smooth on �. If

the grating pro�le � is smooth, then standard regularity theory shows that any solution

(u+; u�) of (3.9) is contained in Hs(
+) �Hs(
�) for arbitrary s � 1. For non{smooth

�, this is not true, even for s = 2, due to the singularities at the corner points.

In this paragraph, we consider the case when � is a curved polygon, i.e. � is smooth,

with the exception of a �nite number of corner points Pj with angles �j, j = 1; :::; J . In

the practically important case of a binary grating, � consists of straight lines only and

�j 2 f�=2; 3�=2g for any j; see Sec. 4.

For the solution of the transmission problem (3.9), the corner singularities at Pj can be

determined with Kondratiev's method of local Mellin transformation [19] (see, in partic-

ular, [11], [20] in the case of transmission problems), which implies the following decom-

position:

De�ne the sets

Aj :=

(
� 2 C :

�
sin(� � �j)�

sin��

�2

=

�
C + 1

C � 1

�2
)
[ IN ; (3.10)

and let s > 1 be given such that

s� 1 6= Re � for all � 2 [Jj=1Aj : (3.11)

Let (%j ; �j), %j(x) = dist (x; Pj), be polar coordinates centered at Pj . Then

u� =

JX
j=1

LjX
l=1

cjlu
�

jl + w� ; with w� 2 Hs(
�) ; (3.12)

when the u�jl are of the form

�j(x)d
�

jlr(�j)%j(x)
�j logr(%j(x)) ; r 2 f0; 1; 2g : (3.13)

Here �j 2 C1

0 (IR2) are cut{o� functions near the corner point Pj, d
�

jlr are smooth functions

in �j, cjl complex constants, and �j 2 Aj with 0 < Re �j < s� 1.

The d�jlr depend only on the geometry of � near Pj , whereas the constants cjl depend

also on ui. We write Xs for the subspace of H1(
+)�H1(
�) of all (u+; u�) possessing

a decomposition (3.12). Then Xs is a Hilbert space with the norm

k(u+; u�)k2Xs = kw+k2Hs(
+) + kw
�k2Hs(
�) +

JX
j=1

LjX
l=1

jcjlj2 : (3.14)

It follows from (3.12) and (3.13) that near Pj one has the estimates

jrku�(x)j = O
�
%j(x)

Re�0j�k�"
�
; 8" > 0 ; 0 � k � s� 1 ; (3.15)

where rk denotes the vector of all partial derivatives of order k and �0j is the solution �j
of the transcendental equation�

sin(� � �j)�

sin��

�2

=

�
C + 1

C � 1

�2

(3.16)
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with minimal Re �j 2 (0; 1), and with the convention that Re �0j := 1 if there is no root

of (3.16) with real part < 1. De�ne

�0 = minfRe �0j : j = 1; :::; Jg : (3.17)

Remark 3.5 It was shown in [11;Lemma 6:2] that if k� > 0, i.e. C > 0, then �0 2
(1=2; 1). In particular, for a binary grating, (3:16) takes the form

2 cos(��=2) = �
C � 1

C + 1
; � = �1 (3.18)

for any j, which easily implies �0 2 (2=3; 1) if k� > 0. However, if Im k� > 0 then, even

for a right angle at Pj, one may have Re �0j � 1=2 so that the solution u� to (3:9) does

not belong to H3=2(
�), in general. More precisely, for a binary grating we show that

�0 > 1=2 holds if and only if the condition

P 2 �Q2 < 2 with P = Re
C � 1

C + 1
=
jCj2 � 1

jC + 1j2
; Q = Im

C � 1

C + 1
=

2 ImC

jC + 1j2
(3.19)

is satis�ed. Note that (3:19) is always valid if Re k� � Im k�.

Taking real and imaginary parts of (3:18), we obtain for � = � + i�, �; � 2 IR,

2 cos(��=2) cosh(��=2) = �P ; 2 sin(��=2) sinh(��=2) = �Q ; � = �1 :

or equivalently

R(�) =
P 2

cos2(��=2)
�

Q2

sin2(��=2)
= 4 ; sinh2(��=2) =

Q2

4 sin2(��=2)
(3.20)

Assume (3:20) has a solution � 2 (0; 1=2]. Then cos2(��=2) � 1=2 ; sin2(��=2) � 1=2,

and the �rst equation of (3:20) implies P 2�Q2 � 2. Conversely, if P 2�Q2 � 2 then there

exists � 2 (0; 1=2] such that R(�) = 4, since R(1=2) = 2(P 2 �Q2) � 4 and R(�)! �1
as �! 0. (Note that Q 6= 0 if Im k� > 0 and Re k� > 0.)

Finally, we observe that �0 > 0 may be arbitrarily small if we choose Re C su�ciently

close to �3 and jImCj su�ciently small.

To obtain a regularity result in weighted spaces of di�erentiable functions, which will

be applied to binary gratings in Sec. 4, set %(x) = minf%j(x) : j = 1; :::; Jg and introduce

the spaces

Y � =
�
(u+; u�) 2 C(�
+)� C(�
�) : %1��ru� 2 C(�
�)

	
; 0 � � � 1 ;

equipped with the canonical norm ku+k� + ku�k�, with

ku�k� = max
x2�
�

�
ju�(x)j+ %(x)1��ru�(x)j

	
:

Let �0 2 (0; 1] be the number de�ned in (3.17). Then it follows from the de�nition of the

space Xs (cf. (3.12), (3.14)) and (3.15) that the continuous embeddings

X2 ,! Hs(
+)�Hs(
�) ; for any s 2 [1; 1 + �0) ; (3.21)

Xs ,! Y � ; for any s > 2 and � 2 [0; �0) ; (3.22)

hold. Summarizing (in particular, (3.12), (3.21), (3.22) and Remark 3.5), we then have:
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Theorem 3.4 Let (u+; u�) 2 H1(
+)�H1(
�) be a solution of the transmission problem

(3:9). Then (u+; u�) 2 Xs for any s > 1 satisfying condition (3:11). Moreover, (u+; u�) 2
H1+�(
+)�H1+�(
�) and (u+; u�) 2 Y � for any � 2 [0; �0), where �0 is given by (3:17).

Notice that �0 2 (1=2; 1) if condition (3:19) is satis�ed.

Returning to the variational formulation (2.23) of problem (3.9), we obtain from (2.16)

and the above theorem:

Corollary 3.2 Let u 2 H1
p (
) be a solution of the TM di�raction problem (2:23). Then

u 2 H1+s
p (
) for any s with 0 < s < min(1=2; �0) and

max
x2


ju(x)j+ sup
x2
n�

j%(x)1��ru(x)j <1 (3.23)

for any � 2 [0; �0). Note that @(exp(i�x1)u)=@� su�ers a jump on �, hence u 62 Hs(
)

for s � 3=2, in general.

Remark 3.6 The inverse of the operator BTM , if it exists, maps boundedly

B�1TM : (H1�s
p (
))0 �Hs�1=2(�+)�Hs�1=2(��)! H1+s

p (
) ; jsj < min(1=2; �0) ; (3.24)

and

B�1TM : (H1��
p (
))0 �H��1=2(�+)�H��1=2(��)! Z� ; � 2 [0; �0) ; (3.25)

where

Z� = fu 2 H1
p (
) : uj
� 2 H1+�(
�)g :

Finally, for the calculation of gradients in Sec. 4.3, we need a uniform version of Corol-

lary 3.1. Let �0 � 
 be a piecewise smooth grating pro�le with J corner points, and

assume that, in some (�xed) neighbourhood Uj of the jth corner, �0 consists of two

straight lines intersecting with the angle �j(j = 1; :::; J). Let S be a set of grating pro-

�les � su�ciently close to �0 and such that, for each � 2 S, � \ Uj is a translate of

�0 \ Uj (j = 1; :::; J), and � is smooth outside these neighbourhoods. De�ning the space

Xs
�, � 2 S, as in (3.12){(3.14), we observe that the singular functions u�jl occuring in the

corresponding decomposition (3.12) are simply translates of the functions (3.13) (for �0).

Suppose further that the assumptions of Theorem 3.2 are satis�ed, and for � 2 S
let (u+� ; u

�

� ) 2 H1(
+) � H1(
�) resp. u� 2 H1
p (
) denote the corresponding (unique)

solution to (3.9) resp. (2.23). Then the Mellin transformation techniques of [19] and [20]

imply, for any s > 1 satisfying (3.11),

k(u+� ; u
�

� )kXs
�
� c ; uniformly in �; ! and � : (3.26)

Denoting by %�(x) the distance of x to the set of corner points of �, in analogy to

Corollary 3.1 one obtains from (3.26):

Corollary 3.3 There exists c > 0 independent of � 2 [��0; �0], ! 2 (0; !0] and � 2 S
such that

ku�kH1+s(
) � c ; for any s 2 (0;min(1=2; �0)) ; (3.27)

max
x2�


ju�(x)j+
X
x2
n�

j%�(x)1��ru�(x)j � c ; for any � 2 [0; �0) : (3.28)
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4 Minimization problems for binary gratings

4.1 Optimization of grating e�ciencies

De�ne the �nite sets of indices

P� = fn 2Z: ��n 2 IRg ;

where ��n is given by (2.8). Then the Rayleigh amplitudes A+
n (n 2 P+) resp. A�

n

(n 2 P�), which are called the re
ection resp. transmission coe�cients, correspond to

the propagating modes in (2.11). Note that P� = ; if Im k� 6= 0.

Let u be the solution of the TE or TM variational problem (2.22) or (2.23). The

re
ection and transmission coe�cients are determined by the traces of u on the arti�cal

boundaries �� (cp. (2.11), (2.16)):

A+
n = (2�)�1 exp(�i�+n b)

Z
�+

u exp(�inx1) ; n 2 P+nf0g ;

A+
0 = � exp(�2i�b) + (2�)�1 exp(�i�b)

Z
�+

u ; (4.1)

A�

n = (2�)�1 exp(i��n a)

Z
��

u exp(�inx1) ; n 2 P� :

Then the re
ected and transmitted e�ciencies in the TE case are de�ned by

eTE;�n = (��n =�)jA
�

n j
2 ; n 2 P� ; (4.2)

and in the TM case by

eTM;+
n = (�+n =�)jA

+
n j

2 ; n 2 P+ ; eTM;�
n = (k+=k�)2(��n =�)jA

�

n j
2 ; n 2 P� : (4.3)

For lossless gratings, i.e. all optical indices k are real, the principle of conservation of

energy then, in either case, yields the relationX
n2P+

e+n +
X
n2P�

e�n = 1 : (4.4)

Consider a binary grating pro�le � which is composed of a �nite number of horizontal

and vertical segments and is determined by the height H and by, say m + 1, transition

points 0 = t0 < t1 < ::: < tm�1 < tm = 2�; see Fig. 2. Since t0 and tm are assumed to be

�xed, we write � = �(t1; :::; tm�1;H).

We retain the notation of Sec. 2.3 (cf. Fig. 1) and denote the vertical segment of � = �0 at

tj (j = 1; :::;m�1) by �j . The union of all upper horizontal segments lying in 
 = 
+[
0

is denoted by �m.

A typical minimization problem occurring in the optimal design of binary gratings is

the following. Assume that the number of transition points is �xed and, for given numbers

cTE;�n ; cTM;�
n 2 f�1; 0; 1g, de�ne the functional

J(�) = J(t1; :::; tm�1;H)

:=
X
n2P+

�
cTE;+n eTE;+n + cTM;+

n eTM;+
n

�
+
X
n2P�

�
cTE;�n eTE;�n + cTM;�

n eTM;�
n

�
: (4.5)
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Note that the e�ciencies e�n are functions of the grating pro�le �, and thus they are

functions of t1; :::; tm�1;H. Now the minimization problem reads as follows:

Find a binary grating pro�le �0 = �(t01; :::; t
0
m�1;H

0) such that

min
(t1;:::;tm�1;H)2K

J(�) = J(�0) ; (4.6)

whereK is some compact set in the parameter space IRm re
ecting e.g. natural constraints

on the design of the pro�le. Note that the choice c�n = �1 resp. c�n = 1 in (4.5) amounts to

maximizing resp. minimizing the e�ciency of the corresponding re
ected or transmitted

propagating mode of order n.

To �nd local minima of problem (4.6), the method of gradient descent can be applied.

Thus we must calculate the gradient of J , rJ(�) = (DjJ(�))
m
1 , where e.g. for j = 1

D1J(�) = lim
h!0

h�1(J(�h)� J(�))

= lim
h!0

h�1(J(t1 + h; t2; :::;H)� J(t1; t2; :::;H))
(4.7)

Here �h denotes the binary pro�le with the height H and the transition points t1 + h,

t2; :::; tm�1. Analogously, DjJ(�) (j = 2; :::;m � 1) denote the partial derivatives with

respect to the other transition points, and DmJ(�) will denote the derivative with respect

to the height H.

From (4.1), (4.2) and (4.5) we obviously have, for j = 1; :::;m,

DjJ(�) =
X
n2P+

2(�+n =�)
n
c
TE;+
N Re (ATE;+

n (�)DjA
TE;+
n (�))

+cTM;+
n Re (ATM;+

n (�)DjA
TM;+
n (�))

o
+
X
n2P�

2(��n =�)
n
cTE;�n Re (ATE;�

n (�)DjA
TE;�
n (�))

+(k+=k�)2cTM;�
n Re (ATM;�

n (�)DjA
TM;�
n (�))

o
:

(4.8)

Therefore, we have to calculate the partial derivatives DjA
�

n (�) of the re
ection and

transmission coe�cients in both the TE and TM case. This will be done in the following
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Figure 3: Geometry for the calculation of gradients

two paragraphs. Furthermore, it will be shown that those partial derivatives depend

continuously on the grating parameters t1; :::; tm�1;H, so that J turns out to be a C1

functional, at least in the case when the frequency ! is su�ciently small. So we assume

for the rest of this section that the conditions of Theorem 3.2 are satis�ed.

Remark 4.1 Once one has derived explicit formulas for the partial derivatives of the

re
ection and transmission coe�cients with respect to the parameters of the grating

pro�le it is possible to compute the gradients for a much more general class of functionals

involving the Rayleigh coe�cients for a given range of incidence angles or wavelengths.

4.2 Calculation of gradients. TE case

We �x n 2 P+ and derive a formula for the partial derivative D1A
+
n (�) of the Rayleigh

coe�cient of the nth re
ected mode in the TE case. At the end of this paragraph we

present formulas for the other derivatives and for the transmission coe�cients.

Let u be the solution of the TE transmission problem (2.22) and let uh denote the

solution of the corresponding problem for the pro�le �h = �(t1 + h; t2; :::;H):

Bh
TE(uh; ') :=

Z



r�uh � r�'+

Z



k2h uh �'+

Z
�+

(T+
� uh) �'+

Z
�+

(T�� uh) �'

= �
Z
�+

2i� exp(�i�b) �' ; 8' 2 H1
p (
) ; (4.9)

where (see Fig. 3)

kh =

�
k0 ; h > 0

k+ ; h < 0
in �h ; kh = k in 
n�h : (4.10)

By (4.1) and the de�nition of D1A
+
n (�) (cf. (4.7)), we have

D1A
+
n (�) = lim

h!0

exp(�i�+n )
h

Z
�+

(uh � u) exp(�inx1) dx1 : (4.11)

Let w be the solution of the adjoint transmission problem (cf. (2.26))

BTE(';w) =

Z
�+

' exp(�inx1) dx1 ; 8' 2 H1
p (
) : (4.12)

20



Then obviously

h�1
Z
�+

(uh � u) exp(�inx1) dx1 = h�1BTE(uh � u;w) = h�1(BTE(uh; w)�Bh
TE(uh; w))

= h�1
Z



(k2h � k2)uh �w = ((k0)
2 � (k+)2)jhj�1

Z
�h

uh �w :

Together with (4.11), this implies the formula

D1A
+
n (�) = (2�)�1 exp(�i�+n b)((k0)

2 � (k+)2)

Z
�1

u �wdx2 ; (4.13)

provided we have shown that

lim
h!0

jhj�1
Z
�h

uh �wdx =

Z
�1

u �wdx2 : (4.14)

Proof of (4.14):

Corollary 3.1 and Remark 3.2 imply that w 2 H2
p (
) and, for h0 > 0 su�ciently small,

kuhkH2
p(
)

� c for all h with jhj � h0 : (4.15)

Moreover, one has the compact embeddings

H2
p (
) ,! H1

p (
) ; H
2
p (
) ,! Cp(�
) ; (4.16)

whereCp denotes the space of continuous functions which are 2�{periodic in x1. Therefore,

given any sequence un = uhn , hn ! 0, we can select a subsequence, again denoted by un,

such that un ! ~u in H1
p (
) for some ~u. It is easily seen that ~u satis�es the variational

problem (2.22). Indeed,

BTE(~u; ') = lim
n!1

BTE(un; ') = lim
n!1

(BTE(un; ')�Bhn
TE(un; ')) +Bhn

TE(un; ')

= lim
n!1

Z
�hn

(k2h � k2)un �'�
Z
�+

2i� exp(�i�b) �' :

Hence uh converges in H1
p (
) to the unique solution u as h! 0, and the same is true for

the space Cp(
).

Consequently, given any " > 0, we observe that

jhj�1
Z
�h

j(u� uh) �wj � "

and, by considering the Riemann sums for the continuous integrands,������jhj�1
Z
�h

u �w �
Z
�1

u �w

������ � "

for all su�ciently small jhj, which proves (4.14).
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Remark 4.2 Let h be the vector (hj)
m
1 , and let �h denote the pro�le with transition

points tj + hj and height H + hm. Then, by applying Corollary 3.1 to the set of pro�les

S = f�h : jhj � h0g and using similar arguments as above, we obtain D1A
+
n (�h) !

D1A
+
n (�) as jhj ! 0, i.e. the partial derivative depends continuously on the parameters

of the pro�le.

We �nally collect the formulas for all components of the gradient of A�

n ; the proof is

completely analogous to that of (4.13):

DjA
�

n (�) =
(�1)j�1

2�
exp(�i��n b)((k0)

2 � (k+)2)

Z
�j

u �w�dx2 ; j = 1; :::;m� 1 ;

DmA
�

n (�) =
1

2�
exp(�i��n b)((k0)

2 � (k+)2)

Z
�m

u �w�dx1 ;

(4.17)

where u is the solution to the TE di�raction problem (2.22), w+ solves the adjoint problem

(4.12) and w� the adjoint problem

BTE(';w�) =

Z
��

' exp(�inx1) dx1 ; 8' 2 H1
p (
) : (4.18)

Recall that �m is the union of all upper horizontal segments of �, whereas �j (j =

1; :::;m� 1) denotes the vertical segment at the transition point tj.

4.3 Calculation of gradients. TM case

Retaining the notation of the preceding paragraph, we wish to compute the partial deriva-

tive D1A
+
n (�) of the nth re
ected TM mode from the relation (4.11), where u is the

solution to the problem (2.24), and uh solves

Bh
TM(uh; ') :=

Z



1

k2h
r�uh � r�'�

Z



uh �'+
1

(k+)2

Z
�+

(T+uh) �'+
1

(k�)2

Z
��

(T�� uh) �'

= �
1

(k+)2

Z
�+

2i� exp(�i�b) �' ; 8' 2 H1
p (
) : (4.19)

with kh de�ned in (4.10). If w is the solution to the adjoint problem (compare (2.28))

BTM(';w) =

Z
�+

' exp(�inx1) dx1 ; 8' 2 H1
p (
) : (4.20)

then one obtains

h�1
Z
�+

(uh � u) exp(�inx1) dx1 = h�1BTM(uh � u;w)

= h�1
Z



�
1

k2
�

1

k2h

�
r�uh � r�w = h�1

Z
�h

(k2h � k2)
1

k2h
r�uh �

1

k2
r�w (4.21)

= ((k0)
2 � (k+)2) jhj�1

Z
�h

�
1

(k+k0)2
@x2uh@x2 �w +

1

k2h
@x1;�uh

1

k2
@x1;�w

�
;
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where @x1;� = @x1 + i�, cp. (2.23).

To determine the limit on the right{hand side of (4.11), we thus have to compute

lim
h!0

jhj�1
Z
�h

gr(uh) � gr(w) ; (4.22)

where

gr(uh) =

�
1

k2h
@x1;�uh ;

1

k+k0
@x2uh

�
; gr(w) =

�
1

k
2
@x1;�w;

1

k+k0
@x2w

�
:

Let �1;h be the vertical segment of the pro�le �h at the transition point t1 + h, with

the convention that �1;0 = �1 and �0 = �. Fix h0 > 0 su�ciently small, and for any

su�ciently small " � 0, consider the rectangle R" = (t1 � h0; t1 + h0) � (";H � "); see

Fig. 4.

6x2

H

-
x1

R"

"

"

0 t1 t1+h0t1�h0

Figure 4: Geometry for gradients in TM case

Corollary 3.3 applied to the set of pro�les �h, jhj � h0, implies

kuhkH1+s
p (
) � c ; jhj � h0 ; for some s > 1 ; (4.23)

max
x2 �R0

��(x2(H � x2))
1��gr(uh)

�� � c ; jhj � h0 ; for any � 2 [0; �0) : (4.24)

These estimates also include u0 = u and hold for the solution w to (4.20). Note that

the expressions on the left side of (4.24) are well de�ned since @x2uh and k�2h @x1;�uh are

continuous across �1;h\R" for any " > 0, because of (3.28) and the transmission conditions

uhj+ = uhj� ;
1

(k+h )
2

@

@�
(ei�x1uh)

����
+

=
1

(k�h )
2

@

@�
(ei�x1uh)

����
�

on �h ;

where the plus resp. minus sign denotes the limit as the interface �h is approached from

the region above resp. below.

Thus the expressions gr(uh) and gr(w) are well de�ned on �1;h and �1, respectively.

In particular, we have on �1

gr(u) =
1

k+k0

�
k0

k+
@x1;�uj+ ; @x2uj+

�
=

1

k+k0

�
k+

k0
@x1;�uj� ; @x2uj�

�
; (4.25)

and the same holds for w, with k replaced by �k.
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Now we prove that the limit (4.22) exists and that

lim
h!0

jhj�1
Z
�h

gr(uh) � gr(w) =
Z
�1

gr(u) � gr(w) dx2 ; (4.26)

which, together with (4.11) and (4.21), then implies

D1A
+
n (�) =

exp(�i�+n b)
2�

((k0)
2 � (k+)2)

Z
�1

gr(u) � gr(w) dx2 : (4.27)

Proof of (4.26):

Here we use the regularity results given in Subsec. 3.3. Therefore we assume that k0 is

constant in a neighbourhood below the grating pro�le � and that condition (3.19) with

C = (k+=k0)
2 is ful�lled. Then estimate (4.24) applied to uh and w gives, with some

� > 1=2,

1

jhj

Z
�hnR"

���gr(uh) � gr(w)���dx+ Z
�1nR"

���gr(u) � gr(w)���dx2
� c

8<:
"Z

0

x
2��2
2 dx2 +

HZ
H�"

(H � x2)
2��2dx2

9=; � c"� ;

where � = 2� � 1 > 0 and c is independent of " and h.

Thus it is su�cient to verify, for any �xed " > 0 su�ciently small, that

lim
h!0

jhj�1
Z

�h\R"

gr(uh) � gr(w) dx =

Z
�1\R"

gr(u) � gr(w) dx2 : (4.28)

By (4.23) and the compact embedding H1+s
p (
) ,! H1

p (
), we obtain as in the proof of

(4.14) that uh ! u in H1
p (
). Indeed, for any ' from the dense subset H1

p (
) \ C1(�
)

of H1
p(
) and for any sequence uh converging to some ~u in H1

p (
) we have

Bh
TM(uh; ')�BTM(~u; ') =

Z
�h

�
1

k2h
�

1

k2

�
r�uh � r�'+BTM(uh � ~u; ')! 0 ; h! 0

since by (4.23) there holds r�uh � r�' 2 L1(
) uniformly. Hence BTM(u� ~u; ') = 0 for

any ' 2 H1
p (
).

Moreover, (3.26) (or standard regularity theory for transmission problems) gives

sup
x2 �R"n�1;h

n
jruh(x)j+ jr2uh(x)j

o
� c ; jhj � h0 ;

note that �R" stays away from the corner points of �h. Together with the continuity

of gr(uh) across �1;h \ R" and a compactness argument, we then have gr(uh) ! gr(u)

(h! 0) in the norm of C( �R") and, since gr(w) is also continuous on �R",

lim
h!0

jhj�1
Z

�h\R"

(gr(uh) � gr(u)) � gr(w) = 0 :
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Finally, the continuity of the integrands implies

lim
h!0

1

jhj

Z
�h\R"

gr(u) � gr(w) dx =

Z
�1\R"

gr(u) � gr(w) dx2 ;

which completes the proof of (4.28) and hence that of (4.26).

Remark 4.3 So far we have not been able to prove (4:27) in the case when condition

(3:19) is violated. Since then �0 � 1=2, the function gr(u) �gr(w) might be non{integrable

on �1; see (3:15) and Remark 3:5.

However, for materials occuring in practice the condition (3:19) on the optical index is

violated only in some exceptional cases, e.g. for silver and aluminium in a certain range of

small wavelengths (less than 450 nm). Additionally, simple numerical examples indicate

that even in the case of small �0 > 0 the Rayleigh coe�cients A+
n depend smoothly on

the variation of transition points or the height of a binary grating. So we believe that the

restriction �0 > 1=2 is only of technical nature.
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Figure 5: Real and imaginary part of Rayleigh coe�cients for a simple binary grating

with C = �3+ i 0:01 versus variation of the transition point.

Remark 4.4 Applying Corollary 3:3 to the pro�les �h, h = (h1; :::; hm), considered in

Remark 4:2 and using the above arguments, one can show that D1A
�

n (�h) ! D1A
+
n (�)

as jhj ! 0.

Proceeding as in the proof of (4.27), we get the following analogues of the formulas

(4.17) in the TM case:

DjA
�

n (�) =
(�1)j�1

2�
exp(�i��n b)((k0)

2 � (k+)2)

Z
�j

gr(u) � gr(w�) dx2 ;

j = 1; :::;m� 1 ; (4.29)

DmA
�

n (�) =
exp(�i��n b)

2�
((k0)

2 � (k+)2)

Z
�m

grH(u) � grH(w�) dx1 :
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Here, u is the solution of the direct TM problem (2.23), w+ solves the adjoint problem

(4.20), and w� the adjoint problem

BTM(';w) =

Z
��

' exp(�inx1) dx1 ; 8' 2 H1
p (
) : (4.30)

Furthermore, gr(u) is de�ned by (4.25),

grH(u) =
1

k+k0

�
@x1;�u

���
+
;
k0

k+
@x2u

���
+

�
=

1

k+k0

�
@x1;�u

���
�

;
k+

k0
@x2u

���
�

�
; (4.31)

and the corresponding expressions for w� are obtained by replacing k with �k.

5 Generalized �nite element solution

Since the sesquilinear forms BTE and BTM corresponding to the TE and TM di�raction

problems are strongly elliptic it is natural to use a Galerkin method for solving the corre-

sponding direct and adjoint variational problems. Here we describe some aspects of the

discretization of these problems with bilinear �nite elements given on a piecewise uniform

rectangular partitioning of 
. The traces of these functions on �� are the linear boundary

elements so that the presented approach is in fact a coupled FE/BE method for treating

the di�raction on periodic gratings. Our choice of bilinear test and trial functions on a

uniform mesh is motivated by the singular behavior of the solutions at the non-smooth

grating pro�le, by some special features of the FE solution of Helmholtz-type equations

and by the simple implementation of the methods.

5.1 Stability and convergence

The error analysis is very simple due to the strong ellipticity of the coupled variational

formulations (2.22) and (2.23). Since for nonsmooth � the solutions are not better than

H2, in general, the trial functions are restricted to piecewise bilinear ones, although the

convergence analysis can be applied to any spaces of FE functions. We remark that the

Galerkin method for solving the direct problems was investigated by using a di�erent

technique in [4] and [5], for the TM case under the restriction Re k2 > 0.

Let 
h be a partitioning of 
 into simple rectangles of the size h1 � h2, by Sh we

denote the subspace of H1
p (
), formed by the bilinear functions on 
h. In the following

we consider a family of these spaces assuming that the quotient h1=h2 is bounded from

below and above, and set h =
p
h1 h2.

The �nite element solutions uh 2 Sh of the direct and adjoint problems can be deter-

mined from the linear systems

BTE(uh; 'h) =

Z
�+

f+'h +

Z
��

f�'h ; for all 'h 2 Sh ; (5.1)

or correspondingly

BTM(uh; 'h) =
1

(k+)2

Z
�+

f+'h +
1

(k�)2

Z
��

f�'h ; for all 'h 2 Sh ; (5.2)

26



with some smooth periodic functions f� given on ��. Using Theorems 3.1 and 3.3 as well

as (3.6) and (3.24) one gets by standard Galerkin techniques (see [24], Chapter 12)

Theorem 5.1 Suppose that k 2 L1(
) takes constant values k� in a neighbourhood

of ��, respectively, and satis�es condition (2.6). For TM problems suppose additionally

that k�1 2 L1(
) and condition (2.7) is valid. Then for all but a sequence of countable

frequencies !j , j!jj ! 1, and all su�ciently small h the Galerkin equations (5.1) resp.

(5.2) are uniquely solvable. If the exact solution u 2 Hs
p(
), 1 < s � 2, then the di�erence

between the �nite element solutions and the exact solution can be estimated by

ku� uhkH1(
) � Chs�1kukHs(
) ; ku� uhkL2(
) � Ch2s�2kukHs(
)

where the constants depend on k but are independent on h and u.

In practical computations the operators T�� cannot be computed from the in�nite series

expansion (2.20). Denote their truncation by

T��;Nv = �
X
jnj�N

i��n v̂n exp(inx1)

and let P�

N be the bounded mapping H1
p (
)! H

1=2
p (��) de�ned by

P�

N u =
X
jnj�N

û�n exp(inx1) :

Here û�n denote the Fourier coe�cients of uj��. Furthermore, set Q�

Nu = uj�� �P�

N u. By

standard arguments one easily veri�es

Lemma 5.1 There exists a constant c > 0 such that for any N > 0 and any u 2 H1
p (
)

krukL2(
) � c kQ�

NukH1=2(��) :

Denote by BN
TE and BN

TM the sesquilinear forms corresponding to the truncated opera-

tors T��;N In the practical computations the approximate solution of the direct and adjoint

problems in TE or TM mode is obtained as the FE solution of the equations

BN
TE(u; ') =

Z
�+

f+'+

Z
��

f�' ; for all ' 2 H1
p (
) ; (5.3)

or correspondingly

BN
TM(u; ') =

1

(k+)2

Z
�+

f+'+
1

(k�)2

Z
��

f�' ; for all ' 2 H1
p (
) ; (5.4)

for some N , which has to be speci�ed. The error analysis can be performed similarly to

the untruncated case and relies on the following

Lemma 5.2 For any N > 0 the forms BN
TE and BN

TM are strongly elliptic over H1
p (
). If

the operator BTE respectively BTM is invertible then there exists N0 and a constant c > 0

such that for all N � N0 and u 2 H1
p (
) the inequalities

sup
k'k

H1
p(
)

=1

jBN
TE(u; ')j � c kukH1(
) resp. sup

k'k
H1
p(
)

=1

jBN
TM(u; ')j � c kukH1(
)
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are valid. Moreover, there exists h0 > 0 such for any N > N0 and h < h0 the Galerkin

approximations BN
TE(uh; 'h) or B

N
TM(uh; 'h), uh; 'h 2 Sh, are stable, i.e.

sup
k'hkH1

p(
)
=1

jBN
TE(uh; 'h)j � c kuhkH1(
) resp. sup

k'k
H1
p(
)

=1

jBN
TM(uh; 'h)j � c kuhkH1(
)

with constants not depending on N and h.

Proof. To show the strong ellipticity make use of

(T��;Nu; u) = (T��;NP
�

N u; P
�

Nu) ;Z



jruj2 �
1

2

Z



jruj2 + c kQ�

Nuk
2
H1=2(��)

;

kP�

N uk
2
H1=2(��)

+ kQ�

Nuk
2
H1=2(��)

= kuk2
H1=2(��)

;

and proceed as in the proof of Theorem 3.1.

Now the proof of the second assertion follows from standard arguments. Suppose that

there exists a weakly converging sequence fuNg with kuNkH1(
) = 1 such that

sup
k'k

H1
p(
)

=1

jBN
TE(u

N ; ')j ! 0 : (5.5)

If the form BTE has a trivial kernel then uN converge weakly to 0. Indeed, since the

operators (T��;N)
� converge strongly to (T�� )

� (cf. (2.27)) and

BTE(u
N ; ') = BN

TE(u
N ; ') + ((T+

� � T+
�;N)u

N ; ') + ((T�� � T��;N)u
N ; ') ;

one concludes that BTE(u
N ; ') ! 0 for any �xed '. Hence uN ! 0 strongly in L2(
).

But the strong ellipticity of BN
TE was shown by the estimate

ReBN
TE(exp(�i�=4)u

N; uN ) � c1 !kuNkH1(
) � c2

Z



jkj2 juN j2

implying

jBN
TE(u

N ; uN )j � c ! :

The stability of the Galerkin method for BN
TE uniformly in h follows analogously if one

chooses a weakly converging sequence uhN 2 ShN and any strongly converging sequence

'hN 2 ShN ful�lling (5.5).

Obviously, the same arguments can be used to prove the assertions in the case of the

form BN
TM , too.

Lemma 5.2 implies that the Galerkin equations of (5.3) or (5.4) are uniquely solvable

if N > N0 and h < h0. Moreover, the solutions uNh 2 Sh converge to the exact solution

uN of (5.3) or (5.4) with the rates given in Theorem 5.1. To estimate u � uNh it su�ces

therefore to consider the di�erence u� uN . In the TE case one has

BN
TE(u� uN ; ') = BTE(u; ')�BN

TE(u� uN ; ')�BN
TE(u

N ; ')

= ((T+
�;N � T+

� )u; ')� ((T��;N � T�� )u; ') :
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Since by Lemma 5.2

ku� uNkH1
p(
)

� c sup
k'k

H1
p(
)

=1

jBN
TE(u� uN ; ')j ;

it su�ces therefore to estimate j(T�� �T
�

�;N)u; ')j for the solution u of the original problem.

By (2.11) it has the form

u =
X
n2Z

A+
n exp(inx1 + i�+n x2) ; x2 > maxf0 ;

u =
X
n2Z

A�

n exp(inx1 � i��n x2) ; x2 < minf1 :

Recall that �+ = fx2 = bg, take ~b 2 (maxf0; b) and denote e�+ = fx2 = ~bg. Then

uj
�+

=
X
n2Z

ûn(b) exp(inx1) =
X
n2Z

ûn(~b) exp(i�
+
n (b� ~b)) exp(inx1) ;

where ûn(b) denote the Fourier coe�cients of the function u(x1; b). Hence

j((T+
� � T+

�;N)u; ')j �
n X
jnj>N

jûn(~b)j2j exp(2i�+n (b� ~b))j
j�+n j2

jnj

o1=2n X
jnj>N

jnj j'̂nj2
o1=2

� N1�s exp
�
�(b� ~b)

p
(N � j�j)2 � (k+)2

�
kuk

Hs�1=2(e�+)
k'kH1=2(�+) ;

if N > j�j + k+ and s > 1. A similar estimate is valid for j((T�� � T��;N)u; ')j if N is

su�ciently large. Therefore

ku� uNkH1
p(
)

� cN1�s 
(N) kukHs
p(
)

;

where 
(N) is de�ned by


(N) = exp
�
�(b� ~b)

p
(N � j�j)2 � (k+)2

�
+ exp

�
�(~a� a)

p
j(N � j�j)2 � (k�)2j

�
and ~a;~b are chosen such that a < ~a < minf1 and maxf0 < ~b < b.

Summarizing we obtain the �nal convergence result in the TE case.

Theorem 5.2 Suppose that the variational problem (2.22) is uniquely solvable. Then

there exists N0 > jk�j + j�j such that for all N > N0 and su�ciently small h the FE

discretization of (5.3) has a unique solution uNh 2 Sh approximating the exact solution

u 2 H2
p (
) with

ku� uNh kH1(
) � (Ch+ cN�1 
(N)) kukH2(
) ;

ku� uNh kL2(
) � (Ch2 + cN�2 
(N)) kukH2(
) ;

where the constants depend on k but are independent on h, N and u. Moreover, the

Fourier coe�cients A�

n;h of the discrete solution uNh converge to the Rayleigh coe�cients

(4.1) with the rate

jA�

n �A�

n;hj � (Ch2 + cN�2 
(N)) kukH2(
) :
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To formulate the convergence result in the TM case we remark that the solutions of

the direct and adjoint problems do not belong to H
3=2
p (
) due to the jump of the normal

derivatives (cf. Corollary 3.2). But Theorem 3.4 states that the restriction of u to some

subdomain 
1, where k is continuous, satis�es u 2 H1+�(
1) with � 2 [0; �0) (cp. also

(3.25)). The improved smoothness for �0 > 1=2 allows us to derive higher convergence

rates compared with Theorem 5.1. We assume that the grating and the partitioning 
h

are such that the discontinuities of k lie on mesh lines. This is possible for example

for binary gratings situated on some multilayer system. Then it is well known that for

bilinear FE functions there holds the estimate

inf
'h2Sh

ku� 'hkHs(
) � cu h
1+��t ; 0 � t � 1 ;

where cu is the sum of H1+�-norms of u on subdomains of 
. Furthermore, the estimate

of u�uN can be considered analogously to the TE case, the only di�erence are the factors

in front of ((T�� �T��;N)u; '). Thus under the assumptions concerning the jumps of k and

the partitioning 
h we obtain

Theorem 5.3 Suppose that the variational problem (2.23) is uniquely solvable. Then

there exists N0 > jk�j + j�j such that for all N > N0 and su�ciently small h the FE

discretization of (5.4) has a unique solution uNh 2 Sh approximating the exact solution u

with

ku� uNh kH1(
) � cu (h
� +N�� 
(N)) ;

ku� uNh kL2(
) � cu (h
2� +N�2� 
(N)) ;

for any � 2 [0; �0), where �0 is de�ned in Subsec. 3.3. The constants cu depend on k and

u but are independent on h and N . Moreover, the Fourier coe�cients A�

n;h of the discrete

solution uNh converge to the Rayleigh coe�cients (4.1) with the rate

jA�

n �A�

n;hj � cu (h
2� +N�2� 
(N)) :

Finally we consider the approximation of the gradients. Recall that in the TE case

DjA
+
n (�) = (2�)�1 exp(�i�+n b)((k0)

2 � (k+)2)

Z
�j

u �w ;

where u is the solution of the direct problem (2.22) and w solves the associated adjoint

problem (4.12) resp. (4.18). �j is a segment of the grating pro�le � = �0. The approxi-

mation of DjA
+
n (�) is of course

DjA
+
n (�)h := (2�)�1 exp(�i�+n b)((k0)

2 � (k+)2)

Z
�j

uh �wh ; (5.6)

with the corresponding FE solutions uh and wh of a truncated form BN
TE.

From Theorem 5.2 and the inequality

ku� uhkH�1=2+�(�j) � c ku� uhkH�(
) ; 0 < � � 1 ;
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which holds for FE solutions to elliptic second order equations (see [17]), one gets imme-

diately the convergence rate for the gradient

jDjA
+
n (�) �DjA

+
n (�)hj � (Ch2�� + cN�2+� 
(N)) kukH2(
) (5.7)

for any � > 0.

In the TM case one has to estimate (compare (4.25), (4.31) and condition (3.19))Z
�j

�
gr(u) � gr(w) � gr(uh) � gr(wh)

�
:

Using the inequalities

ku0 � u0hkH��(�j) � c ku� uhkH1��(�j) � c ku� uhkH3=2��(
+) ;

k@(u� uh)=@�kH��(�j) � c ku� uhkH3=2��(
+) ;

for 0 < � < �0 � 1=2, one obtains easily the estimate��� Z
�j

gr(u� uh) � gr(w)
��� � c ku� uhkH3=2��(
+)kwkH3=2+�(
+) :

Then Theorem 5.3 and the inverse property of Sh lead to the following approximation

rate for the gradients in TM mode:

jDjA
+
n (�) �DjA

+
n (�)hj � cu (h

2� +N�2� 
(N)) : (5.8)

5.2 Generalized FEM with minimal pollution

It is well know that the accuracy of Galerkin FEM for boundary value problems gov-

erned by the Helmholtz equation deteriorates with increasing wave number and enlarging

domains. This e�ect was observed in our problems, too. For example, the re
ection

and transmission e�ciencies (4.2) and (4.3) do not depend on the choice of the arti�cial

boundaries ��. But it turned out in numerical tests that for relatively large wave numbers

the computed e�ciencies strongly depend on the x2-dimensioning of the domain 
.

In recent years many attempts have been made in the mathematical and engineering

literature to overcome the so{called pollution e�ect, i.e. the non-robust behavior of �nite

element and other domain based methods with respect to the wave number. Roughly

speaking, this e�ect is originated by the discretization of the Helmholtz operator in the

interior of the domain. Note that this e�ect does not arise by using boundary element

methods.

In one-dimensional problems the usual piecewise linear FE solution of the equation

u" + k2u = 0 on a uniform grid has the discrete wave number

kh =
1

h
arccos

2(3 � (kh)2)

6 + (kh)2
= k �

k3h2

24
+O(k5h4) :

It is clear that this \phase lag" leads to large discretization errors. The simplest way to

improve the phase accuracy consists in solving Galerkin FE systems where k is replaced

by

k0 =
6(1 � cos kh)

h2(2 + cos kh)
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which ensures that this modi�ed FEM has no pollution. This approach is also e�ective if

k is piecewise constant as shown in Fig 5. Here the FE and GFE solutions for h = 1=32

are plotted of the equation

u00 + k2 u = 0 ; u0(a) + iku(a) = 0 ; u0(b)� iku(b) = 2ik exp(�ikb) (5.9)

with a = �5:5, b = 1, k(x) = 5 for �5 < x < 0 and otherwise k = 1, corresponding to

the di�raction by some layer. We see that due to the phase lag the FE solution cannot

approximate the exact one, whereas the GFEM solution is very accurate. Note that a

rigorous error analysis for one{dimensional problems is contained in [2].
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Figure 6: Imaginary part of the solution of (5.9) for h = 1=32

In the two-dimensional case the situation is quite di�erent, here the modi�cation of k

alone will not lead to an essentially better numerical phase accuracy. Recently in [2] and [3]

a new approach has been proposed in the framework of Generalized FEM. The idea here is

to replace the stencils of the FEM systemmatrix by some other stencils, especially adopted

to the Helmholtz equation, and to connect the discrete solution with the associated bilinear

FE function. The main question concerns the existence and construction of a GFEM,

which ensures that the wave number of the discrete solution is as close as possible to

the wave number of the analytic solution. For the case of a uniform quadratic mesh on


, h1 = h2, it was shown in [2] and [3] that any GFEM has a phase lag, leading to a

pollution e�ect. The authors de�ne a measure of the approximation quality of the GFEM

discretization for the Helmholtz equation and describe the in
uence of this measure on the

error estimates. Further they construct an interior stencil leading to minimal pollution.

In the following we will give an extension of this approach to the case of rectangu-

lar meshes on 
, which also indicates how GFEM with minimal pollution for three-

dimensional problems can be designed.

Consider the Helmholtz equation �u + k2u = 0 in the interior of some domain 
.

We want to �nd a discrete solution with the wavenumber k, i.e. at the grid points

(ph1; qh2); p; q 2 Z, it should be some linear combination of

v�(ph1; qh2) = exp(ik1ph1 + ik2qh2) with k1 = k cos � ; k2 = k sin � ; � 2 [0; 2�] :

These discrete functions are solutions of a linear system connected with the Helmholtz
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equation. For this system we de�ne the interior stencil0B@ a3 a2 a3

a1 a0 a1

a3 a2 a3

1CA
with a0 > 0, the form of which is natural for uniform rectangular grids. The application

of this stencil to the discrete function v� results in the value

exp(ik1ph1 + ik2qh2)
�
a0 + 2a1 cos(k1h1) + 2a2 cos(k2h2) + 4a3 cos(k1h1) cos(k2h2)

�
at the grid point (ph1; qh2). Hence, the functions v� satisfy the discretized Helmholtz

equation if the stencil is chosen such that

a0 + 2a1 cos(kh1 cos �) + 2a2 cos(kh2 sin �) + 4a3 cos(kh1 cos �) cos(kh2 sin �) = 0

for all � 2 [0; 2�]. However, there exist no solutions of this equation, i.e. for any choice of

the coe�cients a0; : : : ; a3 the ellipse Eh1h2(�) = (kh1 cos �; kh2 sin �) ; � 2 [0; 2�], does not

belong to the set of roots of the symbol function associated with the stencil

G(�1; �2) := a0 + 2a1 cos(�1) + 2a2 cos(�2) + 4a3 cos(�1) cos(�2) :

Therefore we look for a stencil with the property that the roots of the corresponding

symbol are as close as possible to Eh1h2 as h1; h2 ! 0. Once a0 is �xed, obviously the

coe�cients a1, a2 and a3 will depend on k, h1 and h2, and we are interested in analytic

expressions for them.

Let us denote by Nh1h2 the set of roots of the symbol G lying in some rectangle (�kh1�
"; kh1+")�(�kh2�"; kh2+"), where " > 0 is chosen such that Nh1h2 is simply connected.

Using the results obtained in [3] for the case h1 = h2 one can show that the distance

between Nh1h2 and Eh1h2 de�ned by

Dh1h2 = max
�2[0;2�]

min
�2Nh1h2

kEh1h2(�)� �k

can be taken as a measure for the approximation quality of the GFEM. In particular, given

some interior stencil, there exist boundary value problems for the Helmholtz equation such

that the error between the exact solution and the GFEM solution can be estimated from

below by

ku� uGFEk2 � c(h21 + h22)Dh1h2 :

(detailed proofs will be given elsewhere, compare also [2],[3]).

To �nd a stencil providing asymptotically the minimal Dh1h2 we use the fact that

for symbol functions G(�1; �2) with roots in a neighbourhood of Eh1h2 the asymptotics

max
�2[0;2�]

jG(kh1 cos �; kh2 sin �)j = O((kh)`) and Dh1h2 = O((kh)`�1) are equivalent. This

follows immediately if cos(kh1 cos �+r1) and cos(kh2 sin �+r2) are expanded with respect

to the distance parameters r1 and r2. Therefore we determine the coe�cients a1, a2 and

a3 such that asymptotically max
�2[0;2�]

jg(�)j is minimal, where g(�) = G(kh1 cos �; kh2 sin �).

After that we calculate the �rst coe�cients of the asymptotics of Dh1h2 for this stencil and

compare them with the asymptotics expansion of the minimal distance Dh1h2 obtained by

using some special series representation.
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The function g(�) is �-periodic, in the case h1 = h2 it has even the period �=2. Using

the formulas

1

�

�Z
0

cos(a cos �) cos(2m�) d� = (�1)mJ2m(a) ;

1

�

�Z
0

cos(b sin �) cos(2m�) d� = J2m(b) ;

1

�

�Z
0

cos(a cos �) cos(b sin �) cos(2m�) d� = J2m(
p
a2 + b2) cos (2m arctan

a

b
) ;

one concludes that the coe�cients of the Fourier series

g(�) = ĝ0=2 +

1X
m=1

ĝ2m cos(2m�)

have the asymptotics

ĝ2m �
(kh1)

2m + (kh2)
2m

22m(2m)!
for small kh1 and kh2

if a1; a2; a3 = O(1). Thus for given a0 the values of a1, a2 and a3 can be found from the

condition that the �rst three Fourier coe�cients of g vanish, ĝ0 = ĝ2 = ĝ4 = 0, which

ensures that

max
�2[0;2�]

jg(�)j = O((kh)6) ; (5.10)

recall that h =
p
h1h2. Thus one gets the linear system

2J0(kh1) a1+ 2J0(kh2) a2 +4J0(k
p
h21 + h22) a3 = �a0

2J2(kh1) a1� 2J2(kh2) a2 +4
h21 � h22
h21 + h22

J2(k
p
h21 + h22) a3 = 0

2J4(kh1) a1+ 2J4(kh2) a2 +
�
4�

32h21 h
2
2

(h21 + h22)
2

�
J4(k

p
h21 + h22) a3 = 0

(5.11)

Note that in the case h1 = h2 the solution of (5.11) gives a1 = a2 and there holds

max
�2[0;2�]

jg(�)j � O((kh)8) :

Since any other choice of a1, a2 and a3 leads to an asymptotics not better than (5.10), the

stencil whose symbol has asymptotically the smallest absolute value on the ellipse Eh1h2
is uniquely determined. It remains to show the existence of the set of zeroes Nh1h2 near

the ellipse and to estimate Dh1h2. Similar to the technique of [3] for the case h1 = h2 one

can use an expansion of the zeroes of G in the form

�1 = kh1

�
1 +

P
1

m=1 rm(�; h1=h2)(kh)
2m+1

�
cos � ;

�2 = kh2

�
1 +

P
1

m=1
rm(�; h1=h2)(kh)

2m+1
�
sin � ;

(5.12)
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which gives for the stencil de�ned by (5.11)

r2(�; q) = 0 ;

r3(�; q) =
(q2 � q�2) cos 6�

15360
;

r4(�; q) =
(q3 + q�3) cos 8�

1548288
+
(q3 � q�3) cos 6�

193536
+
(q � q�1) (q2 � q�2) cos 4�

737280
:

It is clear that any perturbation of the solution a1, a2, a3 of (5.11) with terms of the

order O((kh)6) determines another stencil with max jg(�)j = O((kh)6). Since

Dh1h2 � max
�2[0;2�]

��� 1X
m=1

rm(�; q)(kh)
2m+1

��� ;
the stencil with minimal Dh1h2 can be determined from the condition that the function

values jrm(�; q)j are minimal. Proceeding similarly to [3] expand the elements of the

unknown stencil into power series in (kh)2 with coe�cients depending on h1=h2 and take

the Taylor expansion of

cos
�
kh1

�
1 +

1X
m=1

rm(�; h1=h2)(kh)
2m+1

�
cos �

�
;

cos
�
kh2

�
1 +

1X
m=1

rm(�; h1=h2)(kh)
2m+1

�
sin �

�
:

So one gets an in�nite series in (kh)2, which roots can be determined from a recursion

formula connecting rm with all rj , j = 1; : : : ;m� 1, and the power series coe�cients of

the stencil elements. The condition of minimal max jrm(�; q)j leads to a unique solution

and it turns out, that for this stencil the roots of the corresponding symbol function has

the asymptotics (5.12) with

r3(�; q) =
(q2 � q�2) cos 6�

15360
;

r4(�; q) =
(q3 + q�3) cos 8�

1548288
+
(q3 � q�3) cos 6�

193536
:

Hence the analytically given stencil (5.11) can be considered as almost optimal and one

obtains the estimate

Dh1h2 �
1

15360
k5 jh21 � h22j (h

2
1 + h22)

3=2 +O((kh)7) :

As mentioned above, if h1 = h2 then Dh has the asymptotics O((kh)7). Note that in

[2] another analytical formula for an optimal stencil was given. It is interesting that the

asymptotics of Dh for both stencils di�ers only beginning with the term (kh)11 and has

the form

Dh �
1

774144
(kh)7 +

1

55296000
(kh)9 +O((kh)11) :
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5.3 Implementation

Here we brie
y describe how the optimal interior stencil for solving 2d Helmholtz equations

on rectangular meshes can be adapted for solving the direct and adjoint variational TE

and TM problems for binary gratings on top of some multilayer system. For those cases

the domain 
 can be partitioned such that the rectangular mesh is uniform in x1- and

piecewise uniform in x2-direction such that the discontinuities of k lie on mesh lines. Since

our problems contain the di�erential operator �+ 2i�@x1 + (k2 � �2) the optimal stencil

has to be modi�ed. For a solution u of the TE or TM problem the function exp(i�x1)u

solves the Helmholtz equation � + k2. Therefore we expect the discrete solutions to be

combinations of the discrete functions

v�(ph1; qh2) = exp(i(k1 + �)ph1 + ik2qh2) with k1 = k cos � ; k2 = k sin �

and we implemented a GFEM with scaled versions of the stencil0B@ exp(�i�h1) a3 a2 exp(i�h1) a3

exp(�i�h1) a1 a0 exp(i�h1) a1

exp(�i�h1) a3 a2 exp(i�h1) a3

1CA
where the coe�cients are the solutions of (5.11). The scaling is necessary due to the

jumps of k and to the nonlocal boundary operators T�� . The best results were obtained

if the scaling is chosen such that the sum of the central row equals the diagonal element

of the GFEM with no pollution for the one-dimensional operator (d=dx)2 + (k2 � �2).
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Figure 7: Comparison of some e�ciencies computed with FEM and GFEM for a simple

binary grating versus the square root n of total grid points.

The method described above was used to evaluate the re
ection and transmission e�-

ciencies of binary gratings of di�erent geometries and materials. In any case the method

was robust and reliable, for rather poor discretizations the obtained results were excellent

compared with the usual FEM. In Figure 6 we compare the numerical values of some
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re
ection and transmission e�ciencies versus the square root n of total number of grid

points computed with the usual FEM and the GFEM on quadratic meshes for a sim-

ple binary grating with the optical index k = 2:5 situated on some other material with

k� = 3:5. In any case the GFEM results di�er already for n = 40 only by 2 % from

the corresponding values for n = 200, whereas the FEM results converge rather slowly

to these values. Furthermore, for special binary gratings which can be treated also with

other methods (e.g. integral equation or waveguide methods) the performance of our

method is of the same or even better quality.

The GFEM for solving direct and adjoint problems was integrated into a computer

program for the study of optimal design problems. By using the standard algorithm of

gradient descent local minima of functionals are determined, which characterize desired

optical properties of binary gratings. These functionals involve the Rayleigh coe�cients

of the discrete models on a given partition of the domain 
 for a prescribed range of

incidence angles or wavelengths. Of course, the gradients are computed by discretized

versions of the formulas given in Sec. 4. Corresponding to the gradients the shape of �

is varied within a class of admissible pro�les, which are restricted to the mesh lines and

certain technological constraints.

The computer program was used to �nd the optimal design of large classes of binary

gratings for di�erent functionals. As one example we mention the application of metallic

subwavelength gratings for polarization devices as considered in [25]. Fig. 7 shows the

results for the optimal design of such a zero order grating that should maximize the

re
ection of TE polarisation and the transmission of TM polarisation over the range of

wavelengths from 450 to 633 nm. The grating period is 200 nm, the width of the bar

amounts to 60 nm and the height is 150 nm.
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Figure 8: Optimal design for a simple polarisation grating

Certainly better minimization algorithms exist, for example conjugate gradient methods

or methods based on higher order derivative information. The design and analysis of

di�erent minimization methods for coated binary gratings will be the topic of future

research.
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