Analysis and Numerics for the Optimal Design of
Binary Diffractive Gratings

J. Elschner, G. Schmidt
WIAS Berlin

1991 Mathematics Subject Classification. 78-05, 78A45, 35J20, 66N30, 49J20.

Keywords. Diffraction problems, Helmholtz equation, transmission problem, strongly
elliptic variational formulation, generalized FEM, gradient methods



Abstract

The aim of the paper is to provide the mathematical foundation of effective
numerical algorithms for the optimal design of periodic binary gratings. Special
attention is paid to fast and reliable methods for the computation of diffraction ef-
ficiencies and of the gradients of certain functionals with respect to the parameters
of the non—smooth grating profile. The methods are based on a generalized finite
element discretization of strongly elliptic variational formulations of quasi periodic
transmission problems for the Helmholtz equation in a bounded domain coupled
with boundary integral representations in the exterior. We prove uniqueness and
existence results for quite general situations and analyse the convergence of the nu-
merical solutions. Furthermore, explicit formulas for the partial derivatives of the
reflection and transmission coefficients with respect to the parameters of a binary
grating profile are derived. Finally, we briefly discuss the implementation of a gradi-
ent type algorithm for solving optimal design problems and present some numerical
results.

1 Introduction

The practical application of diffractive optics technology has driven the need for mathe-
matical models and numerical codes both to provide rigorous solutions of the full electro-
magnetic vector-field equations for complicated grating structures, thus predicting per-
formance given the structure, and to carry out optimal design of new structures.

The aim of the present paper is to provide the mathematical foundation of effective
numerical algorithms for the optimal design of periodic binary gratings. Special attention
is paid to fast and reliable methods for the computation of diffraction efficiencies and of
the gradients of certain functionals with respect to the parameters of the non—-smooth
grating profile.

The case of periodic gratings corresponds to quasi—periodic transmission problems for
the Helmholtz equation in the whole plane. Special mathematical difficulties are associ-
ated with the numerical solution of these problems due to the highly oscillatory nature
of waves and interfaces. Various methods based on Rayleigh expansion, ordinary dif-
ferential and integral equations and on analytical continuation have been proposed (cf.
the monograph [22] and the recent papers [23], [7]), which turned out to be efficient for
solving the direct diffraction problem in the case of smooth interfaces between different
materials. The situation is much worse for binary structures whose surface profile is given
by a piecewise constant function. Here the mathematical complexities are amplified by
singularities of the solutions caused by the non-smooth grating profile. Recently, a new
variational approach was proposed by Bao and Dobson ([12], [4], [6], [15]) which appears
to be well adapted to very general diffraction structures as well as complex materials.
Furthermore, this approach may be generalized to the three-dimensional case and can be
used in gradient methods for solving optimal design problems. However, the mathemat-
ical foundation of this approach seems to be incomplete; in particular, it does not cover
all materials occuring in practice and excludes the so—called Rayleigh frequencies.

In the present paper a unified analysis is carried out both for the TE and the TM
case leading to more general solvability results and to a rigorous convergence analysis
for coupled finite element/boundary element solution methods. It turns out that the
approach by Bao and Dobson results in fact from the coupling of the variational method



for the Helmholtz equation in a bounded domain with the integral representation for
solutions satisfying the radiation condition. This coupling leads here to nonsymmetric,
but strongly elliptic variational formulations of both problems allowing the application
of well established techniques to their study. Moreover, this technique can be applied to
more general problems including the so-called conical diffraction on periodic gratings and
various diffraction problems for biperiodic gratings. This will be the topic of a forthcoming
paper.

The obtained results are used to derive explicit formulas for the partial derivatives of
the reflection and transmission coefficients with respect to the parameters of a binary
grating profile. This allows us to compute the gradients for a general class of functionals
involving the Rayleigh coefficients of both TE and TM modes. It is proved that these
functionals are C! so that gradient type methods can be applied to find local minima of
functionals characterizing desired optical properties of binary gratings. There have been
a number of papers from the engineering community that are concerned with optimal
design of periodic gratings. In these papers descent methods based on simple difference
quotients were used which, however, are very expensive for a large number of parameters.
So far rigorous gradient formulas were obtained only for the TE case; see [12], [6], where
interface mixture problems have been studied.

The outline of the paper is as follows. In Section 2 we formulate the diffraction prob-
lems and reduce them to strongly elliptic variational formulations in a bounded domain.
This will be used in Section 3 to study existence and uniqueness questions for the con-
tinuous direct and adjoint problems. Further we investigate the regularity of the TM
solution on the non-smooth grating profile. In Section 4 we consider problems connected
with the optimization of grating efficiencies. We prove explicit formulas for the partial
derivatives of the reflection and transmission coeflicients with respect to the height and
the transition points of the binary grating profile. These formulas are applied to evaluate
the gradient of a typical functional occuring in the optimal design of binary gratings.
Finally, in Section 5 we study the numerical solution of the diffraction problems. Us-
ing the strong ellipticity of the variational formulations a unified convergence analysis is
performed for the Galerkin approximation of the equations with truncated hypersingular
boundary operators. Furthermore, we study the generalized FEM with minimal pollution
for the Helmholtz equation, leading to essentially better numerical results.

2 Preliminaries

2.1 The Helmholtz equation

Suppose that the whole space is filled with nonmagnetic material with a dielectric coef-
ficient function €, which in Cartesian coordinates (zi,z3,z3) does not depend on z3, is
27-periodic, €(z1 + 27, z2) = €(@1, 2), and homogeneous above and below certain inter-
faces. This paper is mainly concerned with the solution of optimal design problems by
varying the form of the upper interface, denoted in the sequel by Ag or I'. The lower
interface will be denoted by A;. The surfaces Ay and A; will be assumed to be given by
zy = f;(z1) for certain 2m—periodic functions f;, 7 = 0,1. The material in the region
G* above the grating surface A¢ has the constant dielectric coefficient € = €t, whereas
the medium in G~ below A; is homogeneous with ¢ = ¢7. The medium in the region Gg



between Ag and A; may be inhomogeneous with ¢y = €, where we assume for simplicity
that the function €, is piecewise smooth with jumps at certain interfaces A;, 7 =2,...,4.
Assume the grating is illuminated by a monochromatic plane wave

E' = jexp(iaml — 1f8x,) exp(—iwt), H = éexp(iaml — 1f8x,) exp(—iwt), (2.1)

Wlth B # 0. Here, the complex amplitude vector Ais perpendicular to the wave vector
= (o, —0,0), and B= (wp)~ 1k x A with the everywhere constant magnetic permeability
7
The incident wave (E’, FI’) will be diffracted by the grating, and the total fields will be
given by '
Fup — f T E'refl Hup H'L T H'refl

in the region G*, by E and H™ in Gy and by
Edown — E"ref'r) ﬁ'down — ﬁ'ref'r

in the region G~. Dropping the factor exp(—iwt), the incident, diffracted and total fields
satisfy the time-harmonic Maxwell equations

VxE=iwuH,V-E=0, VxH=—iweE, V-H=0.

Additionally the tangential components of the total fields are continuous when crossing
an interface between two continous media

vx (B'—E) =0, vx(H' —H?)=0 onA,, (2.2)

where v is the unit normal to the interface A;. The periodicity of ¢, together with the

form of the incident wave, imply that the physical solutions E and H are independent of
z3 and must be a quasi—periodic in zy, i.e.

E(azl +27,25) = eXp(ZWia)E(ml, T3) ﬁ(ml +27,25) = exp(ZWia)ﬁ(ml, ).

Further, E and H can be represented as the superposition of solutions corresponding to
the TE case (Field Transverse Electric), where

E' = (0,0, A3) exp(raz, — 18zs), H = —(wp) (B A3, ads,0) exp(iaz; — iBzs)
and to the TM case (Field Transverse Magnetic) with
E = (A1, A2,0) exp(iaz; — 1Bzs), H = (wp)71(0,0, 841 + ad,) exp(iaz; —ifz,) .

Denote by u* the normed transverse component Ei. Z3 for TE or Hi. Z3 for TM. Obviously
ut = exp(iaz; — ifx;) with kT = w(uet)?, a = ktsinf, f = k't cosf, and the angle
of incidence § € (—n/2,7/2). Then the diffraction problem for periodic gratings and
incoming fields (2.1) splits into two scalar problems associated with the TE and TM
mode:

The a quasi—periodic functions u*(z;,z,) and ug(zy,z2) equal to either the transverse
component E - %5 for TE or H - &3 for TM in GF and Go, resp., are easily seen to satisfy,
in either case, the Helmholtz equations

AuT + (ki)zujE =0 inG*,

A’U,o —|— (k0)2 Ug = 0 iIl Go s (23)



where k¥ = w(uet)/? are constants and ko = w(uep)/?.

The boundary conditions (2.2) are translated into transmission conditions for the un-
knowns u¥ and g in the following way:

(i) TE mode:
ut +ut =ug, O(ut +ut)/0v = Ouy/Ov on Ay,
u~ = ug, Ou™ /Ov = Oug/0v on Ay, (2.4)
’u’0|j\—j = u’0|1_\j ) 6u’0/6y|j\—j = 6u0/6u|j_\j .7 =2, "7£7

with the incoming wave u' = exp(iaz; — 13z,), where uoﬁj denote the limits if uo ap-
proaches A;, 7 = 2,...,Z, from above or below, respectively.

(ii) TM mode:

ut +ut =uo, (kT)20(ut +u')/0v = k=2 Quo/Ov on Ag,
u~ = U, (k7)2 Ou™/0v = k™2 Quo/Ov on Ay, (2.5)
wlf, = oly,, (k2 Buof/)E, = (2 OuofOw)ly, 5= 2L,

Note that the components of the fields E, H in the z1zo—plane can then be computed
from the transverse components. We shall assume throughout that the grating material
satisfies

et >0, Ree” >0, Ime™ >0, (2.6)

Re eg(z1,22) > 0, Imeo(zy,23) > 0. (2.7)

Note that the case Im ¢ > 0 accounts for materials which absorb energy.

2.2 The radiation condition

Because the domain is unbounded in the z,—direction, a radiation condition on the scat-
tering problem must be imposed at infinity, namely that the diffracted fields u* remain
bounded and that they should be representable as superpositions of outgoing waves.

Define the coeflicients
Bx = Br(a) := exp(iv*/2)|(k*)* — (n —a)’|'/?, n€Z, (2.8)
where
v =arg((k*)? — (n+a)?), 0< ’yj-E < 2m.
Note that 83 = (3 and that, for real k*,
go_ [ (27— (nt o), K >Intal,
T i(nd e — (), K <ntal
+

Since the a quasi—periodic functions u™ are analytic for , > max fo resp. z, < min f;
they can be expressed as a sum of plane waves (cf. [21], [9]):

ut = Z {A;r exp(i(n + a)z1 + 61 z,) + By exp(i(n + o)z, — iﬂ:ﬂlz)} (2.9)
nez ‘

for 3 > max fo,



u = A-exp(i(n + a)zy — 16, z2) + B, exp(i(n + a)z1 + 106, ©2)
,% {4z exp ’ ) (2.10)

for 3 < min f,

where A%, Bf are complex numbers. The physics of the problem imposes the obvious
condition that the diffracted field remains bounded as |z2| — oo0. Thus we will insist
that u* satisfy the outgoing wave condition (OWC) BE = 0, i.e. they are composed of
bounded outgoing plane waves in G*, plus the incident incoming wave u* in G*:

ut —u = Z At exp(i(n + o)z + 467 z3), T3 > maxf,
= . . . (2.11)
u” = Z A exp(i(n + a)zy — 16, ®2), @2 < minf;.

nez

Since B is real for at most finitely many n, there are only a finite number of propagating
plane waves in the sums of (2.11). Note that physically the case 8% = 0 corresponds to a
plane wave propagating parallel to the grating. The remaining waves may be called surface
waves for the grating since they propagate in the z;—direction and are exponentially
decayed as |za| — 0.

In the following we will use the integral representation for a quasi—periodic solutions of
the Helmholtz equation satisfying the OWC. These representations are the basis for the
treatment of diffraction problems with integral equation methods (cf. [23], [21], [9]). We
assume that

(ki)2 # (n + a)2 forallneZ. (2.12)

and introduce the a quasi—periodic fundamental solutions

U(z) = % Z H(()l) (kjE \/(azl —2mn)? + m%) exp(2mina)
neZ

K 3 exp(i(n + @)z + by |z2|)

2m B ’

(2.13)

nez

where H(()l) is the first Hankel function of order zero. Note that for fixed e* and incidence
angle 6 condition (2.12) is violated for a discrete set of frequencies w;, w; — oo, referred
to as Rayleigh frequencies and corresponding to physically anomalous behaviour first

observed by Wood.

It is well known that under condition (2.12) the series in (2.13) converge uniformly in
compact subsets of IR*\{0} and that the difference ¥*(z) — log |z|/7 is smooth ([7], [9]).
Let us introduce two simple curves ['t which are the restriction to the strip {0 <z, <2r}
of the graph of smooth periodic functions lying in G*, resp. The single and double layer
potentials are defined by

r+
0
Kp(a) = [ 5o - y)ply)ds
Yy
I+



where the normals v to I't are directed away from the grating profile. Then the a quasi—
periodic functions u® solve the Helmholtz equation

AuF + (52wt =0
and satisfy the outgoing wave condition iff the representations

1 Ou™
+ + + +
u:—Ku—V—) 9.14
2 ( Ov ( )
are valid in the corresponding exterior domains. Using the jump relations for the poten-
tials and their normal derivatives one obtains the well-known relations between the values

of u* and their normal derivatives for z € T'*:

ut(z) — K*u*(z) + Viaaiy(m) =0,
Diui(m) + aaiy(az) + (Ki)'%(m) =0, (2.15)

with (K*)' the transpose to the double layer potential operators and D* the hypersingular
integral operators

(K*)o(o) = o [ ¥(o - ) ew)ds,
D¥y(z) = —% / a%y‘l’i(w —y)p(y)ds

2.3 Variational formulation

We are interested in a quasi—periodic solutions u®, ug to the TE diffraction problem
(2.3), (2.4), and the TM diffraction problem (2.3), (2.5) fulfilling the radiation condition
(2.11). For the variational approach to these problems we follow a procedure which couples
the variational method for the transmission problem near the inhomogeneities with the
integral equation method in the exterior domain. This procedure was introduced in [10]
as a symmetric method for coupling finite elements and boundary elements which, in case
of self-adjoint boundary value problems, yields symmetric matrices and allows a simple
error analysis. In our case the method results in strongly elliptic variational formulations,
obtained recently by Bao and Dobson ([12], [5], [6]) using a different approach.

Fix numbers b > max fo and ¢ < min f1, and let @ = (0,27) X (a,b), 0 = QNG
Qo=0NGo, 't ={z2 =0}NQ, I'" ={z2 =a}NQ; see Fig. 1. With a solution of (2.3)
we associate the function

exp(—iaz;) (ut +u') in QF,
u =< exp(—ioazi)uo in Qo , (2.16)
exp(—iozy) u” in Q™.
defined in €2, which is 2r—periodic in z;. To formulate the differential problem for u we

define V, = V +4(a,0), Aq = Vo - Vo = A + 200, — o?, and let
kt = w(uet)? in QF,
k=< ky =w (,ueo)l/z in Qo , (2.17)
k™ = w(ue )2 in Q.



1112‘
G-I—
]_"-I-
b
Q-I—
Ao 2T Z1
— N
o ] A ] \
1
0-
a
r-
G-

Figure 1: Problem geometry

Let further HJ(f2), s > 0, denote the restriction to 2 of all functions in the Sobolev
space H*(IR?) which are 27—periodic in z;. Obviously, H3(Q) can be identified with
the Sobolev space H*(T x (a,b)), where T stands for the unit circle. Then (H;(f)),
the dual space with respect to the scalar product in L?(Q), is isomorphic to the space
HX(TxR)={fe€e H*(TxR): supp f € Q).

The TE diffraction problem can now be formulated as follows. Due to (2.3) the function
u € H () has to satisfy the differential equation

(Ap +E)u=0 in (2.18)
and the transmission conditions (2.4). Integration by parts results in the variational
relation

0 0

/Vau-vacp—/kzugﬁ— o [ Ts=o, (2.19)
ov ov

Q Q T+ r-

forall ¢ € H;(Q) Having in mind that u* satisfy the OWC and are smooth on I'* we use
relation (2.15), characterizing the exterior fields. Since ['* are straight lines, the integral
operators are very simple. So (K*)' =0 and

2T

D¥o(e) = 5 [ S8 expiln+ a)(es — ui)) wlun) s

0 nez

Note that even for Rayleigh frequencies, i.e. condition (2.12) does not hold, we obtain
that the functions u® described in (2.9) and (2.10) satisfy the equality

+
D*u*(z) + %(m) =0, zel*.



Thus one gets in the general case

Oou| . dut  Buty . L .
EY LT exp(—zaml)(ﬁ + 81/) = —exp(—iaz;) DTu™ —i8 exp(—i0b)
Ou = —exp(—taz;) D" u"

v |-

relating the normal derivatives of u with its boundary values.

Let us define the operators T+ acting on 27-periodic functions on IR by

2T

(TEv)(z) == — Ziﬁfﬁn exp(inz), On, = (27)7" /v(m) exp(—inz) dz (2.20)

nez 0

which are periodic pseudodifferential operators of order 1; see e.g. [14]. In the following the

action of these operators on boundary values u|r+ € H;_l/z(f‘i) of functions u € H} ()
is denoted by TFu. Obviously T.F maps H;(Fi) isomorphically onto H;_l(f‘i) for any
s € R if condition (2.12) holds.

With this notations one gets evidently

exp(—iaz,) DTut = exp(—iaz,)D'(exp(iaz;)u) — exp(—iaz;) D v’
= Tyu+1iBexp(—iBb),
exp(—taz;) D u” = T u,
leading to the nonlocal boundary conditions

8_u
Ov

= —TFu — 2iBexp(—i8b), 6_u

= -7 2.21
y o u (2.21)

03
r—

Thus the coupling of the transmission problem in ) and the integral representation for
the exterior domain results in the variational formulation for the TE diffraction problem

(2.3), (2.4), (2.11)

Brg(u, @) = /Vau-W—/kzugﬁ—l-/(Ta"'u)gE—l-/(T;u)cﬁ

It} r+ r-
= — / 2iBexp(—iBb) @, Vo€ H;(Q) (2.22)
r+

Similarly, the TM diffraction problem (2.3), (2.5), (2.11) can be formulated as follows
(cf. [6], [5]). Find u € H, () that satisfies

1 S 1 1
Bru(u, @) == ﬁvau'vaﬁp_/u‘ﬁ—l' (kt)2 /(T;u)95+ (k)2 /(Ta_u)(la
Q Q T+ -
1 . iy - 1
= —WFZ 218 exp(—iBb) o, Ve c H,(Q). (2.23)

This formulation will be written also as the equation

Vo [(1/E*)Vau] +u=0 in (2.24)



with the boundary conditions (2.21).
Obviously, by

Bre(u,p) = (Breu,¥)r2i), Bru(u,¢) = (Bruu, 9)r2a) , (2.25)

the forms Brg and Brps generate bounded linear operators Brg resp. Bras acting on

H;(Q) Since

| [t e| < clulm@lelin
I+

it is clear that these operators map H;(Q) boundedly into its dual:

BTE,BTM : H;(Q) — (Hl(Q))I .

p

For the calculation of gradients of reflection and transmission coeflicients in Sec. 4.
solutions of the corresponding adjoint problems are needed. The adjoint TE problem

seeks v € H(Q) such that
Bra(p,v) = (@, fF)2@w+) + (0, f )2y, forall o € Hy(Q) (2.26)
where f* ¢ Hp_l/z(f‘i). Note that this problem is equivalent to
(Aa+Ek)v=0 in Q, (TF)*+9/0v)v=FfF onI'*,
where the adjoint of the boundary operator is given by

(Tf)*v = Zi@ﬁn exp(tnzy) . (2.27)

nez

Moreover, if v is a solution of the adjoint problem (2.26), then the function w = v solves
the boundary value problem

(Ag+E)w=0 inQ, (T% +0/0v)w=f%f onI*.
The analogue of (2.26) in the TM case reads as follows: Find v € H() such that
Bru(e,v) = (@, )2y + (@, f 7 )r2@e-y ,  forall o € Hy(Q), (2.28)
which is equivalent to
Vo (1/EV)+v=0 in Q, (TH*+08/0v)v=(k*)?Ff* on I'*,

and w = v solves

Vo (1/E)V_qw)4+w=0 inQ, (T, +0/0v)w=(kE)?ff on I'*,



3 Solvability and regularity of the diffraction prob-
lem

3.1 Strong ellipticity of the variational forms

Here we consider an arbitrary grating characterized by a piecewise smooth function € in
Q) which is constant near the upper and lower boundaries I'*. We are interested in the
existence and uniqueness of solutions for ranges of w and incident angles 6. Recall that
k? = w?ue with € = € in OF, € = ¢ in Qo, and that « = kTsind. The results are
essentially based on the strong ellipticity of the variational forms Brg and Brys. We call
a bounded sesquilinear form a(-, -) given on some Hilbert space X strongly elliptic if there
exist a complex number ¢, |¢p| = 1, a constant ¢ > 0 and a compact form g(-,-) such that

Re a(¢u,u) > clul} — alu,u), VueX.

Theorem 3.1 Suppose that k satisfies condition (2.6). Then the sesquilinear form Brg
is strongly elliptic over H (). If additionally condition (2.7) holds then the form Bru
18 strongly elliptic, too.

Proof.

TE mode: Split the sesquilinear form Brg = B; — B, with the compact form

Bs(u,p) = w2,u/ eu@, such that |Ba(u,p)| < Clw2||u||L2(Q)||(P||L2(Q). (3.1)
Q

The form Re B; (exp(mr/ll) ,u) is coercive over H) (). Indeed, from condition (2.6) one
gets 0 < arg ((k¥)? — (n + @)?) < 7 with sharp inequalities for nonreal k~. Therefore
—n /4 < arg (exp(—in/4) BF) < 7 /4 and for any u € H}(Q)

Re (exp(zﬁr/ll) (Tju,u)Lz(pi)) >0.

Suppose now that there exists a sequence {u;} with ||u;||g1(q) = 1 and weakly converging

in H;(Q) such that
Re Bi(exp(er/4) uj,u;) — 0 as j — oo .
Since

Re exp(em/4) /|Vau|2 (v/2/2) / (|Vul]® + a®|ul?)

Q

one gets ||Vu;||z2(q) — 0. Hence u; is a Cauchy sequence in H} (), and consequently
this sequence converges strongly in H_(Q) to a function ug = const. But for constant
functions there holds

Re (exp(iw/ll)(Ta"'uo,uo)) = (v/2/2) kT cos 0 |uol?
implying uo = 0, which contradicts the assumption ||u;||g1(q) = 1. Thus we obtain

Re By (exp(im/4) u,u) > c||ul|%n @)

10



for any u € H;(Q) and w > 0.
Remark that under the condition (2.12) there exist constants such that

aw < B < c(ln] +w)

which implies even
Re (exp(iw/4) (Tju;u)LZ(Fi)) > CWH“H%{I/Z(Fi) :

Hence if 6, € (0,7/2) is some maximum incidence angle and wg > 0 is chosen small
enough then the estimate

Re Bi(exp(im/4) u,u) > cw||u||12r{1(n) (3.2)

is valid, where the constant ¢ does not depend on the frequencies w with 0 < w < wg and
on the incidence angles 6 with |6| < 6.

TM mode: Decompose the sesquilinear form Bry = By — By with

Bilug) = [ 5 Vo Vot o [T+ s [(Towe,

Q r+ r-

and the compact form B, satisfies

|Ba(u, )| < [|ullz2@)llellz2(q) - (3.3)

Similar to the previous considerations one can prove the existence of an angle ¢ such

that Re Bj(exp(i$)u,u) is coercive over H](). First we consider the arguments of
—33%/(k*)2. For k* real we have

arg (— i, /(k*)*) € {-7/2,0} . (3.4)

Ifarg (k")) =x=m—7,7€(0,7), then

arg (— i, /(k")*) € (1/2 —m, 7 — 7).
In view of (2.7) there exists ¢ such that max(arg k¥*) < ¢ < m and ¢ > 7 — 7/2. Then
S e (<515
ince explid/2) 55 [ T
s = € (<70 3)
it is clear that

Re (K¥)2(exp(i¢/2) T¥u,u) > 0.
On the other hand we have

1 ) _
Re /ﬁ exp(1¢/2) [Vqul? > crw 2(||Vu||%2(9) +a’ ||u||%2(9)) ’
Q

such that the same arguments as before imply the coerciveness of Re Bi(exp(i¢/2)u,u).

11



Again, under the condition (2.12) one obtains
Re (k*)7*(exp(1¢/2) T w,u) > cw™ [[ull /sy »
such that for some maximum incidence angle 8y € (0,7/2) and wo > 0 sufficiently small
Re By(exp(i¢/2) u,u) > cw™"||ul/Fnq) (3.5)

for all frequencies w with 0 < w < wp and for all incidence angles 8 with |8] < 6. [

Remark 3.1 Obviously the results of Theorem 3.1 remain true if k£ is replaced by the
complex conjugate k. Furthermore, the function € (cf. (2.17)) can be chosen quite
arbitrarily. In the TE case it suffices that ¢; € L*°(§), whereas in the TM case one has
to suppose that e;' € L=(Q) and arg ¢, € [0, 7 — §].

3.2 Existence and uniqueness of the variational solution

Several existence and uniqueness results for the problem of diffraction by periodic gratings
are known ([7], [9], [1]). Here we give some results for the variational formulations in both
TE and TM modes in the general case (2.6), (2.7). Note that existence and uniqueness
results were proved for TE polarization in [12] and for the TM case in [5], the latter under
the restriction Re k? > 0.

From the estimates (3.1), (3.2) and (3.3), (3.5) one obtains a first uniqueness result for
all sufficiently small frequencies w.

Theorem 3.2 Choose some mazimum incidence angle 8y € (0,7/2). Then under the
assumptions of Theorem 3.1 there ezists a frequency wg > 0 such that the variational
problem (2.22) resp. (2.23) admits a unique solution u € H_(Q) for all incidence angles
8 with || < 8y and all frequencies w with 0 < w < wy. Moreover, let S be an arbitrary
set of wnterfaces Aj, 3 = 1,...,4, lying in the strip a < a < z3 < b < b, and for fized
A={A;,7=1,...,£} € S let up denote the corresponding variational solution of the TE
or TM diffraction problem. Then ||uA||H}1)(Q) < ¢, where c is independent of § € [—6q, 0],
w € (0,wo] and A € S.

Let us assume that the piecewise smooth interfaces Aj, = 1,...,¢, may only intersect
with angles different from 0 and 27. Using (2.4) and the elliptic regularity of the Laplacian
it can be shown by standard methods that the inverse of the operator Brg, if it exists,
maps boundedly

Brg: L*(Q) x H'/2(I') x HY/*(I'™) — H2(Q) . (3.6)

Corollary 3.1 Under the assumptions of Theorem 3.2 the solution of the TE diffraction
problem (2.22) satisfies ||uA||H}2)(Q) < ¢ uniformly in 6 € [—0o, 0], w € (0,wo] and A.

Remark 3.2 The results of Theorem 3.2 and Corollary 3.1 extend to the variational
solutions of the adjoint problems (2.26) resp. (2.28).

We now study the uniqueness of the diffraction problems in the case that the frequency
w 1s arbitrary, but the grating geometry is fixed. Introduce the set of exceptional values
(the Rayleigh frequencies), where condition (2.12) is violated:

R(e) = {(w,8) : In € Z such that (n + w(uet)?sinf)? = wiuet} . (3.7)
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Theorem 3.3 (i) For all but a sequence of countable frequencies wj, w; — oo, the diffrac-
tion problem (2.22) resp. (2.23) has a unique solution u € H,((2).
(13) If for (wo,80) ¢ R(e) the diffraction problem (2.22) resp. (2.23) is uniquely solvable

then the solution u depends analytically on w and 6 in a neighbourhood of this point.

Proof. In view of the proof of Theorem 3.1 the operators Brg and w?Brjs can be repre-
sented in the form

Brg = Arg — wiue, w?Bry = Ary — w? (3.8)

where the operators Arg and Arjys generated by the forms

(rsug)= [Vou Vgt [Trwe+ [@u)e

r+ r—-

(Arscip)= [ (we) Vo Vo + (uet) ™ [(Tr) g+ (e [(Tu)g

Q r+ r-

are invertible mappings from H () onto (H,(f2))'. Recall that o = w(puet)/?sin§. Hence
Brg and w?Brys are compact perturbations of invertible operator functions depending on
w > 0. Moreover, for any fixed 6, |§| < /2, from the definition (2.20) of T.F follows
that these functions depends analytically on w ¢ R(e). Thus by [16], Theorem 1.5.1, the
number of linearly independent solutions of the equation Brg(u, ¢) = 0 resp. Bru(u, @) =
0, p € H(9), is constant for all w € IRT\R(€) with the possible exception of certain
isolated points in that domain. Consequently, due to (3.2) and (3.5) the operators Brg
and Brys are invertible with the possible exception of a discrete set in IR*\R(€). Thus
assertion (i) is proved if we show that wy € R(€) cannot be an accumulation point of this
set. Since § is fixed it follows from the definition of 8% that in some neighbourhood of
wo € R(€) the operator Brg resp. Bras can be expanded into a Puiseux series of the form

o0

Z(w - wo)j/zAj )

=1

where the branch of the root is chosen as in (2.8). Replacing (w — wo)*/2 by A one obtains
an analytic operator function in a neighbourhood of A = 0, and applying Theorem 1.5.1
of [16] to that operator function gives the result. Assertion (ii) follows immediately from
the fact that the inverse of an analytic operator function is also analytic. [ ]

Remark 3.3 A less precise version of Theorem 3.3 (i) was stated for TE polarization
n [12] and for the TM case in [5]. The above arguments also fill a gap in the proofs of
those results. We are grateful to Professor I.C. Gohberg for discussing this topic and for
pointing out that Theorem 1.5.1 in [16] can be generalized to analytic operator functions
with algebroid branching points.

The analytic dependence of solutions was known only for the special case of TE polariza-
tion and perfectly conducting gratings (see [18]). Note that the non—smooth behaviour of
efficiencies at (wg,0y) € R(€), known as Wood anomalies, is caused by the non—-analytic
dependence of the inverse operators.

Finally we give a simple proof of an uniqueness result if the imaginary part of the
dielectric constant of one of the grating materials is positive. For some special cases this
was shown in [1], [7].
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Lemma 3.1 Suppose that k is piecewise constant with nonnegative imaginary part and
that Imk(z) > 0 for all  from some subdomain ; C Q with piecewise smooth boundary.
Then the operator Brg is wnvertible for all w > 0. If Q; contains a curve connecting the
boundary points (0,c) and (27, c) then the operator Bras is invertible, too.

Proof. Suppose that Brgu = 0. Then

ImBTE(u,u)zlm(—/k2|u|2+/(T;u)a+/(T;u)a)

r+ r+

—— [k Re 3Bl ~Re 3Bl <0,
) neZ neZ
where 4F are the Fourier coeflicients of u|p.. It follows from (2.8) that all terms of this

expression vanish since they are nonnegative. Thus if k* > 0 then 4 = 0 for all n with
In + a| < k%, and if Im k= > 0 then 4, = 0 for all n. Additionally we obtain u(z) = 0
for z € {1y, such that in any subdomain of €2, where k is constant, u solves a Helmholtz
equation with the conditions u = du/0v = 0 on some part of the boundary in view of the
transmission conditions (2.4). Therefore u must vanish everywhere.

The case Bryu = 0 can be considered analogously. Using (3.4) the conclusions con-
cerning 4% follow immediately. Further, from

1 1 .
Im /ﬁ |Voul? = Im /ﬁ |V (u exp(iaz;)|> =0
Q Q

one gets u exp(tawz;) = const in . Since u is 27-periodic in z; and §2; ranges from the
left to the right boundary of {} we derive u = 0. |

Remark 3.4 Any solution of the homogeneous equations Brgu = 0 and Brapu = 0 has
vanishing Rayleigh coefficients AX = 0 for all n with 8% = |/(k%)? — (n + )2 > 0.

3.3 Additional regularity for the TM diffraction problem

For the calculation of gradients of reflection and transmission coefficients for TM polari-
sation with respect to variations of the non-smooth grating surface Ay in Sec. 4 we need
auxiliary results about the regularity of the solution near this surface. We will restrict
here to the case that € is constant is some neighbourhood below the grating surface and
that the other interfaces Aj, 7 = 1,...,4, do not intersect and are smooth. Then the
solutions of the equations (2.24) and (2.21) are sufficiently regular everywhere with the
exception of a neighbourhood of Ag which will be denoted in the sequel by I'. Since the
regularity of the solution is a local problem we may simplify the notations further by
assuming that Gy = 0.

Consider the transmission problem (2.24), (2.21), or equivalently (cp. (2.3), (2.5),
(216),
Aut + (ki)2ujE =0 inQ* ,

ut —uT = —u', OuT /Oy — COu~ /Oy = —Ou'/Ov onT, (3.9)

14



where C = (kT/k7)? # 1, and u® are a quasiperiodic in z; and satisfy the radiation
condition (2.11). Note that the right-hand sides of (3.9) are (infinitely) smooth on I'. If
the grating profile I' is smooth, then standard regularity theory shows that any solution
(ut,u”) of (3.9) is contained in H*(Q%) x H*(Q27) for arbitrary s > 1. For non—smooth
', this is not true, even for s = 2, due to the singularities at the corner points.

In this paragraph, we consider the case when I' is a curved polygon, i.e. ' is smooth,
with the exception of a finite number of corner points P; with angles é;, 7 =1,...,J. In
the practically important case of a binary grating, I' consists of straight lines only and
§; € {m/2,3m7/2} for any j; see Sec. 4.

For the solution of the transmission problem (3.9), the corner singularities at P; can be
determined with Kondratiev’s method of local Mellin transformation [19] (see, in partic-
ular, [11], [20] in the case of transmission problems), which implies the following decom-
position:

Define the sets

o ‘ sin(m — §;) A 2_ C+1\?
A = {Ae@.(—sinﬂ )_ 1) (UK, (3.10)

and let s > 1 be given such that
s—1#Re) foralle szlAj. (3.11)

Let (04,0;), 0j(z) = dist (z, P;), be polar coordinates centered at P;. Then

J L;
= Z cjlu with w® € H*(Q%), (3.12)

j:]_ =1

[

when the u;tl are of the form

Xi(z)d5;, (6;)0i(z)* log" (0;(z)), r €{0,1,2}. (3.13)

Here x; € C(IR?) are cut—off functions near the corner point P;, dﬁr are smooth functions
in 6;, c;i complex constants, and A; € A; with 0 <Re )\; < s — 1.

The dﬁr depend only on the geometry of I' near P;, whereas the constants c;; depend
also on u'. We write X* for the subspace of H'(Q*) x H'(Q7) of all (u*,u~) possessing
a decomposition (3.12). Then X* is a Hilbert space with the norm

J
Foam) T
j=1

It follows from (3.12) and (3.13) that near P; one has the estimates

L;

(™, w7 el (3.14)

o = [z + w17

|
=1

V*uE(z)| = O ( ()R k) Ve>0,0<k<s—1, (3.15)

where V* denotes the vector of all partial derivatives of order k and )\? is the solution A;
of the transcendental equation
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with minimal Re A; € (0,1), and with the convention that Re )\? := 1 if there is no root
of (3.16) with real part < 1. Define

©° = min{Re )\? c7=1,...,J}. (3.17)

Remark 3.5 It was shown in [11, Lemma 6.2] that if k&~ > 0, i.e. C > 0, then u° €
(1/2,1). In particular, for a binary grating, (3.16) takes the form

-1

2cos(mA/2) = il

o=+l (3.18)

for any 7, which easily implies u° € (2/3,1) if k= > 0. However, if Imk~ > 0 then, even
for a right angle at P;, one may have Re A9 < 1/2 so that the solution u* to (3.9) does

not belong to H32(Q%), in general. More precisely, for a binary grating we show that
©® > 1/2 holds if and only if the condition

Cc-1_[CP-1 C—-1 2ImC

P Q%<2 WithP:ReC—l—l BRESEE Q:ImC—I—l = O (3.19)
is satisfied. Note that (3.19) is always valid if Rek™ > Im k™.
Taking real and imaginary parts of (3.18), we obtain for A = u + s, u,k € IR,
2 cos(mu/2) cosh(nk/2) = o P, 2sin(mp/2)sinh(rk/2) = 0@, 0 = £1.
or equivalently
2 2 2
R(p) = cosz(]:r,u/Z) — sinz(?r,u/Z) =4, sinh®(7k/2) = 4s1nzc(2—7r,u/2) (3.20)

Assume (3.20) has a solution g € (0,1/2]. Then cos?(mu/2) > 1/2 , sin®(7p/2) < 1/2,
and the first equation of (3.20) implies P2 — @? > 2. Conversely, if P2 —Q? > 2 then there
exists u € (0,1/2] such that R(u) = 4, since R(1/2) = 2(P? — Q%) > 4 and R(p) — —o0
as p — 0. (Note that @ #0if Imk~ > 0 and Rek™ > 0.)

Finally, we observe that u° > 0 may be arbitrarily small if we choose Re C sufficiently
close to —3 and |Im C| sufficiently small.

To obtain a regularity result in weighted spaces of differentiable functions, which will
be applied to binary gratings in Sec. 4, set o(z) = min{p;(z):j =1,...,J} and introduce
the spaces

VE={(u",u) e CQN) x C(Q7): 0" *VuF e C(ON)}, 0<pu<1,
equipped with the canonical norm ||ut|, + u™ |, with
[u* e = max {Ju*(e)| + e(2)"~*Vu* ()]} .
Let 10 € (0,1] be the number defined in (3.17). Then it follows from the definition of the
space X* (cf. (3.12), (3.14)) and (3.15) that the continuous embeddings

X2 — H(QY) x H*()™), foranyse[l,1+u), (3.21)
X*® s Y* foranys>2 anduc[0,u’), (3.22)

hold. Summarizing (in particular, (3.12), (3.21), (3.22) and Remark 3.5), we then have:
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Theorem 3.4 Let (ut,u™) € HY(QT)x H(27) be a solution of the transmission problem
(3.9). Then (ut,u”) € X® for any s > 1 satisfying condition (3.11). Moreover, (u™,u™) €
HYH(QN) x H7#(Q7) and (ut,u™) € Y* for any p € [0, u°), where p° is given by (3.17).
Notice that u° € (1/2,1) if condition (3.19) is satisfied.

Returning to the variational formulation (2.23) of problem (3.9), we obtain from (2.16)
and the above theorem:

Corollary 3.2 Let u € H, () be a solution of the TM diffraction problem (2.23). Then
u € Hyt*(Q) for any s with 0 < s < min(1/2,4°) and

max |u(z)| + sup |o(z)' "*Vu(z)| < oo (3.23)
z€eq zeQ\TI'
for any u € [0,u°). Note that (exp(iaz;)u)/dv suffers a jump on T, hence u ¢ H*()
for s > 3/2, in general.

Remark 3.6 The inverse of the operator By, if it exists, maps boundedly
Bz, : (H;_S(Q))' x H YD) x H=Y3(I7) — H;"'S(Q) , |s] < min(1/2,u°%), (3.24)
and
Bry: (H7H(Q)) x HF V2T x H*V2(T7) = Z2*, pe(0,u%), (3.25)
where

Z* ={u € H)(Q) 1 ulqs € H(QF)}.

Finally, for the calculation of gradients in Sec. 4.3, we need a uniform version of Corol-
lary 3.1. Let Iy C Q be a piecewise smooth grating profile with J corner points, and
assume that, in some (fixed) neighbourhood U; of the jth corner, 'y consists of two
straight lines intersecting with the angle §;(7 = 1,...,J). Let S be a set of grating pro-
files I' sufficiently close to 'y and such that, for each I' € &, I' N U, is a translate of
I'oNU; (7 =1,...,J),and I' is smooth outside these neighbourhoods. Defining the space
Xg, T €8, asin (3.12)—(3.14), we observe that the singular functions u;tl occuring in the
corresponding decomposition (3.12) are simply translates of the functions (3.13) (for I'o).

Suppose further that the assumptions of Theorem 3.2 are satisfied, and for I' € S
let (uff,ur) € HY(QF) x HY(Q™) resp. ur € H(Q) denote the corresponding (unique)
solution to (3.9) resp. (2.23). Then the Mellin transformation techniques of [19] and [20]
imply, for any s > 1 satisfying (3.11),

| (wit, up )| xz < ¢, uniformlyin §,w and T'. (3.26)

Denoting by or(z) the distance of z to the set of corner points of I', in analogy to
Corollary 3.1 one obtains from (3.26):

Corollary 3.3 There ezists ¢ > 0 independent of 8 € [—0,00], w € (0,wo] and T' € S
such that

|ur||gi4sq) < ¢,  for anys € (0, min(1/2, u°)), (3.27)
max lur(z)| + Z lor(z) "*Vur(z)| < ¢, for any p € [0,u°). (3.28)
zeQ\T
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4 Minimization problems for binary gratings

4.1 Optimization of grating efficiencies

Define the finite sets of indices
t={neZ:p*cR},

where 3% is given by (2.8). Then the Rayleigh amplitudes A} (n € P*) resp. A
(n € P7), which are called the reflection resp. transmission coeflicients, correspond to
the propagating modes in (2.11). Note that P~ =0 if Imk~ # 0.

Let u be the solution of the TE or TM variational problem (2.22) or (2.23). The
reflection and transmission coeflicients are determined by the traces of u on the artifical

boundaries ['* (cp. (2.11), (2.16)):

At = (27) ' exp(—18b) /uexp(—inml), n € PT\{0},

r+

A} = —exp(—2:6b) + (27) 7! exp(—23b) /u, (4.1)
r+

A- = (2m) texp(:6; a) /uexp(—inml), ne P

Kd
Then the reflected and transmitted efficiencies in the TE case are defined by
ex ™t = (B /B)IAL P, ne P*, (4.2)
and in the TM case by
et = (Br/B)ALP, me Pt ™ = (kY/kT)(B, /B)IAL1?, nePT. (43)

For lossless gratings, i.e. all optical indices k are real, the principle of conservation of
energy then, in either case, yields the relation

doeb+ ) e =1. (4.4)
neP+ nepP—

Consider a binary grating profile I' which is composed of a finite number of horizontal
and vertical segments and is determined by the height H and by, say m + 1, transition
points 0 = tg < t; < ... <ty <ty = 27; see Fig. 2. Since ¢y and t,, are assumed to be
fixed, we write ' = ['(¢1, ..., tm—1, H).

We retain the notation of Sec. 2.3 (cf. Fig. 1) and denote the vertical segment of I' = Ag at
t; (7 =1,...,m—1) by ;. The union of all upper horizontal segments lying in = QT U,
is denoted by X,.

A typical minimization problem occurring in the optimal design of binary gratings is

the following. Assume that the number of transition points is fixed and, for given numbers
cIBE IMx ¢ { 10,1}, define the functional

J(F) - J(tl, ---;tm—17 H)

= Z (CZE’""eZE"" + cZM""eZM"") + Z (CZE’_eZE’_ + cZM’_eZM’_) . (4'5)
neP+ necP—
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Figure 2: Binary grating, m =6

Note that the efficiencies eX are functions of the grating profile I', and thus they are

functions of t1,...,tm_1, H. Now the minimization problem reads as follows:
Find a binary grating profile 'Y = T'(¢9, ...,¢2 |, H®) such that
min J(T) = J(I), (4.6)

where K is some compact set in the parameter space R™ reflecting e.g. natural constraints
on the design of the profile. Note that the choice ¢ = —1 resp. ¢ = 1in (4.5) amounts to
maximizing resp. minimizing the efficiency of the corresponding reflected or transmitted
propagating mode of order n.

To find local minima of problem (4.6), the method of gradient descent can be applied.
Thus we must calculate the gradient of J, VJ(T') = (D, J(I'))7*, where e.g. for 7 =1

DLJ(T) = lim A~ (J(T) — J(T)
== hmh_l(J(tl + h,tz, ceey H) — J(tl,tg, ceey H))

h—0

(4.7)

Here T’y denotes the binary profile with the height H and the transition points ¢; + A,
ta, ...y tm—1. Analogously, D;J(I') (7 = 2,...,m — 1) denote the partial derivatives with
respect to the other transition points, and D,,J(I') will denote the derivative with respect

to the height H.
From (4.1), (4.2) and (4.5) we obviously have, for 7 = 1,...,m,

D;J(T) = > 2(6;/8){ k7 Re (ATP+(T) D, ATEH(T))
M Re (ATMH(T) D, ATMH(T)) §
+ 3" 28, /B){EB Re (ATE (1) D, ATE(T))

neP—

(k[ 2EMRe (AT (D) D; AT (1)) |

Therefore, we have to calculate the partial derivatives D;AZ(T) of the reflection and
transmission coefficients in both the TE and TM case. This will be done in the following
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Figure 3: Geometry for the calculation of gradients

two paragraphs. Furthermore, it will be shown that those partial derivatives depend
continuously on the grating parameters ti,...,%tm_1, H, so that J turns out to be a C!
functional, at least in the case when the frequency w is sufficiently small. So we assume
for the rest of this section that the conditions of Theorem 3.2 are satisfied.

Remark 4.1 Once one has derived explicit formulas for the partial derivatives of the
reflection and transmission coefficients with respect to the parameters of the grating
profile it is possible to compute the gradients for a much more general class of functionals
involving the Rayleigh coeflicients for a given range of incidence angles or wavelengths.

4.2 Calculation of gradients. TE case

We fix n € Pt and derive a formula for the partial derivative D; A} (I') of the Rayleigh
coefficient of the nth reflected mode in the TE case. At the end of this paragraph we
present formulas for the other derivatives and for the transmission coefficients.

Let u be the solution of the TE transmission problem (2.22) and let u, denote the
solution of the corresponding problem for the profile I'y, = ['(¢; + A, ta, ..., H):

B (un, ) = / Vaun - Vap + / Kun + / (THun) @ + / (Tun) @
0

r+ r+
— — [ripexp(-iBt)e, Ve HY®), (4.9)
T+
where (see Fig. 3)
kh = { 1123_7 Z Z 8 in Hh, kh =k in Q\Hh . (410)

By (4.1) and the definition of D; Al (T) (cf. (4.7)), we have

D; AF(T) = lim M /(uh — u) exp(—inz;) dz; . (4.11)

h—0 h
T+

Let w be the solution of the adjoint transmission problem (cf. (2.26))

Bre(p,w) = /cp exp(—inz)dzy, Vo€ H(Q). (4.12)

T+
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Then obviously

Bt /(uh — u)exp(—inz;)dz, = h™ ' Brg(up — u,w) = h™'(Brg(up, w) — B%E(uh,w))

T+

= [ = Ko = (b = (6B [ un.

9] 1873
Together with (4.11), this implies the formula
D AF(T) = (27) L exp(—1B7b)((ko)® — (K1)?) /uu_) dz,, (4.13)
¥
provided we have shown that
lim |A|™* /uhu_) dz = /uu_) dz, . (4.14)
h—0
11, ¥

Proof of (4.14):
Corollary 3.1 and Remark 3.2 imply that w € Hlf(Q) and, for Ay > 0 sufficiently small,

||'u,h||H}2)(Q) <c¢ forall h with |h| < hg. (4.15)
Moreover, one has the compact embeddings
Hlf(Q) — H;(Q), Hlf(Q) — Cp(Q), (4.16)

where C), denotes the space of continuous functions which are 2r—periodic in ;. Therefore,
given any sequence u, = up,, h, — 0, we can select a subsequence, again denoted by u,,
such that w, — @ in H;(Q) for some @. It is easily seen that @ satisfies the variational

problem (2.22). Indeed,

BTE('&’: 90) = lim BTE(u’na 90) = 1111—>I£lo (BTE(una 90) - B’.Ill"%(uﬂ7 90)) + B’.Ill"%(uﬂ7 90)

n—oo

= lim [ (k} — k> )unp — /225 exp(—t6b) @ .

n—oo

Iy, r+

Hence up, converges in H;(Q) to the unique solution u as A — 0, and the same is true for

the space Cp(Q).

Consequently, given any € > 0, we observe that
b7 [ il < e
I,

and, by considering the Riemann sums for the continuous integrands,

|h|_1/uu_)—/uu_) <e
0, DY

for all sufficiently small |k|, which proves (4.14). [ |
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Remark 4.2 Let h be the vector (h;)7*, and let T’y denote the profile with transition
points t; + h; and height H + h,,. Then, by applying Corollary 3.1 to the set of profiles
S = {Th : |h| < ho} and using similar arguments as above, we obtain D AT (T,) —
D, AF(T') as |h| — 0, i.e. the partial derivative depends continuously on the parameters
of the profile.

We finally collect the formulas for all components of the gradient of AX; the proof is
completely analogous to that of (4.13):

D,ax(1) = L exp(ig) (ko — (09 [[wsdes, 5=1,00m 1,
% (4.17)
D, AZ(T) = %exp(—iﬁfb)((ko)z — (k%)% / uwidzy ,

Em

where w is the solution to the TE diffraction problem (2.22), w, solves the adjoint problem
(4.12) and w_ the adjoint problem

Bre(p,w_) = /cp exp(—inz1)dzy, Ve € H(Q). (4.18)
Lo
Recall that %,, is the union of all upper horizontal segments of I', whereas ¥; (7 =

1

,...,;n — 1) denotes the vertical segment at the transition point t;.

4.3 Calculation of gradients. TM case

Retaining the notation of the preceding paragraph, we wish to compute the partial deriva-
tive D1 Af(T') of the nth reflected TM mode from the relation (4.11), where u is the
solution to the problem (2.24), and wuy solves

1 S 1 1
B’.Ill"M(uha ‘P) = k_li Vaup - Vap — /uh(l5 + (k+)2 /(T+uh) ©+ W /(Ta_uh) 2
Q Q r+ -
1 . : - 1
= _W / 2108 exp(—16b) @, Ve € H (). (4.19)

T+

with kj defined in (4.10). If w is the solution to the adjoint problem (compare (2.28))

Bru(p,w) = /cp exp(—inz1)dz;, Vo€ H;(Q) (4.20)
r+
then one obtains
Bl /(uh — u) exp(—inz,) dz; = b Bras(un — u, w)
r+
—1/ Ly \Y h‘l/(k2 kz)lv L (4.21)
= —_— = = aUh * aW = - -5 Yalp 75 VW .
KOk " R R g e
Q

Iy

_ 1 ~ 1 1
— ((k0)2 _ (k+)2) |h| 1 / {W%uh%w + k—i &Tl,auhﬁ &Tl,aw} ,

Iy
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where Oy, o = Ox, + 10, cp. (2.23).
To determine the limit on the right-hand side of (4.11), we thus have to compute

ti |1 [ gr(u) - g7(a) (4.22)

Iy

where

1 1 1 1
- _6:z a ; —6:E2 ; - __6:z1a 7——6z2 .
g'f’('U,h) (ki 1, Up k+k0 uh) g'f’('LU) (k2 ) w k+k0 'LU)
Let ¥; 5 be the vertical segment of the profile I', at the transition point ¢; 4+ h, with
the convention that ;o = ¥; and 'y = I Fix hg > 0 sufficiently small, and for any
sufficiently small € > 0, consider the rectangle R, = (¢1 — ho,t1 + ho) X (g, H — €); see
Fig. 4.

Z2
H c
R,
0 tl—lho 131 irl-ho Z1

Figure 4: Geometry for gradients in TM case

Corollary 3.3 applied to the set of profiles 'y, |h| < hg, implies

||uh||H}1)+S(Q) <e¢, |h| < hy, forsome s>1, (4.23)

max |(za(H — z3)) "#gr(un)| < ¢, |h| < ho, forany ue[0,u°). (4.24)
(EERO

These estimates also include ug = u and hold for the solution w to (4.20). Note that

the expressions on the left side of (4.24) are well defined since 0,,up and k,f@zl alUp are
continuous across %; N R, for any € > 0, because of (3.28) and the transmission conditions

1 0

Un|+ = un|-, (khT)z ED (e uy)

1 0, .
= (e’azluh)‘ on I'y,

(ky, )2 bv

_I_
where the plus resp. minus sign denotes the limit as the interface I'y, is approached from
the region above resp. below.

Thus the expressions gr(up) and gr(w) are well defined on ¥, 5 and X, respectively.
In particular, we have on ¥

1 [k 1 (k"
gr(u) = . (k—i O, i+ az2u|+) = (k—o B, o] (9z2u|_> . (4.25)

and the same holds for w, with k replaced by k.
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Now we prove that the limit (4.22) exists and that

lim |A|™! /gr(uh) - gr(w) = /gr(u) - gr(w) dz,y , (4.26)

h—0
Iy ¥

which, together with (4.11) and (4.21), then implies

Duaf(r) = TR (e — 64)7) [ grta) - gr(w) da. (4.27)

Proof of (4.26):

Here we use the regularity results given in Subsec. 3.3. Therefore we assume that kg is
constant in a neighbourhood below the grating profile I' and that condition (3.19) with
C = (k*/ko)? is fulfilled. Then estimate (4.24) applied to us and w gives, with some

p>1/2,
1

gr(us) - gr(w) gr(u) - gr(w)|dz,

Hh\Rs z:1\}%5
€ H
<c /mi”_zdmg + / (H — z5)* %dz, y < ce®
0 H—¢

where § = 2u — 1 > 0 and c is independent of € and h.
Thus it is sufficient to verify, for any fixed € > 0 sufficiently small, that

lim |A|™! / gr(up) - gr(w) dz = / gr(u) - gr(w) dz, . (4.28)

h—0
IINR, ¥1NR,

By (4.23) and the compact embedding H,**(Q) — H_({), we obtain as in the proof of

(4.14) that up, — u in H}(Q). Indeed, for any ¢ from the dense subset H](Q) N C>(€)
of H () and for any sequence up converging to some % in H_ () we have

- 1 1 = -
BCIZl"M(u’hacp) - BTM(IUWQP) = / (F - ﬁ) Vaup - va‘P + BTM(uh _'U';(P) — 0, h—0
o,
since by (4.23) there holds Vaun - Vap € L'(Q) uniformly. Hence Bry(u — 4, @) = 0 for
any @ € H) ().

Moreover, (3.26) (or standard regularity theory for transmission problems) gives

sup  { [Vun(a)] + [V2un(@)|} < e, [h] < ho

z€ERANZ,

note that R, stays away from the corner points of [',. Together with the continuity
of gr(up) across X1, N R, and a compactness argument, we then have gr(ug) — gr(u)

(h — 0) in the norm of C(R,) and, since gr(w) is also continuous on R,,

i 5] [ (gr(un) — gr(w) - g7(0) = 0.

h—0
IIL,NR,
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Finally, the continuity of the integrands implies

lim S / gr(u) - gr(w) dz = / gr(u) - gr(w) dz,
h—0 |h|
M,NR. T1NR,

which completes the proof of (4.28) and hence that of (4.26). ]

Remark 4.3 So far we have not been able to prove (4.27) in the case when condition
(3.19) is violated. Since then u® < 1/2, the function gr(u)-gr(w) might be non-integrable
on Xi; see (3.15) and Remark 3.5.

However, for materials occuring in practice the condition (3.19) on the optical index is

violated only in some exceptional cases, e.g. for silver and aluminium in a certain range of
small wavelengths (less than 450 nm). Additionally, simple numerical examples indicate
that even in the case of small u° > 0 the Rayleigh coefficients A} depend smoothly on
the variation of transition points or the height of a binary grating. So we believe that the
restriction u°® > 1/2 is only of technical nature.

1 T T T T T T T T
ReA D —
ImA_0
08 | ReA 1l g
ImA_L
06 I " - i
04 PN - .
0.2 L ”’r' \\ " .\.‘. ... —
0
02k . \\-\\\ i
0.4 ‘ \\\\ 4
.06 [ Tl N
08 4
1 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: Real and imaginary part of Rayleigh coefficients for a simple binary grating
with C = —34 1 0.01 versus variation of the transition point.

Remark 4.4 Applying Corollary 3.3 to the profiles 'y, A = (h1, ..., hm), considered in
Remark 4.2 and using the above arguments, one can show that D, AZ(T',) — D; A (D)
as |h| — 0.

Proceeding as in the proof of (4.27), we get the following analogues of the formulas

(4.17) in the TM case:

D0 = S epig) (k) - 5)7) [ or(a) - grwa) doa,
j=1,.,m—1, ’ (4.29)
Daz(r) = “ECR (e - (67) [ grata) - graCun)de.

Em
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Here, u is the solution of the direct TM problem (2.23), w4 solves the adjoint problem
(4.20), and w_ the adjoint problem

Bru(p,w) = /cp exp(—inz1)dz,, Vo€ H(Q). (4.30)
re
Furthermore, gr(u) is defined by (4.25),

k-l—

ko , _ahu‘ ) o (4.31)
ko ot

1
+7k_+az2u‘+> N ktkg (azl’au

and the corresponding expressions for w4 are obtained by replacing k with k.

1
g’f’H(’U,) = k+—ko (azl ,al

5 Generalized finite element solution

Since the sesquilinear forms Brg and Brjps corresponding to the TE and TM diffraction
problems are strongly elliptic it is natural to use a Galerkin method for solving the corre-
sponding direct and adjoint variational problems. Here we describe some aspects of the
discretization of these problems with bilinear finite elements given on a piecewise uniform
rectangular partitioning of Q. The traces of these functions on I'* are the linear boundary
elements so that the presented approach is in fact a coupled FE/BE method for treating
the diffraction on periodic gratings. Our choice of bilinear test and trial functions on a
uniform mesh is motivated by the singular behavior of the solutions at the non-smooth
grating profile, by some special features of the FE solution of Helmholtz-type equations
and by the simple implementation of the methods.

5.1 Stability and convergence

The error analysis is very simple due to the strong ellipticity of the coupled variational
formulations (2.22) and (2.23). Since for nonsmooth I' the solutions are not better than
H?, in general, the trial functions are restricted to piecewise bilinear ones, although the
convergence analysis can be applied to any spaces of FE functions. We remark that the
Galerkin method for solving the direct problems was investigated by using a different
technique in [4] and [5], for the TM case under the restriction Re k* > 0.

Let €5 be a partitioning of () into simple rectangles of the size h; X hy, by Sy we
denote the subspace of H;(Q), formed by the bilinear functions on 2. In the following
we consider a family of these spaces assuming that the quotient h;/h, is bounded from

below and above, and set h = \/h; hs.

The finite element solutions up € Sy of the direct and adjoint problems can be deter-
mined from the linear systems

Bra(un, gn) = /f+<,0h + /f_soh , forall g5 € Sn, (5.1)
T+ r-

or correspondingly

1 1
Bruy(un, on) = W/fﬂph T W/f_cph , forall v, € Sy, (5.2)
r+ -
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with some smooth periodic functions f* given on I'*. Using Theorems 3.1 and 3.3 as well
as (3.6) and (3.24) one gets by standard Galerkin techniques (see [24], Chapter 12)

Theorem 5.1 Suppose that k € L*®({)) takes constant values k* in a neighbourhood
of %, respectively, and satisfies condition (2.6). For TM problems suppose additionally
that k™' € L*(Q) and condition (2.7) is valid. Then for all but a sequence of countable
frequencies wj, |wj| — oo, and all sufficiently small h the Galerkin equations (5.1) resp.
(5.2) are uniquely solvable. If the ezact solution u € HJ(Q), 1 < s < 2, then the difference
between the finite element solutions and the ezact solution can be estimated by

i — wnllr ey < Che iy » Il — wnllrgey < Ol
where the constants depend on k but are independent on h and u.

In practical computations the operators T'F cannot be computed from the infinite series
expansion (2.20). Denote their truncation by

TiNv = — Z 160, exp(ine;)

In|<N

and let P{ be the bounded mapping H(Q) — H;/z(f‘i) defined by

Piu = Z 4 exp(ing;) .

In|<N

Here 4 denote the Fourier coefficients of u|p+. Furthermore, set Q5u = u|p: — Pyu. By
standard arguments one easily verifies

Lemma 5.1 There exists a constant ¢ > 0 such that for any N > 0 and any u € H;(Q)
IVullzzi) > cll@yullaiars) -

Denote by BY; and BY), the sesquilinear forms corresponding to the truncated opera-
tors TjN In the practical computations the approximate solution of the direct and adjoint
problems in TE or TM mode is obtained as the FE solution of the equations

BTE(u ) /f"'cp + /f v, forall pe Hl(Q) (5.3)
re

or correspondingly

B (u, 0) 7 for all o € H;(Q), (5.4)

for some N, which has to be specified. The error analysis can be performed similarly to
the untruncated case and relies on the following

Lemma 5.2 For any N > 0 the forms BY; and BY,, are strongly elliptic over H;(Q) If

the operator Brg respectively Brys is invertible then there exists No and a constant ¢ > 0
such that for all N > Ny and u € H, () the inequalities

sup | Brg(u,¢)| > cllullm@) resp. sup | Bra(w, @)l > c|lullm g
||lp||H}1)(Q):1 ||lp||H}1)(Q):1
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are valid. Moreover, there exists hg > 0 such for any N > Ny and h < hg the Galerkin
approzimations BNy (up,¢n) or BN, (un, ¢r), U, on € Sk, are stable, i.e.

sup | Brg(us, ¢n)| > c|lunllm @) resp. sup | BPy(un, on)| > ¢ ||unlm ()
||lph||H}1)(Q):1 H‘PHH},(Q)Zl
with constants not depending on N and h.

Proof. To show the strong ellipticity make use of
a,Nu,u) = (Tijpﬁu, Pﬁu) ,

(T
1
Va2 5 [ 196 + el @l
Q Q

||Pz$u||§{1/2(ri) + ||Qzﬂfru||12r{1/2(ri) = lullzr oy 5

and proceed as in the proof of Theorem 3.1.

Now the proof of the second assertion follows from standard arguments. Suppose that
there exists a weakly converging sequence {u"} with ||u"||g1(q) = 1 such that

sup | BYp(u", )| = 0. (5.5)

||lp||H}1)(Q):1

N

If the form Brg has a trivial kernel then u” converge weakly to 0. Indeed, since the

operators (Tj’N)* converge strongly to (T5)* (cf. (2.27)) and
BTE(uNa p) = B’.ZIYE(uNa ¢) + ((T: - T;,N)uNa e)+ ((Th — Ta_,N)u’Na ®)

one concludes that Brg(u, ) — 0 for any fixed ¢. Hence v — 0 strongly in L%(Q).
But the strong ellipticity of BN; was shown by the estimate

Re BIIYE(eXp(—iW/éL)uN,uN) > w||uN||H1(Q) — Cy / |k|2 |uN|2
Q

implying
|BRg(u™ u™)| > cw .
The stability of the Galerkin method for BY; uniformly in A follows analogously if one
chooses a weakly converging sequence up, € Sp, and any strongly converging sequence
Oy € Shy fulfilling (5.5).
Obviously, the same arguments can be used to prove the assertions in the case of the
form BY,,, too. [ ]

Lemma 5.2 implies that the Galerkin equations of (5.3) or (5.4) are uniquely solvable
if N > Ny and h < hg. Moreover, the solutions uhN € Sh converge to the exact solution
u of (5.3) or (5.4) with the rates given in Theorem 5.1. To estimate u — uY it suffices
therefore to consider the difference u — u”. In the TE case one has

BJIYE(U - uN; ‘P) = BTE(U; ‘P) - BJIYE(U - uNa ‘P) - B’.Z]YE(uNa ‘P)
= ((T;,N - Tj)u, ‘P) - ((Ta_,N - Ta_)u’7 ‘P) .
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Since by Lemma 5.2

[ w —uN||H},(n) <c sup |Bz]YE(u —uN790)| J
el 213 2)=1

it suffices therefore to estimate |(Tf—TiN)u, )| for the solution u of the original problem.
By (2.11) it has the form

u= Z At exp(inz; + 161 z,), x> maxfo,

nez

u= Z A exp(inz, — 10, z2), 2 < minf;.

nez

Recall that 't = {z, = b}, take b € (max fo, b) and denote I'+ = {z, = b}. Then

Ulpy = Zﬁn( exp(tnz;) Zun exp(131 (b — b)) exp(inzy) ,

neZ nez

where 4, (b) denote the Fourier coefficients of the function u(z;,b). Hence

(T3 — Tan)u @)l <

) 2}1/2

He—1/2(T+ ||90||H1/2(1"+) )
(')

(D) exp(2i} (5 — B)| 22

[n|>N | | [n|>N
< N exp (—(b—5)V/(N = [al7? = (k7)) [ul

if N > |a|+ k" and s > 1. A similar estimate is valid for [((T; — T, y)u, )| if N is
sufficiently large. Therefore

1w — w™ |z ) < ¢ N*7* (V) [|ul

Hs(9Q) »

where y(N) is defined by

Y(N) = exp (b= B)V/(N — Jal)? = (k¥)?) + exp (— (& — a)/[(N — Ja])? — ()?])

and @,b are chosen such that @ < @ < min f; and max fo < b < b.

Summarizing we obtain the final convergence result in the TE case.

Theorem 5.2 Suppose that the variational problem (2.22) is uniquely solvable. Then
there ezists Ny > |k*| + |a| such that for all N > Ny and sufficiently small h the FE
discretization of (5.3) has a unique solution u) € Sy approzimating the ezact solution
u € H2(Q) with

lu —up |2y < (Ch+ e N7Hy(N)) [lul a2y

lu — g lz2) < (Ch* + N7 y(N)) ]| zr2(a

where the constants depend on k but are independent on h, N and u. Moreover, the

Fourier coefficients Ai:h of the discrete solution ul) converge to the Rayleigh coefficients

(4.1) with the rate

A7 — Anyl < (CR* + ¢ N7 y(N)) ||ullzr2(a)
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To formulate the convergence result in the TM case we remark that the solutions of
the direct and adjoint problems do not belong to Hs/z(Q) due to the jump of the normal
derivatives (cf. Corollary 3.2). But Theorem 3.4 states that the restriction of u to some
subdomain );, where k is continuous, satisfies u € H'*(Q;) with u € [0, 0) (cp. also
(3.25)). The improved smoothness for pg > 1/2 allows us to derive higher convergence
rates compared with Theorem 5.1. We assume that the grating and the partitioning (25
are such that the discontinuities of k lie on mesh lines. This is possible for example
for binary gratings situated on some multilayer system. Then it is well known that for
bilinear FE functions there holds the estimate

inf [|u — @n|lgs(@) < cu pftet o 0<t <1,
PrESH

where c, is the sum of H'*#-norms of u on subdomains of Q. Furthermore, the estimate

of u—u" can be considered analogously to the TE case, the only difference are the factors

in front of ((TF — TjﬁN)u, ¢). Thus under the assumptions concerning the jumps of k and
the partitioning Qj we obtain

Theorem 5.3 Suppose that the variational problem (2.23) is uniquely solvable. Then
there ezists Ny > |k*| + |a| such that for all N > Ny and sufficiently small h the FE
discretization of (5.4) has a unique solution ul € Sy approzimating the ezact solution u
with

lu —up a2 (@) < cu (B + N7#(N)),
lu =y lz2(a) < cu (B® + N7 4(N)),
for any p € [0, po), where po is defined in Subsec. 3.3. The constants c, depend on k and

u but are independent on h and N. Moreover, the Fourier coefficients Ai:h of the discrete

solution ulY converge to the Rayleigh coefficients (4.1) with the rate

4% — A%, < cu (% + N (N))
Finally we consider the approximation of the gradients. Recall that in the TE case
DAL(T) = (2m) exp(—iB78) (ko) = (+°)7) [wo,
2

where u is the solution of the direct problem (2.22) and w solves the associated adjoint
problem (4.12) resp. (4.18). ¥; is a segment of the grating profile ' = Ag. The approxi-
mation of D;Af(T) is of course

DAL (D) = (2) ™ exp(—iB7) (o)? — (67?) [ v, (5.6)

with the corresponding FE solutions us and wy, of a truncated form By,

From Theorem 5.2 and the inequality

||u _uh||H—1/2+5(Ej) < c||u — uhHHa(Q) , 0< 6<1 ,
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which holds for FE solutions to elliptic second order equations (see [17]), one gets imme-
diately the convergence rate for the gradient

DA% (D) — DAL (D)a] < (Ch*7° + e N7 y(N) |l 2y (5.7)

for any § > 0.
In the TM case one has to estimate (compare (4.25), (4.31) and condition (3.19))

[ (ortw)-gr@) = gr(un) - grCan)

Z;

Using the inequalities

10" — uhl[E-u(z;) < cllu = unllm-uizy) < cllu — unlgsrz-uary

10(u = un)/ O || -n(z;) < cllu = unllgsrz-s(a+)

for 0 < p < po — 1/2, one obtains easily the estimate

| [ ortu =) ar@)] < ellu = unlgs-s s -
Z;

Then Theorem 5.3 and the inverse property of Sy lead to the following approximation
rate for the gradients in TM mode:

1D;A(T) = DAL (D)l < cu (B + N7 4(N)) . (5.8)

5.2 Generalized FEM with minimal pollution

It is well know that the accuracy of Galerkin FEM for boundary value problems gov-
erned by the Helmholtz equation deteriorates with increasing wave number and enlarging
domains. This effect was observed in our problems, too. For example, the reflection
and transmission efficiencies (4.2) and (4.3) do not depend on the choice of the artificial
boundaries ['*. But it turned out in numerical tests that for relatively large wave numbers
the computed efficiencies strongly depend on the z;-dimensioning of the domain €.

In recent years many attempts have been made in the mathematical and engineering
literature to overcome the so—called pollution effect, i.e. the non-robust behavior of finite
element and other domain based methods with respect to the wave number. Roughly
speaking, this effect is originated by the discretization of the Helmholtz operator in the
interior of the domain. Note that this effect does not arise by using boundary element
methods.

In one-dimensional problems the usual piecewise linear FE solution of the equation
u” + k*u = 0 on a uniform grid has the discrete wave number
1 2(3 — (kh)?) k3h?

k= — ——— =k - E°h*) .
B harccos 6 1 (kh)? 92 + O( )

It is clear that this “phase lag” leads to large discretization errors. The simplest way to
improve the phase accuracy consists in solving Galerkin FE systems where k is replaced

by
L 6(1 — cos kh)

- h?(2 + cos kh)
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which ensures that this modified FEM has no pollution. This approach is also effective if
k is piecewise constant as shown in Fig 5. Here the FE and GFE solutions for A = 1/32
are plotted of the equation

u' +ku=0, u(a)+iku(a) =0, u'(b) — 1ku(b) = 2ik exp(—ikb) (5.9)

with a = —5.5, b = 1, k(z) = 5 for —5 < z < 0 and otherwise k = 1, corresponding to
the diffraction by some layer. We see that due to the phase lag the FE solution cannot
approximate the exact one, whereas the GFEM solution is very accurate. Note that a
rigorous error analysis for one-dimensional problems is contained in [2].

1 T T T T T T T 2

exact —
FEM 32 -
08 | GFEM32 -
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El I I I I I I I 2 I I I I 1 I I I
-5.4 5.2 -5 -4.8 -4.6 -4.4 -4.2 -4 -1 0.8 0.6 0.4 0.2 0 02 04 0.6 08 1

Figure 6: Imaginary part of the solution of (5.9) for h =1/32

In the two-dimensional case the situation is quite different, here the modification of &
alone will not lead to an essentially better numerical phase accuracy. Recently in [2] and [3]
a new approach has been proposed in the framework of Generalized FEM. The idea here is
to replace the stencils of the FEM system matrix by some other stencils, especially adopted
to the Helmholtz equation, and to connect the discrete solution with the associated bilinear
FE function. The main question concerns the existence and construction of a GFEM,
which ensures that the wave number of the discrete solution is as close as possible to
the wave number of the analytic solution. For the case of a uniform quadratic mesh on
Q, hy = hy, it was shown in [2] and [3] that any GFEM has a phase lag, leading to a
pollution effect. The authors define a measure of the approximation quality of the GFEM
discretization for the Helmholtz equation and describe the influence of this measure on the
error estimates. Further they construct an interior stencil leading to minimal pollution.

In the following we will give an extension of this approach to the case of rectangu-
lar meshes on (), which also indicates how GFEM with minimal pollution for three-
dimensional problems can be designed.

Consider the Helmholtz equation Au + k*u = 0 in the interior of some domain €.
We want to find a discrete solution with the wavenumber k, i.e. at the grid points
(phi,qh2), p,q € Z, it should be some linear combination of

vg(ph1, gha) = exp(tkiphy + tkaghs) with ky = kcos@, ky = ksin , 6 € [0,27] .

These discrete functions are solutions of a linear system connected with the Helmholtz
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equation. For this system we define the interior stencil

as 3] as
a1 Qo a1

as 3] as

with ag > 0, the form of which is natural for uniform rectangular grids. The application
of this stencil to the discrete function vg results in the value

exp(tkiphy + tkaghs) (ao + 2a; cos(kih1) + 2a cos(kahy) + 4az cos(kih) COS(kzhg))

at the grid point (phi,gh2). Hence, the functions vg satisfy the discretized Helmholtz
equation if the stencil is chosen such that

ao + 2a; cos(khy cos 8) + 2as cos(khy sin 8) + 4az cos(khy cos 0) cos(khysind) = 0

for all § € [0,2n]. However, there exist no solutions of this equation, i.e. for any choice of
the coefficients ao, ..., as the ellipse E 1, (0) = (khy cos 8, khysinb), 6 € [0,2x], does not
belong to the set of roots of the symbol function associated with the stencil

G(&1,&) == ao + 2a4 cos(€1) + 2a, cos(&r) + 4az cos(€r) cos(&s) .

Therefore we look for a stencil with the property that the roots of the corresponding
symbol are as close as possible to & n, as hi,hy — 0. Once ag is fixed, obviously the
coeflicients a;, a; and a3 will depend on k, h; and h,, and we are interested in analytic
expressions for them.

Let us denote by N, p, the set of roots of the symbol G lying in some rectangle (—kh; —
€,khi+¢e)x (—kha—e,khy+¢), where € > 0 is chosen such that A, p, is simply connected.
Using the results obtained in [3] for the case h; = hy one can show that the distance
between Ny, n, and &p,n, defined by

Duiny = max oo |[Ehn(6) = ]
can be taken as a measure for the approximation quality of the GFEM. In particular, given
some interior stencil, there exist boundary value problems for the Helmholtz equation such
that the error between the exact solution and the GFEM solution can be estimated from
below by
lu — uerEl® > c(hi + h3)Dhyn, -

(detailed proofs will be given elsewhere, compare also [2],[3]).

To find a stencil providing asymptotically the minimal Dy p, we use the fact that
for symbol functions G(1, &) with roots in a neighbourhood of & n, the asymptotics
max] |G(khy cos 8, khysin 8)| = O((kh)*) and Dp,n, = O((kh)*"!) are equivalent. This

fel0,2m

follows immediately if cos(kh cos 8 +71) and cos(khy sin 8 +7;) are expanded with respect

to the distance parameters r; and r,. Therefore we determine the coeflicients a;, a; and

a3 such that asymptotically rr[lax] |g(6)| is minimal, where g(6) = G(kh; cos 8, khysin §).
6€[0,2

After that we calculate the first coeflicients of the asymptotics of Dy, p, for this stencil and
compare them with the asymptotics expansion of the minimal distance Dy, p, obtained by
using some special series representation.
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The function g(#) is m-periodic, in the case h; = hy it has even the period 7/2. Using
the formulas

™

%/cos(a cos 0) cos(2mb) df = (—1)"Jam(a) ,

™

1
—/cos(b sin @) cos(2mb) df = Jom(b) ,
T

0

™

1
— / cos(a cos 8) cos(bsin §) cos(2mb) df = Jrm(Va? + b?) cos (2m arctan %) ,
T

0

one concludes that the coefficients of the Fourier series
9(6) = go/2+ ) Gam cos(2md)
m=1
have the asymptotics

. (khy)®™ + (khg)®™

Gom ~ 2o (2m)! for small kh,; and kh,

if a1, a,a3 = O(1). Thus for given ag the values of a1, a; and a3 can be found from the
condition that the first three Fourier coeflicients of g vanish, go = g» = g4 = 0, which
ensures that

max |g(0)| = O((kh)°) , (5.10)

6€[0,2x]

recall that A = y/hihy. Thus one gets the linear system

2]0(kh1)d1—|— 2J0(kh2) as —|—4J0(k\/h% + h%) az — —AQp
h2
2J2(kh1)a1— 2J2(kh2) Qs +4 =— h2 —I_ 2 J2 k\/hz + h2 = 0 (511)
32h2 h3
2J4(kh1) al—l— 2J4(kh2) as —|—(4 (h2 n h2 ) J4 kq /h2 + h2 = 0

Note that in the case h; = hy the solution of (5.11) gives a; = a, and there holds

max [9(0)] < O((kh)?) .

6elo,27

Since any other choice of a;, as and a3 leads to an asymptotics not better than (5.10), the
stencil whose symbol has asymptotically the smallest absolute value on the ellipse &, p,
is uniquely determined. It remains to show the existence of the set of zeroes N4, p, near
the ellipse and to estimate Dy, p,. Similar to the technique of [3] for the case h; = hy one
can use an expansion of the zeroes of G in the form

&1 = khy (14 20, (6, iy /hy) (k)P ) cos 6,

¢ = khs (1 + 2 omer ™m(6, hl/hz)(kh)2m+1) sinf , (5.12)
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which gives for the stencil defined by (5.11)

ra(6,9) =0,
(¢*> — q7%) cos 66
0 —
rs(6,4) 15360 ’
(q3 + q_3) cos 86 (q3 — q_3) cos6d (g — q_l) (q2 — q‘z) cos 46
9. q) = .
r4(6,4) 1548288 193536 + 737280

It is clear that any perturbation of the solution a1, as, az of (5.11) with terms of the
order O((kh)®) determines another stencil with max [g(8)| = O((kh)®). Since

irm 0,q)(kh)*™ |

m=1

Dhihy, < max
8e[0,27]

the stencil with minimal Dy, can be determined from the condition that the function
values |rm,(6,q)| are minimal. Proceeding similarly to [3] expand the elements of the
unknown stencil into power series in (kh)? with coefficients depending on h;/h, and take
the Taylor expansion of

M]3

cos (khl (1 N (6, by /hg)(kh)zm“) cos 0) ,

Il
—

m

M]3

cos (khz (1 + 5 (8, b /hg)(kh)zm“) sin 0) .

3
I

So one gets an infinite series in (kh)?, which roots can be determined from a recursion
formula connecting r,, with all r;, 7 = 1,...,m — 1, and the power series coefficients of
the stencil elements. The condition of minimal max |r, (6, q)| leads to a unique solution
and it turns out, that for this stencil the roots of the corresponding symbol function has
the asymptotics (5.12) with

(¢*> — q7%) cos 66

8 =
T3( ? q) 15360 b

(¢®+q73%) cos 86 4 (¢ — q73) cos 66

0 —
r4(6,9) 1548288 193536

Hence the analytically given stencil (5.11) can be considered as almost optimal and one
obtains the estimate

KPR — 3| (W 4+ B + O((kh)T)

D

mke = 15360
As mentioned above, if h; = hy then D, has the asymptotics O((kh)”). Note that in
[2] another analytical formula for an optimal stencil was given. It is interesting that the
asymptotics of Dy, for both stencils differs only beginning with the term (kh)'' and has
the form

1
D, <
h = 774144(

kh)" + (kR)® + O((kh)™) .

55296000
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5.3 Implementation

Here we briefly describe how the optimal interior stencil for solving 2d Helmholtz equations
on rectangular meshes can be adapted for solving the direct and adjoint variational TE
and TM problems for binary gratings on top of some multilayer system. For those cases
the domain ) can be partitioned such that the rectangular mesh is uniform in z;- and
piecewise uniform in z,-direction such that the discontinuities of k lie on mesh lines. Since
our problems contain the differential operator A + 2:ad,, + (k? — a?) the optimal stencil
has to be modified. For a solution u of the TE or TM problem the function exp(iaz;)u
solves the Helmholtz equation A + k2. Therefore we expect the discrete solutions to be
combinations of the discrete functions

vg(phi, gha) = exp(i(k1 + a)phi + tkaghy) with k; = kcos8, ky = ksiné
and we implemented a GFEM with scaled versions of the stencil
exp(—iahi)az ax exp(iahi)as
exp(—iahi)ar  ao  exp(iahi)as
exp(—iahi)az ax exp(iahi)as

where the coefficients are the solutions of (5.11). The scaling is necessary due to the
jumps of k and to the nonlocal boundary operators TF. The best results were obtained
if the scaling is chosen such that the sum of the central row equals the diagonal element
of the GFEM with no pollution for the one-dimensional operator (d/dz)? + (k* — o?).

45 T T T T
TMT -1, FEM —
TMT -1, GFEM ——
40 TET -2, FEM ----- i

TER -1, GFEM ---
35 TMR 0, FEM -
TMR 0, GFEM

30 B

IR A
25 [ |
i S 1 o

g \ . ,.«"/'/
20 | / | -

,,,,,,

v \
B \

)
10 [ ~
s : .

0 I I I I
50 100 150 200

Figure 7: Comparison of some efficiencies computed with FEM and GFEM for a simple
binary grating versus the square root n of total grid points.

The method described above was used to evaluate the reflection and transmission effi-
ciencies of binary gratings of different geometries and materials. In any case the method
was robust and reliable, for rather poor discretizations the obtained results were excellent
compared with the usual FEM. In Figure 6 we compare the numerical values of some

36



reflection and transmission efficiencies versus the square root n of total number of grid
points computed with the usual FEM and the GFEM on quadratic meshes for a sim-
ple binary grating with the optical index & = 2.5 situated on some other material with
k= = 3.5. In any case the GFEM results differ already for n = 40 only by 2 % from
the corresponding values for n = 200, whereas the FEM results converge rather slowly
to these values. Furthermore, for special binary gratings which can be treated also with
other methods (e.g. integral equation or waveguide methods) the performance of our
method is of the same or even better quality.

The GFEM for solving direct and adjoint problems was integrated into a computer
program for the study of optimal design problems. By using the standard algorithm of
gradient descent local minima of functionals are determined, which characterize desired
optical properties of binary gratings. These functionals involve the Rayleigh coefficients
of the discrete models on a given partition of the domain €2 for a prescribed range of
incidence angles or wavelengths. Of course, the gradients are computed by discretized
versions of the formulas given in Sec. 4. Corresponding to the gradients the shape of I'
is varied within a class of admissible profiles, which are restricted to the mesh lines and
certain technological constraints.

The computer program was used to find the optimal design of large classes of binary
gratings for different functionals. As one example we mention the application of metallic
subwavelength gratings for polarization devices as considered in [25]. Fig. 7 shows the
results for the optimal design of such a zero order grating that should maximize the
reflection of TE polarisation and the transmission of TM polarisation over the range of
wavelengths from 450 to 633 nm. The grating period is 200 nm, the width of the bar
amounts to 60 nm and the height is 150 nm.

100 T T T T T

TE, Reflection —
TM, Reflection -----
TE, Transmission -----
- TM, Transmission

80 b

60 —

20 —

0.45 0.5 0.55 0.6 0.65 0.7

Figure 8: Optimal design for a simple polarisation grating

Certainly better minimization algorithms exist, for example conjugate gradient methods
or methods based on higher order derivative information. The design and analysis of
different minimization methods for coated binary gratings will be the topic of future
research.
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