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1. Introduction 

In this paper we continue the development and analysis of the Stochastic Weighted Parti-
cle Method (SWPM) for kinetic equations. This method was introduced in [14], where we 
presented first numerical results for the one-dimensional heat exchange problem. The con-
vergence of the method was investigated in [15], where we were also able to show a drastic 
reduction of the stochastic fluctuations using the SWPM for one model kinetic equation. 
In [16] we presented a detailed study of different effects of the numerical solution of this 
equation. The computation of the macroscopic quantities in the regions with low particle 
density was of special interest. We refer to [9], [8] to complete the list of references for the 
SWPM. 

The main object of our interest is the spatially inhomogeneous nonlinear Boltzmann 
equation for dilute monoatomic gases [4] 

8f 
at (t,x,v) + (v,gradxf(t,x,v)) = (1.1) 

= 1.JS' B(v,w,e) [f(t,x,v')f(t,x,w')- f(t,x,v)f(t,x,w)]dedw, 

f(O, x, v) = fo(x, v), (1.2) 

where t ~ 0 is the time variable, x E n C JR3 is the space and v E JR 3 .is the velocity space 
variable. The vector e is from the unit sphere S2 • The function B(v,w, e), the so-called 
collision kernel, has the following form for the "hard spheres" model 

1 
B(v,w,e)= .J2 l(v-w,e)J, 

2 27r x; 
(1.3) 

where K, denotes the Knudsen number. The post-collision velocities v 1 and w 1 are defined by 

v1 = v - ( v - w, e) e, w1 = w + ( v - w, e) e . (1.4) 

The main difference between the SWPM and other particle schemes for the Boltzmann 
equation [2], [12], [11 J is the idea of a random weight transfer between particles during 
collisions. The distribution function f ( t, x, v) in the low density regions of the flow can then 
be resolved more accurately by producing many particles of low weight. This procedure 
usually leads to an increase in the number of particles in ·the system. If this increase cannot 
be compensated in some natural way, for example, if the new small particles cannot leave 
the computational domain (as in the heat exchange problem), then it becomes imperative to 
reduce the number of particles. The problem of reducing the number of particles has already 
been discussed in [10], [19], [14). 

In the present paper we give a systematic study of the theoretical and numerical aspects 
of reducing the number of particles including the theoretical estimates for the error in the 
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bounded Lipschitz metric as well as in the Sobolev space IBI- 2
• Furthermore, we discuss a 

possible choice of the reduction parameters in both a random and a deterministic way. In 
the numerical tests we concentrate on the influence of the reduction on statistical values 
such as empirical mean and confidence intervals. It is shown that an appropriate reduction 
procedure has little effect on the accuracy of the numerical scheme. 

The paper is organized as follows. A brief description of the SWPM is given in Section 
2. In Section 3, the main part of the paper, we discuss different approaches to the reduction 
of the number of particles. The results of our numerical tests are presented in Section 4. 
Finally, we draw some concluding remarks. 

2. Description of the SWPM 

The main idea of all particle methods for the Boltzmann equation (1.1), (1.2) is an approx-
imation of the sequence of measures 

f (tk, x, v )dxdv, tk = k ~t, k = 0, 1, ... , ~t > 0, 

by a system of point measures 

n(tk) 

µ(tk,dx,dv) = L9j(tk)6(xj(tk),vj(tk))(dx,dv), k = 0,1, ... , (2.1) 
j=l 

f].efined by the families of particles 

k = 0, 1, .... (2.2) 

The behaviour of the system (2.2) can be briefly described as follows. The first step 
(k = 0) is an approximation of the initial measure 

fa( x, v )dxd'v 

by a system of particles (2.2) for t 0 = 0. Usually, one uses constant weights 

9i(O) = g, j = 1, ... , n(O). 

Then the particles move according to their velocities, i.e. 

If a particle crosses the "outflow boundary" during this step then this particle will be re-
moved from the further simulation. The velocity of a particle changes according to the 
boundary condition if this particle hits the "boundary of the body": the particle continues 
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the movement with a new velocity for the rest of the time interval. The weights of particles 
remain the same during this "free flow step". Through the "inflow boundary" new particles 
of standard weight come into the computational domain. 

The "collision step" can be described as follows. First, all particles are sorted in the 
spatial cells Ot, l = 1, ... ,le. These cells define a non-overlapping decomposition of the 
computational domain 

In each cell Ot, l = 1, ... ,le, collisions of nt(tk) particles are simulated. This is the most 
crucial part of the whole procedure. Here we also have the main difference between the 
SWPM and other particle methods which use constant weights. The collision simulation 
step in one spatial cell Ot, l = 1, ... ,le, corresponds to the mollified equation [4] 

8f Bt(t,x,v) = (2.3) 

f f f ht(x,y)B(v,w,e)[f(t,x,v')f(t,y,w')-f(t,x,v)f(t,y,w)]dedwdy, Jn J~a f s2 

where 

(2.4) 

is a spatial mollifier, 1nt I denotes the volume of the cell nt and -Jnl ( x) is the indicator 
function of the set nl. 

The stochastic process of the collisions is 

(2.5) 

Here we now use the local numbering of particles in the cell Ot and notate n = nt(ik)· The 
infinitesimal generator of the process (2.5) is given by 

A( <l? )(z) = 1 ~'f:~n L ~ q(z, i, j, e) ( <l?(J(z, i, j, e)) - <J?(z)) de, (2.6) 

where cl> is a measurable function of the argument 

(2.7) 

and 

(gk,xk,vk) , if k:::; n, k =J i,j, 
(gi - G(z,i,j, e), Xi, vi)), if k = i, 
(gj - G(z, i,j, e), Xj, vi) , if k = j, (2.8) 
( G( z, i, j, e), Xi, vI) , if k = n + 1 , 
( G ( z, i, j, e), x j, vj) , if k = n + 2 , 
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where v~, vj are defined as in (1.4). The function G(z,i,j, e) is called "weight transfer 
function". This function, the intensity kernel q( z, i, J·, e) of the generator (2.6) and the 
collision kernel of the Boltzmann equation (2.3), (2.4) are connected via the basic relationship 

q(z, i,j, e) G(z, i,j, e) = ht(xi, Xj) B(vi, Vj, e) 9i 9i (2.9) 

which has been proved [16] to be sufficient for the convergence of the method. 
The behaviour of the process (2.5) is as follows. The waiting time f( z) between process 

jumps can be defined either as a random variable with the distribution 

where 

and 

Prob {f(z) ~ t} = exp(-11-(z) t), 

11-(z) 1 2 L <1max(z,i,j) 
l~i=f:j~n 

r q(z,i,j,e)de < <imax(z,i,j), Js2 
or as a deterministic object by 

(2.10) 

(2.11) 

(2.12) 

Then the collision partners (i.e. the indices i and j) must be chosen. The distribution of the 
parameters i and j is determined by the probabilities 

qmax ( Z, i, j) 
l:1~i=f:j~n qmax( z, i, j) . 

For given i and j , the jump is fictitious with probability (cf. (2.11)) 

J82 q(z,i,j, e) de 
1 - " ( . ) . qmax z, i,J 

(2.13) 

(2.14) 

Otherwise the process (2.5) jumps to a new state z = J(z, i, j, e) as described in (2.8). The 
distribution of the parameter e is 

q(z,i,j,e) 
(2.15) f82 q(z,i,j, e) de· 

There is a degree of freedom in our method, namely an appropriate choice of the weight 
transfer function G. This function should always fulfil the condition 

G(z, i, j, e) ~ min(gi, 9i) 
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in order to avoid negative weights in (2.8). We consider the function G in the form 

G( . . ) _ min(gi, 9i) 
z, i, J, e - ( . . ) , l+r z,i,J,e 

(2.16) 

where 1(z,i,j,e) ~ 0 is a parameter of our method which can be chosen arbitrarily, 
depending on our interest. The parameter 1 can vary in different regions of the flow (cell 
nt), for different collision partners i and j or even as a function of the unit vector e. The 
jump intensity function q is then defined from the basic relationship (2.9) as 

(2.17) 

According to (2.11), we need a majorant for the function (2.17). Note that the function 
(2.4) is now just a constant, i.e. 

because we have assumed that all particles are sorted in cells. Furthermore, we use the 
majorants 

where (cf. (2.7)) 

to obtain 

l+1(z,i,j,e) < 1 + C"'(,max, 1 B(v;, v;, e) de < CB,max, 
52 

max(gi, 9i) < 9i + 9i - 9min(z), 

9min(z) == m.in 9i, 1::;i::;n 

1 
iimax(z, i, j) == (1 + C"'(,max) CB,max jnl j [gi + 9i - 9min(z )] · 

Now we are able to compute the waiting time parameter via (2.10) 

-N-(z) = ~ (1 + C-y,max) CB,max l~tl (n - 1) [2g,um(z) - ngmin(z)], 

where (cf. (2. 7)) 

n 

9sum(z) == 2= 9i, 
i=l 

6 
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as well as all other parameters of our process. The probability of the parameters i and j is 
determined via (2.13) (cf. (2.21), (2.10), (2.22)) 

9i + 9j - 9min(z) 
(n - 1) [29sum(z) - ngmin(z)]. 

The parameter i is th.en to be chosen according to the probability 

(n - 2) 9i + 9sum(z) - (n - 1) 9min(z) 
(n - 1) [29sum(z) - ngmin(z)] 

Given i, the parameter j is chosen according to the probability 

9i + 9j - 9min(z) 
(n - 2)gi + 9sum(z) - (n - l)gmin(z). 

Given i and j, the jump is fictitious with probability (2.14) (cf. (2.17), (2.21)) 

fs2 (1 + 1(z, i, j, e)) B( Vi, Vj, e) de max(gi, 9i) 
1- ' (1 + C-r,max) CB,max 9i + 9i - 9min(z) 

otherwise the distribution of the parameter e is (2.15) (cf. (2.17)) 

(1+1(z, i,j, e)) B(vi, Vj, e) 

and the new state is z = J(z, i, j, e) as defined in (2.8). 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

Now we shall consider some special cases. For the Boltzmann equation (1.1) with the 
collision kernel (1.3) we obtain for the constant CB,max (cf. (2.19)) 

r B ( V;, v j, e) de = ~ r I (Vi - v j, e) I de = Js2 2 27rK Js2 
lvi - Vjl 12

71' 171' . lvi - Vjl Ul = V2 I cos Bl smB dB dcp = V2 ~ In = CB,max) 
2 27fl-C 0 O 2K V 2J"C 

(2.29) 

where UL denotes the maximum relative velocity in the cell nl. 
Consider the special case 

9i = const = g and I= 0. 

From (2.16) we obtain 

G(z, i,j, e) = g. (2.30) 

We then have (cf. (2.20), (2.23)) 

9min(z) = g, 9sum(z) = ng) (2.31) 
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and the waiting time parameter can be computed according to (2.22), (2.18), (2.29), (2.31) 
as 

11-(z) = 2~,,; l~:I gn(n -1). 

The deterministic time counter (2.12) is then nothing other than Bird's well-known "no time 
counter" 

The parameters i and j are distributed uniformly (cf. (2.24)). The jump is fictitious with 
probability (cf. (2.27), (2.29)) 

The vector e is distributed on the surface of the unit sphere S2 according to (2.28), i.e. 

B(vi, Vj, e) 
(2.32) 

There is no increase in the number of particles in the system. The particles for k = i and 
k = ] in (2.8) have zero weights according to (2.30) and should therefore be removed from 
the system. 

Consider the second special case where the weights of particles are different but the 
parameter ! is still considered to be zero, 

9i - arbitrary and '= o. 
From (2.16) we obtain 

G(z,i,j, e) = min(gi,9i) (2.33) 

and from (2.22), (2.29) 

f(z) = ?f(zt1 = 2V2~ 1ntl 
(n - 1)[29sum(z) - ngmin(z)] Ut 

for the deterministic time counter (2.12). The parameters i and j are distributed according 
to (2.24). The jump is fictitious with probability (cf. (2.27), (2.29)) 

!vi - vii max(gi, 9i) 1- . 
Ut 9i + 9i - 9min(z) 

The vector e is distributed according to (2.32). 
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The number of particles increases by one in each collision with unequal weights, according 
to (2.8) and (2.33). If all initial particles and all inflow particles have the same weight then 
this case is identical to the previous one. Here we would like to point out that our SWPM 
is a generalization of Bird's DSMC method. 

In the third special case we choose the constant ! unequal zero in one cell rlt during 
the fixed time interval [tk, tk+l], i.e. ! is independent of i, j and e, 

9i - arbitrary and ! = const > 0. 

From (2.16) we obtain 

G( . . ) _ min(gi, 9i) 
z,i,J,e - , 1+, 

and from (2.22), (2.29) 

i(z) = 71-(ztl = _1_ 2vf2~ JrltJ 
1 + ! ( n - 1) [2 g sum ( Z) - n 9min ( Z)] Ut 

for the deterministic time counter. All other parameters of the process remain the same. 
In this case the number of pLffticles increases by two in each collision. This procedure 

can be used efficiently for reducing stochastic fluctuations arising in computation of the 
macroscopic quantities in low particle density regions, as we showed in [15]. 

But the new small particles move and will probably reach the region where the particle 
density is normal. There it is necessary to use the second special case (2.33) for the collisions, 
which means the number of particles will increase further without any advantage being 
gained. The best situation is, of course, if the particles disappear through the "outflow 
boundary" of the computational domain at a rate corresponding to the "production rate" 
there. In such a situation we will still be dealing with an asymptotically constant number of 
particles, but with more small particles in the low density regions (this is our improvement) 
which are on the way to the "outflow boundary" (this is the price). 

There are certainly many situations when the number of particles should be reduced 
during the calculations. For example, if we solve a problem in a closed computational 
domain then we have no chance for outflow. How should reduction be organized? How large 
is the additional error due to the reduction procedure? How much additional work will be 
required? We will try to answer these questions in the next section.· 

3. Reduction of the number of particles 

Suppose the following system of particles is given 

i = 1, ... ,n, (3.1) 
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where the number of particles n is too large and should be reduced. Thus the objective is 
to construct a new system 

i=l, ... ,ii, ii< n, (3.2) 

having far fewer particles but such that the corresponding empirical measures still approxi-
mate the solution of the Boltzmann equation. 

In fact, there are two problems. The first one is dividing the system (3.1) into a number 
n of groups or clusters 

(9i,j, Xi,j, Vi,j) , i=l, ... ,.n, j = 1, ... , ni, (3.3) 

with 

We will deal with this problem in subsection 3.4. 
The second problem is replacing each cluster having ni ~ 3 by few particles and in the 

simplest case by two particles 

(gi,2, xi,2, vi,2) , (3.4) 

The new number of particles after reduction becomes 

ii ::; 2ri. 

There are two things we have to consider in reduction: the conservation of the macro-
scopic quantities and control over the additional error. 

Let us introduce the following notations for a cluster i having more than three particles: 
ni 

g(i) = L9i,j, 

j=l 

for the mass of the cluster, 
ni 

g(i)V(i) """' ~9i,jVi,j, 

j=l 

for the momentum of the cluster, 
ni 

g(i) M(i) """' T ~ 9i,jVi,jVi,j, 
j=l 

for the flow of the momentum of the cluster, 

g(i)trM(i) = L 9i,illvi,ill 2
, 

j=l 

10 
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E(i) - llV(i) 112' (3.9) 

~ ~g· ·(v·. - v(i))llv· ·,- v(i),,2 2 L..-t i,3 i,3 i,3 ' 
j=l 

(3.10) 

for the heat flux vector of the cluster. 

We can easily see that if we conserve only those quantities g(i), g(i)V(i) and E(i) which 
correspond to the conservation laws of the Boltzmann equation, then the simplest choice of 
the pair (3.4) is the following: 

g-. -g-· -g(i)/2 i,1 - i,2 - ' 

v· 1 = v(i) + e(i)e 
1, ' 

e E 3 2
• 

(3.11) 

(3.12) 

The positions of new particles (3.4) :i\1 , Xi, 2 can be randomly chosen from the old set of 
positions 

Xi = { Xi,j, J = 1, ... , ni} . (3.13) 

Note that we do not use all degrees of freedom now, i.e. we choose two new particles 
of equal weights and randomly choose a vector e on the unit sphere. Here we have three 
additional degrees of freedom which can be used in different ways. In [19] the author requires 
the conservation of all main diagonal components of the flow of momentum (3. 7) instead 
of the trace. By doing so the vector e can be defined (except for the sign of the single 
components) as follows: 

M(i) - [v,(i)] 2 
kk k ' k=l,2,3. (3.14) 

The weights of the particles remain equal. 

3.1. Conservation of the heat flux 

In the following we show how to choose the pair of particles (3.4) using all possible degrees 
of freedom in order to conserve not only invariants of the collision integral but also the heat 
flux vector as defined in (3.10). 

Let us choose the velocities of the particles (3.4) in the form 

v · 1 = V(i) + ae 
i, ' 

v· 2 = v(i) - I-le 
i, fJ ' e E 3 2

, 

where a and {3 are positive numbers. From (3.5)-(3.10) we obtain 

9i,1 + 9i,2 
9i,1 a - 9i,2f3 

9i,10:2 + 9i,2f32 

(9i,10:3 
- 9i,2f33

) e 

11 

( i) 
g ' 
0' 
g(i) (e(i))2' 

2 q(i). 

(3.15) 

(3.16) 
(3.17) 
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(3.19) 



From (3.19) it is clear that if q(i) =J 0 then vector e should be chosen as 

q(i) 

e = llq(i) II . 
If q(i) = 0 then vector e can be chosen randomly on the surface of the unit sphere S 2 or 
corresponding to ( 3 .14). 

We now solve the system (3.16)-(3.19) using the notation 

From (3.17) we first obtai:O: 

(3 = ~i,1 a. 
9i,2 

Then using (3.18), (3.21) and (3.20) we get 

- 2 - (32 9i,1a + 9i,2 

-2 -2 
- 2 + - 9i,1 2 - - ()2 ( (i))2 + 9i,1 ()2 ( (i))2 9i,1a 9i,2~a - 9i,1 £ --- £ 

9i,2 9i,2 - -
~i,1 ()2 ( c(i)) 2 (gi,l + fli, 2) = 9 (i) ( c(i)) 2 ~i,1 ()2 = 9 (i) ( c(i)) 2 . 
9i,2 9i,2 

Thus, (3.22), (3.16) and (3.21) yield 

9i,1 
(i) 1 

g 1 + ()2 ' 
- . - (i) ()2 
9i,2 - g 1 + ()2 ' 

(3 
c(i) 

() 

(3.20) 

(3.21) 

(3.22) . 

(3.23) 

(3.24) 

All unknowns are now represented by B. If we put (3.20), (3.23) and (3.24) in (3.19) then 
we obtain the final equation for () 

- 3 - (33 9i,1 a - 9i,2 = 

or 
(") e2 _ 2 liq?. II e _ 1 = 0 . 

g(i) (c(i))3 
(3.25) 

The equation (3.25) is always solvable and only one of its solutions, namely 

(3.26) 

fulfils the condition (3.20). 
Note that if q(i) = 0 we will automatically obtain the simplest solution (3.11), (3.12). 
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3.2. Lipschitz metric 

In this subsection we give a brief summary of the results published in [14]. We consider 
the bounded Lipschitz metric as a distance between two measures v1(dx, dv) and v2(dx, dv) 
defined as 

where 

( 
lcp(x,v)-cp(y,w)I) ll'PllL = max sup lcp(x, v) 1, sup II II II II . 

(x,v) (x,v):fi(y,w) X - Y + V - W 

The main result is the following lemma. 

Lemma 1 Let {3.3) be a given system of particles in a cluster and the particles 

be chosen according to {3.11), {3.12). Then for the bounded Lipschitz metric {3.21) between 
the measures 

and 

ni 

µ(i) - Lg· . .r( ) - i Jo x· · v· · , i,3, i,3 

j=l 

. g(i) 
µ-(i) = - (5(- - ) + 5(- - )) 2 Xi,1,Vi,1 Xi,2 ,Vi,2 

the following estimate is valid 

g(µ(i),p,(i)):::; 2g(i) (c:(i) + diam(Xi)), 

where c;(i) and xi are defined in {3.9) and (3.13), respectively. 

(3.28) 

(3.29) 

Using the triangle inequality we obtain the corresponding result for the whole systems 
(3.1) and (3.2): 

n 
g (µ, P,) :::; 2 L g(i) (c:(i) + diam(Xi)) . (3.30) 

i=l 

On the other hand, with a similar technique for the reduction procedure (3.15), (3.20), 
(3.23), (3.24), (3.26) we obtain an estimate 

(3.31) . 
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which is slightly better than the previous one. 

Note that the dependence of the particles (3.4) on the choice of the unit vector e is lost in 
both estimates (3.30) and (3.31 ). This means that for the reduction technique corresponding 
to (3.14) the estimate (3.30) holds too. We would like to neglect the error relating to the 
influence of the space distribution, because we assume that the value diam(Xi) is small 
enough already. On the other hand the estimates (3.30), (3.31) show us the possibility of 
clustering the particles. The clusters have to be chosen so that the product of the mass of 
the cluster g(i) with its "temperature" c:(i) is small. The corresponding discussion can be 
found in subsection 3.4. 

3.3. Sobolev norm 

In this subsection we use a different distance between the measures (3.28), (3.29) which is the 
norm in the Sobolev space IHI-2 . The equivalence of the weak* convergence of the measures. 
and of the convergence in the Sobolev norms IHI5 , s < -d/2, where d denotes the space 
dimension ( d = 3 in our case), was proved in [20]. 

Let us first introduce some notations which are needed. If µ( dv) is a measure then the 
complex-valued function 

µ( e) = r exp( i( e' v) )µ( dv) JK?,3 
is called the Fourier transformation of the measureµ( dv ). The Sobolev norm of this measure 
is then defined by 

11µ11; = r (i + 1e1 2
) s 1µ( e) 12 de. JK?,3 

In this subsection we neglect the error due to the spatial distribution of the particles and 
compute only the Sobolev norm of the difference between the measuresµ and µ, (cf. (3.28), 
(3.29)) defined by the systems of the particles 

((g1,v1), ... , (gn,vn)) and ((g/2, V + c:e), (g/2, V - c:e)), 

where g, V and£ are defined corresponding to (3.5)-(3.8). We do not use the cluster index i 
in this subsection in order not to overload the formulae, bearing in mind that all the things 
we consider here will have to be summed up later for all clusters. 

Lemma 2 The Sobolev norm of the difference of the measuresµ and ji, in JHI-2 is given by 

1 ( n 11µ-P,11~2 = 8 (l+exp(-2c))g2+2t.;gkg1exp(-lvk-vd)- (3.32) 

-2g ~ 9k [exp(-ivk- V - eel)+ exp(-lvk - V +eel)]). 
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Proof: We begin the proof by computing the Fourier transformation of the measuresµ and 
µ: 

1 exp(i(e, v )) µ( dv) = t g; exp(i(e, v;)), 
~3 j=l 

1 g g . 
exp(i(e,v)) P,(dv) = - exp(i(e, v - ce)) + -2 exp(i(e, v + ce)) 

~3 2 

n (l 1 ) ~g; 2 exp(i(e, v - c:e)) + 2 exp(i(e, v + c:e)) . 

Thus we obtain 

(3.33) 

Therefore it is necessary to compute the integral 

for various u involved in (3.33). We use the spherical coordinates (e, cp, 8) whereby the 
z-axis has the same direction as u. Using (e,u,) = lelluJcosB = ea(B) we obtain 

f cos( e, u) de - 2 [27r dcp {7r/2 sin BdB foo e2 cos(ea( B)) de -
1~3 (1 + leJ 2)

2 
- lo lo . lo (1 + e 2)

2 
-

4 i 7r/
2 

. BdB 1 R i z2 exp( ia( B)z) d 7r Sln - e 2 Z = 
o 2 v (1 + z 2) 

4 1. 7r/
2 R [z2 exp( ia( B)z) ] . ()dB 7r 7ri es 2 , i sin = 

o (1 + z2 ) . 

i 7r/2 7r 
47r -(1 - a( B)) exp(-a( B)) sin Bd(} = 

0 4 

71"
2 1"'2 

(1 - iul cos £1) exp( -lul cos £1) sin £id(! = 71"
2 exp( -lul). 

If we use this result for the values u = vk - vz , u = Vk - V - ce, u = Vk - V + ce, 
u = vz - V - ce, u = vz - V + ce, u = 0 and u = 2ce we obtain from (3.33) the formula 
(3.32). D 

The main advantage of the distance (3.32) is, of course, that this formula is exact, and the 
dependence of the distance on the vector e is. shown clearly in the third term. On the other 
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hand, this formula includes as the second term a double sum, which requires a numerical 
work of the order nt in the cluster i having ni elements. Note that our aim is not to produce 
only few clusters of many elements but rather to produce many clusters with 4-5 particles 
in each which should be replaced by two. In such a situation the whole work required for 
computing all distances corresponding to (3.32) remains of the capital _order 0( n). The 
next observation is that the unit vector e is only involved in the third term of the formula 
(3.32) which requires O(ni) numerical work. Our idea now is to try to maximize the third 
term in (3.32) in order to minimize the distance between both measures. Unfortunately, the 
dependence of the Sobolev distance on the vector e is very complicated, having a lot of local 
minima and maxima. We would like to illustrate this behaviour using the following example. 
We randomly generate 128 particles corresponding to the distribution fa( v) (see Section 4) 
and compute the vector e via (3.14). This vector is defined by 

e = (cos( rp) sin( IJ), sin( rp) sin( IJ), cos( 11) f, 0 :S rp < 2?r, 0 :S IJ :S 'If. 

In our example we obtain c.p ~ 0.4 79 and 8 ~ 1.094. We now fix the value of B and 
plot the Sobolev distance ·as a function of c.p. The result is shown in Figure 1. It is to be 
concluded that we will not have a chance to determine the optimal value of c.p numerically 
because of the presence of many local extrema. On the other hand, the depen~ence of the 
Sobolev distance on e is rather weak. We will see in Section 4 that clustering particles 
correctly is much more important than the choice of the vector e. 

2.24 

2.23 

2.22 

2.21 

0 1 2 3 4 5 6 

Figure 1: Sobolev distance via polar angle c.p 
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3.4. Clustering the particles 

Clustering means grouping similar objects by minimizing a certain criterion function or 
other object-dependent properties. Clustering techniques are very common and useful in 
many applications such as data analysis, data reduction, digital image processing, pattern 
recognition and computer graphics. In the past many algorithms have been developed (see, 
e.g., [1], [5], [6], [7], [13], [17], [18], [21]). 

In this section we propose a solution to the problem stated earlier: finding a way to 
partition the system of particles (3.1). As mentioned before, however, we are not interested 
in position. Therefore the problem can be reduced to finding a set of clusfors such that for 
each cluster i = 1, ... , ii the quantity 

(3.34). 

i.e. the product of the cluster mass and the cluster temperature, is minimized (cf. (3.30), 
(3.5), (3.9)). In addition, all ei should be nearly equal and lower than a given g. Thus the 
resulting number of clusters ii will depend on g. 

However, clustering is known to be np-complete. Our intention here is not to find a 
method which is as close as possible to the global optimum but to find an appropriate 
method which is both acceptable for the problem we are faced with and efficient enough to 
run several times on large data bases. 

In the following we propose a solution which is related to the method introduced by Or-
chard and Bouman [13]. It is based on a hierarchical binary space subdivision and constrains 
the partitioning to have the structure of a binary tree. Each node of the tree represents a 
subset, and the children of any node partition the members of the parent node. The method 
of generating the binary tree is specified by e and by the method of splitting a node into 
its two children. The algorithm starts with the whole data set in the root of the tree and 
partitions each node until the quantity (3.34) is lower than g. 

In order to limit the complexity of the splitting algorithm, a splitting plane is used. In 
the algorithm proposed we determine the direction in which the cluster variation is greatest, 
and then split the cluster with a plane perpendicular to that direction through the cluster 
mean. More specifically, we determine the cluster covariance 

(cf. (3.6), (3. 7) ), where V(i) is the cluster mean. The normal direction of the splitting plane 
is parallel to the eigenvector corresponding to the largest eigenvalue of R(i). Note that (cf. 
(3.8), (3.9)) 
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4. Numerical experim.ents 

It is clear that reducing the number of particles produces an additional error in the compu-
tational process. From the theoretical point of view this error can be held in check by the 
estimates (3.30), (3.31). From the practical point of view it is extremely important to inves-
tigate this additional error very carefully in order to be sure that the error due to reduction 
algorithms does not become dominant in the computations. Since the numerical solution 
of the spatially inhomogeneous Boltzmann equation is always faced with different kinds of 
discretization errors, i.e. discretization of the computational domain, splitting free flow and 
collision phases, sorting the particles in spatial cells, finite (and usually small) number of 
particles per cell, etc., it is difficult to check the additional effect of reduction, especially if 
we would like to compare different reduction strategies. 

In our opinion is better for our purpose to solve the spatially homogeneous Boltzmann 
equation, i.e. to model the situation in one spatial cell. It is also useful to choose the collision 
kernel which corresponds to pseudo-Maxwell molecules because in this case exact formulae 
for the time development of the moments are known even for non-trivial initial distributions 
(cf. [3]). 

We consider the problem of calculating the second moments 

mi,j(i) = r ViVj f(t, v) dv, i,j = 1, 2, 3, }'ilf.s 
and the third moments 

Ti(i)= r Villvll 2 f(t,v)dv, i=l,2,3. 
J'ilf.3 

( 4.1) 

(4.2) 

The stochastic weighted particle method described in Section 2 is used with the parameter 
r = 1 (cf. (2.16) ). This means that during each collision two additional particles are created. 
The initial distribution is a mixture of two Maxwellians, namely 

with 

Vi = (2, 0, 0), V2 = (-2, 0, 0), Ti = 2, T2 = 1. 

4.1. Statistical notions 

First we introduce some definitions and notations that are helpful for the understanding of 
stochastic numerical procedures. 

The functionals to be calculated ( 4.1 ), ( 4.2) are of the form 

F(t) = { cp(v)J(t,v)dv. 
J'ilf.3 

( 4.3) 
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According to (2.1 ), a functional ( 4.3) is approximated by the random variable 

n(t) 

e(t) = 1 cp(v)µ(t,dv) = L9•(t)cp(v;(t)). 
~3 

i=l 

( 4.4) 

Note that this random variable depends on the value n = n(O), which determines the quality 
of approximation of the initial distribution by means of a point measure. 

In order to estimate and to reduce the random fluctuations of the estimator ( 4.4), a 
number N of independent ensembles of particles is generated. The corresponding values of 
the random variable are denoted by 

The empirical mean value of the random variable ( 4.4) 

N 

11ln,N)(t) = ~ L e)n)(t) 
j=l 

( 4.5) 

is then used as an approximation to the functional ( 4.3). The error of this approximation is 

(4.6) 

and consists of the following two components. 
The systematic error is the difference between the mathematical expectation of the 

random variable ( 4.4) and the exact value of the functional, i.e. 

The statistical error is the difference between the empirical mean value and the ex-
pected value of the random variable, i.e. 

A confidence interval for the expectation of the random variable e(n)(t) is obtained as 

Var e(n) (t) (n,N)( ) ' 
N ''T/1 t + Ap 

where 

(4.7) 

·is the variance of the random variable (4.4), and p E (0, 1) is the confidence level. This 
means that 
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Thus, t~e value 

( 4.8) 

is a probabilistic upper bound for the statistical error. 

In the calculations. we use a confidence level of p = 0.999 and .AP = 3.2. The variance is 
approximated by the corresponding empirical value (cf. (4.7)), i.e. 

where 

is the empirical second moment of the random variable (4.4). 

4.2. Systematic error - long tirne behaviour 

First we study the long time behaviour of the approximations ( 4.5) to the functionals ( 4.1 ), 
( 4.2). We consider the time interval [O., 30.]. 

The typical behaviour can best be observed from Figure 2. The exact curves are dis-
played by dashed lines and the confidence bands by solid lines. The stationary state is 
reached at about t = 10. A systematic error can be detected clearly up to n = 64. 
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Figure 2: Moments m 1,1 (t) (left) and r 1 (t) (right) for different n 
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More complete data is contained in Table 1. The supremum over the time interval of the 
absolute error (4.6) is denoted by err-m1,1 and err-r1 for the functionals m 1,1(t) and r1(t), 
respectively. The corresponding statistical error bounds ( 4.8) are denoted by conf-m1,1 
and conf-r1 . Several other quantities relevant to. the stochastic particle method are also 
displayed. Here, ired denotes the number of reductions on the time interval, while ipart 
denotes the number of particles in the system averaged over 50 observation points. Finally, 
gmin and gmax denote the averaged minimal and maximal weights in the system. 

Table 1 

n N ired ipart gmax/gmin err-m1,1 conf-m1,1 err-r1 conf-r1 
4 256000 36.6 7.42 1.18/0.46 0.667 0.013 1.916 0.110 
8 128000 47.5 16.2 1.33/0.28 0.344 0.012 1.030 0.110 

16 64000 53.4 32.0 1.46/0.20 0.168 0.010 0.480 0.109 
32 32000 56.6 64.9 1.59 /0.14 0.084 0.009 0.276 0.107 
64 16000 58.3 130. 1.71/0.10 0.044 0.009 0.142 0.108 
128 8000 59.4 26.3. 1.93/0.07 0.023 0.008 0.073 0.108 
256 4000 60.1 527. 2.13/0.05 0.016 0.008 0.053 0.107 
512 2000 60.8 1054. 2.29/0.04 0.006 0.008. 0.040 0.106 
1024 1000 61.0 2102. 2.41/0.03 0.007 0.008 0.069 0.111 

The systematic error is displayed in the logarithmic scale in Figure 3. Here the small 
points correspond to err-m1,1 and the big points to err-r1 . As long as the error is larger 
than the statistical error bound there is clear linear behaviour (corresponding to the order 
n-1). Inside the confidence interval the error fluctuates. 

Note that the systematic error in the stochastic weighted particle method is comparable 
to that in the standard method (cf. (2.30)), as Table 2 shows. 

Table 2 

n N I err-m1,1 I conf-m1,1 I err-r1 I conf-r1 
8 128000 0.338 0.013 1.013 0.113 
16 64000 0.166 0.012 0.497 0.113 
32 32000 0.089 0.012 0.344 0.114 
64 16000 0.051 0.012 0.167 0.116 
128 8000 0.024 0.012 0.078 0.114 
256 4000 0.015 0.012 0.100 0.114 
512 2000 0.010 0.012 0.042 0.116 
1024 1000 0.011 0.012 0.063 0.117 

Thus, the method provides a correct approximation of the moments despite the permanent 
blow-up and the frequent reductions of the system. These properties are illustrated by 
Figure 4, where one single trajectory is displayed in the case n = 128 (cf. line 6 of Table 1 ).· 
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Figure 3: Systematic error dependent on n 
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Figure 4: One trajectory for n = 128 
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4.3. Systematic error - short time behaviour 

Figure 4 gives a long term picture of the behaviour of the number of particles and collisions 
in the system. A more precise description can be obtained by looking at the shorter t.ime 
interval [O., 3.]. The functionals (4.1), (4.2) are calculated with the parameters n == 10240 
and N == 100. If the number of particles reaches 4n then this number is reduced to n/ 4. 
Figure 5 shows the behaviour of the number of particles, which grows exponentially up to 
the corresponding maximum. Thus, on a small scale, the number of collisions is not linear 
as Figure 4 shows on a large time scale. Despite the strong fluctuations of the number of 
particles in the system, the moments mi,i ( t) , i == 1, 2, 3 , and r 1 ( t) are calculated correctly. 
Here, as before, exact curves are displayed by dashed lines, and the confidence bands by 
solid lines. 
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Figure 5: Short time interval ( n == 10240) 
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4.4. Reduction error 

Finally, we study the behaviour of the reduction error (cf. the right-hand side of (3.30)) 
dependent on n. During the calculation of the functionals on the time interval [O., 3.) the 
error bounds were evaluated and averaged. We considered different reduction strategies, 
reducing the number of particles from 4n to n/4, n/2, and n, and from 2n to n. The 
corresponding values of the error are displayed in Table 3. 

Table 3 

n J 4n:n/ 4 J 4n:n/2 J 4n:n 2n:n 
16 2.234 1.815 1.436 1.322 
32 1.900 1.527 1.195 1.086 
64 1.572 1.274 0.994 0.895 
128 1.324 1.063 0.815 0.736 
1024 0.725 0.566 0.429 0.387 
10240 0.350 0.269 0.202 0.183 
102400 0.164 0.126 0.095 0.085 

The reduction error is displayed in the logarithmic scale in Figure 6. Here the big 
points correspond to the first column of Table 3, while the small points correspond to the 
third column. The other columns would look similar. Figure 6 shows linear behaviour of the 
reduction error. The lines corresponding to different columns of Table 3 are roughly parallel. 
A comparison of the particular values suggests an order of convergence close to n- ~ . 
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Figure 6: Reduction error dependent on n 
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5. Concluding remarks 

In this paper we presented a detailed study of reduction procedures for the stochastic 
weighted particle method (SWPM). These procedures are based on appropriate clustering of 
the particle system in the velocity space. Different methods are provided which possess con-
servation properties for all physically relevant macroscopic moments. These results represent 
a significant, necessary improvement of the SWPM, which can now be used for calculations 
for long time intervals. 

Theoretical error bounds have been obtained both in the bounded Lipschitz metric and 
in a particular Sobolev norm. These results were illustrated by detailed numerical tests for 
the spatially homogeneous Boltzmann equation. The convergence order with respect to the 
particle number n was found to be n-1 for the macroscopic moments. A comparison with 
the standard method (complete weight transfer, no reduction) shows that the SWPM not 
only has no additional error but also contains several useful degrees of freedom. Calculations 
for long time intervals (far beyond the relaxation time) show the stability of the SWPM. 

Our main objective for future research is coupling the spatially inhomogeneous nonlinear 
Boltzmann equation with the system of Euler equations in regions of local equilibrium. In 
terms of numerical procedures we will face the problem of combining stochastic and deter-
ministic algorithms. The robust determination of the coupling boundary, i.e. automatic 
domain decomposition, requires reliable computation of several first moments of the density 
function. The results obtained by stochastic particle methods are perturbed by stochas-
tic fluctuations, especially in regions of low particle density. Here we expect a significant 
improvement of numerical results using the SWPM. 

References 

[1] N. R. ANDERBERG, Cluster analysis for application, Academic Press, 1973. 

[2] G. A. BIRD, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Claren-
don Press, Oxford, 1994. 

[3) A. BOBYLEV AND S. RJASANOW, Difference Scheme for the Boltzmann equation based. 
on fast Fourier Transfo-rm, European J. Mech. B Fluids, (1997). to appear. 

[4] C. CERCIGNANI, R.· lLLNER, AND M. PULVIRENTI, The Mathematical Theory of Dilute 
Gases, Springer, New York, 1994. 

[5] R. 0. DUDA AND P. E. HART, Pattern classification and scene analysis, Wiley, 1973. 

[6] J. A. HARTIGAN, Clustering algorithms, Wiley, 1975 . 

. 26 



[7] L. HY AF IL AND R. L. RIVERT, Constructing optimal binary decision trees is np-
complete, Inf. Proc~ Let., 5 (1976), pp. 15-17. 

[8] R. ILLNER AND S. RJASANOW, Numerical solution of the Boltzmann equation by ran-
dom discrete velocity models, European J. Mech. B Fluids, 13 (1994), pp. 197-210. 

[9] R. ILLNER AND yv. WAGNER, A random discrete velocity model and approximation of 
the Boltzmann equation, J. Statist. Phys., 70 (1993), pp. 773-792. 

[10] --, Random discrete velocity models and approximation of the Boltzmann equation. 
Conservation of momentum and energy, Transport Theory Statist. Phys., 23 (1994) 1 

pp. 27-38. 

[11] M. S. IVANOV AND S. V. RoGAZINSKI, Analysis of numerical techniques of the direct 
simulation Monte Carlo method in the rarefied gas dynamics, Soviet J. Numer. Anal.· 
Math. Modelling, 3 (1988), pp. 453-465. 

[12] H. NEUNZERT, F. GROPENGIESSER, AND J. STRUCKMEIER, Computational methods 
for the Boltzmann equation, in Applied and Industrial Mathematics, R. Spigler, ed., 
Kluwer Acad. Publ., Dordrecht, 1991, pp. 111-140. 

[13] M. T. ORCHARD AND C. A. BOUMAN, Color optimization of images, IEEE Trans. Sig. 
Proc., 39 (1991), pp. 2677-2690. 

[14] S. RJASANOW AND W. WAGNER, A stochastic weighted particle method for the Boltz-
mann equation, J. Comput. Phys., 124 (1996), pp. 243-253. 

[15] --, A generalized collision mechanism for stochastic particle schemes approximating 
Boltzmann type equations, Comput. Math. Appl., (1997). to appear. 

[16] --, Numerical study of a stochastic weighted particle method for a model kinetic equa-
tion, J. Comput. Phys., 128 (1996), pp. 351-362. 

[17] T. SCHREIBER, A Voronoi-diagram based data reduction and approximation, in LNCS 
553, Springer, 1991, pp. 265-275. 

[18] --, Clustering for data reduction and approximation, in Proc. GraphiCon 93, St. 
Petersburg, Russia, 1993. 

[19] M. SCHREINER, Weighted particles in the finite pointset method, Transport Theory 
Statist. Phys., 22 (1993), pp. 793-817. 

[20] W. SCHREINER, Partikelverfahren fur kinetische Schemata zu den Euler Gleichungen, 
PhD-Thesis, University of Kaiserslautern, 1994. 

[21] H. SPATH, Cluster analysis algorithms, Wiley, 1980. 

27 



Recent publications of the 
Weierstrafi-Institut fiir Ange-wandte ""!\.nalysis und Stochastik 

Preprints 1996 

291. Vladimir G. Spokoiny: Estimation of a function with discontinuities via local 
polynomial fit with an adaptive window choice. 

292. Peter E. Kloeden, Eckhard Platen, Henri Schurz, Michael S¢rensen: On ef-
fects of discretization on estimators of drift parameters for diffusion processes. 

293. Erlend Arge, Angela Kunoth: An efficient ADI-solver for scattered data 
problems with global smoothing. 

294. Alfred Liemant, Ludwig Brehmer: A mean field approximation for hopping 
transport in disordered materials. 

295. Michael H. Neumann: Strong approximation of density estimators from weak-
ly dependent observations by density estimators from independent observa-
tions. 

296. Lida V. Gilyova, Vladimir V. Shaidurov: A cascadic multigrid algorithm in 
the finite element method for the plane elasticity problem. 

297. Oleg Lepski, Arkadi Nemirovski, Vladimir Spokoiny: On estimation of non-
smooth functionals. 

298. Luis Barreira, Yakov Pesin, Jorg Schmeling: On a general concept of mul-
tifractality: Multifractal spectra for dimensions, entropies, and Lyapunov 
exponents. Multifractal rigidity. 

299. Luis Barreira, Jorg Schmeling: Any set of irregular points has full Hausdorff 
dimension and full topological entropy. 

300. Jorg Schmeling: On the completeness of multifractal spect~a. 

301. Yury Kutoyants, Vladimir Spokoiny: Optimal choice of observation window 
for Poisson observations. 

302. Sanjeeva Balasuriya, Christopher K.R.T. Jones, Bjorn Sandstede: Viscous 
perturbations of vorticity conserving flows and separatrix splitting. 

303. Pascal Chossat, Frederic Guyard, Reiner Lauterbach: Generalized hetero-
clinic cycles in spherically invariant systems and their perturbations. 

304. Klaus R. Schneider: Decomposition and diagonalization in solving large sys-
tems. 



305. Klaus Fleischmann, Achim Klenke: Convergence to a non-trivial equilibrium 
for two-dimensional catalytic super-Brovmian motion. 

306. Klaus Fleischmann, Vladimir A. Vatutin: Reduced subcriti.cal Galton-Watson 
processes in a random environment. 

Preprints 1997 

307. Andreas Rathsfeld: On the stability of piecewise linear wavelet collocation 
and the solution of the double layer equation over polygonal curves. 

308. Georg Hebermehl, Rainer Schlundt, Horst Zscheile, Wolfgang Heinrich: Eigen 
mode solver for microwave transmission lines. 

309. Georg Hebermehl, Rainer .Schlundt, Horst Zscheile, Wolfgang Heinrich: Im-
proved numerical solutions for the simulation of microwave circuits. 

310. Krzysztof Wilmanski: The thermodynamical model of compressible porous 
materials with the balance equation of porosity. 

311. Hans Gunter Bothe: Strange attractors with topologically simple basins. 

312. Krzysztof Wilmanski: On the acoustic waves in two-component linear poro-
elastic materials. 

313. Peter Mathe: Relaxation of product Markov chains on product spaces. 

314. Vladimir Spokoiny: Testing a linear hypothesis using Haar transform. 

315. Dietmar Hornberg, Jan Sokolowski: Optimal control of laser hardening. 

316. Georg Hebermehl, Rainer Schlundt, Horst Zscheile, Wolfgang Heinrich: Nu-
merical solutions for the simulation of monolithic microwave integrated cir-
cuits. 

317. Donald A. Dawson, Klaus Fleischmann, Guillaume Leduc: Continuous de-
pendence of a class of superprocesses on branching parameters, and applica-
tions. 

318. Peter Mathe: Asymptotically optimal weighted numerical integration. 

319. Guillaume Leduc: Martingale problem for(~, <P, k)-superprocesses. 


