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Abstract 

We introduce an explicit constraint qualification condition which is necessary 
and sufficient for the nondegenerate Lagrange multipliers rule to hold. We compare 
it with metric regularity conditions and we show that it is strictly weaker than 
the Slater assumption. Under certain weak smoothness hypotheses, our condition, 
the Slater condition and the existence of nondegenerate Lagrange multipliers are 
equivalent. The basic ingredient in the proof of the main result is the theory of 
maximal monotone operators (Minty's theorem). Another approach using a direct 
exact penalization argument yields a modified nondegenerate Lagrange multipliers 
rule involving the positive part of the constraint mapping. 

Examples and applications to abstract optimal control problems are also indi-
cated. 

1 Introduction 

Let H be a Banach space, g: H -+] - oo, +oo] be a convex, lower semicontinuous proper 
function and hi : H -+] - oo, +oo], i = 1, n be convex mappings. Precise hypotheses will 
be stated in the sequel, for each result. We consider the standard convex programming 
problem with inequality constraints: 

Minimize {g(x)} (1.1) 

subject to 

(1.2) 

We define the feasible (convex) set 

(1.3) 

assumed to be nonvoid (admissibility) and we denote by x E C a solution to (1.1), 
(1.2), supposed to exist. We also introduce the convex mapping h : H -+] - oo, +oo], 
h(x) =max {hi(x); i = 1, n} and the problem (1.1), (1.2) may be equivalently reformu-
lated as (1.1) and 

h(x) ~ 0. (1.4) 

This work discusses the classical question of the caracterization of x via the Karush-Kuhn-
Tucker [10, 9] conditions. We introduce a new explicit constraint qualification which 
may be mainly compared with the metric regularity condition, Robinson [12], Jourani 
and Thibault [8] and we show that it is necessary and sufficient for the nondegenerate 
Lagrange multipliers rule (involving g essentially) to hold. In this sense, the condition 
that we introduce here is the weakest possible one. Let us also notice that by allowing g 
to be only lower semicontinuous, we can include in the problem (1.1), (1.2) other types 
of constraints, expressed in the abstract form 
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x EA, (1.5) 

where A C H is a closed convex nonvoid subset. This can be simply done by adding to g 
the indicator function IA of A in H. The general form of our hypothesis is: 

V M C fI bounded, 3cM > 0 : 
h(x) 2:: CM dist (x, C), Vx E M'C. (1.6) 

The relation makes sense only for sets M such that M'C-:/= ¢,otherwise it has no object. 
If C is bounded, then cM may be chosen independent of M. Comparing (1.6) to the 
general condition (0) of Jourani and Thibault [8] or with conditions ( 4), (5) of Robinson 
[12], we see that (1.6) is imposed exclusively on the explicit constraints (1.2) or (1.4) 
and does not involve A (or g). Moreover, if some c > 0 is added to any of the hi, then 
the corresponding set Cc: may be empty. That is, condition (1.6) is not related with the 
stability with respect to perturbations of the feasible set, as it is generally the case with 
metric regularity assumptions. Finally, under very weak differentiability suppositions, we 
also show that the hypothesis (1.6) is equivalent with the classical Slater [14] condition: 

3xo E C : hi(x0 ) < 0, i = 1, n (1.7) 

and it follows, in this setting, that (1. 7) is as well equivalent with the existence of non-
degenerate Lagrange multipliers. In the nonsmooth case, we prove that (1.6) is strictly 
weaker than (1.7) and this expresses a general geometric property of convex functions. 
Our approach is based on the theory of maximal monotone operators (the Minty's theo-
rem in Banach spaces), Brezis [5], Barbu [2]. In Section 2, we prove a formula giving the 
normal cone to the level set C in terms of the original function h. The basic character of 
such a formula is wellknown, Lemarechal and Hiriart-Urruty [7]. In the book of Clarke (6], 
Theorem 2.4.7 proves a similar result under differentiability assumptions. The nondegen-
erate Lagrange multipliers rule, for general lower semicontinuous objective mappings g, is 
then an immediate consequence via subd!fferential calculus and the Dubovitskij-Miljutin 
theorem, Tikhomirov (16]. In Section 3, we prove that the hypothesis (1.6) is as well 
necessary, under general hypotheses. Section 4 discusses the same problem in Banach 
spaces via an approximating projection idea. We prove a modified nondegenerate La-
grange multipliers rule, involving h+, for g continuous and h lower semicontinuous. The 
last section is devoted to variants of the condition (1.6) and to an application to optimal 
control problems. 

Throughout the text, we denote by 1 · IH the norm in the Banach space H, by S(z, r) the 
closed ball centered at z E Hand with radius r > 0 and by(·, ·)HxH* or(·, ·)H the duality 
pairing between H and its dual space H* ·or the scalar product in the Hilbert space H. 

2 Maximal monotonicity 

In this section, we assume that His a reflexive Banach space and, eventually by renorming, 
that H and H* are strictly convex. The mapping h is convex, proper, lower semicontinu-
ous, 0 E 8h(O) and satisfies (1.6). 
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Let F: H--+ H* be the duality mapping and X>. be the solution of 

F(x>. - y) + J..8h(x>.) 3 0 

where ).. ~ 0 and y E H are arbitrarily fixed. 

Proposition 2.1 If).. is "big enough", then X>. E C. 

Proof We multiply (2.1) by X>. and, by 0 E 8h(O), we have 

(x>. - y, F(x>. - y))HxH* ~ -(y, F(x>. - y))HxH*, 

that is lx>-IH ~ 2IYIH· 
We denote by Cy > 0 the constant associated by hypothesis (1.6) to the set 
M = S(O, 2IYIH) in H. If X>. f/. C, we get 

cylx>. - projc(x>.)IH ~ h(x>.) ~ h(x>.)-
-h(projc(x>.)) ~ (8h(x>.), X>. - projc(x>.))H•xH 

(2.1) 

(2.2) 

(2.3) 

Here proj0 (x>.) is the projection of X>. on the closed convex set C which exists and is 
unique under our assumptions. 

It is known that 8h>.(Y) E 8h(x>.), Barbu and Precupanu (3, Ch. II], where h>.(Y) = 
)..-1 F(x>. - y) is the Yosida approximation of h. Then, (2.3) gives 

Thi~ is a contradiction for ).. "big enough" since cy is independent of )... 

D 

Theorem 2.1 If h is continuous and the hypotheses of Proposition 2.1 are fulfilled, then 
the multivalued operator NCH x H* given by the cone: 

{ 

0 if h(x) < 0, 
N(x) = )..w, ).. ~ 0, w E 8h(x), if h(x) = 0, 

efJ if h(x) > 0, 
(2.4) 

is maximal monotone and N(x) = 8I0 (x) the normal cone to C in x. 

Proof By the definition of the subdifferential, it is clear that N c 8Ic and, therefore, 
that it is monotone. We show that N is maximal monotone in H x H* and this will give 
the desired equality. Assume first that h ~ 0 in H. Then the first line in (2.4) disappears. 
Let .X > 0 be such that xx E C, according to Proposition 2.1. Equation (2.1) may be, by 
(2.4), rewritten as · 

F(xx - y) + N(xx) 3 O. 
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The converse part in Minty theorem shows that N is maximal monotone and N = 8 I e 
follows. If h has negative values in H, we consider h+ = max {0, h} and we denote by 
N+ C H x H* the cone associated to h+ via (2.4). Then, the first part of the proof gives 
that N+ = 8Ie. But, the Dubovitskij-Miljutin theorem, Tikhomirov [16], shows that 
N = N + if h is continuous and the proof is finished. 

D 

Corollary 2.1 If h is convex, proper, lower semicontinuous with h > 0 in H and 
0 E 8h(O), then N = 8Ie. 

Remark The inclusion N C Ne is wellknown and the equality N = Ne is an abstract 
regularity condition, necessary and sufficient for the nondegenerate Lagrange multipliers 
rule to hold, Lemarechal and Hiriart-Urruty [7, Ch. VII.2]. Another "basic constraint 
qualification" may be formulated via tangent cones as well, Rockafellar [13]. In the book 
by Clarke [6], the regularity is defined as the equality between tangent and contingent 
cones and Theorem 2.4.7 and its corollaries give a description of the same type of 8Ie, 
under differentiability assumptions. 

Corollary 2.2 Let g : H --+] - oo, +oo] be convex lower semicontinuous proper, continu-
ous in some point of C and let x be a solution of ( 1.1), { 1. 2). If h satisfies the assumptions 
of Theorem 2.1, then there are Ai ~ 0 such that 

n 

o E 8g(x) +I: Ai8hi(x), 
i=l 

Aihi(x) = O, i = 1, n. 

Proof Since g is continuous in a point of C, we have the additivity rule 0 E 8g(x)+8Ie(x). 
The proof is finished by Theorem 2.1 and the Dubovitskij-Miljutin theorem applied to h. 

D 

Remark The hypothesis 0 E 8h(O) has a technical character and it is not restrictive. 
If h ~ 0 in H, then any point in C is a minimum point for h and a simple shifting 
gives 0 E 8h(O). If h has negative values as well then the Slater condition is fulfilled and 
Corollary 2.2 is wellknown. 

3 Necessity 

In this section, we denote by (P9 ) the problem (1.1), (1.2) associated to the performance 
index g and by x9 a (local) minimum of (Pg) whose existence is supposed. The hypotheses 
on g are as in Section 1, but now h: H--+ R is not necessarily convex and that is why x 9 
may be only a local minimum. 
We assume that h : H --+ R is continuous with bilateral derivative in every point of the 
Banach space H. This is a weaker supposition than the Gateaux differentiability and if 
h'(x, d) is the directional derivative of h at x in the direction d (assumed to exist), we 
have 
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h'(x, d) = -h'(x, -d). (3.1) 

The set C is closed, C =/= ¢, C =!= H, but it is not necessarily convex. 

Theorem 3.1 If for any g: H --t] - oo, +oo] convex lower semicontinuous proper, there 
is µ = µ(g) ~ 0 such that x9 is a {local} minimum on H for: 

Lµ(g) = g + µ(g )h (3.2) 

then h has strictly negative values on C, that is the Slater condition is satisfied. 

Proof Assume that h(x) = 0, Vx EC. Then, any x EC is a global minimum of hon H 
and the bilateral differentiability gives 

h' ( x, d) = 0, V x E C, V d E H. (3.3) 

Let x E 8C and x E H'C =/= ¢, such that the open-closed segment ]xx] c H'C, that 
is the closed segment satisfies [xx] n C = {x},. The existence of x with these properties 
follows by solving the problem: 

sup {Ix - xlH; x EC n [xx]}, (3.4) 

where x E C is given. The solution x of (3.4) exists by the Weierstrass theorem and x =!= x 
since x E H'C open. 

We define now g: H --t] - oo, +oo] convex, lower semicontinuous proper 

g(x) = ' { 
,\ -1 

+oo 

x = ,,\x + ( 1 - ,\) x, 
otherwise. 

,\ E (0, 1], 

We have dom g n C = {x}, g(x) = ~O and x is the solution of (Pg). However, for any 
µ ~ 0, the nondegenerate Lagrange function Lµ = g + µh satisfies (by (3.3)): 

L~(x, x - x) = g'(x, x - x) + µh'(x, x - x) = -1. 

Clearly Lµ(x) = 0 and Lµ(x) < 0 if x E [xx] n S(x, cµ), cµ > 0 small. Then x cannot be 
a minimum for Lµ, anyµ~ 0. This provides the contradiction which ends the proof. 

0 
Remark In the next section, we show that the Slater condition is stronger then our 
hypothesis (1.6). Then, Theorem 3.1 and Theorem 2.1 prove that (1.6) is necessary 
and sufficient for the nondegenerate Lagrange multipliers rule to hold, under bilateral 
differentiability conditions on h. And the same is valid for the Slater condition. 

In the sequel, we indicate another case when (1.6) is necessary, without differentiability 
assumptions. We suppose that H· is a finite dimensional space and that h : H --t R is 
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convex, continuous. The directional derivative h'(x, d) exists for any x, d E H and we 
assume a partial continuity property for it: 

(3.5) 

if Yn-+ y, Vn -+ V, Yn + AVn E H'-C, V,,\ ~ 0. 

The set C is convex closed, Ci=</>, Ci= H and x9 denotes the global solution of (Pg). 

Theorem 3.2 If for any g: H-+ R convex continuous, there isµ= µ(g) ~ 0 such that 
x9 is a minimum point for Lµ(g) on H, then h satisfies {1.6}. 

Proof Assume that h ~ 0 on H and that h does not satisfy (1.6), that is we can find 
M C H bounded such that 

Ve> 0, :3xe E M'C: 0 < h(xe) < c dist (xe, C). (3.6) 

Clearly {xe} and {projcxe} are bounded in H and we can take subsequences such that 
Xe-+ x, projcXe-+ x and h(x) = 0 by (3.6). Then x E C and x-=/= Xe, Ve> 0. 

We can also write, as h(x) = 0, Vx EC, that: 

If,,\ E [O, 1], the convexity of h gives: 

0 :::; h(projcXe + --\(xe - projcxe)) - h(projcxe) :::; 
< --\[h(projcxe +Xe - projcxe) - h(projcxe)] :::; 

< --\clxe - projcxelH· 

Denote de = (xe - projcxe)lxe - projcxel:H1 • Then. ldelH = 1 and h'(projcxe, de) :::; c. 
Let de -+ d on a subsequence. Then ldlH = 1 since H is finite dimensional. By 
the characterization of the projection we have Xe - projcxe E 8Ic(projcxe), that is 
de E 8I0 (projcxe) and, consequently, d E 8Ic(x). We can use hypothesis (3.5) to pass to 
limit and to get h'(x, d) :::; 0. Since x E C is as well a minimum point of h on H, then 
h'(x, d) = o. 
The contradiction follows by considering the mapping g(x) = (d, x - x)H and arguing as 
in the previous proof. 

If h has as well negative values, then the Slater condition is fulfilled and the conclusion 
follows by Theorem 4.1. 

D 

Remark If f : H -+ R is convex continuous and Gateaux differentiable and 
h(x) = f(x) on D = {x E H; f(x) ~ O}, then h'(y, v) = f'(y, v) if y +AV E D, for 
,,\ ~ 0, and the continuity property (3.5) follows. Even in this situation, the Slater condi-
tion is not necessarily valid (for instance, for H = R, take f ( x) = x and h( x) = x+). 
Remark We use that H is finite dimensional only to obtain ldlH = 1. The other 
arguments remain valid for dim H = +oo. 
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·4 Slater condition and exact penalization 

In this section we compare (1.6) and the classical Slater condition via a general geometric 
property of convex functions and we give a modified nondegenerate Lagrange r~le, under 
very weak hypotheses and using direct exact penalization arguments. 

Theorem 4.1 Let H be a Banach space and h: H -+] - oo, +oo] be convex lower semi-
continuous proper such that {Slater): 

=ix E c: h(x) < o. (4.1) 

Then, Vr > 0, Vx E S(x, r)'C, we have 

h(x) 2:: - h(x) dist (x, C). 
r (4.2) 

(If (4.1) is not valid, then (4.2) is satisfied in the trivial form h(x) 2:: 0 in H.) 
Proof Take a = -h(x) > 0 and denote by S the line passing through x and x E H. 
If h(x) = +oo, then (4.2) is clear. Therefore, we may assume that h is finite on the 
closed segment [xx] C S since it is convex proper. Then his is continuous on the open 
segment ]xx[c S. As x E H'C and C is closed, there is c > 0 such that h > 0 on 
S(x, c) n [xx], due to (1.3). Since his convex and h(x) < 0, Proposition 3.1.2, Lemarechal 
and Hiriart-Urruty [7, Ch. I] gives that 

liJ!l h(y) Is ::; h( x) < o. 
y-+x+ 

Suppose that a unit vector u, lulH = 1 is chosen parallel to S and a parametrization of 
S with respect to u and some origin is given. The above discussion shows the existence 
of x E]xx[ such that h(x) = 0, x E C. Let ~' X, A be the "coordinates" of x, x, x on S, 
respectively and put ~ < X < A to fix the ideas. Take y E S, with the representation 
y = µu, µ E. R and define the mapping 

a -f(y) = -(µ - A) 
r 

which is affine on S. We notice, by (4.3), that 

f (x) - o = h(x), 

J (x) - - h(x) (.X - X) 
r 

h(x)A- A 2:: h(x) 
r 

X- .X Ix - xlH since h(x) < 0 and 0 ::; -- = ::; 1. 
r r 

Due to the convexity of his and the affine character of f, ( 4.4), and ( 4.5) yield 

h(x) 2:: f (x) = ~(A - A) = ~Ix - xlH 2:: - h(x) dist (x, C) 
r r r 
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since x E C. This ends the proof. 

D 

Remark A special case of this result (bounded level sets) was studied by Aze and 
Rahmouni [1], while in the work of Lemaire [11], Lemma 4.1 gives a similar statement 
with different constants and another proof. Several properties of this type and more 
references are collected in the forthcoming book by Zalinescu [17]. If h is affine, then 
( 4.2) becomes an equality for certain x. This show that ( 4.2) has optimal constants. 

Remark If h satisfies (4.1), then h+ will satisfy as well (4.2), but not (4.1). This example 
shows that the Slater condition is strictly stronger than (1.6). 

Theorem 4.2 Let h : H -+] - oo, +oo) be convex lower semicontinuous proper and 
g : H -+ R be convex continuous. Then, if x is a solution to {1.1}, {1.4) and {1.6} 
is fulfilled, there is A ~ 0 such that x is a minimum point of g + Ah+ over H. 

Proof Let S(x, 3e) be a fixed "small" ball around x. We show the minimum property 
of g +Ah+ (for some A~ 0) on S(x, e) and it will follow on H, by convexity. 

For any y E S(x, e) and any 8 > 0, there is y8 EC such that (approximate projection): 

IY - Y&IH ~ dist (y, C) + 8. 

If 8 < e, we have IY& - xlH ~ IY- xlH + IY-Y&I < 3e and Y& E S(x, 3e). Denote by m the 
Lipschitz constant of the continuous convex mapping g on S(x, 3e). We have 

g(y) - g(y&) 2: -mly -Y&IH 2: -m dist (y, C) - m8. 

Then 

g(y) + m dist (y, C) + m8 2: g(y8) 2: g(x). 

By (1.6), we obtain 

h+(x) 2: Ce: dist (x, C), \Ix E S(x, e)'C 

where ce > 0 is the constant associated to the bounded set S(x, e) by (1.6). 

Let 8-+ 0 in ( 4.6) and combine with ( 4.7) to get 

g(y) + m h+(Y) ~ g(y) + m dist (y, C) 2: 
Ce . 

m 2: g(x) = g(x) + -h+(x), y E S(x, c)'C 
Ce 

(4.6) 

(4.7) . 

(4.8) 

Relation (4.8) remains valid for y E S(x, e) n C since h+lc = 0 and this finishes the proof 
with A = m > 0. 

Ce -

D 
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Remark The above proof is based on direct exact penalization arguments as in Le-
marechal and Hiriart-Urruty [7, Ch. VII 1.2] or in Bonnans [4], but avoids the use of 
the projection operator which allows us to work in general Banach spaces. We remark 
that only g locally Lipschitz is sufficient in this setting, therefore a nonconvex variant of 
Theorem 4. 2 is also valid (for local minimum points). 

Remark Although g is continuous, it is possible to include in (1.1), (1.4) abstract 
constraints (1.5). This can be done by adding IA directly to h instead of g as usual. 
Therefore Theorem 4.2 addresses to general mathematical programming problems as well. 

Remark As in Corollary 2.2 we can reobtain the classical nondegenerate Lagrange 
multipliers rule via subdifferential calculus, from Theorem 4.2. However, it is necessary 
to impose hi continuous in order to apply the Dubovitskij-Miljutin theorem and this seems 
no more to allow abstract constraints (1.5) to be included in the problem (1.1), (1.2). 

Example As a byproduct of Theorem 4.1, we put into evidence a class of functionals on 
H which have the exact penalization property for convex closed sets C C H, such that 
0 EC. We denote by Pc : H --7] - oo, +oo] the Minkowsky (gauge) functional associated 
with C and we define fore> 0: 

The following properties are obvious: 

C = {x EH; he(x) = O}, Ve> 0, 

he(x) --7 +oo fore --7 oo, Vx E H'C, 

he(x) --7 0 fore --7 0, Vx E af f (C). 

(4.9) 

Moreover, if h,e(x) = e(p0 (x)-l), then it satisfies the Slater condition h,e(o) = -e, Ve> 0, 
and Theorem 4.1 shows that he satisfies (1.6). If g is a continuous convex mapping with 
a minimum at x EC, Then (by the proof of Theorem 4.2) there is e > 0 such that xis a 
minimum point of g + he on H. 
It is wellknown that the distance function, dist (x, C) has the exact penalization property, 
Lemarechal and Hiriart-Urruty [7, Ch. VII 1.2], while (4.9) is an example of a different 
nature. 

5 Examples and applications 

We consider first a sufficient condition for hypotheses (1.6) to hold. We assume that 
H is a Hilbert space identified with its dual and h : H --7] - oo, +oo] is convex lower 
semicontinuous proper. 

Proposition 5.1 Suppose that for.any M C H bounded there is cM > 0 such that for 
any x E M point of support for C and for any normal vector d E 8Ia(x), ldlH = 1 we 
have 

h'(x, d) ~CM· (5.1) 
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Then, condition ( 1. 6) is fulfilled. 

Proof Let x, point of support of C be fixed and M = S(x, 1). We denote by Zx the set 

Zx = {x EH; x - y E 8Ic(Y) for some y EM, y point of support of C}. 

Since h' is positively homogeneous, (5.1) yields 

(5.2) 

and y EM, y point of support for C. Ash is convex and h(y) :s; 0, we get 

(5.3) 

Here, we also use that if h(y) < 0, we get h(x) = +oo for x E Zx since y is point of 
support of C. Finally, we show that S(x, l)'C c Zx. We take any z E S(x, l)'C and we 
have: 

(z - projcz, projcz - v)H 2:: 0, Vv EC (5.4) 

by the definition of the projection. Moreover, projcz E C n S(x, 1) since the projection is 
nonexpansive and projcx = x. Since projcz is a point of support for C, then (5.4) shows 
that z - projcz E 8Ic(projcz), i.e. z E Zx. 
This argument shows that (5.3) yields (1.6) and the proof is finished. D 

Remark If C is a smooth convex domain in Rn (not necessarily bounded) and g~, 
the outward normal derivative of h to 8C (assumed to exist), is continuous and strictly 
positive, then (5.1) follows. 

Example We show here that if (5.1) or (1.6) are not satisfied, then the nondegenerate_ 
Lagrange multipliers rule may be not valid. 

Let x = (Xi, ... ' Xn) E Rn = H and 
n 

h(x) = 2: hi(x) 
i=l 

X1 E (0, +oo(, 
X1 :s; 0. 

and 

Then, C = {x E Rn; x1 2:: 0, Xi = 0, i = 2, n} and conditions (5.1) or (1.6) are not 
fulfilled since %~ ( 0) = 0. 
Let us take the objective function g(x) = x1. The solution to the corresponding problem 
(1.1), (1.4) is x = 0 E C, clearly. For any ).. 2:: 0, we define the nondegenerate Lagrange 
function g.\(x) = g(x) + >-.h(x). For)..= 0, g).. daes not attain its infimum on Rn and for 
A> 0, the global minimum point of g).. is X).. =(-A, 0 ... , 0) and X).. # x, 'ef).. > 0. 
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Example In the end of this section, we briefly comment on the abstract control problem: 

subject to 

Min L(y, u), 

Ay=Bu+f, 

h(y, u)::; 0. 

(5.5) 

(5.6) 

(5.7) 

Here U and V c H c V* are Hilbert spaces, L : V x U -t R, h : V x U -t Rare 
convex continuous mappings, A : V -t V*, B : U -t V* are linear bounded operators 
and f EV*. 

The set C = {[y, u] EV x U; h(y, u)::; 0} is convex closed and we assume that there is an 
admissible pair [y~ u] such that [y, u] E int C in the topology of V x U. Typical situations 
of problems (5.5) - (5. 7) are obtained when V, V* are Sobolev spaces, H, U are Lebesgue 
spaces and A is an (elliptic) partial differential operator, while B is some distributed or 
boundary control action. 

If (Ay, y)v•xv 2:: wlyli, w > 0, then the equation (5.6) has a unique solution for any 
u E U. By shifting the domains of L, hand redenoting the obtained mappings again by 
L, h, we may assume f = 0. We also notice the generality of the mixed constraint (5.7) 
which includes both state and control constraints. 

We shall apply the results from Section 2. We consider the closed subspace K = {(y, u) E 
V x U; Ay =Bu} and we replace L by L + IK in (5.5). If h satisfies (5.1) or (1.6) and 
[y*, u*] is an optimal pair for (5.5) - (5. 7), then Section 2 shows that there is ,:\ 2:: 0 such 
that 

0 E 8L(y*, u*) + 8IK(y*, u*) + .:\8h(y*, u*) (5.8) 

and A.h(y*, u*) = 0. Here, we also use that int C n K =j:. ¢ in order to apply the additivity 
rule for the subdifferential. It is known that 8IK(Y*, y*) = K J... and a simple calculus 
shows that 

KJ... = {[A*p, -B*p]; p E V} c V* x U. 

By (5.8), (5.9) we infer the optimality conditions for the problem (5.5) -(5.7): 

-A*p* E 81L(y*, u*) + A.81h(y*, u*), 

B*p* E 82L(y*, u*) + A.82h(y*, u*), 

A.h(y*, u*) = 0, )... 2:: 0 

(5.9) 

where 8iL, 8ih, i = 1, 2 denote the i-th component of the ordered pairs 8L, 8h and not a 
partial subdifferential. 

In the recent work of Tiba and Bergounioux [15], the interiority assumption on C is 
removed, but the optimality system has a weaker form. 
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