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Type II singular perturbation approximation for linear
systems with Lévy noise

Martin Redmann

Abstract

When solving linear stochastic partial differential equations numerically, usually a high
order spatial discretisation is needed. Model order reduction (MOR) techniques are
often used to reduce the order of spatially-discretised systems and hence reduce com-
putational complexity. A particular MOR technique to obtain a reduced order model
(ROM) is singular perturbation approximation (SPA), a method which has been exten-
sively studied for deterministic systems. As so-called type I SPA it has already been
extended to stochastic equations. We provide an alternative generalisation of the de-
terministic setting to linear systems with Lévy noise which is called type II SPA. It turns
out that the ROM from applying type II SPA has better properties than the one of using
type I SPA. In this paper, we provide new energy interpretations for stochastic reacha-
bility Gramians, show the preservation of mean square stability in the ROM by type II
SPA and prove two different error bounds for type II SPA when applied to Lévy driven
systems.

1 Introduction

Many phenomena in real life can be described by partial differential equations (PDEs). Fa-
mous examples are the motion of viscous fluids, the description of water or sound waves
and the distribution of heat. For an accurate mathematical modeling of these real world ap-
plications it is often required to take random effects into account. Uncertainties in a PDE
model can for example be represented by an additional noise term. This leads to stochastic
PDEs (SPDEs). A possible way is to consider equations driven by Wiener noise. We refer
to Da Prato, Zabczyk [10]; Gawarecki, Mandrekar [14] and Prévôt, Röckner [28] who treat
infinite dimensional Wiener processes as well as Wiener driven SPDEs. Dealing with Wiener
noise yields just continuous systems. This has the disadvantage of not covering models with
jumps. Lévy processes, which in general are not continuous, provide a possible solution
to this problem. One can find detailed information regarding Lévy processes in infinite di-
mensional spaces in Peszat, Zabczyk [27], where the work of [10, 14, 28] is extended. They
provide a comprehensive book containing the stochastic analysis of infinite dimensional Lévy
processes and the theory of Lévy driven SPDEs with various examples.

It is necessary to discretise a time-dependent SPDE in space and time in order to solve it
numerically. As a possible strategy discretising in space can be considered as a first step.

DOI 10.20347/WIAS.PREPRINT.2398 Berlin 2017



M. Redmann 2

By numerical approximations, an SPDE can be reduced to a finite dimensional equation. A
possibility to do that is the spectral Galerkin method which is for example investigated in
Grecksch, Kloeden [15]; Hausenblas [17]; Jentzen, Kloeden [19]; Blömker, Jentzen [9] for
Wiener driven systems. Alternatively, finite element methods can be applied. Kruse inves-
tigates this scheme in [21, 22] for SPDEs with Wiener noise. Barth [3] and Barth, Lang [4]
consider finite element approaches for equations with more general noise processes such
as Lévy processes.

Semi-discretising an SPDE in space usually leads to a high dimensional SDE. Solving such
complex SDE systems causes large computational cost which are aimed to be reduced.
In this regard, model order reduction (MOR) becomes a key ingredient. MOR is used to
save computational time by replacing large scale systems by systems of low order in which
the main information of the original system should be captured. A particular class of MOR
schemes is called balancing related MOR. They are based on reachability and observability
concepts and corresponding energy functionals. The idea of balancing a system with inputs
and outputs is to create a system, where the dominant reachable and observable states are
the same. Then, the difficult to observe and difficult to reach states (states producing the
least observation energy and causing the most energy to reach, respectively) are neglected.
A famous representative of this class is balanced truncation (BT). This was considered first
in Moore [25] for linear deterministic system; see Antoulas [1] or Obinata, Anderson [26] for
a thorough treatment of the topic. BT was also established for deterministic bilinear systems
in Benner, Damm [5] and Zhang et al. [33]. An alternative method to obtain a reduced or-
der model (ROM) is the singular perturbation approximation (SPA), see Liu, Anderson [23]
and Fernando, Nicholson [13] for deterministic linear systems and Hartmann et al. [16] for
deterministic bilinear systems.

Recently, BT and SPA have been extended to stochastic systems. BT was considered first
for SDEs with Wiener noise in Benner, Damm [5] and for systems with Lévy noise by Benner,
Redmann in [7]. This is the so-called type I ansatz which relies on a reachability Gramian
P1 that is defined by the fundamental solution of the system. A second way to generalise BT
to stochastic systems is discussed in Benner et al. [6]; Benner, Damm [12] and Redmann,
Benner [30]. It is based on another reachability Gramian P2. This new approach, the so-
called type II BT, is motivated by the aim of achieving an H∞-error bound which cannot be
proven in the ansatz used in [7]. Redmann and Benner [29] studied type I SPA for SDEs with
Lévy noise but so far no work has been done on type II SPA for stochastic systems. This will
be the main focus of this paper.

In Section 2, we will briefly discuss mean square asymptotic stability in a linear system
with Lévy noise. This section contains results generalising the Wiener case, see Damm [11]
and Khasminskii [20]. Mean square asymptotic stability is a necessary assumption to define
reachability and observability Gramians to a stochastic system. In Section 3, we discuss two
different reachability Gramians P1 and P2 which were e.g. considered in [5, 7] and [6, 12],
respectively. First attempts to characterise the meaning of P1 to the corresponding stochas-
tic system can be found in [5, 7]. The same was done for P2 in [30]. Unfortunately, all these
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Type II singular perturbation approximation for linear systems with Lévy noise 3

characterisations are based on a reachability concept involving the mean state of the sys-
tem. Considering the mean state ignores the information in the diffusion term of a stochastic
differential equation. That is why the energy interpretations in [5, 7, 30] might be unsatisfac-
tory. For that reason, we provide new energy interpretations for both P1 and P2 which involve
the full information of the stochastic system in Section 3. We briefly discuss the meaning of
an observability Gramian Q as well. The energy interpretations allow us to characterise the
degree of reachability and observability of a state in the system. Hence, unimportant states
(difficult to reach and observe states) can be identified from these Gramians. In Section 4,
we discuss how to balance a system based on the Gramians P2 and Q (type II balancing)
and show how the difficult to reach and observe states are removed from the resulting bal-
anced system. From this procedure, we obtain the ROM corresponding to type II SPA which
is then analysed in detail. It will be shown that type II SPA preserves mean square asymp-
totic stability which is an extension of the result in [23]. So far, this stability result has not yet
been obtained for the type I ansatz, see [29]. In Section 5, we provide both an H2- and an
H∞-error bound for type II SPA. The existence of an H∞-error bound of the same form is
not given for type I SPA which can be seen from examples in [6, 12]. The H2-bound will be
proved for a simplified ROM because the ROM has to have the same structure as the original
model. Moreover, the H2-bound relies on the preservation of mean square asymptotic sta-
bility in the ROM which is given here. The H∞-error bound in Section 5 is again an extension
of the work for deterministic systems, see [23]. There, transfer functions are used that are
not available in the more general stochastic case. Therefore, in the stochastic case, the proof
has to be conducted in the time domain. In contrast to the deterministic case, there seems
to be no link between the case of type II BT (investigated in [5, 12, 30]) and type II SPA in
terms of the H∞-error bound. This makes the analysis more complicated here. Additionally,
we encounter the problem of a change in the structure from the original to the ROM so that
different arguments compared to the standard ones have to be used. Both the H2- and the
H∞-type error bound of using type II SPA depend on the n − r smallest Hankel singular
values of the original system and therefore similar conclusions as in the deterministic case
can be made, e.g., type II SPA performs well if these truncated Hankel singular values are
small which is the case if only unimportant states are removed from the system.

2 Setting and mean square asymptotic stability

We begin with a stochastic stability concept first, where we consider a linear controlled sys-
tem driven by Lévy noise. The corresponding Lévy process M = (M1, . . . ,Mq)

T is Rq-
valued with mean zero and existing second moments. We investigate

dx(t) = [Ax(t) +Bu(t)]dt+N (x(t−)) dM(t), x(0) = x0, t ≥ 0, (1)

where x(t−) := lims↑t, x(s) A ∈ Rn×n, B ∈ Rn×m and N : Rn → Rn×q is a linear
mapping defined by N(x) =

[
N1x . . . Nqx

]
for x ∈ Rn with N1, . . . , Nq ∈ Rn×n.

Below, x(t, x0, u), t ≥ 0, denotes the solution to (1) with initial condition x0 ∈ Rn and
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M. Redmann 4

control process u. The control u is assumed to be an adapted càdlàg process with

‖u‖2
L2
T

:= E
∫ T

0

uT (t)u(t)dt = E
∫ T

0

‖u(t)‖2
2 dt <∞

for every T > 0. Furthermore, by Theorem 4.44 in [27], we know that the covariance function
of M is linear in time, i.e., E[M(t)MT (t)] = Qt. We call Q = (qij)i,j=1,...,q covariance
matrix of M .

Throughout this paper, we assume that (1) is mean square asymptotically stable, that is

E ‖x(t, x0, 0)‖2
2 → 0 (2)

for t → ∞ and every x0 ∈ Rn. Below, we will analyse this property which is vital for the
considerations in Section 3. The following Lemma is essential for the stability analysis of the
uncontrolled equation (1).

Lemma 2.1. The matrix-valued function E
[
x(t, x0, 0)xT (t, x0, 0)

]
, t ≥ 0, solves

Ẋ(t) = AX(t) +X(t)AT +

q∑
i,j=1

NiX(t)NT
j qij, X(0) = x0x

T
0 , (3)

where qij = E[Mi(1)Mj(1)] is the ijth entry of the covariance matrix of M .

Proof. We replace x(t, x0, 0) by x(t) to shorten the notation in the proof. Using Ito’s formula
in Corollary A.1, we obtain for x(t)xT (t), t ≥ 0:

x(t)xT (t) = x0x
T
0 +

∫ t

0

x(s−)dxT (s) +

∫ t

0

dx(s)xT (s−) +
(
[eTi x, e

T
j x]t

)
i,j=1,...,n

,

where ei is the ith unit vector of Rn. Inserting the stochastic differential of x(t) yields∫ t

0

x(s−)dxT (s) =

∫ t

0

x(s−)xT (s)ATds+

∫ t

0

x(s−)dMT (s)NT (x(s−)) and∫ t

0

dx(s)xT (s−) =

∫ t

0

Ax(s)xT (s−)ds+

∫ t

0

N (x(s−)) dM(s)xT (s−).

Since the Ito integrals have mean zero, we get

E
[
x(t)xT (t)

]
= x0x

T
0 +

∫ t

0

E
[
x(s)xT (s)

]
ATds+

∫ t

0

AE
[
x(s)xT (s)

]
ds

+
(
E[eTi x, e

T
j x]t

)
i,j=1,...,n

,

where we furthermore replaced x(s−) by x(s). This does not impact the integrals since a
càdlàg process has at most countably many jumps on a finite time interval (see Theorem
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Type II singular perturbation approximation for linear systems with Lévy noise 5

2.7.1 in [2]). Due to (64) it is clear that only the jumps and the continuous martingale part
of a semimartingale enter in the compensator process. Since the jumps and the martingale
part of x(t), t ≥ 0, are given by M(t) :=

∫ t
0
N (x(s−)) dM(s) (compare (1)), we obtain

that

[eTi M, eTj M]t = [eTi x, e
T
j x]t

for i, j = 1, . . . , n. Now let (hk)k=1,...,q be an orthonormal basis of eigenvectors of Q with
the corresponding eigenvalues (λk)k=1,...,q. Then, we can represent the Lévy process as

M(t) =

q∑
k=1

〈M(t), hk〉2hk, (4)

where the scalar Lévy processes M̃k(t) = 〈M(t), hk〉2, t ≥ 0, are uncorrelated since

EM̃i(t)M̃j(t) = hTi Qhjt =

{
λit if i = j

0 if i 6= j
.

Inserting representation (4) yields M(t) =
∑q

k=1

∫ t
0
N (x(s−))hkdM̃k(s). Since all noise

processes are uncorrelated, we can apply the result from [7] (Section 2.4) concerning the
mean of the compensator process. It is

E[eTi M, eTj M]t =

q∑
k=1

E
∫ t

0

eTi N (x(s−))hke
T
j N (x(s−))hkds λk,

such that we have

(
E[eTi x, e

T
j x]t

)
i,j=1,...,n

=

q∑
k=1

E
∫ t

0

N (x(s−))hk(N (x(s−))hk)
Tds λk

=

q∑
k=1

E
∫ t

0

N (x(s))Q
1
2hk(N (x(s))Q

1
2hk)

Tds

again using that x has at most countably many jumps. WithN (x(s))Q
1
2hk =

∑q
i=1Ni〈Q

1
2hk, ei〉2x(s) =∑q

i=1 Ni〈hk,Q
1
2 ei〉2x(s), we obtain

(
E[eTi x, e

T
j x]t

)
i,j=1,...,n

=

q∑
k=1

q∑
i,j=1

E
∫ t

0

Ni〈hk,Q
1
2 ei〉2x(s)xT (s)NT

j 〈hk,Q
1
2 ej〉2ds.

Changing the order of the summation and using the following elementary rearrangements∑q
k=1〈hk,Q

1
2 ei〉2〈hk,Q

1
2 ej〉2 = 〈Q 1

2 ei,Q
1
2 ej〉2 = eTi Qej = qij leads to the desired

result.

The above lemma is vital to state equivalent conditions for asymptotic mean square stability
for equations with Lévy noise. The arguments of proving the following theorem go back to
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M. Redmann 6

the ones from the case of Wiener noise, studied intensively in [11, 20]. Asymptotic mean
stability is required for the existence of Gramians which we use to characterise reachability
in equation (1) and observability in the corresponding output equation that will be introduced
in Section 3.

Theorem 2.2. The following are equivalent:

(i) The uncontrolled equation (1) is asymptotically mean square stable.

(ii) The uncontrolled equation (1) is exponentially mean square stable, that is, there exist
k, β > 0, such that

E ‖x(t, x0, 0)‖2
2 ≤ ‖x0‖2

2 k e−βt .

(iii) The eigenvalues of In⊗A+A⊗ In +
∑q

i,j=1Ni⊗Njqij have negative real parts.

(iv) There exists a matrix X > 0, such that

ATX +XA+

q∑
i,j=1

NT
i XNjqij < 0.

(v) For all Y > 0, there exists a matrix X > 0, such that

ATX +XA+

q∑
i,j=1

NT
i XNjqij = −Y.

Proof. With Lemma 2.1 we make use of the techniques applied in the Wiener case to prove
the more general case of having Lévy noise [11, 20].

Again, we use x(t) instead of x(t, x0, 0). From Lemma 2.1 it is known that E
[
x(t)xT (t)

]
is the solution of the matrix differential equation

Ẋ(t) = X(t) AT + A X(t) +

q∑
i,j=1

Ni X(t) NT
j qij. (5)

Vectorising equation (5) leads to the following equivalent ODE

d

dt
vec (X(t)) =

(
I ⊗ A+ A⊗ I +

q∑
i,j=1

Ni ⊗Njqij

)
vec (X(t)) . (6)

We first show (iii) ⇒ (ii). From (iii) the asymptotic stability of (6) follows. Asymptotic
stability of (6) implies exponential stability, such that

‖vec (X(t))‖2
2 ≤

∥∥vec
(
x0x

T
0

)∥∥2

2
K1 e−β1t =

∥∥x0x
T
0

∥∥2

F
K1 e−β1t ≤

∥∥x0x
T
0

∥∥2

2,ind
c̃K1 e−β1t
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Type II singular perturbation approximation for linear systems with Lévy noise 7

for K1, β1, c̃ > 0, where ‖·‖2,ind is the matrix norm that is induced by ‖·‖2. Since

‖X(t)‖2
2,ind ≤ ‖X(t)‖2

F = ‖vec (X(t))‖2
2

holds, equation (5) is exponentially stable and hence (ii) follows. It is obvious that (ii)
implies (i). We now focus on (i)⇒ (iii). From (i) we conclude that equation (5) is asymp-
totically stable. The asymptotic stability of (6) follows by

‖vec (X(t))‖2
2 = ‖X(t)‖2

F ≤ c̃ ‖X(t)‖2
2,ind

and asymptotic stability of (6) implies (iii). We continue with the proof of (iii) ⇒ (v).
Obviously, condition (iii) is equivalent to

σ

(
In ⊗ AT + AT ⊗ In +

q∑
i,j=1

NT
i ⊗NT

j qij

)
⊂ C−

which, by the considerations above, is again equivalent to the exponentially mean square
stability of the following equation

dxd(t) = ATxd(t)dt+

q∑
i=1

NT
i xd(t−)dMi(t), t ≥ 0. (7)

Let Φd be the fundamental solution to the dual system (7), i.e., Φd satisfies

Φd(t) = In +

∫ t

0

ATΦd(s)ds+

q∑
i=1

∫ t

0

NT
i Φd(s−)dMi(s).

For an arbitrary matrix Y > 0 the integral E
∫∞

0
Φd(t)Y ΦT

d (t)dt = X > 0 exists by the
exponentially mean square stability of (7). We set X(t) := Φd(t)Y ΦT

d (t) and as in Lemma
2.1, we obtain

X(t) = Y +

∫ t

0

X(s)ds A+ AT
∫ t

0

X(s)ds+

q∑
i,j=1

NT
i

∫ t

0

X(s)ds Njqij

for t ≥ 0. Letting t → ∞ and using the exponentially mean square stability of the dual
system, we find

−Y = X A+ AT X +

q∑
i,j=1

NT
i X Njqij

which is the desired result. Since (v) implies (iv), it remains to show that (iv) ⇒ (ii). Let
X > 0 such that

ATX +XA+

q∑
i,j=1

NT
i XNjqij = −Y < 0. (8)
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M. Redmann 8

So, due to Lemma 2.1, we have

E
[
xT (t)Xx(t)

]
= E

[
tr
(
Xx(t)xT (t)

)]
= tr

(
XE

[
x(t)xT (t)

])
= tr

(
X

(
x0x

T
0 +

∫ t

0

E
[
x(s)xT (s)

]
ds AT + A

∫ t

0

E
[
x(s)xT (s)

]
ds

+

q∑
i,j=1

Ni

∫ t

0

E
[
x(s)xT (s)

]
ds NT

j qij

))

= xT0Xx0 + E
[∫ t

0

xT (s)ATXx(s)ds+

∫ t

0

xT (s)XAx(s)ds

]
+ E

[∫ t

0

q∑
i,j=1

xT (s)NT
i XNjqijx(s)ds

]
.

Inserting equation (8) yields

E
[
xT (t)Xx(t)

]
= xT0Xx0 − E

[∫ t

0

xT (s)Y x(s)ds

]
.

and hence

ġ(t) = −E
[
xT (t)Y x(t)

]
,

where g(t) := E
[
xT (t)Xx(t)

]
. Now, let k1 be the smallest and k2 be the largest eigen-

value of X such that k1v
Tv ≤ vTXv ≤ k2v

Tv. Furthermore, we assume k3 to be the
smallest eigenvalue of Y , then we obtain

ġ(t) ≤ −k3E
[
xT (t)x(t)

]
≤ −k3

k2

E
[
xT (t)Xx(t)

]
= −k3

k2

g(t).

By Gronwall’s inequality, we have

E
[
xT (t)x(t)

]
≤ 1

k1

E
[
xT (t)Xx(t)

]
≤ 1

k1

xT0Xx0 e
− k3
k2
t ≤ k2

k1

xT0 x0 e
− k3
k2
t

which yields the required result and concludes the proof.

Having discussed mean square asymptotic stability we will introduce reachability and ob-
servability Gramians and corresponding energy interpretations in the next section.

3 Characterising reachability and observability using Grami-
ans

Starting from zero (x0 = 0) in (1) we investigate how much the noise and the control u can
steer the state away from zero. To do so we introduce two different reachability Gramians
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Type II singular perturbation approximation for linear systems with Lévy noise 9

below and we will see that they provide certain information about the degree of reachability
of a state. In the context of model order reduction, it is of particular interest to identify the
difficult to reach states (states, where a large control u has to be used to steer the system to
these states). Those states are seen to be unimportant in the system dynamics.
Moreover, we briefly discuss an observability Gramian which allows us to identify difficult to
observe states in a system. These states are unimportant for the system dynamics too.

Reachability Gramian type I ansatz In the following, we introduce an infinite Gramian
P1 corresponding to the type I ansatz, compare [5, 7]. It provides necessary conditions for
reachability as we will see later. We define P1 := E

∫∞
0

Φ(s)BBTΦT (s)ds, where Φ is
the fundamental solution of (1), i.e., it satisfies

Φ(t) = In +

∫ t

0

AΦ(s)ds+

q∑
i=1

∫ t

0

NiΦ(s−)dMi(s), t ≥ 0.

The infinite integral P1 is well-defined due to the asymptotic mean square stability of system
(1), that is condition (2).

The solution x(t), t ≥ 0, to (1) can be expressed using the fundamental matrix Φ:

x(t, x0, u) = Φ(t)x0 +

∫ t

0

Φ(t)Φ−1(s)Bu(s)ds. (9)

The above representation is a consequence of the classical product rule applied to the prod-
uct Φ(t)f(t), where f(t) := x0 +

∫ t
0

Φ−1(s)Bu(s)ds. Since f is continuous with a zero
martingale part, the compensator processes are zero (see (64)). The Gramian P1 has al-
ready been used in [5] (M is a Wiener process) and [7] (M is a vector of uncorrelated Lévy
processes) in a different context. In both references the reachability of the mean state to the
stochastic process

x̂(t, 0, û) =

∫ t

0

Φ(t)Φ−1(s)Bû(s)ds

was analysed using P1, where û is a square integrable stochastic process which is not
necessarily adapted. The processes x̂(t, 0, û) and x(t, 0, û) coincide if û is an adapted
control. If x ≡ x̂ it does not make too much sense to investigate the reachability of the mean
state because the diffusion term in (1) chancels out when applying the mean. Here we use
this Gramian P1 to analyse reachability in (1) including the entire information in this equation.
Furthermore, equation (1) is even more general than the ones considered in [5, 7]. For that
reason, P1 is the unique solution to a more general matrix equation

AP1 + P1A
T +

q∑
i,j=1

NiP1N
T
j qij = −BBT . (10)
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M. Redmann 10

In [5, 7], the mixed terms are qij = 0 (i 6= j). To see the relation in (10), we make use of the
partition B =

[
b1 . . . bm

]
which yields Φ(t)B =

[
x(t, b1, 0) . . . x(t, bm, 0)

]
and hence the following identity E

[
Φ(t)BBTΦT (t)

]
=
∑m

k=1 E
[
x(t, bk, 0)xT (t, bk, 0)

]
.

Applying Lemma 2.1 to every summand leads to

E
[
Φ(t)BBTΦT (t)

]
= BBT + A

∫ t

0

E
[
Φ(s)BBTΦT (s)

]
ds (11)

+

∫ t

0

E
[
Φ(s)BBTΦT (s)

]
dsAT

+

q∑
i,j=1

Ni

∫ t

0

E
[
Φ(s)BBTΦT (s)

]
NT
j qij.

Taking the limit t → ∞ in (11) and due to the asymptotic mean square stability the left
side tends to zero. This provides equation (10). Below, we will make use of a solution rep-
resentation to (1). We now analyse the process 〈x(t, 0, u), x̃〉2, where x̃ ∈ Rn. We set
Φ(t, s) = Φ(t)Φ−1(s), t ≥ s ≥ 0. Inserting (9) yields a first bound

E |〈x(t, 0, u), x̃〉2| = E
∣∣∣∣∫ t

0

〈x̃,Φ(t, s)Bu(s)〉2ds
∣∣∣∣ = E

∣∣∣∣∫ t

0

〈BTΦT (t, s)x̃, u(s)〉2ds
∣∣∣∣

≤ E
∫ t

0

∥∥BTΦT (t, s)x̃
∥∥

2
‖u(s)‖2 ds.

By Cauchy’s inequality it follows that

E |〈x(t, 0, u), x̃〉2| ≤
(
E
∫ t

0

∥∥BTΦT (t, s)x̃
∥∥2

2
ds

) 1
2
(
E
∫ t

0

‖u(s)‖2
2 ds

) 1
2

.

Following the arguments in Section 4 of [7], we know that E
[
Φ(t, τ)BBTΦT (t, τ)

]
=

E
[
Φ(t− τ)BBTΦT (t− τ)

]
, since both functions satisfy the integral equation (11) with

initial time τ ≤ t ≤ T which is uniquely solvable. Hence, we obtain

E
∫ t

0

∥∥BTΦT (t, τ)x̃
∥∥2

2
ds = x̃TE

∫ t

0

Φ(t, τ)BBTΦT (t, τ)ds x̃

= x̃TE
∫ t

0

Φ(t− τ)BBTΦT (t− τ)ds x̃ = x̃TE
∫ t

0

Φ(s)BBTΦT (s)ds x̃ ≤ x̃TP1x̃

and consequently

sup
t∈[0,T ]

E |〈x(t, 0, u), x̃〉2| ≤
(
x̃TP1x̃

) 1
2 ‖u‖L2

T
. (12)

If x̃ ∈ kerP1, then the left side of (12) is zero which implies that 〈x(t, 0, u), x̃〉2 = 0,
t ∈ [0, T ], P-a.s. regardless of the control that is chosen. That means that the trajectories
of x are orthogonal to kerP1 and thus

P {x(t, 0, u) ∈ imP1, t ∈ [0, T ]} = 1
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Type II singular perturbation approximation for linear systems with Lévy noise 11

for every u ∈ L2
T , so that no state outside imP1 is reachable (from zero).

Let (p1,k)k=1,...,n be an orthonormal basis of Rn consisting of eigenvectors of P1. Then the
following representation

x(t, 0, u) =
n∑
k=1

〈x(t, 0, u), p1,k〉2 p1,k

holds. With (12) we can answer the question how difficult it is to reach a state in the direction
of p1,k by analysing the corresponding Fourier coefficient:

sup
t∈[0,T ]

E |〈x(t, 0, u), p1,k〉2| ≤ λ
1
2
1,k ‖u‖L2

T
, (13)

where λ1,k is the corresponding eigenvalue. Consequently, the Fourier coefficient in (13) is
small (in the L1-sense) if λ1,k is small assuming that the chosen control u is not too large.
This implies that difficult to reach states have a “large” component in the eigenspaces of P1

belonging to the small eigenvalues.

Reachability Gramian type II ansatz We now going to study an alternative Gramian P2

which was initially introduced in [12] in order to guarantee the existence of an H∞-error
bound for balanced truncation model order reduction based on this Gramian. The type II
Gramian was furthermore analysed in [6]. In both references, linear systems with Wiener
noise were investigated. Using P2, a first result on characterising the energy, when control-
ling the average state of a stochastic linear system, was given in [30], where the driver was a
Lévy process with uncorrelated components. Since considering the average state neglects
the diffusion term of the stochastic differential equation completely, we give another energy
interpretation for P2 now.

First of all, we introduce P2 in a more general setting compared to [6, 12, 30]. We define it
to be a positive definite solution to

ATP−1
2 + P−1

2 A+

q∑
i,j=1

NT
i P

−1
2 Njqij ≤ −P−1

2 BBTP−1
2 . (14)

An inequality is considered in (14) since the existence of a positive definite solution is not
ensured when having an equality. The existence of such kind of solution in the case of an
inequality goes back to [12]. We state this result again due to the more general situation.

Proposition 3.1. There exists a positive definite solution P2 > 0 to inequality (14).

Proof. Since system (1) is assumed to be mean square asymptotically stable, by Theorem
2.2 part (v), we have

AT (εP ) + (εP )A+

q∑
i,j=1

NT
i (εP )Njqij = −εY (15)
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M. Redmann 12

for an arbitrary matrix Y > 0 and ε > 0, where the matrix P > 0 is positive definite. This
we obtain by multiplying the equation in Theorem 2.2 (v) with ε. For a sufficiently small ε we
can guarantee that −εY ≤ −(εP )BBT (εP ) such that P2 = (εP )−1 solves (14).

Remark. We can fix the right side of (15) to Y = I in order to practically compute a solution
to (14). From the proof of Proposition 3.1 we know that I = Y ≥ εPBBTP , where P is
the solution to (15) with Y = I . Hence, we set ε =

(
λmax(PBB

TP )
)−1

to ensure this
property and then obtain a solution given by P2 = λmax(PBB

TP )P−1. Of course, the
maximal eigenvalue of PBBTP can be fairly large and this solution candidate can be far
from optimal. So, as mentioned in [6], an optimisation procedure for the solution to (14) is
required. So far it is not clear how to do this.

Let us now turn our attention to an energy interpretation of type (13) for the alternative
Gramian P2. Let (p2,k)k=1,...,n be eigenvectors of P2 such that they represent an orthonor-
mal basis of Rn. The corresponding eigenvalues are denoted by (λ2,k)k=1,...,n. Then,

E〈x(t, 0, u), p2,k〉22 ≤ λ2,k E
n∑
i=1

λ−1
2,i 〈x(t, 0, u), p2,i〉22

= λ2,k E

∥∥∥∥∥
n∑
i=1

λ
− 1

2
2,i 〈x(t, 0, u), p2,i〉2 p2,i

∥∥∥∥∥
2

2

= λ2,k E
∥∥∥P− 1

2
2 x(t, 0, u)

∥∥∥2

2

= λ2,k E
[
x(t, 0, u)TP−1

2 x(t, 0, u)
]
.

We can argue like in the proof of Lemma 2.1 to find an equation for E
[
x(t, 0, u)x(t, 0, u)T

]
since x(t, 0, u) and x(t, x0, 0) have the same compensator process. This is because the
additional control term only effects the drift and hence there is no change in the martingale
part or in the jumps, compare (64). To shorten the notation we write x(t) instead of x(t, 0, u)
from time to time below. So, by the Ito product formula, we have

E
[
x(t)xT (t)

]
=

∫ t

0

E
[
x(s)xT (s)

]
ATds+

∫ t

0

E
[
x(s)uT (s)

]
BTds

+

∫ t

0

AE
[
x(s)xT (s)

]
ds+

∫ t

0

BE
[
u(s)xT (s)

]
ds

+

∫ t

0

q∑
i,j=1

NiE
[
x(s)xT (s)

]
NT
j qijds,

where the control terms that do not occur in Lemma 2.1 come from additional terms in
E
∫ t

0
x(s−)dxT (s) and E

∫ t
0
dx(s)xT (s−). Using the trace operator and inserting the
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Type II singular perturbation approximation for linear systems with Lévy noise 13

above equation, we find

E〈x(t, 0, u), p2,k〉22 ≤ λ2,k tr
(
P−1

2 E
[
x(t, 0, u)x(t, 0, u)T

])
= λ2,k tr

(
P−1

2

[∫ t

0

E
[
x(s)xT (s)

]
ATds+

∫ t

0

E
[
x(s)uT (s)

]
BTds

+

∫ t

0

AE
[
x(s)xT (s)

]
ds+

∫ t

0

BE
[
u(s)xT (s)

]
ds

+

∫ t

0

q∑
i,j=1

NiE
[
x(s)xT (s)

]
NT
j qijds

])
.

Using again properties of the trace operator, we obtain

E〈x(t, 0, u), p2,k〉22 ≤ λ2,k

[
E
∫ t

0

xT (s)(ATP−1
2 + P−1

2 A+

q∑
i,j=1

NT
i P

−1
2 Njqij)x(s) ds

+2E
∫ t

0

xT (s)P−1
2 Bu(s)ds

]
.

We insert inequality (14) which gives

E〈x(t, 0, u), p2,k〉22 ≤ λ2,kE
∫ t

0

2xT (s)P−1
2 Bu(s)− xT (s)P−1

2 BBTP−1
2 x(s)ds

= λ2,kE
∫ t

0

‖u(s)‖2
2 −

∥∥BTP−1
2 x(s)− u(s)

∥∥2

2
ds.

Consequently, we have

sup
t∈[0,T ]

√
E〈x(t, 0, u), p2,k〉22 ≤ λ

1
2
2,k ‖u‖L2

T
. (16)

So, by (16), x(t, 0, u) is small in the direction of p2,k (in the L2-sense) if λ2,k is small when-
ever the control u is not too large. This implies that difficult to reach states have a “large”
component in the eigenspaces of P2 belonging to the small eigenvalues. Hence, we have a
similar interpretation as in the type I ansatz (compare with (13)) but in a different norm.

Observability Gramian We conclude this section by introducing an output equation

y(t, x0, u) = Cx(t, x0, u), t ≥ 0. (17)

corresponding to (1). We recall arguments from [5, 7] below. We aim to characterise the im-
portance of certain initial states in the system dynamics in the uncontrolled situation where
u ≡ 0. In an observation problem an unknown initial state x0 is supposed to be recon-
structed from the observation y(t, x0, 0) on the entire time line [0,∞).
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In order to describe the energy caused by the observations of x0, we introduce the observ-
ability Gramian Q as the unique solution to the following matrix equation

ATQ+QA+

q∑
i,j=1

NT
i QNjqij = −CTC. (18)

The definition of Q makes sense due to condition (2). With the following relation

E
[
x(t, x0, 0)TQx(t, x0, 0)

]
= tr(QE

[
x(t, x0, 0)x(t, x0, 0)T

]
) (19)

we can insert the result of Lemma 2.1. Since we can change the order in a matrix product
within the trace, we then have

E
[
x(t, x0, 0)TQx(t, x0, 0)

]
= xT0Qx0 + E

∫ t

0

x(s, x0, 0)T

(
ATQ+QA+

q∑
i,j=1

NT
i QNjqij

)
x(s, x0, 0)ds.

We plug in equation (18) and obtain

E
[
x(t, x0, 0)TQx(t, x0, 0)

]
= xT0Qx0 − E

∫ t

0

x(s, x0, 0)TCTCx(s, x0, 0)ds. (20)

Because system (1) is mean square asymptotically stable, the left side of (20) tends to zero
if t→∞. Hence, the observation energy is given by

E
∫ ∞

0

‖y(s, x0, 0)‖2
2 ds = xT0Qx0. (21)

The difficult to observe, and hence unimportant, initial states are those producing only little
observation energy. From (21) we see that the difficult to observe states are contained in the
eigenspaces spanned by the eigenvectors of Q corresponding to the small eigenvalues.

Moreover, it is easy to find a representation for Q. Inserting the solution representation
Cx(t, x0, 0) = CΦ(t)x0 to (21), we then also have

xT0 E
∫ ∞

0

ΦT (t)CTCΦ(t)dt x0 = xT0Qx0.

Since this is true for every x0 ∈ Rn, this yields

Q = E
∫ ∞

0

ΦT (t)CTCΦ(t)dt. (22)

The infinite integral in (22) indeed exists due to the mean square asymptotic stability of the
system.
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Type II singular perturbation approximation for linear systems with Lévy noise 15

4 Type II singular perturbation approximation and stability
preservation

4.1 Balancing related MOR

Before considering singular perturbation approximation (SPA) based on the Gramians P2

and Q (type II ansatz), we summarise the general theory of balancing and discuss how to
find a balancing transformation.

States that are difficult to reach can be characterised by P1, cf. (13). These states have
large components in the span of the eigenvectors corresponding to small eigenvalues of
the reachability Gramian P1. Similarly, states that are difficult to observe are the ones that
have large components in the span of eigenvectors corresponding to small eigenvalues of
the observability Gramian Q, see (21). Now, balancing a system relies on the idea to create
a system, where dominant reachable and observable states are the same, i.e., reachability
and observability Gramians are simultaneously transformed such that they are equal and
diagonal. Balancing related MOR based on the Gramians P1 and Q (type I ansatz) was
already studied intensively. Type I balanced truncation (BT) for systems with Wiener noise
are investigated in [5] and systems with Lévy noise are studied in [7]. An alternative balancing
method is type I SPA which can be found in [29].

In this paper, we consider the so called type II ansatz. This approach is based on the Grami-
ans P2 and Q. P2 characterises difficult to reach states in a similar fashion as P1, see (16).
So, balancing with using P2 instead of P1 definitely makes sense too. For BT this is done in
[6, 12, 30]. However, the type II ansatz has not yet been applied to SPA. For that reason, we
will mainly discuss this approach in the following.

We consider a control system consisting of state equation (1) and output equation (17)

dx(t) = [Ax(t) +Bu(t)]dt+

q∑
i=1

Nix(t−)dMi(t), (23)

y(t) = Cx(t), t ≥ 0,

Recall that the state equation in (23) is mean square asymptotically stable, i.e., property (2) is
satisfied. Introduce a transformation matrix T ∈ Rn×n which is assumed to be non-singular,
the states are transformed as follows:

x̂(t) = Tx(t),

such that system (23) becomes

dx̂(t) = [Âx̂(t) + B̂u(t)]dt+

q∑
i=1

N̂ix(t−)dMi(t), (24)

y(t) = Ĉx̂(t), t ≥ 0,
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where Â = TAT−1, B̂ = TB, Ĉ = CT−1 and N̂i = TNiT
−1. The input-output map

remains the same, only the state and the systems matrices are transformed.

P2 and Q, the reachability and observability Gramians of system (23), which satisfy (14)
and (18) can be transformed into reachability and observability Gramians of the transformed
system (24):

P̂2 = TP2T
T and Q̂ = T−TQT−1.

The above relation is obtained by multiplying (14) and (18) with T−T from the left and T−1

from the right. The Hankel singular values (HSVs) σ1 ≥ . . . ≥ σn, where σi =
√
λi(P2Q)

(i = 1, . . . , n), of the original and transformed system are the same. The above transfor-
mation is a balancing transformation if the transformed Gramians are equal and diagonal.
Such a transformation always exists if Q > 0 (observation energy is always non zero for
every x0 6= 0). We also need that P2 > 0 but this is automatically given by Proposition 3.1.
A balanced system is obtained by choosing

T = Σ−
1
2UTLT and T−1 = KV Σ−

1
2 ,

where Σ = diag(σ1, . . . , σn) > 0 is the diagonal matrix of HSVs. Y , Z , L and K are
computed as follows. Let P2 = KKT , Q = LLT be square root factorisations of P2 and
Q, then an SVD of KTL = V ΣUT gives the required matrices. With this transformation
P̂2 = Q̂ = Σ. This implies that Σ characterises both the reachability and observability in
system (24). The smaller the diagonal entry of Σ, the less important the corresponding state
component in the system dynamics of (24).

Below, let T be the balancing transformation as stated above, then we partition the coeffi-
cients of the balanced realisation as follows:

TAT−1 =
[
A11 A12
A21 A22

]
, TB =

[
B1
B2

]
, CT−1 = [ C1 C2 ] , TNiT

−1 =
[
Ni,11 Ni,12
Ni,21 Ni,22

]
,

whereA11 ∈ Rr×r etc. Furthermore, by setting x̂ = [ x1x2 ], where x1(t) ∈ Rr, we obtain the
transformed partitioned system[

dx1(t)
dx2(t)

]
=

[[
A11 A12

A21 A22

][
x1(t)
x2(t)

]
+

[
B1

B2

]
u(t)

]
dt+

q∑
i=1

[
Ni,11 Ni,12

Ni,21 Ni,22

][
x1(t−)
x2(t−)

]
dMi(t),

(25)

y(t) =
[
C1 C2

] [ x1(t)
x2(t)

]
, t ≥ 0. (26)

From this system we aim to obtain a approximating system with reduced dimension r � n.
The ROM is of the form

dxr(t) = [Arxr(t) +Bru(t)dt] +

q∑
i=1

[Ni,rxr(t−) + Ei,ru(t−)]dMi(t), (27)

yr(t) = Crxr(t) +Dru(t), t ≥ 0,
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Type II singular perturbation approximation for linear systems with Lévy noise 17

where Ar, Ni,r ∈ Rr×r, Br, Ei,r ∈ Rr×m, Dr ∈ Rp×m and Cr ∈ Rp×r. In equations (25)
and (26), the difficult to reach and observe states are represented by x2, which correspond
to the smallest HSVs σr+1, . . . , σn, but of course r has to be chosen such that the neglected
HSVs are small (σr+1 � σr).

For BT the second row in (25) is truncated and the remaining x2 components in the first row
of (25) and in (26) are set to zero. This leads to a ROM having the same structure as (23).
For BT the corresponding matrices are

(Ar, Br, Cr, Dr, Ei,r, Ni,r) = (A11, B1, C1, 0, 0, Ni,11).

We refer to [5, 6, 7, 12, 30] for more details on BT for stochastic systems.

An alternative method is SPA which has been studied already in [29] using the reachability
Gramian P1. From [29] it is known that the reduced coefficients are given by

(Ar, Br, Cr, Dr, Ei,r, Ni,r) = (Ā, B̄, C̄, D̄, Ēi, N̄i), (28)

where we set

Ā := A11 − A12A
−1
22 A21, B̄ := B1 − A12A

−1
22 B2, C̄ := C1 − C2A

−1
22 A21,

D̄ := −C2A
−1
22 B2, Ēi := −Ni,12A

−1
22 B2, N̄i := Ni,11 −Ni,12A

−1
22 A21.

Hence, we see that this ROM has a different structure than (23) since Dr and Ei,r are
non-zero. The matrices (28) of the ROM using SPA are obtained by setting dx2(t) = 0 in
(25). One then solves for x2 in the resulting algebraic constraint and inserts the result in
(25) and (26). This straight forward ansatz is based on observations from the deterministic
case (Ni = 0). There, x2 represents the fast variables, i.e., ẋ2(t) ≈ 0 after a short time.
Consequently, assuming ẋ2(t) = 0 can lead to a good approximation, see [23].

This ansatz of setting the increments dx2 equal to zero for the stochastic system is rather
unsatisfactory, since this might be false, no matter how small the HSVs corresponding to x2

are. Despite the fact that for the motivation, a maybe less convincing argument is used, this
leads to a viable model reduction method with reasonable properties as we will see later.

An averaging principle would be a mathematically well-founded alternative to this naive ap-
proach. Averaging principles for stochastic systems have for example been investigated in
[31, 32]. A further strategy to derive a reduced model in this context can be found in [8].

We conclude this subsection by introducing a simplified ROM based on SPA. It relies on the
idea that the structure of the original model (23) should be preserved. It has already been
discussed in [29] and is obtained by setting B2 = 0 in (28):

(Ar, Br, Cr, Dr, Ei,r, Ni,r) = (Ā, B1, C̄, 0, 0, N̄i). (29)

In the rest of this paper, properties of ROMs with matrices (28) or (29) are analysed. This
means that we investigate type II SPA, a balancing related model order reduction technique
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based on the Gramians P2 and Q. Advantages of using P2 instead of P1 can be seen in
Subsections 4.2 and 5.2. So, the choice of P2 guarantees the existence of an H∞-type
error bound (Subsection 5.2) which is not true for the type I ansatz. Mean square asymptotic
stability is also preserved for type II SPA (Subsection 4.2) which is still an open problem
when the system is balanced based on P1 and Q, see [29].

4.2 Preservation of mean square asymptotic stability for type II singu-
lar perturbation approximation

In this subsection, we discuss mean square asymptotic stability in the ROMs (27) with co-
efficients (28) or (29). In the stability analysis it does not matter whether the reduced order
matrices (28) or the simplified version (29) is considered. This is because the uncontrolled
case is considered and only the matrices Ā and N̄i (i = 1, . . . , q) characterise the stabil-
ity, compare Theorem 2.2. We will see that some ideas of proving asymptotic mean square
stability can be adopted from the deterministic case, compare [23]. This is not true for type I
SPA (reachability Gramian P1 is used) which is explained in [29].

For simplicity we assume that the original model (23) is already balanced, i.e., the following
relations hold true:

ATΣ−1 + Σ−1A+

q∑
i,j=1

NT
i Σ−1Njqij ≤ −Σ−1BBTΣ−1, (30)

ATΣ + ΣA+

q∑
i,j=1

NT
i ΣNjqij = −CTC, (31)

where the Gramians coincide with the diagonal matrix Σ > 0 of HSVs. We multiply A−T

from the left and A−1 from the right in equations (30) and (31). Hence, we get

ÃTΣ−1 + Σ−1Ã+

q∑
i,j=1

ÑT
i Σ−1Ñjqij ≤ −A−TΣ−1BBTΣ−1A−1 ≤ 0, (32)

ÃTΣ + ΣÃ+

q∑
i,j=1

ÑT
i ΣÑjqij = −C̃T C̃ ≤ 0, (33)

where Ã = A−1, Ñi = NiA
−1 and C̃ = CA−1. From Theorem 2.2 part (iv) it can be easily

seen that the stability of the system with the transformed coefficients Ã and Ñi is equivalent
to the stability of the system with matrices A and Ni. In the following theorem it is proven
that mean square asymptotic stability is preserved when considering the ROM with the left
upper blocks Ã11 and Ñi,11 of the transformed matrices Ã and Ñi. This is the case of type
II BT, where the stability preservation is investigated in [6]. The problem that is considered
here can be reduced to the situation in [6] as we will see below.
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Theorem 4.1. Let Ã11, Ñi,11 ∈ Rr×r be the left upper blocks of Ã and Ñi, respectively. If
σr 6= σr+1, then equation

dxr(t) = Ã11xr(t)dt+

q∑
i=1

Ñi,11xr(t−)dMi(t), t ≥ 0,

is mean square asymptotically stable.

Proof. We transform a term that appears in (30) and (31) such that our problem is reduced
to the case of Wiener noise. Let ei be the ith unit vector of Rq. We then have

q∑
i,j=1

ÑT
i Σ−1Ñjqij =

q∑
i,j=1

ÑT
i Σ−1Ñje

T
i Q

1
2Q

1
2 ej

=

q∑
i,j=1

ÑT
i Σ−1Ñj

q∑
k=1

〈Q
1
2 ei, ek〉2〈Q

1
2 ej, ek〉2

=

q∑
k=1

(

q∑
i=1

Ñi〈Q
1
2 ei, ek〉2)TΣ−1(

q∑
j=1

Ñj〈Q
1
2 ej, ek〉2).

We define Ψk :=
∑q

i=1 Ñi〈Q
1
2 ei, ek〉2 and insert the above rearrangement. With (30) and

(31) we apply the stability result in [6] and thus

Ir ⊗ Ã11 + Ã11 ⊗ Ir +

q∑
k=1

Ψk,11 ⊗Ψk,11

has only eigenvalues with negative real parts, where Ψk,11 is the r × r left upper block of
Ψk. With Theorem 2.2 this is equivalent to

ÃT11X +XÃ11 +

q∑
k=1

ΨT
k,11XΨk,11 < 0

for a positive definite matrix X > 0. Since

q∑
k=1

ΨT
k,11XΨk,11 =

q∑
k=1

(

q∑
i=1

Ñi,11〈Q
1
2 ei, ek〉2)TX(

q∑
j=1

Ñj,11〈Q
1
2 ej, ek〉2)

=

q∑
i,j=1

ÑT
i,11XÑj,11qij,

the claim of this theorem follows by Theorem 2.2 (iv).

The next Corollary states that type II SPA preserves mean square asymptotic stability.

DOI 10.20347/WIAS.PREPRINT.2398 Berlin 2017



M. Redmann 20

Corollary 4.2. If σr 6= σr+1, then for the following ROM of order r

dxr(t) = Āxr(t)dt+

q∑
i=1

N̄ixr(t−)dMi(t), t ≥ 0,

is mean square asymptotically stable, where Ā and N̄i are defined below (28).

Proof. Since one can show that

Ã =

[
Ā−1 −A−1

11 A12(A22 − A21A
−1
11 A12)−1

−A−1
22 A21Ā

−1 (A22 − A21A
−1
11 A12)−1

]
, (34)

we have Ã11 = Ā−1 and Ñi,11 = N̄iĀ
−1. Using the result in Theorem 4.1 and using the

equivalent condition in Theorem 2.2 (iv) yields

Ā−TX +XĀ−1 +

q∑
i,j=1

Ā−T N̄T
i XN̄jĀ

−1qij < 0

for a matrix X > 0. Multiplying ĀT from the left and Ā from the right provides

ĀTX +XĀ+

q∑
i,j=1

N̄T
i XN̄jqij < 0

and hence the result of this Corollary follows.

5 Error bounds for type II SPA

In this section, we establish two error bounds namely an H2-type and an H∞-type error
bound. The H2-error bound is proven in Subsection 5.1 for the simplified type II SPA with
matrices defined in (29). For the existence of this bound the stability result in Subsection 4.2
is vital. Moreover, the reason to analyse the H2-error bound for the simplified scheme is that
we need to have the same structure in the ROM as in the original one. Then the solution
representation in (9) can be applied.
An explicit solution representation is not needed when proving the H∞-error bound in Sub-
section 5.2. There, the error between the full model and the type II ROM with coefficients (28)
is investigated. The bound is shown by removing the HSVs step by step. Since the structure
of the ROM with the matrices (28) differs from the structure of the original system, two cases
have to be studied. So, we prove the case of removing the smallest HSV first and then we
investigate the error of two ROMs of different dimensions.
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5.1 H2-error bound

In this subsection, we provide an error bound between the original system (23) (x0 = 0) and
the output of the simplified ROM from using type II SPA, that is

dxr(t) = [Āxr(t) +B1u(t)]dt+

q∑
i=1

N̄ixr(t−)dMi(t), xr(0) = 0, (35)

yr(t) = C̄xr(t), t ≥ 0,

where the above matrices are defined below (28). Let us now exploit the explicit solution
representations for the full state variable x, see (9). Since ROM (35) has the same structure
as the original model, we have the same representation for the ROM, too. We consequently
obtain for the corresponding outputs that

y(t) = Cx(t) = C

∫ t

0

Φ(t, s)Bu(s)ds,

yr(t) = C̄xr(t) = C̄

∫ t

0

Φr(t, s)B1u(s)ds,

where Φ(t, s) = Φ(t)Φ−1(s) and Φr(t, s) = Φr(t)Φ
−1
r (s), t ≥ s ≥ 0. Here, Φ and Φr

are the fundamental solutions to the full system and the ROM, respectively. Simple calcula-
tions give

E ‖y(t)− yr(t)‖2 = E
∥∥∥∥C ∫ t

0

Φ(t, s)Bu(s)ds− C̄
∫ t

0

Φr(t, s)B1u(s)ds

∥∥∥∥
2

≤ E
∫ t

0

∥∥(CΦ(t, s)B − C̄Φr(t, s)B1

)
u(s)

∥∥
2
ds

≤ E
∫ t

0

∥∥CΦ(t, s)B − C̄Φr(t, s)B1

∥∥
F
‖u(s)‖2 ds,

where ‖·‖F denotes the Frobenius norm. Using Cauchy’s inequality, it holds that

E ‖y(t)− yr(t)‖2 ≤
(
E
∫ t

0

∥∥CΦ(t, s)B − C̄Φr(t, s)B1

∥∥2

F
ds

) 1
2
(
E
∫ t

0

‖u(s)‖2
2 ds

) 1
2

.

Applying the arguments that are used in Section 4 of [7], we know that

E
[
Φ(t, s)BBTΦT (t, s)

]
= E

[
Φ(t− s)BBTΦT (t− s)

]
,

E
[
Φr(t, s)B1B

T
1 Φr

T (t, s)
]

= E
[
Φr(t− s)B1B

T
1 Φr

T (t− s)
]
,

E
[
Φ(t, s)BBT

1 Φr
T (t, s)

]
= E

[
Φ(t− s)BBT

1 Φr
T (t− s)

]
.
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The above identities yield

E
∫ t

0

∥∥CΦ(t, s)B − C̄Φr(t, s)B1

∥∥2

F
ds = E

∫ t

0

∥∥CΦ(t− s)B − C̄Φr(t− s)B1

∥∥2

F
ds

= E
∫ t

0

∥∥CΦ(s)B − C̄Φr(s)B1

∥∥2

F
ds ≤ E

∫ ∞
0

∥∥CΦ(s)B − C̄Φr(s)B1

∥∥2

F
ds

= tr
(
CP1C

T
)

+ tr
(
C̄Pr,1C̄

T
)
− 2 tr

(
CPgC̄

T
)
,

where

P1 = E
∫ ∞

0

Φ(t)BBTΦT (t)dt

is the type I reachability Gramians of the full model solving equation (10). We further set

Pg = E
∫ ∞

0

Φ(t)BBT
1 ΦT

r (t)dt, Pr,1 = E
∫ ∞

0

Φ̄(t)B1B
T
1 Φ̄T (t)dt.

Pg and the type I reachability Gramians Pr,1 of the ROM exist since mean square asymptotic
stability is preserved under the assumptions of Corollary 4.2 (σr 6= σr+1 and Σ > 0).
Practically, Pr,1 is computed by solving

ĀPr,1 + Pr,1Ā
T +

q∑
i,j=1

N̄iPr,1N̄
T
j qij = −B1B

T
1 (36)

and the matrix Pg is derived from solving the following equation:

APg + PgĀ
T +

q∑
i,j=1

NiPgN̄
T
j qij = −BBT

1 . (37)

The identity in (37) can be shown as the relations for P1 and Pr,1 (see first paragraph of
Section 3). For more details we refer to [7], where this identity is proven for a similar case. In
summary, we have

sup
t∈[0,T ]

E ‖y(t)− yr(t)‖2 ≤
(
tr
(
CP1C

T
)

+ tr
(
C̄Pr,1C̄

T
)
− 2 tr

(
CPgC̄

T
)) 1

2 ‖u‖L2
T
.

(38)

It is an obvious observation that the type II reachability GramiansP2 andPr,2 do not enter the
first bound (38) directly, even though we balance based on P2. However, P2 enters indirectly
in the consideration since balancing based on P2 ensures that asymptotic mean square
stability is preserved, see Subsection 4.2. As argued above this is vital for the existence
of Pg and Pr,1 and hence the existence of the bound in (38). For type I SPA the stability
preservation has not been shown yet in general, see [29]. Another representation for (38)
will be proven below. The n− r smallest HSVs of the system will enter there. Consequently,
the dependence of the error bound on P2 can then be seen better.
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From now on we assume that system (23) is balanced. Hence, for the type II Gramians it
holds that P2 = Q = Σ = diag(Σ1,Σ2), where Σ1 = diag(σ1, . . . , σr) contains the
large and Σ2 = diag(σr+1, . . . , σn) the neglected small HSVs. We partition the balanced
realisation as follows

A =
[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
, Ni =

[
Ni,11 Ni,12
Ni,21 Ni,22

]
, C = [ C1 C2 ] , (39)

where all matrices are of suitable size, i.e., A11 ∈ Rr×r etc. The next theorem contains the
main result of this subsection. We specify the bound in (38), where the resulting represen-
tation can be used to emphasise the cases in which type II SPA performs well. In particular,
we obtain a bound that depends on the matrix Σ2 of neglected HSVs.

Theorem 5.1. Let system (23) be balanced. Under the assumption of Corollary 4.2 the error
bound in (38) exists and can be represented as follows:

tr
(
CP1C

T
)

+ tr
(
C̄Pr,1C̄

T
)
− 2 tr

(
CPgC̄

T
)

= tr
(
Σ2(B2B

T
2 − 2(A22P

2
g + A21P

1
g )(A−1

22 A21)T )
)

+ tr

(
Σ2 2

q∑
i,j=1

(Ni,22P
2
g +Ni,21P

1
g )(Nj,21 −Nj,22A

−1
22 A21)T qij

)

− tr

(
Σ2

q∑
i,j=1

(Ni,21 −Ni,22A
−1
22 A21)Pr,1(Nj,21 −Nj,22A

−1
22 A21)T qij

)
,

where P 1
g is the matrix of the first r and P 2

g the matrix of the last n−r rows of Pg. Moreover,
qij represents the ijth entry of the covariance matrix Q of the Lévy process M .

Proof. Below, we make use of Einstein’s summation convention which we indicate by writing

qij instead of qij . We define E :=
(
tr
(
CP1C

T
)

+ tr
(
C̄Pr,1C̄

T
)
− 2 tr

(
CPgC̄

T
)) 1

2 .
We easily see that

tr
(
CP1C

T
)

= tr
(
P1C

TC
)

= − tr
(
P1(ATΣ + ΣA+NT

i ΣNjq
ij)
)

= − tr
(
Σ(AP1 + P1A

T +NiP1N
T
j q

ij)
)

= tr
(
BTΣB

)
(40)

using the properties of the trace operator and inserting equations (31) and (10). From the
partitioned error expression, we obtain

E2 = tr

([
BT

1 BT
2

] [Σ1

Σ2

] [
B1

B2

])
+ tr

(
C̄Pr,1C̄

T
)
− 2 tr

([
C1 C2

] [P 1
g

P 2
g

]
C̄T

)
= tr(BT

2 Σ2B2 +BT
1 Σ1B1 + C̄Pr,1C̄

T − 2C1P
1
g C̄

T − 2C2P
2
g C̄

T ).

We now use the partitions in (39) and the representation (34) for the inverse of A. In order
to find equations for the matrices C̄TC1 and C̄TC2, we multiply (31) with A−T from the left.
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The left and right upper block of this equation are then

−Ā−T C̄TC1 =Σ1 + Ā−T [Σ1A11 − AT21A
−T
22 Σ2A21

+ N̄T
i Σ1Nj,11q

ij + (Ni,21 −Ni,22A
−1
22 A21)TΣ2Nj,21q

ij],

−Ā−T C̄TC2 =Ā−T [Σ1A12 − AT21A
−T
22 Σ2A22

+ N̄T
i Σ1Nj,12q

ij + (Ni,21 −Ni,22A
−1
22 A21)TΣ2Nj,22q

ij].

We multiply ĀT from the left and thus

−C̄TC1 =ĀTΣ1 + Σ1A11 − AT21A
−T
22 Σ2A21 (41)

+ N̄T
i Σ1Nj,11q

ij + (Ni,21 −Ni,22A
−1
22 A21)TΣ2Nj,21q

ij,

−C̄TC2 =Σ1A12 − AT21A
−T
22 Σ2A22 (42)

+ N̄T
i Σ1Nj,12q

ij + (Ni,21 −Ni,22A
−1
22 A21)TΣ2Nj,22q

ij.

From the partitioned equation (37)[
A11 A12

A21 A22

] [
P 1
g

P 2
g

]
+

[
P 1
g

P 2
g

]
ĀT +

[
Ni,11 Ni,12

Ni,21 Ni,22

] [
P 1
g

P 2
g

]
N̄T
j q

ij = −
[
B1B

T
1

B2B
T
1

]
,

we obtain

A11P
1
g + A12P

2
g + P 1

g Ā
T +Ni,11P

1
g N̄

T
j q

ij +Ni,12P
2
g N̄

T
j q

ij = −B1B
T
1 (43)

by evaluating the first line. Now, plugging in (42) yields

tr(−C2P
2
g C̄

T ) = tr(−C̄TC2P
2
g )

= tr([Σ1A12 − AT21A
−T
22 Σ2A22 + N̄T

i Σ1Nj,12q
ij + N̄T

i,21Σ2Nj,22q
ij]P 2

g )

= tr(A12P
2
g Σ1 − AT21A

−T
22 Σ2A22P

2
g +Ni,12P

2
g N̄

T
j Σ1q

ij + N̄T
i,21Σ2Nj,22P

2
g q

ij),

where we set N̄i,21 = Ni,21 −Ni,22A
−1
22 A21. With equation (43), we obtain

tr(−C2P
2
g C̄

T ) = tr(−AT21A
−T
22 Σ2A22P

2
g + N̄T

i,21Σ2Nj,22P
2
g q

ij)

− tr([B1B
T
1 + P 1

g Ā
T + A11P

1
g +Ni,11P

1
g N̄

T
j q

ij]Σ1).

Moreover, using equation (41), we have

tr([P 1
g Ā

T + A11P
1
g +Ni,11P

1
g N̄

T
j q

ij]Σ1) = tr([ĀTΣ1 + Σ1A11 + N̄T
i Σ1Nj,11q

ij]P 1
g )

= − tr(C̄TC1P
1
g + N̄T

i,21Σ2Nj,21P
1
g q

ij − (A−1
22 A21)TΣ2A21P

1
g )

and hence, inserting all derived identities yields

E2 = tr(BT
2 Σ2B2 −BT

1 Σ1B1 + C̄Pr,1C̄
T )

+ 2 tr(N̄T
i,21Σ2Nj,22P

2
g q

ij − (A−1
22 A21)TΣ2A22P

2
g )

+ 2 tr(N̄T
i,21Σ2Nj,21P

1
g q

ij − (A−1
22 A21)TΣ2A21P

1
g ).
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Therefore,

E2 = tr(Σ2(B2B
T
2 − 2(A22P

2
g + A21P

1
g )(A−1

22 A21)T ))

+ tr(2Σ2(Ni,22P
2
g +Ni,21P

1
g )N̄T

j,21q
ij)

+ tr(C̄Pr,1C̄
T −BT

1 Σ1B1). (44)

Analogous to equation (40), we get tr(C̄Pr,1C̄
T ) = tr(BT

1 QrB1), where the ROM observ-
ability Gramian satisfies

ĀTQr +QrĀ+ N̄T
i QrN̄jq

ij = −C̄T C̄. (45)

When inserting this into (44), we see that it remains to analyse the term tr(BT
1 (QR −

Σ1)B1). We use the partition in (39) for equation (33). We evaluate the left upper block of
(33), make use of the representation in (34) and then obtain

ĀTΣ1 + Σ1Ā+ N̄T
i Σ1N̄jq

ij = −(C̄T C̄ + N̄T
i,21Σ2N̄j,21q

ij).

With (45) we thus know that

ĀT (Qr − Σ1) + (Qr − Σ1)Ā+ N̄T
i (Qr − Σ1)N̄jq

ij = N̄T
i,21Σ2N̄j,21q

ij. (46)

Applying equations (36) and (46) yields

tr(BT
1 (Qr − Σ1)B1) = − tr([ĀPr,1 + Pr,1Ā

T + N̄iPr,1N̄
T
j q

ij](QR − Σ1))

= − tr(Pr,1[(Qr − Σ1)Ā+ ĀT (Qr − Σ1) + N̄T
i (Qr − Σ1)N̄jq

ij])

= − tr(Pr,1N̄
T
i,21Σ2N̄j,21q

ij).

We apply these results to (44) and obtain

E2 = tr(Σ2(B2B
T
2 − 2(A22P

2
g + A21P

1
g )(A−1

22 A21)T ))

+ tr(2Σ2(Ni,22P
2
g +Ni,21P

1
g )N̄T

j,21q
ij)− tr(Σ2N̄i,21Pr,1N̄

T
j,21q

ij),

which gives the required result.

From Theorem 5.1 it can be seen that the H2-type error bound can be written as an ex-
pression depending on Σ2, the matrix of the n − r smallest HSVs σr+1, . . . , σn of the
original system. These values correspond to the truncated state components. If these com-
ponents are unimportant, i.e., they are difficult to reach and difficult to observe, then the
values σr+1, . . . , σn are small. Consequently, the error bound would be small which indi-
cates that the ROM from applying type II SPA has a good quality.
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5.2 H∞-error bound

An H∞-error bound for deterministic systems (Ni = 0, i = 1, . . . , q) can be found in [23],
which uses tools that are not available in the more general stochastic case such as transfer
functions. Using transfer functions the link between SPA and BT is shown, so that the H∞-
bound for SPA can be directly concluded from the H∞-bound of BT. In the stochastic case,
the proof has to be conducted in the time domain. Moreover, in terms of the H∞-error bound,
there seems to be no link between the case of type II BT (investigated in [5, 12, 30]) and
type II SPA. This makes the analysis more complicated here. Additionally, we encounter the
problem of a change in the structure from the original to the ROM such that the arguments
in the first paragraph below can not just simply be repeated when removing the HSVs step
by step. Hence, the consideration of a second case, where the error between two different
ROMs is studied, is needed. When comparing these two ROMs, we can not rely on having
matrix inequality (30) for the ROM too. This can be seen by evaluating the left upper block of
(32). For that reason, we will link to the full matrix inequality (30) in our proof, although we
compare two systems in the second paragraph that are reduced already.

Before we start with the actual proof of the H∞-error bound, we introduce two straight for-
ward results which are frequently needed below.

Lemma 5.2. Let a, b1, . . . , bq be Rd-valued processes, where a is adapted and almost
surely Lebesgue integrable and the functions bi are integrable with respect to the mean zero
square integrable Lévy process M = (M1, . . . ,Mq)

T . If the process x is given by

dx(t) = a(t)dt+

q∑
i=1

bi(t)dMi,

then, we have

d

dt
E
[
xT (t)x(t)

]
= 2E

[
xT (t)a(t)

]
+

q∑
i,j=1

E
[
bTi (t)bj(t)

]
qij.

Proof. We define the matrix-valued process b := [b1, . . . , bq] and apply Corollary A.1 to get

xT (t)x(t) = xT (0)x(0) + 2

∫ t

0

xT (s−)dx(s) +
d∑

k=1

[eTk x, e
T
k x]t.

Inserting the differential of x and taking the expectation yields

E
[
xT (t)x(t)

]
= E

[
xT (0)x(0)

]
+ 2

∫ t

0

E
[
xT (s)a(s)

]
ds+ E

[
d∑

k=1

[eTk x, e
T
k x]t

]
.
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With the arguments in the proof of Lemma 2.1 and Ito’s isometry it can be shown that

E

[
d∑

k=1

[eTk x, e
T
k x]t

]
= E

∥∥∥∥∫ t

0

b(s)dM(s)

∥∥∥∥2

2

= E
∫ t

0

∥∥∥b(s)Q 1
2

∥∥∥2

F
ds

= E
∫ t

0

tr
(
bT (s)b(s)Q

)
ds = E

∫ t

0

q∑
i,j=1

bTi (s)bj(s)qijds,

where Q denotes the covariance matrix of M . This concludes the proof.

Proposition 5.3. Let A1, . . . , Aq be d1× d2 matrices and K = (kij)i,j=1,...,q be a positive
semidefinite matrix, then

K̃ :=

q∑
i,j=1

ATi Ajkij

is also positive semidefinite.

Proof. Let x be an arbitrary vector in Rd2 , then

xT K̃x =

q∑
i,j=1

(Aix)TAjxkij =

q∑
i,j=1

(Aix)TAjxe
T
i K

1
2K

1
2 ej

=

q∑
i,j=1

(Aix)TAjx

q∑
k=1

〈K
1
2 ei, ek〉2〈K

1
2 ej, ek〉2

=

q∑
k=1

(

q∑
i=1

Aix〈K
1
2 ei, ek〉2)T (

q∑
j=1

Ajx〈K
1
2 ej, ek〉2) ≥ 0.

Error bound of removing the smallest Hankel singular value In this paragraph, we
determine a bound for the error between the full model and the ROM of only removing one
HSV. This represents the first step of proving the general H∞-error bound for type II SPA in
Theorem 5.6.

We recall the original model that we aim to reduce:

dx(t) = [Ax(t) +Bu(t)]dt+

q∑
i=1

Nix(t−)dMi(t), x(0) = 0, (47)

y(t) = Cx(t), t ≥ 0,

where the matrices and vectors above are partitioned as follows

A =
[
A11 A12
A21 A22

]
, x = [ x1x2 ] , B =

[
B1
B2

]
, Ni =

[
Ni,11 Ni,12
Ni,21 Ni,22

]
, C = [ C1 C2 ] .
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To simplify the notation, we assume that system (47) is balanced already, i.e., we applied
the balancing transformation from Subsection 4.1 already. Hence, the Gramians P2 and
Q are equal and coincide with the diagonal matrix Σ = diag(Σ1,Σ2), where Σ1 =
diag(σ1, . . . , σr) is the matrix of large and Σ2 = diag(σr+1, . . . , σn) the matrix of ne-
glected small HSVs. Consequently, the matrix (in)equalities (30) and (31) hold. To show the
error bound below, we do not need the equality in (31). It can be replaced by a more general
inequality.
The following ROM is supposed to be compare with the original model (47):

dxr(t) = [Āxr(t) + B̄u(t)]dt+

q∑
i=1

[
N̄ixr(t−) + Ēiu(t−)

]
dMi(t), xr(0) = 0,

(48)

yr(t) = C̄xr(t) + D̄u(t), t ≥ 0,

where the matrices are defined below (28). The next theorem deals with the error of removing
the smallest HSV, i.e., we consider the case of Σ2 being a multiple of the identity matrix.

Theorem 5.4. If Σ2 = σI , then

‖y − yr‖L2
T
≤ 2σ ‖u‖L2

T
.

Proof. We sometimes omit the time dependence of the functions in this proof to keep the
notation as easy as possible. For the same reason, we make use of Einstein’s summation
convention which we indicate by writing qij instead of qij . Inserting for y and yr yields

− E ‖y − yr‖2
2 = −E

∥∥C1[x1 − xr] + C2[x2 + A−1
22 A21xr + A−1

22 B2u]
∥∥2

2

= −E

([
x1 − xr

x2 + A−1
22 (A21xr +B2u)

]T
CTC

[
x1 − xr

x2 + A−1
22 (A21xr +B2u)

])
.

The partitioned matrix (in)equality (31)

[
A11 A12
A21 A22

]T [Σ1
Σ2

]
+
[

Σ1
Σ2

][
A11 A12
A21 A22

]
+

[
Ni,11 Ni,12
Ni,21 Ni,22

]T [
Σ1

Σ2

][Nj,11 Nj,12
Nj,21 Nj,22

]
qij≤−CTC (49)

leads to

− E ‖y − yr‖2
2 ≥

E
(

2 [ x1−xr ]T Σ1 [ A11 A12 ]
[

x1−xr
x2+A−1

22 (A21xr+B2u)

]
+
(

[Ni,11 Ni,12 ]
[

x1−xr
x2+A−1

22 (A21xr+B2u)

])T
Σ1 [Nj,11 Nj,12 ]

[
x1−xr

x2+A−1
22 (A21xr+B2u)

]
qij

+ 2 [ x2+A−1
22 (A21xr+B2u) ]T Σ2 [ A21 A22 ]

[
x1−xr

x2+A−1
22 (A21xr+B2u)

]
+
(

[Ni,21 Ni,22 ]
[

x1−xr
x2+A−1

22 (A21xr+B2u)

])T
Σ2 [Nj,21 Nj,22 ]

[
x1−xr

x2+A−1
22 (A21xr+B2u)

]
qij

)
.
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We define with the above summands:

T1 : = E
(

2 [ x1−xr ]T Σ1 [ A11 A12 ]
[

x1−xr
x2+A−1

22 (A21xr+B2u)

])
= E

(
2 [ x1−xr ]T Σ1 [ A11x1+A12x2−Āxr+(B1−B̄)u ]

)
,

T2 : = E
(

[Ni,11 Ni,12 ]
[

x1−xr
x2+A−1

22 (A21xr+B2u)

])T
Σ1 [Nj,11 Nj,12 ]

[
x1−xr

x2+A−1
22 (A21xr+B2u)

]
qij

= E
(

[Ni,11x1+Ni,12x2−N̄ixr−Ēiu ]T Σ1 [Nj,11x1+Nj,12x2−N̄jxr−Ēju ] qij
)
,

T3 : = E
(

2 [ x2+A−1
22 (A21xr+B2u) ]T Σ2 [ A21 A22 ]

[
x1−xr

x2+A−1
22 (A21xr+B2u)

])
= E

(
2 [ x2+A−1

22 (A21xr+B2u) ]T Σ2 [ A21x1+A22x2+B2u ]
)
,

T4 : = E
(

[Ni,21 Ni,22 ]
[

x1−xr
x2+A−1

22 (A21xr+B2u)

])T
Σ2 [Nj,21 Nj,22 ]

[
x1−xr

x2+A−1
22 (A21xr+B2u)

]
qij

= E
(

[Ni,21x1+Ni,22x2−N̄i,21xr+Ni,22A−1
22 B2u ]T Σ2 [Nj,21x1+Nj,22x2−N̄j,21xr+Nj,22A−1

22 B2u ] qij
)
,

where N̄i,21 = Ni,21 −Ni,22A
−1
22 A21. Since, we have

d(x1(t)− xr(t)) =[A11x1(t) + A12x2(t) + (B1 − B̄)u(t)− Āxr(t)]dt

+

q∑
i=1

[Ni,11x1(t) +Ni,12x2(t) +−Ēiu(t)− N̄ixr(t)]dMi(t)

by Lemma 5.2, we obtain

d

dt
E
(
(x1(t)− xr(t))TΣ1(x1(t)− xr(t))

)
= T1 + T2.

The variable x2 obeys

dx2(t) = [A21x1(t) + A22x2(t) +B2u(t)]dt+

q∑
i=1

[Ni,21x1(t) +Ni,22x2(t)]dMi(t).

(50)

Again with Lemma 5.2, we have

d

dt
E
(
x2(t)TΣ2x2(t)

)
= 2E

(
xT2 (t)Σ2(A21x1(t) + A22x2(t) +B2u(t))

)
+ E

(
(Ni,21x1(t) +Ni,22x2(t))TΣ2(Nj,21x1(t) +Nj,22x2(t))qij

)
.

This yields

d

dt
E
(
x2(t)TΣ2x2(t)

)
=
[
T3 − 2E([ A−1

22 (A21xr+B2u) ]T Σ2 [ A21x1+A22x2+B2u ])
]

+
[
T4 − 2E

(
[Ni,22A−1

22 B2u−N̄i,21xr ]T Σ2 [Nj,21x1+Nj,22x2 ] qij
)

−E
(

[Ni,22A−1
22 B2u−N̄i,21xr ]T Σ2 [Nj,22A−1

22 B2u−N̄j,21xr ] qij
)]
.
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Summarising the above computations, we obtain

−E ‖y − yr‖2
2 ≥

d

dt
E
(
(x1(t)− xr(t))TΣ1(x1(t)− xr(t))

)
+
d

dt
E
(
x2(t)TΣ2x2(t)

)
+ 2E

(
[ A−1

22 (A21xr+B2u) ]T Σ2 [ A21x1+A22x2+B2u ]
)

+ 2E
(

[Ni,22A−1
22 B2u−N̄i,21xr ]T Σ2 [Nj,21x1+Nj,22x2 ] qij

)
+ E

(
[Ni,22A−1

22 B2u−N̄i,21xr ]T Σ2 [Nj,22A−1
22 B2u−N̄j,21xr ] qij

)
.

Using Proposition 5.3 and the assumption that Σ2 = σI provides

E
∫ T

0

‖y(t)− yr(t)‖2
2 dt ≤− 2σ2

[
E
∫ T

0

[ A−1
22 (A21xr+B2u) ]T Σ−1

2 [ A21x1+A22x2+B2u ] dt

+E
∫ T

0

[Ni,22A−1
22 B2u−N̄i,21xr ]T Σ−1

2 [Nj,21x1+Nj,22x2 ] qij dt

]
.

(51)

Inequality (30) and the Schur complement condition on definiteness implies[
ATΣ−1 + Σ−1A+NT

i Σ−1Njq
ij Σ−1B

BTΣ−1 −I

]
≤ 0. (52)

If we multiply

[
x1+xr

x2−A−1
22 (A21xr+B2u)

2u

]T
from the left and

[
x1+xr

x2−A−1
22 (A21xr+B2u)

2u

]
from the right

to matrix inequality (52) and furthermore take the expected value, then we get

4E ‖u‖2
2 ≥E

(
2 [ x1+xr ]T Σ−1

1

(
[ A11 A12 ]

[
x1+xr

x2−A−1
22 (A21xr+B2u)

]
+2B1u

)
+
(

[Ni,11 Ni,12 ]
[

x1+xr
x2−A−1

22 (A21xr+B2u)

])T
Σ−1

1 [Nj,11 Nj,12 ]
[

x1+xr
x2−A−1

22 (A21xr+B2u)

]
qij

+ 2 [ x2−A−1
22 (A21xr+B2u) ]T Σ−1

2

(
[ A21 A22 ]

[
x1+xr

x2−A−1
22 (A21xr+B2u)

]
+2B2u

)
+
(

[Ni,21 Ni,22 ]
[

x1+xr
x2−A−1

22 (A21xr+B2u)

])T
Σ−1

2 [Nj,21 Nj,22 ]
[

x1+xr
x2−A−1

22 (A21xr+B2u)

]
qij

)
.

The above terms are used to define

T5 : = E
(

2 [ x1+xr ]T Σ−1
1 ([ A11 A12 ]

[
x1+xr

x2−A−1
22 (A21xr+B2u)

]
+2B1u )

)
= E

(
2 [ x1+xr ]T Σ−1

1 [ A11x1+A12x2+Āxr+(B1+B̄)u ]
)
,

T6 : = E
(

[Ni,11 Ni,12 ]
[

x1+xr
x2−A−1

22 (A21xr+B2u)

])T
Σ−1

1 [Nj,11 Nj,12 ]
[

x1+xr
x2−A−1

22 (A21xr+B2u)

]
qij

= E
(

[Ni,11x1+Ni,12x2+N̄ixr+Ēiu ]T Σ−1
1 [Nj,11x1+Nj,12x2+N̄jxr+Ēju ] qij

)
,

T7 : = E
(

2 [ x2−A−1
22 (A21xr+B2u) ]T Σ−1

2 ( [ A21 A22 ]
[

x1+xr
x2−A−1

22 (A21xr+B2u)

]
+2B2u )

)
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= E
(

2 [ x2−A−1
22 (A21xr+B2u) ]T Σ−1

2 [ A21x1+A22x2+B2u ]
)
,

T8 : = E
(

[Ni,21 Ni,22 ]
[

x1+xr
x2−A−1

22 (A21xr+B2u)

])T
Σ−1

2 [Nj,21 Nj,22 ]
[

x1+xr
x2−A−1

22 (A21xr+B2u)

]
qij

= E
(

[Ni,21x1+Ni,22x2+N̄i,21xr−Ni,22A−1
22 B2u ]T Σ−1

2 [Nj,21x1+Nj,22x2+N̄j,21xr−Nj,22A−1
22 B2u ] qij

)
.

Using Lemma 5.2, exploiting the following equation

d(x1(t) + xr(t)) =[A11x1(t) + A12x2(t) + (B1 + B̄)u(t) + Āxr(t)]dt

+

q∑
i=1

[Ni,11x1(t) +Ni,12x2(t) + Ēiu(t) + N̄ixr(t)]dMi(t)

and with (50), we the first of all find that

d

dt
E
(
(x1(t) + xr(t))

TΣ−1
1 (x1(t) + xr(t))

)
= T5 + T6

and secondly obtain the following identity

d

dt
E
(
x2(t)TΣ−1

2 x2(t)
)

=
[
T7 + 2E([ A−1

22 (A21xr+B2u) ]T Σ−1
2 [ A21x1+A22x2+B2u ])

]
+
[
T8 + 2E

(
[Ni,22A−1

22 B2u−N̄i,21xr ]T Σ−1
2 [Nj,21x1+Nj,22x2 ] qij

)
− E

(
[Ni,22A−1

22 B2u−N̄i,21xr ]T Σ−1
2 [Nj,22A−1

22 B2u−N̄j,21xr ] qij
)]
.

This all then provides

4E ‖u(t)‖2
2 ≥

d

dt
E
(
(x1(t) + xr(t))

TΣ−1
1 (x1(t) + xr(t))

)
+
d

dt
E
(
x2(t)TΣ−1

2 x2(t)
)

− 2E
(

[ A−1
22 (A21xr+B2u) ]T Σ−1

2 [ A21x1+A22x2+B2u ]
)

− 2E
(

[Ni,22A−1
22 B2u−N̄i,21xr ]T Σ−1

2 [Nj,21x1+Nj,22x2 ] qij
)

+ E
(

[Ni,22A−1
22 B2u−N̄i,21xr ]T Σ−1

2 [Nj,22A−1
22 B2u−N̄j,21xr ] qij

)
.

Since the last summand is non-negative because of Proposition 5.3, we find that

4E
∫ T

0

‖u(t)‖2
2 dt ≥− 2

[
E
∫ T

0

[ A−1
22 (A21xr+B2u) ]T Σ−1

2 [ A21x1+A22x2+B2u ] dt

+E
∫ T

0

[Ni,22A−1
22 B2u−N̄i,21xr ]T Σ−1

2 [Nj,21x1+Nj,22x2 ] qij dt

]
.

Combining this inequality with (51) leads to the claim.
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Error bound for neighbouring reduced order models In this paragraph, an error bound
between two particular ROM is analysed since this is the second ingredient of proving an
H∞-error bound for type II SPA in Theorem 5.6 later.

We now use a even finer partition than above, where all matrices are of suitable size:

A =
[
A11 A12 A13
A21 A22 A23
A31 A32 A33

]
, B =

[
B1
B2
B3

]
, Ni =

[
Ni,11 Ni,12 Ni,13
Ni,21 Ni,22 Ni,23
Ni,31 Ni,32 Ni,33

]
, C = [ C1 C2 C3 ] . (53)

The diagonal and equal Gramians are then of the form

Σ =
[

Σ1
Σ2

Σ3

]
. (54)

We want to compare two ROMs of different dimensions. The ROM of removing Σ3 only is
given by

d
[
x1(t)
x2(t)

]
=
[
Ā
[
x1(t)
x2(t)

]
+ B̄u(t)

]
dt+

q∑
i=1

[
N̄i

[
x1(t−)
x2(t−)

]
+ Ēiu(t−)

]
dMi(t),

ȳ(t) = C̄
[
x1(t)
x2(t)

]
+ D̄u(t), t ≥ 0,

where
[
x1(0)
x2(0)

]
= [ 0

0 ] and the matrices are defined in the sense of (28):

Ā =
[
A11 A12
A21 A22

]
−
[
A13
A23

]
A−1

33 [ A31 A32 ] , B̄ =
[
B1
B2

]
−
[
A13
A23

]
A−1

33 B3,

N̄i =
[
Ni,11 Ni,12
Ni,21 Ni,22

]
−
[
Ni,13
Ni,23

]
A−1

33 [ A31 A32 ] , C̄ = [ C1 C2 ]− C3A
−1
33 [ A31 A32 ] ,

D̄ = −C3A
−1
33 B3, Ēi = −

[
Ni,13
Ni,23

]
A−1

33 B3.

The above ROM is going to be compared with a smaller ROM, where Σ2 and Σ3 are re-
moved. The corresponding state xr has the same dimension as x1 in the larger ROM above.
We consider

dxr(t) = [Ārxr(t) + B̄ru(t)]dt+

q∑
i=1

[
N̄r,ixr(t−) + Ēr,iu(t−)

]
dMi(t), xr(0) = 0,

ȳr(t) = C̄rxr(t) + D̄ru(t), t ≥ 0.

For the definition of the above matrices, we set

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
:=

[
A22 A23

A32 A33

]−1

.

It can be shown that

Ã =

[
Ã11 −A−1

22 A23Ã22

−A−1
33 A32Ã11 Ã22

]
, (55)
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where Ã11 = (A22−A23A
−1
33 A32)−1 and Ã22 = (A33−A32A

−1
22 A23)−1. Now, the matrices

are of the form described in (28):

Ār = A11 −
(
A12 [ Ã11 Ã12 ]

[
A21
A31

]
+ A13 [ Ã21 Ã22 ]

[
A21
A31

])
,

B̄r = B1 −
(
A12 [ Ã11 Ã12 ]

[
B2
B3

]
+ A13 [ Ã21 Ã22 ]

[
B2
B3

])
N̄r,i = Ni,11 −

(
Ni,12 [ Ã11 Ã12 ]

[
A21
A31

]
+Ni,13 [ Ã21 Ã22 ]

[
A21
A31

])
,

C̄r = C1 −
(
C2 [ Ã11 Ã12 ]

[
A21
A31

]
+ C3 [ Ã21 Ã22 ]

[
A21
A31

])
,

D̄r = −
(
C2 [ Ã11 Ã12 ]

[
B2
B3

]
+ C3 [ Ã21 Ã22 ]

[
B2
B3

])
,

Ēr,i = −
(
Ni,12 [ Ã11 Ã12 ]

[
B2
B3

]
+Ni,13 [ Ã21 Ã22 ]

[
B2
B3

])
.

Below, we investigate the error between ȳ and ȳr when the corresponding ROMs are neigh-
bouring, i.e., they are chosen such that Σ2 = σI in (54).

Theorem 5.5. If Σ2 = σI in (54), then

‖ȳ − ȳr‖L2
T
≤ 2σ ‖u‖L2

T
.

Proof. We mostly omit the time dependence of the functions below to keep the notation as
easy as possible. We also make use of Einstein’s summation convention which we indicate
by replacing qij by the notation qij with upper indices. We insert for y and yr and obtain

− E ‖ȳ − yr‖2
2

= −E
∥∥C1x1 + C2x2 − C3A

−1
33 (A31x1 + A32x2 +B3u)

−C1xr + C2 [ Ã11 Ã12 ]
([

A21
A31

]
xr +

[
B2
B3

]
u
)

+ C3 [ Ã21 Ã22 ]
([

A21
A31

]
xr +

[
B2
B3

]
u
)∥∥2

2

= −E
([ x1−xr

x2+k1
k2+k3

]T
CTC

[ x1−xr
x2+k1
k2+k3

])
,

where k1 = [ Ã11 Ã12 ]
([

A21
A31

]
xr +

[
B2
B3

]
u
)
, k2 = −A−1

33 (A31x1 + A32x2 + B3u) and

k3 = [ Ã21 Ã22 ]
([

A21
A31

]
xr +

[
B2
B3

]
u
)
. Since −CTC is bounded from below as follows[

A11 A12 A13
A21 A22 A23
A31 A32 A33

]T [ Σ1
Σ2

Σ3

]
+
[

Σ1
Σ2

Σ3

] [
A11 A12 A13
A21 A22 A23
A31 A32 A33

]
(56)

+

[
Ni,11 Ni,12 Ni,13
Ni,21 Ni,22 Ni,23
Ni,31 Ni,32 Ni,33

]T [
Σ1

Σ2
Σ3

] [Nj,11 Nj,12 Nj,13
Nj,21 Nj,22 Nj,23
Nj,31 Nj,32 Nj,33

]
qij ≤ −CTC,

we consequently have

− E ‖ȳ − ȳr‖2
2 ≥

E
(

2 [ x1−xr ]T Σ1 [ A11 A12 A13 ]
[ x1−xr
x2+k1
k2+k3

]
+
(

[Ni,11 Ni,12 Ni,13 ]
[ x1−xr
x2+k1
k2+k3

])T
Σ1 [Nj,11 Nj,12 Nj,13 ]

[ x1−xr
x2+k1
k2+k3

]
qij
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+ 2 [ x2+k1 ]T Σ2 [ A21 A22 A23 ]
[ x1−xr
x2+k1
k2+k3

]
+
(

[Ni,21 Ni,22 Ni,23 ]
[ x1−xr
x2+k1
k2+k3

])T
Σ2 [Nj,21 Nj,22 Nj,23 ]

[ x1−xr
x2+k1
k2+k3

]
qij

+ 2 [ k2+k3 ]T Σ3 [ A31 A32 A33 ]
[ x1−xr
x2+k1
k2+k3

]
+
(

[Ni,31 Ni,32 Ni,33 ]
[ x1−xr
x2+k1
k2+k3

])T
Σ3 [Nj,31 Nj,32 Nj,33 ]

[ x1−xr
x2+k1
k2+k3

]
qij

)
.

In the following, the terms depending on Σ3 can be neglected. For the last summand this is
because it is non-negative by Proposition 5.3 and the penultimate term vanishes since

[ A31 A32 A33 ]
[ x1−xr
x2+k1
k2+k3

]
= A31(x1 − xr) + A32x2 + A33k2 + A32k1 + A33k3.

Inserting for k2 yields

[ A31 A32 A33 ]
[ x1−xr
x2+k1
k2+k3

]
= −(A31xr +B3u) + A32k1 + A33k3.

We plug in k1 and k3 and use (55):

A32k1 + A33k3 = (A32 [ Ã11 Ã12 ] + A33 [ Ã21 Ã22 ])
([

A21
A31

]
xr +

[
B2
B3

]
u
)

(57)

= ([ A32Ã11 −A32A
−1
22 A23Ã22 ] + [ −A32Ã11 A33Ã22 ])

([
A21
A31

]
xr +

[
B2
B3

]
u
)

= [ 0 I ]
([

A21
A31

]
xr +

[
B2
B3

]
u
)

= A31xr +B3u.

Hence, we have [ A31 A32 A33 ]
[ x1−xr
x2+k1
k2+k3

]
= 0. Furthermore, we know that

dx1 =
[(

[ A11 A12 ]− A13A
−1
33 [ A31 A32 ]

)
[ x1x2 ] +

(
B1 − A13A

−1
33 B3

)
u
]
dt

+

q∑
i=1

[(
[Ni,11 Ni,12 ]−Ni,13A

−1
33 [ A31 A32 ]

)
[ x1x2 ]−Ni,13A

−1
33 B3u

]
dMi(t)

= [[ A11 A12 ] [ x1x2 ] + A13k2 +B1u] dt+

q∑
i=1

[[Ni,11 Ni,12 ] [ x1x2 ] +Ni,13k2] dMi(t).

(58)

By the definition of k1 and k3, we have

dxr = [A11xr − A12k1 − A13k3 +B1u] dt+

q∑
i=1

[Ni,11xr −Ni,12k1 −Ni,13k3] dMi(t)

(59)

and hence by Lemma 5.2, we obtain

d

dt
E
(
(x1 − xr))TΣ1(x1 − xr)

)
= E

(
2 [ x1−xr ]T Σ1 [ A11 A12 A13 ]

[ x1−xr
x2+k1
k2+k3

]
+
(

[Ni,11 Ni,12 Ni,13 ]
[ x1−xr
x2+k1
k2+k3

])T
Σ1 [Nj,11 Nj,12 Nj,13 ]

[ x1−xr
x2+k1
k2+k3

]
qij

)
,
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such that overall, it holds

−E ‖ȳ − ȳr‖2
2 ≥

d

dt
E
(
(x1 − xr))TΣ1(x1 − xr)

)
E
(

2 [ x2+k1 ]T Σ2 [ A21 A22 A23 ]
[ x1−xr
x2+k1
k2+k3

]
+
(

[Ni,21 Ni,22 Ni,23 ]
[ x1−xr
x2+k1
k2+k3

])T
Σ2 [Nj,21 Nj,22 Nj,23 ]

[ x1−xr
x2+k1
k2+k3

]
qij

)
.

So, it remains to analyse the terms depending on Σ2. First of all, it holds that

dx2 =
[(

[ A21 A22 ]− A23A
−1
33 [ A31 A32 ]

)
[ x1x2 ] +

(
B2 − A23A

−1
33 B3

)
u
]
dt

+

q∑
i=1

[(
[Ni,21 Ni,22 ]−Ni,23A

−1
33 [ A31 A32 ]

)
[ x1x2 ]−Ni,23A

−1
33 B3u

]
dMi(t)

= [[ A21 A22 ] [ x1x2 ] + A23k2 +B2u] dt+

q∑
i=1

[[Ni,21 Ni,22 ] [ x1x2 ] +Ni,23k2] dMi(t),

so that by Lemma 5.2, we have

d

dt
E
(
xT2 Σ2x2

)
= E

(
2 x2

T
Σ2 ([ A21 A22 A23 ]

[ x1
x2
k2

]
+B2u) (60)

+
(

[Ni,21 Ni,22 Ni,23 ]
[ x1
x2
k2

])T
Σ2 [Nj,21 Nj,22 Nj,23 ]

[ x1
x2
k2

]
qij

)
.

Taking into account that

[ A21 A22 A23 ]
[ −xr

k1
k3

]
= (A22 [ Ã11 Ã12 ] + A23 [ Ã21 Ã22 ])

([
A21
A31

]
xr +

[
B2
B3

]
u
)
− A21xr

= ([ A22Ã11 −A23Ã22 ] + [ −A23A
−1
33 A32Ã11 A23Ã22 ])

([
A21
A31

]
xr +

[
B2
B3

]
u
)

− A21xr

= [ I 0 ]
([

A21
A31

]
xr +

[
B2
B3

]
u
)
− A21xr = B2u, (61)

we see that

−E ‖ȳ − ȳr‖2
2 ≥

d

dt
E
(
(x1 − xr))TΣ1(x1 − xr)

)
+
d

dt
E
(
xT2 Σ2x2

)
E
(

2 k1
T

Σ2 [ A21 A22 A23 ]
[ x1−xr
x2+k1
k2+k3

]
+ 2

(
[Ni,21 Ni,22 Ni,23 ]

[ −xr
k1
k3

])T
Σ2 [Nj,21 Nj,22 Nj,23 ]

[ x1
x2
k2

]
qij

+
(

[Ni,21 Ni,22 Ni,23 ]
[ −xr

k1
k3

])T
Σ2 [Nj,21 Nj,22 Nj,23 ]

[ −xr
k1
k3

]
qij

)
and thus with Proposition 5.3 and Σ2 = σI , we obtain

E
∫ T

0

‖y(t)− yr(t)‖2
2 dt ≤ −2σ2

[
E
∫ T

0

k1
T

Σ−1
2 [ A21 A22 A23 ]

[ x1−xr
x2+k1
k2+k3

]
dt

+E
∫ T

0

(
[Ni,21 Ni,22 Ni,23 ]

[ −xr
k1
k3

])T
Σ−1

2 [Nj,21 Nj,22 Nj,23 ]
[ x1
x2
k2

]
qij dt

]
. (62)
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Below, we make use of inequality (52) and insert the partitions in (53) and (54). Multiplying[
x1+xr
x2−k1
k2−k3

2u

]T
from the left and

[
x1+xr
x2−k1
k2−k3

2u

]
from the right to matrix inequality (52) and taking the

expectation leads to

4E ‖u‖2
2 ≥E

(
2 [ x1+xr ]T Σ−1

1

(
[ A11 A12 A13 ]

[ x1+xr
x2−k1
k2−k3

]
+2B1u

)
+
(

[Ni,11 Ni,12 Ni,13 ]
[ x1+xr
x2−k1
k2−k3

])T
Σ−1

1 [Nj,11 Nj,12 Nj,13 ]
[ x1+xr
x2−k1
k2−k3

]
qij

+ 2 [ x2−k1 ]T Σ−1
2

(
[ A21 A22 A23 ]

[ x1+xr
x2−k1
k2−k3

]
+2B2u

)
+
(

[Ni,21 Ni,22 Ni,23 ]
[ x1+xr
x2−k1
k2−k3

])T
Σ−1

2 [Nj,21 Nj,22 Nj,23 ]
[ x1+xr
x2−k1
k2−k3

]
qij

+ 2 [ k2−k3 ]T Σ−1
3

(
[ A31 A32 A33 ]

[ x1+xr
x2−k1
k2−k3

]
+2B3u

)
+
(

[Ni,31 Ni,32 Ni,33 ]
[ x1+xr
x2−k1
k2−k3

])T
Σ−1

3 [Nj,31 Nj,32 Nj,33 ]
[ x1+xr
x2−k1
k2−k3

]
qij

)
.

Again, we can neglect the terms depending on Σ3, since the last summand is non-negative
by Proposition 5.3 and the penultimate term vanishes, because

[ A31 A32 A33 ]
[ x1+xr
x2−k1
k2−k3

]
= A31(x1 + xr) + A32x2 + A33k2 − A32k1 − A33k3.

Inserting for k2 yields

[ A31 A32 A33 ]
[ x1+xr
x2−k1
k2−k3

]
= A31xr −B3u− (A32k1 + A33k3).

Using (57), we have [ A31 A32 A33 ]
[ x1+xr
x2−k1
k2−k3

]
+ 2B3u = 0. Combining (58) and (59) and

applying Lemma 5.2 yields

d

dt
E
(
(x1 + xr))

TΣ−1
1 (x1 + xr)

)
= E

(
2 [ x1+xr ]T Σ−1

1 ([ A11 A12 A13 ]
[ x1+xr
x2−k1
k2−k3

]
+ 2B1u)

+
(

[Ni,11 Ni,12 Ni,13 ]
[ x1+xr
x2−k1
k2−k3

])T
Σ−1

1 [Nj,11 Nj,12 Nj,13 ]
[ x1+xr
x2−k1
k2−k3

]
qij

)
.

Analogous to (60), we get

d

dt
E
(
xT2 Σ−1

2 x2

)
= E

(
2 x2

T
Σ−1

2 ([ A21 A22 A23 ]
[ x1
x2
k2

]
+B2u)

+
(

[Ni,21 Ni,22 Ni,23 ]
[ x1
x2
k2

])T
Σ−1

2 [Nj,21 Nj,22 Nj,23 ]
[ x1
x2
k2

]
qij

)
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= E
(

2 x2
T

Σ−1
2 ([ A21 A22 A23 ]

[ x1+xr
x2−k1
k2−k3

]
+ 2B2u)

+
(

[Ni,21 Ni,22 Ni,23 ]
[ x1
x2
k2

])T
Σ−1

2 [Nj,21 Nj,22 Nj,23 ]
[ x1
x2
k2

]
qij

)
.

The last equality above is obtained by (61). Hence,

4E ‖u‖2
2 ≥

d

dt
E
(
(x1 + xr))

TΣ−1
1 (x1 + xr)

)
+
d

dt
E
(
xT2 Σ−1

2 x2

)
− 2E

(
k1
T

Σ−1
2 ([ A21 A22 A23 ]

[ x1+xr
x2−k1
k2−k3

]
+ 2B2u)

)
− 2E

((
[Ni,21 Ni,22 Ni,23 ]

[ −xr
k1
k3

])T
Σ−1

2 [Nj,21 Nj,22 Nj,23 ]
[ x1
x2
k2

]
qij

)
+ E

((
[Ni,21 Ni,22 Ni,23 ]

[ xr
−k1
−k3

])T
Σ−1

2 [Nj,21 Nj,22 Nj,23 ]
[ xr
−k1
−k3

]
qij

)
.

Due to Proposition 5.3 the last term can be omitted. Moreover, we insert (61) for B2u and
then obtain

4

∫ T

0

E ‖u(t)‖2
2 dt ≥− 2E

∫ T

0

[
k1
T

Σ−1
2 [ A21 A22 A23 ]

[ x1−xr
x2+k1
k2+k3

]
(

[Ni,21 Ni,22 Ni,23 ]
[ −xr

k1
k3

])T
Σ−1

2 [Nj,21 Nj,22 Nj,23 ]
[ x1
x2
k2

]
qij

]
dt.

We plug in this result to (62) and obtain the result of this theorem.

Main results

Theorem 5.6. If x(0) = 0 and xr(0) = 0, then for all T > 0, we have

‖y − yr‖L2
T
≤ 2(σ̃1 + σ̃2 + . . .+ σ̃ν) ‖u‖L2

T
,

where y is the output of the original system (47), yr is the output of the type II SPA approach
ROM (coefficients as in (28)) and σ̃1, σ̃2, . . . , σ̃ν are the distinct diagonal entries of Σ2 =
diag(σr+1, . . . , σn) = diag(σ̃1I, σ̃2I, . . . , σ̃νI).

Proof. This proof relies on Theorems 5.4 and 5.5. We will use the common idea of removing
the Hankel singular values step by step. The error between the outputs y and yr can be
bounded as follows:

‖y − yr‖L2
T
≤ ‖y − yrν‖L2

T
+
∥∥yrν − yrν−1

∥∥
L2
T

+ . . .+ ‖yr2 − yr‖L2
T
,

where the dimensions ri of the corresponding states are defined by ri+1 = ri + m(σ̃i) for
i = 1, 2 . . . , ν − 1. Here, m(σ̃i) denotes the multiplicity of σ̃i and r1 = r. In the reduction
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step from y to yrν only the smallest Hankel singular value σ̃ν is removed from the system.
Hence, by Theorem 5.4, we have

‖y − yrν‖L2
T
≤ 2σ̃ν ‖u‖L2

T
.

The reduced order outputs yrj and yrj−1
are neighbouring, i.e., only the Hankel singular

value σ̃rj−1
is removed. Thus, by Theorem 5.5, we obtain∥∥yrj − yrj−1

∥∥
L2
T
≤ 2σ̃rj−1

‖u‖L2
T

for j = 2, . . . , ν. This provides the claimed result.

Since the bound in Theorem 5.6 involves only the sum of distinct diagonal entries of Σ2, the
result is of course also true when using the sum of all diagonal entries instead.

Corollary 5.7. If x(0) = 0 and xr(0) = 0, then for all T > 0, we have

‖y − yr‖L2
T
≤ 2(σr+1 + σr+2 + . . .+ σn) ‖u‖L2

T
,

where y is the output of the original system (47), yr is the output of the type II SPA approach
ROM (coefficients as in (28)) and σr+1, . . . , σn are the diagonal entries of Σ2.

Since the H∞-type error of using type II SPA depends on the n − r smallest HSVs of the
original system, the same conclusion as from Theorem 5.1 can be made. So, when neglect-
ing the difficult to reach and observe states only, the values σr+1, . . . , σn are supposed to
be small which leads to a good approximation by Corollary 5.7.

6 Conclusions

We have analysed the concept of mean square asymptotic stability for Lévy driven systems
based on the stability analysis for the Wiener case. This concept was needed to introduce
reachability and observability Gramians which are used to identify difficult to reach and dif-
ficult to observe states in a Lévy driven system. We provided new energy interpretations
for two different reachability Gramians, P1 and P2, that allow a better characterisation of
reachability of a state in a stochastic system. So far, only energy interpretations have been
available that neglected the diffusion term of stochastic differential equations. Based on the
reachability Gramian P2 and the observability Gramian Q balancing of stochastic systems
was explained in this paper (type II balancing). In the resulting balanced system, the unim-
portant states can be easily identified, because dominant reachable and observable states
are the same. We explained in which sense the state components, that contribute only little
to the system dynamics, are neglected. This particular approach is called type II singular
perturbation approximation (SPA). It generalises the deterministic setting which was studied
first. Furthermore, type II SPA provides an alternative to type I SPA. This type I ansatz is
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based on the reachability Gramian P1 and was developed for stochastic systems as well
but it has worse properties than the type II approach. This is what we pointed out through-
out this paper. So, we showed the preservation of mean square asymptotic stability in the
reduced order model by type II SPA which has not been shown for type I SPA yet. More-
over, we proved an H2-type and an H∞-type error bound for type II SPA which allow to
find the cases in which the approximation performs well. In particular, the H∞-type error
bound represents an extension of the error bound in the deterministic case. To prove this
generalised bound completely different techniques were needed since some tools are not
available anymore in the stochastic setting. An H2-bound for the type I ansatz could already
be shown too but an H∞-bound does not exist. The existence of an H∞-error bound is the
main advantage of the approach considered here.

A Ito calculus

Let all stochastic processes appearing in this section be defined on a filtered probability
space (Ω,F, (Ft)t≥0,P)1. We denote the set of all càdlàg square integrable R-valued mar-
tingales with respect to (Ft)t≥0 by M2(R).

Let Z1, Z2 be scalar semimartingales. We set ∆Zi(s) := Zi(s)−Zi(s−) with Zi(s−) :=
limt↑s Zi(t) for i = 1, 2. Then the Ito product formula

Z1(t)Z2(t) = Z1(0)Z2(0) +

∫ t

0

Z1(s−)dZ2(s) +

∫ t

0

Z2(s−)dZ1(s) + [Z1, Z2]t

(63)

for t ≥ 0 holds, see [24] or [2] for the special case of Lévy-type integrals. By [18, Theorem
4.52], the compensator process [Z1, Z2] is given by

[Z1, Z2]t = 〈M c
1 ,M

c
2〉t +

∑
0≤s≤t

∆Z1(s)∆Z2(s) (64)

for t ≥ 0, where M c
1 , M c

2 ∈ M2(R) are the continuous martingale parts of Z1 and Z2 (cf.
[18, Theorem 4.18]). The process 〈M c

1 ,M
c
2〉 is a uniquely defined angle bracket process

that ensures that M c
1M

c
2 −〈M c

1 ,M
c
2〉 is an (Ft)t≥0- martingale, see [24, Proposition 17.2].

As a simple consequence of (63), we have:

Corollary A.1. Let Y be an Rd-valued and Z be an Rn-valued semimartingale, then we
have

Y (t)ZT (t) = Y (0)ZT (0) +

∫ t

0

dY (s)ZT (s−) +

∫ t

0

Y (s−)dZT (s) + ([Yi, Zj]t) i=1,...,d
j=1,...,n

for all t ≥ 0.

1(Ft)t≥0 shall be right continuous and complete.
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Proof. Considering the stochastic differential of the ijth component of the matrix-valued
process Y (t)ZT (t), t ≥ 0, and using (63) gives the result, see also [7].
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