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 Abstract—Penetration of renewable energy sources (RESs) and electrical energy storage (EES) systems in distribution systems is increasing, and it is crucial to investigate their impact on systems’ operation scheme, reliability and security. In this paper, expected energy not supplied (EENS) and voltage stability index (VSI) of distribution networks are investigated in dynamic balanced and unbalanced distribution network reconfiguration, including RESs and EES systems. Furthermore, due to the high investment cost of the EES systems, the number of charge and discharge is limited, and the state-of-health constraint is included in the underlying problem to prolong the lifetime of these facilities. The optimal charging/discharging scheme for EES systems and optimal distribution network topology are presented in order to optimize the operational costs, and reliability and security indices simultaneously. The proposed strategy is applied to a large-scale 119-bus distribution test network in order to show the economic justification of the proposed approach.  Index Terms—Energy Management, Distribution Network Reconfiguration, Energy Storage, PV Panels, Reliability. 
I.  INTRODUCTION 

PERATIONAL strategies of distribution networks have significantly changed over the past decade due to the high penetration of renewable energy sources (RESs) and energy storages alongside automation systems [1]. The stochastic nature of RES poses a serious challenge to supply the demand in a reliable way. Accordingly, a lot of studies have been carried out to optimally manage charging and discharging schedules of energy storage units, which play a decisive role in the management of renewable energy sources within distribution networks [2-4]. In addition, as one of the prevalent techniques (due to the integration of automation 
                                                           This work was supported in part by International Science and Technology Cooperation Project of Sichuan Province, China, under Grant 2018HH0146. J.P.S. Catalão acknowledges the support by FEDER funds through COMPETE 2020 and by Portuguese funds through FCT, under SAICT-PAC/0004/2015 (POCI01-0145-FEDER-016434), 02/SAICT/2017 (POCI-01-0145-FEDER-029803) and UID/EEA/50014/2019 (POCI-01-0145-FEDER-006961). A. Azizivahed, S. Ghavidel, L. Li and J. Zhang are with the Faculty of Engineering and Information Technology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia (e-mails:{Sahand.GhavidelJirsaraie, Ali.Azizivahed}@student.uts.edu.au; {li.li, jiangfeng.zhang}@uts.edu.au). A. Arefi is with the School of Engineering and Information Technology, Murdoch University, Perth, Australia. (email: a.arefi@murdoch.edu.au). M. Shafie-khah is with School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland (e-mail: mshafiek@univaasa.fi). J.P.S. Catalão is with INESC TEC and the Faculty of Engineering of the University of Porto, Porto 4200-465, Portugal (e-mail: catalao@fe.up.pt).  

system in distribution networks), distribution feeder reconfiguration (DFR) is implemented on distribution systems in the presence of RES and energy storages. The DFR process is to apply changes to the topology of distribution networks in order to optimize certain objective functions subject to all operational constraints [5]. The DFR is carried out by managing the on/off states of tie-switches and sectionalizing-switches in a distribution feeder without islanding any buses.  The DFR problem can be formulated as a mixed-integer, non-linear and non-convex optimization problem. Therefore, traditional gradient based optimization algorithms are not suitable to solve DFR [6]. Accordingly, many researchers adopted intelligent evolutionary optimization methods to solve the distribution network reconfiguration problem. For example, in [7], an enhanced gravitational search algorithm is implemented to solve the DFR in order to improve transient stability and reduce operational cost and power losses. In [8], a hybrid evolutionary algorithm based on particle swarm optimization algorithm and Nelder–Mead simplex search algorithm is developed to minimize the active power loss. Furthermore, a modified genetic algorithm is proposed for DFR in [9] where the variable population size is taken into account. In [10], the optimal sizing, location, and network topology are obtained simultaneously by using optimal power flow to minimize operational cost and power losses.  Additionally, the deployment of RESs and electrical energy storages requires studies on the optimal management of these facilities. Many studies are carried out in order to obtain an optimal management scheme for electrical energy storages in the fixed-topology distribution networks. For instance, the optimal charging and discharging pattern for energy storage in the distribution network is obtained using a modified evolutionary algorithm to improve reliability and reduce operational cost [11]. In [12], technical and financial benefits of electrical energy storage systems in distribution networks are investigated. A dynamic model for the energy management of dispatchable distributed generation sources of micro-grids in the presence of wind farms and PV farms is formulated in [13] to balance the generation and demand. In [14], the energy storage units are allocated in optimal places in a distribution system integrated with  wind power and PV sources in order to prolong the lifetime of energy storage units. Moreover, optimal investment cost of batteries is obtained in order to maximize the benefit [15].  

Energy Management Strategy in Dynamic 

Distribution Network Reconfiguration considering 

Renewable Energy Resources and Storage 
Ali Azizivahed, Member, IEEE, Ali Arefi, Senior Member, IEEE, Sahand Ghavidel, Student Member, IEEE, Miadreza Shafie-khah, Senior Member, IEEE,  Li Li, Member, IEEE, João P. S. Catalão, Senior Member, IEEE, and Jiangfeng Zhang, Member, IEEE   

O 



 2 
It is noteworthy that the above-mentioned literature regarding DFR has ignored the daily load variation and solved the DFR during a predetermined time interval. The DFR model for non-variable loads cannot demonstrate the real scenarios and cannot achieve the optimal solution for 24-hour time scheduling for variable load distribution networks. To fill this gap, the DFR is determined in [16] for different time horizons (year, season, month and day) in order to find the most optimal switching cost. In [17], the DFR is applied to an unbalanced distribution network over a 24-hour time horizon. In addition, genetic algorithm is implemented as an optimization tool for minimizing network energy losses. Though the presented robust strategy in [17] considers the uncertain price, load consumption and RES power generation are treated deterministically based on a fixed prediction. In a distribution system with high penetration of RESs, applying stochastic programming in order to model intermittent behavior of these uncertainty sources is a prevalent and practical solution for distribution operations. In addition, the solution for dynamic DFR in the presence of RESs integrated with energy storages is not evaluated markedly in the aforementioned literature.   Accordingly, an improved optimization model is expected to include these three aspects: dynamic distribution feeder reconfiguration, optimal management scheme for energy storages integrated with RESs, and meeting demand in a reliable and stable way considering uncertainties in RESs power generation, energy price and load consumption. The mentioned model should give operators a decision-making strategy in which the most suitable DFR is achieved by proper DG unit dispatching pattern, optimal energy storage charging/discharging control, and appropriate reliability and stability levels. Eventually, the problem can be completed when the constraints related to the technical and operational aspects are considered through DFR and energy management problem. To address the above-mentioned problem, this paper presents reliability and stability oriented management scheme. The main contributions of this paper are summarized as follows. 
 The dynamic distribution networks and energy management are modeled simultaneously. The obtained results include optimal switching plan, optimal batteries charging/discharging schedule and optimal daily diesel generators dispatching. 
 The energy not supplied is considered as a separate objective function based on graph theory. Similarly, the voltage stability based on the distribution network loadability is formulated.  
 Scenario reduction strategy and shuffled frog leaping algorithm (SFLA) are utilized in order to obtain the optimal solutions for both balanced and unbalanced distribution networks. Also, the intermittent nature of electricity price, load consumption and PV generations are considered as uncertainty sources. The remainder of this paper is organized as follows. Section II presents the underlying problem formulation and framework. It consists of decision variables, objective functions, problem constraints and optimization methodology. Section III presents case studies and numerical results, and finally, Section IV concludes the paper. 

II.  PROBLEM DEFINITION AND FRAMEWORK 
In some cases, DISCO is the owner of some parts of distribution network [18]. Here, it is assumed that only one DISCO is the owner of all facilities and operates the distribution network. It solves the stochastic optimization problem by considering uncertainty in PV generation and electricity price. The problem formulation is explained in the following six parts; decision variables, objective functions (operational cost, reliability index and security index), operational limitations and constraints, and uncertainty modeling and optimization tool. 

A.  Decision Variables 
The decision variables of underlying problem include graph topology of the network, diesel generators active power and batteries charge and discharge scheme as follows:  

𝑿 = [𝑿𝑆𝑤 𝑿𝐷𝐺 𝑿𝐵𝑎𝑡𝑡 𝑿𝑇𝑎𝑝] (1) 
𝑿𝑆𝑤 = [𝑋̅𝑆𝑤1 𝑋̅𝑆𝑤2 … 𝑋̅𝑆𝑤𝑁𝑠𝑤] (2) 
𝑿𝐷𝐺 = [𝑋̅𝐷𝐺1 𝑋̅𝐷𝐺2 … 𝑋̅𝐷𝐺𝑁𝐷𝐺] (3) 
𝑿𝐵𝑎𝑡𝑡 = [𝑋̅𝐵𝑎𝑡𝑡1 𝑋̅𝐵𝑎𝑡𝑡2 … 𝑋̅𝐵𝑎𝑡𝑡𝑁𝐵𝑎𝑡𝑡] (4) 
𝑿𝑇𝑎𝑝 = [𝑋̅𝑡𝑎𝑝1 𝑋̅𝑇𝑎𝑝2 … 𝑋̅𝑇𝑎𝑝𝑁𝑇𝑎𝑝] (5) 
𝑋̅𝑆𝑤𝑘 = [𝑋𝑆𝑤𝑘

1 𝑋𝑆𝑤𝑘
2 … 𝑋𝑆𝑤𝑘

24 ], 𝑘𝜖{1,2,… , 𝑁𝑠𝑤} (6) 
𝑋̅𝐷𝐺𝑘 = [𝑋𝐷𝐺𝑘

1 𝑋𝐷𝐺𝑘
2 … 𝑋𝐷𝐺𝑘

24 ], 𝑘𝜖{1,2, … , 𝑁𝐷𝐺} (7) 
𝑋̅𝐵𝑎𝑡𝑡𝑘 = [𝑋𝐵𝑎𝑡𝑡𝑘

1 𝑋𝐵𝑎𝑡𝑡𝑘
2 … 𝑋𝐵𝑎𝑡𝑡𝑘

24 ],   𝑘𝜖{1,2,… , 𝑁𝐵𝑎𝑡𝑡} (8) 
𝑋̅𝑇𝑎𝑝𝑘 = [𝑋𝑇𝑎𝑝𝑘

1 𝑋𝑇𝑎𝑝𝑘
2 … 𝑋𝑇𝑎𝑝𝑘

24 ],   𝑘𝜖{1,2, … ,𝑁𝑇𝑎𝑝} (9) where, 𝑿 is the decision variable vector of the proposed problem which consists of four sub-decision variables: open switches (𝑿𝑆𝑤), diesel generators output (𝑿𝐷𝐺), batteries active power charge/discharge (𝑿𝐵𝑎𝑡𝑡) and tap position of the tap-changer (𝑿𝑇𝑎𝑝). Notations 𝑋̅𝑆𝑤𝑘 , 𝑋̅𝐷𝐺𝑘, 𝑋̅𝐵𝑎𝑡𝑡𝑘 and 𝑋̅𝑇𝑎𝑝𝑘  
are the 𝑘𝑡ℎ set of open switch numbers, active power output of 
𝑘𝑡ℎ diesel generator, active power of charge/discharge of the 
𝑘𝑡ℎ battery, and tap position of the 𝑘𝑡ℎ tap-changer, at a 24-hour time horizon, respectively. 
B.  Operational Cost   

The operational cost includes the cost of energy purchasing from substation, the fuel cost of diesel generators and switching which can be formulated as:  
𝐶𝑜𝑠𝑡 =∑∑𝜌𝑠 (∑ 𝐶𝑛,𝑡,𝑠

𝑠𝑠

𝑁𝑆𝑢𝑏

𝑛=1

× 𝑃𝑛,𝑡,𝑠
𝑠𝑠 +∑𝐶𝑗,𝑡,𝑠

𝐷𝐺

𝑁𝐷𝐺

𝑗=1

× 𝑃𝑗,𝑡,𝑠
𝐷𝐺)

𝑁𝑠

𝑠=1

24

𝑡=1

+∑∑𝐶𝑆𝑤

𝑁𝑆𝑤

𝑘=1

× |𝑆𝑘
𝑡 − 𝑆0,𝑘

𝑡 |

24

𝑡=1

 
(10) 

where, 𝐶𝑛,𝑡,𝑠𝑠𝑠 , 𝐶𝑗,𝑡,𝑠𝐷𝐺  and 𝐶𝑆𝑤 are the price of energy from 𝑛𝑡ℎ 
substation at 𝑡𝑡ℎ time interval for 𝑠𝑡ℎ scenario, the price of fuel of 𝑗𝑡ℎ diesel generator at 𝑡𝑡ℎ time interval for 𝑠𝑡ℎ scenario and switching cost, respectively; 𝜌𝑠 is the probability of 𝑠𝑡ℎ scenario; 𝑁𝑆𝑢𝑏 (𝑁𝐷𝐺) and 𝑁𝑆𝑤 are the number of substations (diesel generators) and the number of switches, respectively;  
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 Fig. 1. Thevenin equivalent system of bus i at 𝑡𝑡ℎ hour for 𝑠𝑡ℎ scenario 
𝑁𝑠 is the number of scenarios; 𝑃𝑛,𝑡,𝑠𝑠𝑠  and 𝑃𝑗,𝑡,𝑠𝐷𝐺  are the active 
power from 𝑛𝑡ℎ substation and active power from 𝑗𝑡ℎ diesel generator at 𝑡𝑡ℎ time interval for 𝑠𝑡ℎ scenario, respectively; and 𝑆𝑘𝑡  and 𝑆0,𝑘𝑡  are the new and initial status of 𝑘𝑡ℎ switch at 
𝑡𝑡ℎ time interval.  
C.  Desire Reliability Index 

Almost all power outages and blackouts are caused by faults in the transmission and distribution networks [19, 20]. Accordingly, the operational problems should be carried out to optimize a reliability index such as minimization of EENS as follows: 
𝐸𝐸𝑁𝑆 = ∑ ∑ 𝐸𝐸𝑁𝑆𝑖,𝑡

𝑁𝑏𝑢𝑠
𝑖=2

24
𝑡=1 , (11) where, 𝐸𝐸𝑁𝑆𝑖𝑡 is the expected energy not supplied of 𝑖𝑡ℎ bus at 𝑡𝑡ℎ time interval; and 𝑁𝑏𝑢𝑠 is the number of buses. Notation 

𝐸𝐸𝑁𝑆𝑖,𝑡 is defined as follows: 
𝐸𝐸𝑁𝑆𝑖,𝑡 = ∑ 𝜌𝑠𝑃𝑖,𝑡,𝑠 × (∑ 𝑈𝑙𝑙∈𝐻𝑖 + ∑ 𝑈𝑘

′
𝑘∈𝐻𝑖

′ )
𝑁𝑠
𝑠=1 , (12) where, 𝑃𝑖,𝑡,𝑠 is the total generation and consumption of active power of 𝑖𝑡ℎ bus at 𝑡𝑡ℎ time interval for 𝑠𝑡ℎ scenario; 𝐻𝑖  and 

𝐻𝑖
′ are the set of downstream and upstream branches of 𝑖𝑡ℎ bus, respectively; 𝑈𝑙 and 𝑈𝑘′  are the service unavailability related to the reparation time of  𝑙𝑡ℎ downward branch of the 

𝑖𝑡ℎ bus and the service unavailability associated to the restoration time of  𝑘𝑡ℎ upward branch of the 𝑖𝑡ℎ bus, respectively. Notations 𝑈𝑙 and 𝑈𝑘′  are defined as follows: 
𝑈𝑙 = 𝛽𝑙 × 𝑡𝑙  
𝑈𝑘
′ = 𝛽𝑘 × 𝑡𝑘

′  (13) where, 𝛽𝑙 and 𝛽𝑘 are the failure rate (fail/year) of 𝑙𝑡ℎ and 𝑘𝑡ℎ branch, respectively; and 𝑡𝑙 and 𝑡𝑘′  are the average reparation of 𝑙𝑡ℎ branch and restoration time of 𝑘𝑡ℎ branch, respectively. 
D.   Voltage Stability Index 

Voltage collapse is one of the negative consequences of increasing load in distribution systems. In order to improve the network loadability, the voltage stability index is included in the underlying problem and defined based on “Thevenin-
equivalent” [21]. The advantage of this strategy in comparison with the previous methods in [22] is that it can be implemented on both mesh and radial networks. More details of this method are explained as follows. First, the Thevenin-equivalent will be obtained for all bases of networks as shown in Error! Reference source not found.. According to the load flow technique, (14) and (15) can be obtained; and from these equations, (16) can be obtained [22]. 
𝐼𝑖,𝑡,𝑠 =

𝑉𝑖,𝑡,𝑠
𝑡ℎ − 𝑉𝑖,𝑡,𝑠

𝑅𝑖,𝑡,𝑠
𝑡ℎ + 𝑗𝑋𝑖,𝑡,𝑠

𝑡ℎ
 (14) 

𝑃𝑖,𝑡,𝑠 − 𝑗𝑄𝑖,𝑡,𝑠 = 𝑉𝑖,𝑡,𝑠
∗ × 𝐼𝑖,𝑡,𝑠 (15) 

𝑃𝑖,𝑡,𝑠 − 𝑗𝑄𝑖,𝑡,𝑠 = 𝑉𝑖,𝑡,𝑠
∗ ×

𝑉𝑖,𝑡,𝑠
𝑡ℎ − 𝑉𝑖,𝑡,𝑠

𝑅𝑖,𝑡,𝑠
𝑡ℎ + 𝑗𝑋𝑖,𝑡,𝑠

𝑡ℎ
 (16) 

Eq. (17) can be calculated from (16). Coefficients 𝐵𝑖,𝑡,𝑠 and 
𝐶𝑖,𝑡,𝑠 are defined by (18) and (19), respectively. 
|𝑉𝑖,𝑡,𝑠|

4
− 𝐵𝑖,𝑡,𝑠 . |𝑉𝑖,𝑡,𝑠|

2
+ 𝐶𝑖,𝑡,𝑠 = 0  (17) 

𝐵𝑖,𝑡,𝑠 = |𝑉𝑖,𝑡,𝑠
𝑡ℎ |

2
− 2𝑃𝑖,𝑡,𝑠𝑅𝑖,𝑡,𝑠

𝑡ℎ − 2𝑄𝑖,𝑡,𝑠𝑋𝑖,𝑡,𝑠
𝑡ℎ   (18) 

𝐶𝑖,𝑡,𝑠 = (𝑃𝑖,𝑡,𝑠
2 + 𝑄𝑖,𝑡,𝑠

2 ). ((𝑅𝑖,𝑡,𝑠
𝑡ℎ )

2
+ (𝑋𝑖,𝑡,𝑠

𝑡ℎ )
2
)  (19) 

In order to have a stable condition, constraint (20) is required. Therefore, the VSI will be defined as in (21). 
𝐵𝑖,𝑡,𝑠
2 − 4𝐶𝑖,𝑡,𝑠 ≥ 0 (20) 
𝑣𝑠𝑖𝑖,𝑡,𝑠 = (|𝑉𝑖,𝑡,𝑠

𝑡ℎ |
2
− 2𝑃𝑖,𝑡,𝑠𝑅𝑖,𝑡,𝑠

𝑡ℎ − 2𝑄𝑖,𝑡,𝑠𝑋𝑖,𝑡,𝑠
𝑡ℎ )

2
−

4. (𝑃𝑖,𝑡,𝑠
2 + 𝑄𝑖,𝑡,𝑠

2 ). ((𝑅𝑖,𝑡,𝑠
𝑡ℎ )

2
+ (𝑋𝑖,𝑡,𝑠

𝑡ℎ )
2
)  

𝑖 = 2, 3, … ,𝑁𝑏𝑢𝑠 (21) 
All parameters in (14)-(21) are depicted in Error! Reference source not found.. In order to reach a stable operation condition, VSI for all buses must be greater than zero. In this regard, the third objective function is defined as follow; 

𝒗𝒔𝒊𝑡,𝑠 = [𝑣𝑠𝑖2,𝑡,𝑠, 𝑣𝑠𝑖3,𝑡,𝑠 , … , 𝑣𝑠𝑖𝑁𝑏𝑢𝑠,𝑡,𝑠] (22) 
𝑏𝑣𝑠𝑖𝑖,𝑡,𝑠 = {

0 𝑣𝑠𝑖𝑖,𝑡,𝑠 > 0

1 𝑣𝑠𝑖𝑖,𝑡,𝑠 ≤ 0
 (23) 

𝑩𝒗𝒔𝒊𝑡,𝑠  = [𝑏𝑣𝑠𝑖2,𝑡,𝑠, 𝑏𝑣𝑠𝑖3,𝑡,𝑠, … , 𝑏𝑣𝑠𝑖𝑁𝑏𝑢𝑠,𝑡,𝑠] (24) 
𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 = ℳ × 𝑠𝑢𝑚(𝑩𝒗𝒔𝒊𝑡,𝑠) (25) 
𝑉𝑆𝐼𝑡,𝑠  =

1

𝑚𝑖𝑛 (𝒗𝒔𝒊𝑡,𝑠)
+ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 (26) 

𝑉𝑆𝐼 =
1

24
∑∑𝜌𝑠

𝑁𝑠

𝑠=1

24

𝑡=1

𝑉𝑆𝐼𝑡,𝑠 (27) 
𝑉𝑆𝐼 is the third objective function. The parameter ℳ is a large number (for instance, 10100) which is used as a penalty factor. The penalty factor is implemented to eliminate the unstable decision variables during the optimization process. 

E.  Technical and Operational Constraints 
In this section, all the relevant technical and operational constraints are explained as below. 
 Distribution network radial structure 

Almost all distribution networks are operated in radial topology in order to simplify the protection systems. In order to satisfy the radial structure constraint, the bus branch incidence matrix is implemented. More details regarding the proposed matrix can be found in [23]. 
 Diesel generator limitation 

As mentioned, the proposed problem is solved dynamically. In this regard, the ramp rate constraints should be considered besides the maximum and minimum output limitations. 
𝑃𝑗
𝐷𝐺,𝑚𝑖𝑛 ≤ 𝑃𝑗,𝑡,𝑠

𝐷𝐺 ≤ 𝑃𝑗
𝐷𝐺,𝑚𝑎𝑥     ∀𝑗, 𝑡, 𝑠,     (28) 
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𝑅𝑎𝑚𝑝𝑗

𝐷𝑜𝑤𝑛 ≤ 𝑃𝑗,𝑡,𝑠
𝐷𝐺 − 𝑃𝑗,𝑡−1,𝑠

𝐷𝐺 ≤ 𝑅𝑎𝑚𝑝𝑗
𝑈𝑝
     ∀𝑗, 𝑡 , 𝑠,  (29) 

where, 𝑃𝑗𝐷𝐺,𝑚𝑖𝑛 and 𝑃𝑗𝐷𝐺,𝑚𝑎𝑥  are the minimum and maximum 
limitations of 𝑗𝑡ℎ diesel generator, respectively; and 
𝑅𝑎𝑚𝑝𝑗

𝐷𝑜𝑤𝑛 and 𝑅𝑎𝑚𝑝𝑗𝑈𝑝 are down and up ramp rates of 𝑗𝑡ℎ 
diesel generator, respectively. 

 Current and voltage limitations 
The bus voltages and branch currents should be within their maximum and minimum boundaries.  

𝑆𝐿𝑗,𝑡,𝑠 ≤ 𝑆𝐿𝑗
𝑚𝑎𝑥 (30) 

𝑉𝑘
𝑚𝑖𝑛 ≤ 𝑉𝑘,𝑡,𝑠 ≤ 𝑉𝑘

𝑚𝑎𝑥 (31) 
where 𝑆𝐿𝑗,𝑡,𝑠 and 𝑆𝐿𝑗𝑚𝑎𝑥 are the power flow magnitude of 𝑗𝑡ℎ 
branch at 𝑡𝑡ℎ hour for 𝑠𝑡ℎ scenario and its corresponding maximum power flow limitation, respectively; and 𝑉𝑘𝑚𝑖𝑛 and 
𝑉𝑘
𝑚𝑎𝑥 are the minimum and maximum voltage of 𝑘𝑡ℎ bus. 

 Battery constraints 
Because of the high investment cost of energy storages, they should be operated in a secure environment to prolong their lifetime. In this regard, the maximum permitted number of switching back and forth between charging and discharging status must be considered besides the state of charge and other constraints. 

𝐸𝑖,𝑡 = 𝐸𝑖,𝑡−1 + 𝜌𝑐ℎ,𝑖 × 𝑃𝑐ℎ,𝑖,𝑡 × ∆𝑡 −
1

𝜌𝑑𝑖𝑠,𝑖
𝑃𝑑𝑖𝑠,𝑖,𝑡 × ∆𝑡,

𝑖 = 1,2,… , 𝑁𝐵𝑎𝑡𝑡,

𝑡 = 1,… ,24,   ∆𝑡 = 1ℎ (32) 
𝐸𝑖
𝑚𝑖𝑛 ≤ 𝐸𝑖,𝑡 ≤ 𝐸𝑖

𝑚𝑎𝑥;   𝑖 = 1,2, … , 𝑁𝐵𝑎𝑡𝑡  𝑡 = 1,… ,24 (33) 
𝑃𝑐ℎ,𝑖,𝑡 ≤ 𝑃𝑐ℎ,𝑖

𝑚𝑎𝑥, 𝑖 = 1,2,… , 𝑁𝐵𝑎𝑡𝑡, 𝑡 = 1,… ,24 (34) 
𝑃𝑑𝑖𝑠,𝑖,𝑡 ≤ 𝑃𝑑𝑖𝑠,𝑖

𝑚𝑎𝑥, 𝑖 = 1,2, … ,𝑁𝐵𝑎𝑡𝑡, 𝑡 = 1,… ,24 (35) 
∑

|𝑆𝑡+1 − 𝑆𝑡|
2
⁄

23

𝑡=1

≤ 𝑁𝐶𝐻/𝐷𝐶𝐻 (36) where 𝐸𝑖,𝑡 is the amount of energy storage in the 𝑖𝑡ℎ battery at 
𝑡𝑡ℎ hour. 𝑃𝑐ℎ,𝑖,𝑡 (𝑃𝑑𝑖𝑠,𝑖,𝑡) is the permitted rate of charge 
(discharge) of 𝑖𝑡ℎ  battery during a determinate period of time 
(∆𝑡 = 1h). 𝜌𝑐ℎ,𝑖 (𝜌𝑑𝑖𝑠,𝑖) is the charge (discharge) efficiency 

percentage of the 𝑖𝑡ℎ battery. 𝐸𝑖𝑚𝑎𝑥 (𝐸𝑖𝑚𝑖𝑛) is the maximum 
(minimum) amount of permitted energy storage in 𝑖𝑡ℎ battery. Constraints (34) and (35) impose the maximum charge rate 
𝑃𝑐ℎ,𝑖
𝑚𝑎𝑥, and maximum discharge rate, 𝑃𝑑𝑖𝑠,𝑖𝑚𝑎𝑥, of the 𝑖𝑡ℎ battery 

during a determinate period of time (∆𝑡 = 1h). In constraint 
(36), 𝑁𝐶𝐻/𝐷𝐶𝐻 is the maximum permitted number of switching 
back and forth between charging and discharging status and St represents the charging and discharging status which is equal to 1 and -1 for charging and discharging status, respectively. 
F.  Uncertainty Characterization 

In this study, two sources of uncertainty are considered. 
 Electricity price of power supplied by substation  
 Output power of PV plants. 1) PV power uncertainty modeling: For each time period, 

historical data of solar irradiance are used to produce a beta [24] distribution function as follows; 

𝑓𝑏(𝑠) =

{
 
 

 
 Г

(𝛼 + 𝛽)

Г(𝛼). Г(𝛽)
∙ 𝑠(𝛼−1) ∙ (1 − 𝑠)(𝛽−1),

0 ≤ 𝑠 ≤ 1
𝛼, 𝛽 ≥ 0

  
     

0,                                                 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(37) 
where 𝑓𝑏(𝑠) is the beta distribution function. 𝛼 and 𝛽 are the parameters of the beta distribution function and can be obtained using historical data. The continuous hourly beta PDFs are split into several intervals with equal width. Each interval has a mean value and a probability of occurrence which can be calculated as follows.  
𝜌𝑖
𝑠 = ∫ 𝑓𝑏(𝑠)𝑑𝑠𝑖

𝑠𝑖+1

𝑠𝑖

 (38) 
where 𝑠𝑖 and 𝑠𝑖+1 indicate the starting and ending points of the interval i, respectively. The output power of a PV plant corresponding to specific solar irradiation can be calculated as follows. 
𝑃𝑦,𝑡
𝑆 (𝑠𝑦,𝑡) = 𝑁 × 𝐹𝐹 × 𝑉𝑦,𝑡 × 𝐼𝑦,𝑡 (39) 
𝐹𝐹 =

𝑉𝑀𝑃𝑃 × 𝐼𝑀𝑃𝑃
𝑉𝑜𝑐 × 𝐼𝑠𝑐

 (40) 
𝑉𝑦,𝑡 = 𝑉𝑜𝑐 − 𝐾𝑣 × 𝑇𝑦,𝑡

𝑐  (41) 
𝐼𝑦,𝑡 = 𝑠𝑦,𝑡[𝐼𝑠𝑐 −𝐾𝐼 × (𝑇𝑦,𝑡

𝑐 − 25)] (42) 
𝑇𝑦,𝑡
𝑐 = 𝑇𝐴 + 𝑠𝑦,𝑡 (

𝑁𝑂𝑇 − 20

0.8
) (43) 

where 𝑇𝑦,𝑡𝑐  is cell temperature (℃); 𝑇𝐴 is ambient temperature 
(℃); 𝐾𝑣 and 𝐾𝑖 are voltage and current temperature coefficient 
(𝑉 ℃⁄  and A ℃⁄ ), respectively; 𝑁𝑜𝑡 denotes nominal operating temperature of cell (℃); 𝐹𝐹 is fill factor; 𝐼𝑠𝑐  and 𝑉𝑜𝑐  indicates short circuit current and open circuit voltage (A and V), respectively; 𝐼𝑀𝑃𝑃 and 𝑉𝑀𝑃𝑃 are, respectively current and 
voltage at maximum power point (A and V); 𝑃𝑦,𝑡𝑆  is output 
power of the PV module; 𝑠𝑦,𝑡 solar irradiance; and 𝑡 and 𝑦 are 
the indices of time periods and scenarios. 
 2) Market prices uncertainty modeling: In this paper, log-normal distribution function [25] is considered to characterize the market price of each hour. Accordingly, the market prices can be expressed as follows; 
𝑓𝑝(𝐸

𝑝𝑟, 𝜇, 𝜎) =
1

𝐸𝑝𝑟𝜎√2𝜋
𝑒𝑥𝑝(−

(𝑙𝑛𝐸𝑝𝑟 − 𝜇)
2

2𝜎2
) 

(44) 
where 𝜇 and 𝜎 represent mean value and standard deviation, 
respectively, and 𝐸𝑝𝑟 is the distribution function parameter (i.e., electricity market price). In a similar way, the log-normal PDFs are sliced into several intervals. Each interval yields a mean value and 
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probability of occurrence. Different realization of PV power production and market prices can be modeled using a scenario generation process according to roulette wheel mechanism [26]. In this method, a large number of scenarios is generated. Higher numbers of scenarios result in a more precise modeling of the system. However, the higher number of scenarios causes higher computational burden. To this end, the number of scenarios should be selected in a way that not only diminishes the computational burden of the problem but also maintains a good approximation of the uncertain parameters. In order to reduce the number of scenarios and consequently reduce the computational time; the backward method is implemented to eliminate the duplicate scenarios or the scenarios with minimum distance [27].  
G.  Multi-objective Strategy and Optimization Tool 

In this section, the multi-objective technique and the shuffled frog leaping algorithm (SFLA) are introduced. The ALGORITHM and Fig. 2 describe the proposed multi-objective technique. According to this method, all populations are sorted in ascending order of the first objective function, then an eliminating zone is defined for each individual (i.e. Fig. 2), and based on that, some populations are eliminated. This process is applied to reach a set of non-dominated solutions.  The ranges of objective function values are different in the multi-objective programming. Therefore, the fuzzy decision-making technique (i.e. based on trapezoidal fuzzy membership functions) is employed in order to have the same range for all of them. 

 Fig. 2. Eliminating zone for each solution 
ALGORITHM 
1. Input: 𝒑𝒐𝒑 = [population & objective functions]. 2. Sort the population in ascending order of the first objective function. 3. 𝑧=1, 𝑁𝑝𝑜𝑝=𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 4. While 𝑧 ≤ 𝑁𝑝𝑜𝑝 5.  Constitute the eliminating zone (𝐸𝑍𝑧) for 𝑧𝑡ℎ population (red shadow in Fig. 2). 6.  Eliminate the populations that are in the eliminating zone of 𝑧𝑡ℎ population. 

𝒑𝒐𝒑𝒆𝒍
𝒛 ⊆ 𝒑𝒐𝒑  &  

𝒑𝒐𝒑𝒆𝒍
𝒛 ={𝑠𝑒𝑡 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐸𝑍𝑧 𝑎𝑟𝑒𝑎} 

𝒑𝒐𝒑 = 𝒑𝒐𝒑 ∖ {𝒑𝒐𝒑𝒐𝒆𝒍
𝒛 } 7.  Update 𝑧=𝑧+1, 𝑁𝑝𝑜𝑝=𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 

8. end 9. Output: 𝑠𝑒𝑡 𝑜𝑓 𝑛𝑜𝑛 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = 𝒑𝒐𝒑. 

 
Fig. 3. The optimization framework of energy management and distribution network reconfiguration 

µ𝑂𝑏𝑗𝑚(𝑋)=

{
 
 

 
 1                                            𝑂𝑏𝑗𝑚≤𝑂𝑏𝑗𝑚

𝑚𝑖𝑛

𝑂𝑏𝑗𝑚
𝑚𝑎𝑥-𝑂𝑏𝑗𝑚

𝑂𝑏𝑗𝑚
𝑚𝑎𝑥-𝑂𝑏𝑗𝑚

𝑚𝑖𝑛
     𝑂𝑏𝑗𝑚

𝑚𝑖𝑛≤𝑂𝑏𝑗𝑚≤𝑂𝑏𝑗𝑚
𝑚𝑎𝑥

0                                            𝑂𝑏𝑗𝑚≥𝑂𝑏𝑗𝑚
𝑚𝑎𝑥

 (
(45) 

where 𝑂𝑏𝑗𝑚 and 𝑂𝑏𝑗𝑚𝑚𝑎𝑥  (𝑂𝑏𝑗𝑚𝑚𝑖𝑛) are the 𝑚𝑡ℎ objective function and its corresponding upper (lower) bound, respectively, and µ𝑂𝑏𝑗𝑚 is the fuzzy set for 𝑚th objective function. The fitness function is determined for each individual as follows: 
𝜑𝑖 =

∑ 𝜔𝑚 × µ𝑂𝑏𝑗𝑚
(𝑿𝑖)

𝑁𝑂𝑏𝑗
𝑚=1

∑ ∑ 𝜔𝑚 × µ𝑂𝑏𝑗𝑚
(𝑿𝑖)

𝑁𝑂𝑏𝑗
𝑚=1

𝑁𝑛𝑑
𝑘=1

 ((46) where 𝑁𝑛𝑑 is the number of non-dominated solution; 𝜑𝑖 and 
𝜔𝑚 are the fitness function of 𝑖𝑡ℎ non-dominated solution and the weighting factor (i.e. the priority grade from the decision makers point of view) of 𝑚𝑡ℎ objective function, respectively. In this study, 𝜔1 = 𝜔2 = 𝜔3 = 0.33 is chosen.  SFLA is implemented to solve the above optimization problem. This algorithm models the social life of group of frogs when they are searching food. The details of this method are available in [28]. The frogs are divided equally into several memeplexes. In this algorithm, the worst frog (𝑿𝑤𝑜𝑟𝑠𝑡) in each memeplex is updated according to two strategies based on the best frog in the memeplex (𝑿𝑏𝑒𝑠𝑡) and the best frog in all population (𝑿𝐺𝑏𝑒𝑠𝑡) as follows; 
𝑿𝑤𝑜𝑟𝑠𝑡
𝑛𝑒𝑤 = 𝑿𝑤𝑜𝑟𝑠𝑡 + 𝑟𝑎𝑛𝑑× (𝑿𝑏𝑒𝑠𝑡−𝑿𝑤𝑜𝑟𝑠𝑡) (47) 

𝐗worst
new = 𝐗worst+ rand × (𝐗Gbest −𝐗worst) (48) where 𝑟𝑎𝑛𝑑 is random number between 0 and 1. In the optimization process, the worst frog is updated by the best frog in the memeplex as in (47). If the fitness function for 

𝑿𝑤𝑜𝑟𝑠𝑡
𝑛𝑒𝑤  is better than of 𝑿𝑤𝑜𝑟𝑠𝑡 , then 𝑿𝑤𝑜𝑟𝑠𝑡  will be replaced by 𝑿𝑤𝑜𝑟𝑠𝑡𝑛𝑒𝑤 ; otherwise 𝑿𝑤𝑜𝑟𝑠𝑡  will be updated by the best frog in all population as in (48). Similarly, if the fitness function for 𝑿𝑤𝑜𝑟𝑠𝑡𝑛𝑒𝑤  is better than 𝑿𝑤𝑜𝑟𝑠𝑡 , 𝑿𝑤𝑜𝑟𝑠𝑡  will be replaced by 

𝑿𝑤𝑜𝑟𝑠𝑡
𝑛𝑒𝑤 , and if not, 𝑿𝑤𝑜𝑟𝑠𝑡  will be replaced by a new randomly generated frog. 
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This process will be applied for all memeplexes and for a predetermined number of iterations. The framework of the proposed strategy is depicted in Error! Reference source not found.. 

III.  SYSTEM MODEL AND SIMULATION RESULTS 
In order to assess the performance of the proposed method, a case study based on the 119-bus distribution network is provided in this section. 

A.  Case Study 
The 119-bus distribution network under study is shown in Fig. 4(a), consisting of three feeders, 15 tie-switches and 11 kV substation [29]. The average hourly forecasted active and reactive load profile is shown in Fig. 4(b). Four 500 kW PV panels and their relevant batteries are installed at bus#31, bus#42, bus#96 and bus#109. Five 500 kW diesel generators with unit power factor and 50 kW/h up and down ramp rate are located at bus#20, bus#28, bus#71, bus#74 and bus#111. 30 scenarios are implemented in order to simulate the uncertainty parameters. The simulation is done in MATLAB R2011b environment using a core-i5 processor laptop with 2.4 GHz clock frequency and 4.0 GB of RAM. 

 a) Single line 119-bus distribution network 

 b) Active and reactive load profiles Fig. 4. Data for 119-bus standard distribution system 

TABLE I  RESULTS OF DIFFERENT METHOD FOR MINIMIZING THE OPERATIONAL COST 
Method Operational Cost ($) 

Best Mean Worst STD C.T. 
GA 13068.06 13206.7 13355.0 109.81 201 PSO 12835.64 12985.2 13355.0 212.32 164 DE 12835.64 12903.5 13161.1 99.79 178 SFLA 12820.85 12841.2 12897.1 25.32 167 C.T.: Computational Time (Second) 

B.  Simulation and Results  
The three objective functions (Eqs. 10, 12 and 27) are important for the reliable and cost-effective operation of the distribution system; however, it is usually impossible to achieve the optimal results for all of them simultaneously. Also, the operation of diesel generators, batteries, and network switches are different in each case. Hence, various analyses are performed to explore the best compromise solution as will be described in the following. 1) Single objective case study: SFLA is compared with three different heuristic methods such as genetic algorithm (GA), particle swarm optimization (PSO) and differential evolution (DE), each is run 10 times to solve the DFR optimization problem, and the comparison results are detailed in Error! Reference source not found.. Although the PSO reaches the optimal solution in a slightly shorter computational time compared to the SFLA, the obtained results by the SFLA are better than those obtained by the other methods. And also, it has a more robust performance than other algorithms. Therefore, in the following, only SFLA is used. TABLE II shows the results of the optimization results for individual objectives and the initial condition (distribution network without DG units, PV panels and energy storages). Firstly, it is worth mentioning that the objective values of all objective functions are improved due to the positive impact of these facilities. In addition, the targeted objective (for example, operational cost) is minimized, and subsequently, the values of the other two objectives are calculated in each case. According to this table, the amount of optimal operational cost, optimal EENS, and optimal VSI are $12820.85, 340.73 kWh/year and 2.53 p.u., respectively. Also, it can be seen that the operational cost is sharply in conflict with two other objective functions. In other words, by minimizing operational cost, the amount of ENS and VSI are increased (368.646 kWh/year and 3.397 p.u.). And similarly, by minimizing the ENS and VSI, the amount of operational cost is increased to $13413.68 and $12939.96, respectively. Similarly, the operational cost conflicts with VSI. The optimal VSI amount is 2.1, and in this condition, the amount of operational cost is $13278.1. The list of open-switches for minimizing operational cost is shown in 0. it is worth mentioning that the radiality constraint is satisfied in each hour. furthermore, Fig. 5 and Fig. 6 show the diesel generators active power output and batteries active power charge/discharge. as can be seen, almost all the diesel generators are operated at their minimum level in order to minimize the operational cost. also, from Fig. 6 it can be seen that the maximum permitted number of switching back and 



 7 
forth between the charging and discharging status and the charging and discharging status constraint are satisfied for all batteries.  The list of open-switches for minimizing operational cost is shown in 0. It is worth mentioning that the radiality constraint is satisfied in each hour. Furthermore, Fig. 5 and Fig. 6 show the diesel generators active power output and batteries active power charge/discharge. As can be seen, almost all the diesel generators are operated at their minimum level in order to minimize the operational cost. Also, from Fig. 6 it can be seen that the maximum permitted number of switching back and forth between the charging and discharging status and the charging and discharging status constraint are satisfied for all batteries. TABLE II  RESULTS OF MINIMIZING THE OBJECTIVE FUNCTIONS SEPARATELY 

Method Cost ($) ENS (kWh/year) VSI (p.u.) 
Initial Condition 15633.87 544.7785 4.0509 Cost Minimization 12820.85 368.646 3.3974 ENS Minimization 13413.68 340.7324 3.3831 VSI Minimization 12939.96 367.9338 2.5336  TABLE III  LIST OF OPEN SWITCHES FOR MINIMIZING OPERATIONAL COST 

Hour Open Switches 
1 43-11- 23- 51- 47- 61- 38- 56- 72- 73- 98- 82- 85- 131- 32 2 45- 12- 17- 53- 122- 36- 39- 57- 66- 73- 128- 105- 101- 115- 33 3 43- 24- 20- 53- 46- 36- 27- 54- 71- 127- 98- 105- 102- 116- 33 4 43- 12- 120- 52- 48- 123- 27- 56- 126- 127- 96- 81- 102- 115- 33 5 118- 16- 7- 50- 48- 61- 124- 55- 70- 127- 76- 106- 101- 131- 34 6 42- 25- 120- 51- 48- 123- 38- 55- 71- 87- 128- 105- 103- 113- 34 7 118- 14- 23- 49- 46- 36- 37- 57- 89- 127- 128- 105- 103- 115- 32 8 44- 12- 120- 121- 48- 61- 37- 56- 66- 127- 76- 82- 85- 108- 132 9 118- 14- 23- 53- 122- 61- 39- 57- 68- 73- 75- 105- 103- 109- 33 10 44- 24- 21- 53- 47- 58- 37- 56- 72- 74- 96- 129- 130- 131- 31 11 41- 13- 23- 53- 122- 59- 38- 125- 70- 87- 96- 82- 102- 113- 30 12 45- 15- 19- 52- 48- 58- 124- 57- 89- 87- 97- 129- 85- 108- 34 13 41- 12- 23- 50- 47- 36- 124- 57- 70- 87- 76- 105- 85- 115- 31 14 41- 16- 17- 121- 48- 58- 39- 57- 126- 87- 128- 81- 85- 116- 34 15 118- 14- 120- 50- 46- 58- 38- 56- 88- 74- 128- 105- 102- 116- 34 16 42- 14- 20- 52- 122- 123- 124- 55- 72- 127- 97- 105- 103- 117- 33 17 42- 12- 23- 49- 48- 61- 39- 56- 71- 74- 76- 80- 100- 116- 34 18 45- 15- 18- 121- 48- 58- 124- 57- 71- 73- 128- 81- 102- 116- 34 19 45- 15- 20- 51- 48- 36- 124- 57- 72- 87- 128- 105- 85- 109- 30 20 45- 16- 7- 50- 122- 58- 27- 54- 71- 86- 97- 82- 103- 109- 30 21 41- 10- 18- 121- 122- 58- 38- 57- 90- 127- 96- 106- 101- 108- 33 22 43- 14- 21- 51- 46- 60- 38- 57- 72- 127- 97- 81- 85- 115- 34 23 43- 25- 22- 121- 47- 58- 39- 54- 69- 86- 75- 82- 100- 114- 34 24 118- 14- 120- 53- 48- 58- 124- 54- 68- 87- 76- 106- 103- 109- 33 

 Fig. 5. Diesel generator power scheduling for the optimal operational cost. 

 Fig. 6. Active power of batteries during charge and discharge for the optimal operational cost. 
2) Multi-objective case study: As mentioned, all three objective functions are in conflict, and it is impossible to find a solution to have optimal operational cost, ENS and VSI simultaneously. Therefore, the best strategy is to find a compromise among the three conflicted objective functions. In 

this regard, “Pareto optimal strategy” is applied in order to obtain a set of non-dominated solutions, and then decision makers would be able to have a tradeoff among the objective functions according to their considered priority. Fig. 7, Fig. 8 and Fig. 9 show the two-dimension Pareto optimal solutions for operational cost-ENS, operational cost-VSI and ENS-VSI, respectively. The percentages in these figures show the amount of conflict between the objective functions. The most conflict is observed in the operational cost-VSI case with 70.69%, while the minimum conflict is between ENS-VSI with 5.3%. The conflict between operational cost-ENS is 9.69%. In order to have a reliable and secure operational cost, it is better than to find a set of three-dimension non-dominated solutions.  Three-dimension Pareto front is shown in Fig. 10. The best compromise solution with the equal priority weight (𝑤1 =
𝑤2 = 𝑤3 = 0.33) is highlighted with a red star.  For this solution, the amounts of operational cost, ENS and VSI are $13933.064, 373.96 kWh/year and 3.213 p.u., respectively. The list of open switches for best compromise solution is listed in TABLE IV. According to these results, the crucial constraint for the radial structure is satisfied for each topology. Furthermore, Fig. 11 and Fig. 12 depict the active power output of diesel generators and active power of charging/discharging of batteries, respectively. From Fig. 11, it can be observed that the diesel generators are operated close to their middle levels in order to have a secure and reliable operation plan.  According to the energy not supplied formulation, it is better to feed the load consumption locally instead of feeding them through the transmission system. Then with respect to ENS improvement, the diesel generators tend to operate at their maximum level to feed the load consumption locally.  The same analysis can be done for VSI. In order to increase the distribution load-ability, it is better to feed the load consumption locally.  In the other way, diesel generators tend to operate at their minimum level in order to minimize the operational cost, and then the best compromise makes a tradeoff between these two different tendencies. 
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 Fig. 7. Two-dimension Pareto front for operational cost-EENS 

 Fig. 8. Two-dimension Pareto front for operational cost-VSI 

 Fig. 9. Two-dimension Pareto front for EENS-VSI 

 
Fig. 10. Three-dimension Pareto front for operational cost-ENS-VSI 
3) Unbalanced case study: In this subsection, the proposed approach is tested on an unbalanced version of the 119-bus distribution network. Compared to the original balanced test case, the total loads are 22654 kW and 16980 kVar at phase A, 21568 kW and 16038 kVar at phase B, and 21646 kW and 16106 kVar at phase C. Furthermore, three voltage regulators are encompassed on the three main feeders. In this case, the tap positions are considered in the decision variables and optimized with the other variables simultaneously. TABLE V shows the  extracted results for individual objective as well as the multi-objective case. According to these results, the amount of operational cost and ENS are almost tripled in comparison with the single-line case study. 

TABLE IV  LIST OF OPEN SWITCHES FOR BEST COMPROMISE 
 

Hour Open Switches 
1 40- 14- 22- 49- 47- 60- 27- 56- 65- 73- 128- 129- 104- 114- 30 2 118- 24- 7- 52- 122- 58- 39- 125- 66- 87- 76- 106- 104- 113- 30 3 45- 25- 6- 121- 122- 36- 27- 57- 70- 73- 98- 105- 85- 113- 33 4 44- 25- 7- 52- 47- 36- 37- 56- 71- 87- 128- 129- 103- 131- 31 5 44- 12- 21- 50- 48- 59- 38- 57- 69- 127- 76- 105- 130- 108- 32 6 45- 119- 23- 49- 122- 36- 124- 125- 70- 73- 98- 106- 103- 117- 32 7 118- 13- 21- 121- 122- 35- 124- 55- 90- 86- 128- 129- 103- 114- 33 8 40- 10- 18- 121- 46- 36- 38- 57- 70- 74- 97- 129- 101- 114- 33 9 44- 24- 4- 53- 48- 59- 38- 125- 70- 73- 96- 129- 104- 114- 34 10 41- 13- 7- 49- 122- 58- 38- 56- 69- 86- 75- 129- 130- 116- 132 11 41- 16- 20- 53- 122- 60- 124- 54- 89- 74- 97- 129- 101- 115- 31 12 43- 25- 3- 51- 48- 61- 37- 57- 90- 74- 96- 106- 101- 117- 34 13 118- 11- 21- 49- 46- 60- 38- 54- 65- 74- 98- 80- 100- 117- 30 14 42- 15- 19- 53- 48- 36- 37- 54- 69- 74- 128- 81- 85- 115- 132 15 42- 14- 23- 51- 46- 59- 37- 57- 66- 127- 98- 81- 101- 116- 30 16 44- 25- 18- 51- 47- 61- 27- 56- 88- 74- 96- 82- 101- 108- 33 17 43- 26- 21- 49- 47- 123- 37- 125- 126- 87- 76- 82- 130- 115- 33 18 42- 14- 20- 53- 48- 36- 39- 55- 69- 87- 76- 129- 130- 116- 32 19 118- 13- 23- 52- 47- 36- 37- 57- 68- 74- 128- 106- 100- 109- 132 20 44- 11- 19- 53- 47- 58- 124- 55- 69- 127- 76- 82- 85- 117- 34 21 118- 119- 7- 49- 48- 123- 39- 57- 69- 87- 98- 106- 104- 117- 32 22 118- 26- 18- 52- 47- 59- 38- 54- 70- 127- 96- 82- 103- 108- 32 23 41- 24- 6- 53- 122- 35- 27- 54- 65- 73- 128- 106- 103- 109- 30 24 42- 119- 120- 53- 48- 59- 124- 56- 65- 127- 98- 107- 101- 131- 132 

 Fig. 11. The diesel generator power scheduling for the best compromise 
While, the amount of VSI represents the amount of desire voltage stability index for the bus with the lowest stability margin. Furthermore, the conflict between the objective functions is obvious in the unbalanced case as well as the single-line case, and the best compromised solution provides the trade-off between the objective functions. The list of open-switches and the tap-changer positions are tabulated in TABLE VI. In accordance with these results, it is worthwhile to note that the crucial radial constraint is satisfied at all time intervals. Moreover, it is evident that the load profile is followed by the tap-positions. In other words, during the peak load period, the tap-positions tend to increase the voltage magnitude for two reasons; the first reason is to TABLE V  RESULTS OF OPTIMIZATION FOR THE UNBALANCED CASE 

Method Cost ($) ENS (kWh/year) VSI (p.u.) 
Cost Minimization 37118.89 1088.581 3.1539 ENS Minimization 38118.83 1073.687 6.0478 VSI Minimization 37578.26 1153.294 2.7322 Best Compromise 37175.70 1092.425 3.1532 
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TABLE VI  OPEN SWITCHES AND TAP CHANGER POSITION FOR THE BEST COMPROMISE Hour Open Switches Tap Position 

1 44, 24, 19, 51, 122, 58, 39, 55, 89, 74, 97, 107, 100, 115, 30 (-13), (-15), (-12) 
2 40, 11, 6, 49, 122, 35, 124, 54, 67, 74, 75, 107, 104, 115, 34 (-15), (-7), (-10) 
3 118, 14, 18, 53, 122, 58, 37, 57, 71, 74, 75, 105, 100, 109, 132 (-12), (-12), (-16) 
4 43, 24, 22, 51, 122, 36, 27, 57, 66, 127, 96, 105, 102, 117, 132 (-12), (-15), (-10) 
5 40, 14, 6, 52, 46, 123, 124, 57, 67, 127, 76, 82, 104, 117, 31 (-9), (-15), (-14) 
6 44, 13, 17, 53, 46, 35, 39, 56, 90, 86, 97, 82, 103, 109, 32 (3), (10), (11) 
7 42, 11, 20, 49, 46, 123, 37, 55, 68, 74, 76, 82, 101, 113, 30 (15), (14), (14) 
8 43, 16, 19, 51, 48, 58, 37, 57, 67, 87, 128, 81, 104, 116, 132 (-8), (-14), (-16) 
9 45, 15, 18, 53, 122, 59, 38, 125, 88, 127, 98, 80, 104, 117, 33 (-7), (-8), (-15) 

10 42, 15, 20, 121, 122, 60, 37, 56, 70, 86, 98, 106, 100, 131, 32 (-16), (-10), (-14) 
11 42, 11, 7, 52, 47, 35, 39, 125, 88, 87, 75, 82, 104, 115, 30 (-8), (-11), (-10) 
12 40, 15, 23, 49, 122, 35, 39, 125, 69, 127, 76, 82, 130, 116, 132 (10), (10), (9) 
13 118, 16, 21, 50, 47, 60, 39, 57, 71, 74, 96, 82, 103, 109, 30 (10), (9), (8) 
14 43, 26, 23, 52, 122, 35, 38, 57, 68, 74, 98, 81, 102, 109, 31 (10), (11), (9) 
15 45, 10, 19, 50, 46, 36, 124, 57, 72, 74, 97, 105, 130, 116, 30 (14), (10), (8) 
16 41, 26, 120, 50, 122, 36, 38, 54, 66, 73, 98, 81, 85, 131, 132 (14), (11), (10) 
17 44, 16, 18, 53, 122, 36, 39, 125, 69, 73, 97, 80, 104, 114, 33 (15), (16), (13) 
18 118, 14, 19, 52, 48, 60, 124, 57, 89, 86, 128, 80, 85, 116, 34 (15), (16), (14) 
19 40, 26, 17, 53, 47, 58, 124, 54, 90, 87, 75, 106, 104, 114, 30 (15), (16), (14) 
20 40, 13, 18, 49, 46, 58, 38, 57, 88, 73, 97, 80, 130, 109, 33 (-1), (3), (-2) 
21 41, 11, 23, 49, 122, 36, 37, 54, 88, 87, 98, 81, 85, 113, 33 (-1), (-1), (-2) 
22 44, 15, 120, 53, 48, 35, 27, 56, 126, 74, 75, 129, 130, 131, 33 (-3), (-2), (-2) 
23 43, 24, 21, 53, 46, 35, 39, 54, 70, 127, 98, 107, 101, 114, 34 (-4), (-5), (-4) 
24 45, 13, 21, 53, 46, 59, 38, 57, 69, 73, 76, 106, 101, 116, 33 (-5), (-7), (-9) 

avoid voltage drop, and the second one is to decrease power losses. In the off-peak period, the tap changers will reduce the voltage magnitude in order to avoid the over-voltage issue. The total energy transaction of batteries during their charge and discharge and the average active and reactive power of DGs are listed in 0. The results indicate that the batteries at buses 31 and 109 have more penetration in comparison with the batteries located at buses 42 and 96.  
TABLE VII  THE PENETRATION OF BATTERIES AND DGS IN THE UNBALANCED Batteries Energy Transaction  

Battery No. Bus# 31 Bus# 42 Bus# 96 Bus# 109 E (kWh) 1002.3 751.3 399.6 1190.6  The Average DGs Power Transaction  
DG No. Bus# 20 Bus# 28 Bus# 71 Bus# 74 Bus# 111 P (kW) 468.92 413.93 432.425 248.16 418.98 Q (kVar) 167.12 135.55 181.84 92.54 136.05 

 Fig. 12. Active power of batteries during charge and discharge for the best compromise 

 
Fig. 13. Distribution network VSI profile (upper), distribution network bus-vsi profile at hour #19 (lower) 

 
Fig. 14. Daily voltage profile for bus 55  

 
Fig. 15. P-V and Q-V curves of bus 55 as the result of load variations 

Also, the results depict that the DGs at buses 20 and 74 have the most and the least commitment in the distribution network, respectively. The DGs at buses 28, 71 and 111 have approximately the same commitment with a value less than the DG at bus 28. Aiming to have a better understanding of the improvement in terms of VSI based on distribution network loadability, some analysis is performed as follows. 
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Error! Reference source not found.Fig. 13 (upper) shows the network voltage stability profile during the 24-hour time horizon. According to this figure, the worst voltage stability happens at hour #19. Furthermore, the bus-vsi profile at hour #19 and the worst bus-vsi are shown in Fig. 13 (lower)Error! Reference source not found.. The worst bus-vsi happens at the bus 55 with 0.31684 p.u., and the daily voltage profile of this bus is depicted in Fig. 14. The P-V and Q-V curves for presented strategies are plotted in Fig. 15. The continuous-power-flow method is used to plot these curves for the 

weakest bus at the critical hour (19 o’clock) in the case study. Obviously, by improving the VSI, the stability margin is increased. 
IV.  CONCLUSION 

This paper proposed a new energy management strategy in dynamic distribution network reconfiguration considering renewable energy resources and energy storage to improve the distribution network security and reliability besides minimizing operational cost. The simulation results showed that the proposed strategy obtained the reasonable and high-quality schedules for switching, batteries charging and discharging, and the active power values of diesel generators in both single-objective and multi-objective frameworks. Furthermore, the exact energy not supplied index and voltage stability index as separate objective functions are considered to have an optimal operation in a reliable and secure environment. Numerical results for various cases were performed to demonstrate the ability of the proposed strategy in achieving the optimal solutions from the perspective of the DISCO. The proposed distribution network voltage stability assessment using PV and QV curves analysis distinguished the proposed study from other studies in this area. 
V.  REFERENCES 

[1] E. Dall'Anese, S. V. Dhople, and G. B. Giannakis, "Optimal dispatch of photovoltaic inverters in residential distribution systems," IEEE Transactions on Sustainable Energy, vol. 5, no. 2, pp. 487-497, 2014. [2] A. Azizivahed, E. Naderi, H. Narimani, M. Fathi, and M. R. Narimani, "A new bi-objective approach to energy management in distribution networks with energy storage systems," IEEE Transactions on Sustainable Energy, vol. 9, no. 1, pp. 56-64, 2018. [3] R. Li, W. Wang, and M. Xia, "Cooperative planning of active distribution system with renewable energy sources and energy storage systems," IEEE Access, vol. 6, pp. 5916-5926, 2018. [4] W. Yi, Y. Zhang, Z. Zhao, and Y. Huang, "Multiobjective Robust Scheduling for Smart Distribution Grids: Considering Renewable Energy and Demand Response Uncertainty," IEEE Access, vol. 6, pp. 45715-45724, 2018. [5] M. R. Narimani, A. A. Vahed, R. Azizipanah-Abarghooee, and M. Javidsharifi, "Enhanced gravitational search algorithm for multi-objective distribution feeder reconfiguration considering reliability, loss and operational cost," IET Generation, Transmission & Distribution, vol. 8, no. 1, pp. 55-69, 2014. [6] Q. Peng, Y. Tang, and S. H. Low, "Feeder reconfiguration in distribution networks based on convex relaxation of OPF," IEEE Transactions on Power Systems, vol. 30, no. 4, pp. 1793-1804, 2015. 

[7] E. Mahboubi-Moghaddam, M. R. Narimani, M. H. Khooban, and A. Azizivahed, "Multi-objective distribution feeder reconfiguration to improve transient stability, and minimize power loss and operation cost using an enhanced evolutionary algorithm at the presence of distributed generations," International Journal of Electrical Power & Energy Systems, vol. 76, pp. 35-43, 2016. [8] T. Niknam, E. Azadfarsani, and M. Jabbari, "A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for distribution feeder reconfiguration," Energy Conversion and Management, vol. 54, no. 1, pp. 7-16, 2012. [9] M. Abdelaziz, "Distribution network reconfiguration using a genetic algorithm with varying population size," Electric Power Systems Research, vol. 142, pp. 9-11, 2017. [10] M. Nick, R. Cherkaoui, and M. Paolone, "Optimal Planning of Distributed Energy Storage Systems in Active Distribution Networks Embedding Grid Reconfiguration," IEEE Transactions on Power Systems, 2017. [11] A. Azizivahed, E. Naderi, H. Narimani, M. Fathi, and M. R. Narimani, "A New Bi-Objective Approach to Energy Management in Distribution Networks with Energy Storage Systems," IEEE Transactions on Sustainable Energy, 2017. [12] S. R. Deeba, R. Sharma, T. K. Saha, D. Chakraborty, and A. Thomas, "Evaluation of technical and financial benefits of battery-based energy storage systems in distribution networks," IET Renewable Power Generation, vol. 10, no. 8, pp. 1149-1160, 2016. [13] M. Falahi, S. Lotfifard, M. Ehsani, and K. Butler-Purry, "Dynamic model predictive-based energy management of DG integrated distribution systems," IEEE Transactions on Power Delivery, vol. 28, no. 4, pp. 2217-2227, 2013. [14] K. Khawaja, S. U. Khan, S.-J. Lee, Z. M. Haider, M. K. Rafique, and C.-H. Kim, "Optimal sizing and allocation of battery energy storage systems with wind and solar power DGs in a distribution network for voltage regulation considering the lifespan of batteries," IET Renewable Power Generation, 2017. [15] B. Lin and W. Wu, "Economic viability of battery energy storage and grid strategy: A special case of China electricity market," Energy, vol. 124, pp. 423-434, 2017. [16] Z. Li, S. Jazebi, and F. De León, "Determination of the optimal switching frequency for distribution system reconfiguration," IEEE Transactions on Power Delivery, vol. 32, no. 4, pp. 2060-2069, 2017. [17] F. Ding and K. A. Loparo, "Feeder reconfiguration for unbalanced distribution systems with distributed generation: a hierarchical decentralized approach," IEEE Trans. Power Syst, vol. 31, no. 2, pp. 1633-1642, 2016. [18] H. Khazaei, B. Vahidi, S. H. Hosseinian, and H. Rastegar, "Two-level decision-making model for a distribution company in day-ahead market," IET Generation, Transmission & Distribution, vol. 9, no. 12, pp. 1308-1315, 2015. [19] R. Billinton and R. N. Allan, Reliability evaluation of engineering systems. Springer, 1992. [20] M. Gitizadeh, A. A. Vahed, and J. Aghaei, "Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms," Applied energy, vol. 101, pp. 655-666, 2013. [21] D. A. Bell, Fundamentals of Electric Circuits: Lab Manual. Oxford University Press, Inc., 2009. [22] M. Chakravorty and D. Das, "Voltage stability analysis of radial distribution networks," International Journal of Electrical Power & Energy Systems, vol. 23, no. 2, pp. 129-135, 2001. [23] J. Aghaei, K. M. Muttaqi, A. Azizivahed, and M. Gitizadeh, "Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm," Energy, vol. 65, pp. 398-411, 2014. 



 11 
[24] M. Barani, J. Aghaei, M. A. Akbari, T. Niknam, H. Farahmand, and M. Korpås, "Optimal Partitioning of Smart Distribution Systems into Supply-Sufficient Microgrids," IEEE Transactions on Smart Grid, 2018. [25] A. J. Conejo, F. J. Nogales, and J. M. Arroyo, "Price-taker bidding strategy under price uncertainty," IEEE Transactions on Power Systems, vol. 17, no. 4, pp. 1081-1088, 2002. [26] T. Niknam, M. Zare, and J. Aghaei, "Scenario-based multiobjective volt/var control in distribution networks including renewable energy sources," IEEE Transactions on Power Delivery, vol. 27, no. 4, pp. 2004-2019, 2012. [27] L. Wu, M. Shahidehpour, and T. Li, "Stochastic security-constrained unit commitment," IEEE Transactions on Power Systems, vol. 22, no. 2, pp. 800-811, 2007. [28] M. M. Eusuff and K. E. Lansey, "Optimization of water distribution network design using the shuffled frog leaping algorithm," Journal of Water Resources planning and management, vol. 129, no. 3, pp. 210-225, 2003. [29] D. Zhang, Z. Fu, and L. Zhang, "An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems," Electric Power Systems Research, vol. 77, no. 5-6, pp. 685-694, 2007. 
 


