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Abstract—Penetration of renewable energy sources (RESs)
and electrical energy storage (EES) systems in distribution
systems is increasing, and it is crucial to investigate their impact
on systems’ operation scheme, reliability and security. In this
paper, expected energy not supplied (EENS) and voltage stability
index (VSI) of distribution networks are investigated in dynamic
balanced and unbalanced distribution network reconfiguration,
including RESs and EES systems. Furthermore, due to the high
investment cost of the EES systems, the number of charge and
discharge is limited, and the state-of-health constraint is included
in the underlying problem to prolong the lifetime of these
facilities. The optimal charging/discharging scheme for EES
systems and optimal distribution network topology are presented
in order to optimize the operational costs, and reliability and
security indices simultaneously. The proposed strategy is applied
to a large-scale 119-bus distribution test network in order to
show the economic justification of the proposed approach.

Index Terms—Energy Management, Distribution Network
Reconfiguration, Energy Storage, PV Panels, Reliability.

1. INTRODUCTION

PERATIONAL strategies of distribution networks have

significantly changed over the past decade due to the
high penetration of renewable energy sources (RESs) and
energy storages alongside automation systems [1]. The
stochastic nature of RES poses a serious challenge to supply
the demand in a reliable way. Accordingly, a lot of studies
have been carried out to optimally manage charging and
discharging schedules of energy storage units, which play a
decisive role in the management of renewable energy sources
within distribution networks [2-4]. In addition, as one of the
prevalent techniques (due to the integration of automation
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system in distribution networks), distribution feeder
reconfiguration (DFR) is implemented on distribution systems
in the presence of RES and energy storages. The DFR process
is to apply changes to the topology of distribution networks in
order to optimize certain objective functions subject to all
operational constraints [5]. The DFR is carried out by
managing the on/off states of tie-switches and sectionalizing-
switches in a distribution feeder without islanding any buses.

The DFR problem can be formulated as a mixed-integer,
non-linear and non-convex optimization problem. Therefore,
traditional gradient based optimization algorithms are not
suitable to solve DFR [6]. Accordingly, many researchers
adopted intelligent evolutionary optimization methods to solve
the distribution network reconfiguration problem. For
example, in [7], an enhanced gravitational search algorithm is
implemented to solve the DFR in order to improve transient
stability and reduce operational cost and power losses. In [8],
a hybrid evolutionary algorithm based on particle swarm
optimization algorithm and Nelder—Mead simplex search
algorithm is developed to minimize the active power loss.
Furthermore, a modified genetic algorithm is proposed for
DFR in [9] where the variable population size is taken into
account. In [10], the optimal sizing, location, and network
topology are obtained simultaneously by using optimal power
flow to minimize operational cost and power losses.

Additionally, the deployment of RESs and electrical energy
storages requires studies on the optimal management of these
facilities. Many studies are carried out in order to obtain an
optimal management scheme for electrical energy storages in
the fixed-topology distribution networks. For instance, the
optimal charging and discharging pattern for energy storage in
the distribution network is obtained using a modified
evolutionary algorithm to improve reliability and reduce
operational cost [11]. In [12], technical and financial benefits
of electrical energy storage systems in distribution networks
are investigated. A dynamic model for the energy management
of dispatchable distributed generation sources of micro-grids
in the presence of wind farms and PV farms is formulated in
[13] to balance the generation and demand. In [14], the energy
storage units are allocated in optimal places in a distribution
system integrated with wind power and PV sources in order to
prolong the lifetime of energy storage units. Moreover,
optimal investment cost of batteries is obtained in order to
maximize the benefit [15].



It is noteworthy that the above-mentioned literature
regarding DFR has ignored the daily load variation and solved
the DFR during a predetermined time interval. The DFR
model for non-variable loads cannot demonstrate the real
scenarios and cannot achieve the optimal solution for 24-hour
time scheduling for variable load distribution networks. To fill
this gap, the DFR is determined in [16] for different time
horizons (year, season, month and day) in order to find the
most optimal switching cost. In [17], the DFR is applied to an
unbalanced distribution network over a 24-hour time horizon.
In addition, genetic algorithm 1is implemented as an
optimization tool for minimizing network energy losses.
Though the presented robust strategy in [17] considers the
uncertain price, load consumption and RES power generation
are treated deterministically based on a fixed prediction. In a
distribution system with high penetration of RESs, applying
stochastic programming in order to model intermittent
behavior of these uncertainty sources is a prevalent and
practical solution for distribution operations. In addition, the
solution for dynamic DFR in the presence of RESs integrated
with energy storages is not evaluated markedly in the
aforementioned literature.

Accordingly, an improved optimization model is expected
to include these three aspects: dynamic distribution feeder
reconfiguration, optimal management scheme for energy
storages integrated with RESs, and meeting demand in a
reliable and stable way considering uncertainties in RESs
power generation, energy price and load consumption. The
mentioned model should give operators a decision-making
strategy in which the most suitable DFR is achieved by proper
DG unit dispatching pattern, optimal energy storage
charging/discharging control, and appropriate reliability and
stability levels. Eventually, the problem can be completed
when the constraints related to the technical and operational
aspects are considered through DFR and energy management
problem. To address the above-mentioned problem, this paper
presents reliability and stability oriented management scheme.
The main contributions of this paper are summarized as
follows.

e The dynamic distribution networks and energy
management are modeled simultaneously. The
obtained results include optimal switching plan,
optimal batteries charging/discharging schedule and
optimal daily diesel generators dispatching.

e The energy not supplied is considered as a separate
objective function based on graph theory. Similarly,
the voltage stability based on the distribution network
loadability is formulated.

e  Scenario reduction strategy and shuffled frog leaping
algorithm (SFLA) are utilized in order to obtain the
optimal solutions for both balanced and unbalanced
distribution networks. Also, the intermittent nature of
electricity price, load consumption and PV
generations are considered as uncertainty sources.

The remainder of this paper is organized as follows.
Section II presents the underlying problem formulation and
framework. It consists of decision variables, objective
functions, problem constraints and optimization methodology.
Section IIT presents case studies and numerical results, and
finally, Section IV concludes the paper.

II. PROBLEM DEFINITION AND FRAMEWORK

In some cases, DISCO is the owner of some parts of
distribution network [18]. Here, it is assumed that only one
DISCO is the owner of all facilities and operates the
distribution network. It solves the stochastic optimization
problem by considering uncertainty in PV generation and
electricity price. The problem formulation is explained in the
following six parts; decision variables, objective functions
(operational cost, reliability index and security index),
operational limitations and constraints, and uncertainty
modeling and optimization tool.

A. Decision Variables

The decision variables of underlying problem include graph
topology of the network, diesel generators active power and
batteries charge and discharge scheme as follows:

X =[Xsw Xpg Xpart Xrap] (1)
Xsw = [XSWI XSWZ )?SWNSW] (2)
Xpe = [Xual )?DGZ )?DGNDG] 3)
Xpate = [)?Battl )?Battz )?BattNBa“] 4)
X Tap = [Xtapl X Tap, XTapNTap] (5)
Xow, = [X&v, X&,, - Xén]  ke{12,..,Nsw} ©)
X6, = [Xbe, Xbe, X3¢ kef1,2,..,NDG} )
XBattk = [Xéattk Xt%attk Xégttk]' ke{1,2, ..., NBatt} (8)
Xrap, = [Xtap, Xiap, XFape) ke{12,..,NTap} ©)

where, X is the decision variable vector of the proposed
problem which consists of four sub-decision variables: open
switches (Xg, ), diesel generators output (Xp;), batteries
active power charge/discharge (Xp,;;) and tap position of the
tap-changer (Xrqp). Notations Xs, , Xpg,» Xpaee, and Xrap,
are the k" set of open switch numbers, active power output of
k" diesel generator, active power of charge/discharge of the
k" battery, and tap position of the k" tap-changer, at a 24-
hour time horizon, respectively.

B. Operational Cost

The operational cost includes the cost of energy purchasing
from substation, the fuel cost of diesel generators and
switching which can be formulated as:

24 Ns Nsup Npg
— ss ss DG DG
Cost = Z Z Ps Z Cits X Ppist+ Z Cj‘t‘s X Pj‘t‘s
t=1s=1 n=1 j=1
24 Nsw

)2 O™ xIst = siud
t=1k=1

where, C5% ¢, CJDth and CS" are the price of energy from nf

(10)

h

substation at t'* time interval for s** scenario, the price of
fuel of j** diesel generator at t** time interval for st" scenario
and switching cost, respectively; ps is the probability of s
scenario; Ng,p, (Npg) and Ng,, are the number of substations
(diesel generators) and the number of switches, respectively;
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Fig. 1. Thevenin equivalent system of bus i at t** hour for s** scenario

N; is the number of scenarios; Py%¢ and P75 are the active
power from n‘" substation and active power from jt* diesel
generator at t'" time interval for st" scenario, respectively;
and Si and S§ are the new and initial status of k™ switch at
t*" time interval.

C. Desire Reliability Index

Almost all power outages and blackouts are caused by
faults in the transmission and distribution networks [19, 20].
Accordingly, the operational problems should be carried out to
optimize a reliability index such as minimization of EENS as
follows:

EENS = Y24, YNus EENS;,,

an
where, EENSL-t is the expected energy not supplied of i** bus
at t*" time interval; and Np, is the number of buses. Notation
EENS;, is defined as follows:

EENS;¢ = %42y psPigs X (Zzem U + Lien; Ul’c): (12)
where, P; . ; is the total generation and consumption of active
power of it" bus at t** time interval for st"
H| are the set of downstream and upstream branches of i
bus, respectively; U; and U; are the service unavailability
related to the reparation time of [*"* downward branch of the
i'" bus and the service unavailability associated to the
restoration time of k™ upward branch of the i" bus,
respectively. Notations U; and Uy, are defined as follows:
U=Bxt

U = P X ti (13)
where, 5, and B, are the failure rate (fail/year) of [** and k"
branch, respectively; and t; and t;, are the average reparation
of [*" branch and restoration time of k" branch, respectively.

scenario; H; and

D. Voltage Stability Index

Voltage collapse is one of the negative consequences of
increasing load in distribution systems. In order to improve the
network loadability, the voltage stability index is included in
the underlying problem and defined based on “Thevenin-
equivalent” [21]. The advantage of this strategy in comparison
with the previous methods in [22] is that it can be
implemented on both mesh and radial networks. More details
of this method are explained as follows.

First, the Thevenin-equivalent will be obtained for all bases
of networks as shown in Error! Reference source not
found..

According to the load flow technique, (14) and (15) can be
obtained; and from these equations, (16) can be obtained [22].

Vltth s Vi t,s

th’flS +]XltS

Ii,t,s =

(14)

Pits }QltS_VltSXILtS (15)
]Q -y Vitths_Vits

t, ts —

Fias =JQuus = Vis X por —ien (16)

Eq. (17) can be calculated from (16). Coefficients B; . and
Ci+s are defined by (18) and (19), respectively.

|Vi,t,s|4 Bi,t,s- |Vi,t,s|2 + Ci,t,s =0 (17)
Bi,t,s = |Viftffs ’ - ZPi,tsRlﬂtls - ZQits lt?s (18)
Ci,t,s = (Pi?t,s + QLZtS) ((Rtts) + (Xlts) ) (19)

In order to have a stable condition, constraint (20) is
required. Therefore, the VSI will be defined as in (21).

Bf s —4Cips 20 (20)
; th |2 th th \?

USljps = (|Vi,t,s — 2Pt sRits — ZQi,t,in,t,s) -

4.(PZ s + Qiz,c,s)-((Rf?s) + (Xf'cls)z)

=23, Nyus @1

All parameters in (14)-(21) are depicted in Error!
Reference source not found.. In order to reach a stable
operation condition, VSI for all buses must be greater than
zero. In this regard, the third objective function is defined as
follow;

USiy = [USiyrs USizps, o) USiN,, 1) (22)
busi . = 0 wvsijps>0
Ustits = {1 vsijes <0 (23)
Bvsiys = [bvsiy g, bvsizys, ..., bvsiy, o] (24)
penalty factor = M X sum(Bvsi,) (25)
VSI,s = m + penalty factor (26)
24 Ns
1
VSI = ﬁz z ps VS,
t=15=1 (27)

VSI is the third objective function. The parameter M is a
large number (for instance, 101°%) which is used as a penalty
factor. The penalty factor is implemented to eliminate the
unstable decision variables during the optimization process.

E. Technical and Operational Constraints

In this section, all the relevant technical and operational
constraints are explained as below.

e Distribution network radial structure

Almost all distribution networks are operated in radial
topology in order to simplify the protection systems. In order
to satisfy the radial structure constraint, the bus branch
incidence matrix is implemented. More details regarding the
proposed matrix can be found in [23].

e  Diesel generator limitation

As mentioned, the proposed problem is solved
dynamically. In this regard, the ramp rate constraints should
be considered besides the maximum and minimum output
limitations.

PDG ,min < PDG < PDGmax

is S vj, t,s,

(28)



Down DG DG Up :
Ramp}' = Pj,t.s - P]',t—l,s =< Ramp]. vj,t,s,

(29)
are the minimum and maximum

DG,min

and

where, 13 PjDG,max

limitations of j* diesel and

Down
j
diesel generator, respectively.

generator, respectively;

Ramp and Ramp]yp are down and up ramp rates of jt*
e  Current and voltage limitations

The bus voltages and branch currents should be within their

maximum and minimum boundaries.
SLjgs < SLM*

Vi < Vg < VMOX

(30)
(€2))

where SL; s and SL'** are the power flow magnitude of j**

branch at t*" hour for s'* scenario and its corresponding
maximum power flow limitation, respectively; and V™" and

V"% are the minimum and maximum voltage of k" bus.

e Battery constraints

Because of the high investment cost of energy storages,
they should be operated in a secure environment to prolong
their lifetime. In this regard, the maximum permitted number
of switching back and forth between charging and discharging
status must be considered besides the state of charge and other
constraints.

Eir = Ejt—1+ Peni X Pepip X At — Pyisie X At,
Pais,i

i =1,2,..,NBatt,
t=1,..,24, At=1h

(32)
EMM < E;, <EM¥; i=1.2,..,NBatt t =1,...,24 (33)
Popie <PMY,  i=12,..,NBatt, t=1,..24 (34)
Paisie < Plist, i=1,2,.., NBatt, t=1,..,24 (35)

23
Sii1— S,
Z ISe+1 t|/2 < Ncuypen

t=1 (306)
where E;, is the amount of energy storage in the i*" battery at
t'™™ hour. P (Pysie) is the permitted rate of charge
(discharge) of i*" battery during a determinate period of time
(At =

percentage of the it" battery. E™%* (EM™™) is the maximum

1h). peni (Pais;i) is the charge (discharge) efficiency

(minimum) amount of permitted energy storage in i*" battery.
Constraints (34) and (35) impose the maximum charge rate

max

heX, and maximum discharge rate, PJ}&7

T, of the i™" battery
during a determinate period of time (At = [h). In constraint
(36), Ncuypcn is the maximum permitted number of switching
back and forth between charging and discharging status and S;
represents the charging and discharging status which is equal
to 1 and -1 for charging and discharging status, respectively.

F. Uncertainty Characterization
In this study, two sources of uncertainty are considered.
e  Electricity price of power supplied by substation
e Output power of PV plants.
1) PV power uncertainty modeling: For each time period,

historical data of solar irradiance are used to produce a beta
[24] distribution function as follows;

(F(a‘l'ﬁ) _S(a_l)_(l_s)(ﬁ_l) 0 <s< 1
= | @ @f=0
kO, Otherwise

(37
where f;,(s) is the beta distribution function. a and f are the
parameters of the beta distribution function and can be
obtained using historical data.

The continuous hourly beta PDFs are split into several
intervals with equal width. Each interval has a mean value and
a probability of occurrence which can be calculated as
follows.

Si+1

pi = fo(s)ds;
élf ’ (38)

where s; and s;,, indicate the starting and ending points of the
interval i, respectively.

The output power of a PV plant corresponding to specific
solar irradiation can be calculated as follows.

P5i(sye) =N XFF xVy, X1,

(39)
FF = Vupp X Iypp
I/0C X ISC (40)
Vy,t =Voc — K, X T;,t (41)
Lye = syellse — Ky x (T§, — 25)] (42)
¢ _ Nor — 20)
Tt =Tat sy, ( 0.8 (43)

where Ty, is cell temperature (°C); T, is ambient temperature
(°C); K, and K; are voltage and current temperature coefficient
(V/°C and A/°C), respectively; N,; denotes nominal operating
temperature of cell (°C); FF is fill factor; I, and V,. indicates
short circuit current and open circuit voltage (A and V),
respectively; Iypp and Vypp are, respectively current and
voltage at maximum power point (A and V); P; ¢ 1s output
power of the PV module; s,, . solar irradiance; and ¢t and y are
the indices of time periods and scenarios.

2) Market prices uncertainty modeling: In this paper, log-
normal distribution function [25] is considered to characterize
the market price of each hour. Accordingly, the market prices
can be expressed as follows;

202

1 InE?" — )’
fp(Epr,M,O') = mexp <_u>
(44)

where p and o represent mean value and standard deviation,
respectively, and EP" is the distribution function parameter
(i.e., electricity market price).

In a similar way, the log-normal PDFs are sliced into
several intervals. Each interval yields a mean value and



probability of occurrence.

Different realization of PV power production and market
prices can be modeled using a scenario generation process
according to roulette wheel mechanism [26].

In this method, a large number of scenarios is generated.
Higher numbers of scenarios result in a more precise modeling
of the system. However, the higher number of scenarios
causes higher computational burden. To this end, the number
of scenarios should be selected in a way that not only
diminishes the computational burden of the problem but also
maintains a good approximation of the uncertain parameters.
In order to reduce the number of scenarios and consequently
reduce the computational time; the backward method is
implemented to eliminate the duplicate scenarios or the
scenarios with minimum distance [27].

G. Multi-objective Strategy and Optimization Tool

In this section, the multi-objective technique and the
shuffled frog leaping algorithm (SFLA) are introduced. The
ALGORITHM and Fig. 2 describe the proposed multi-
objective technique. According to this method, all populations
are sorted in ascending order of the first objective function,
then an eliminating zone is defined for each individual (i.e.
Fig. 2), and based on that, some populations are eliminated.
This process is applied to reach a set of non-dominated
solutions.

The ranges of objective function values are different in the
multi-objective programming. Therefore, the fuzzy decision-
making technique (i.e. based on trapezoidal fuzzy membership
functions) is employed in order to have the same range for all
of them.

O 4 ©
E O porz,
®: OO0

| Eliminating Zone (EZ,)

®

Objective function 2

Objective function 1

Fig. 2. Eliminating zone for each solution
ALGORITHM
1. Input: pop = [population & objective functions].

2. Sort the population in ascending order of the first objective
function.

3. z=1, Nyo,p=number of population.

4. | While z < Ny

5. Constitute the eliminating zone (EZ,) for zt" population
(red shadow in Fig. 2).
6. Eliminate the populations that are in the eliminating zone

of zt" population.

popg S pop &

popZ,={set of populations in the EZ, area}
pop = pop \ {popo;;}

7. Update z=z+1, N, =number of population.

0

end
9. Output: set of non dominated solutions = pop.

Input: ) Generate the stochastic scenarios
Distribution Networks data and apply the reduction technique

DGs, PV panels and batteries I T

data
Forecasted uncertainties: load, ﬂ%eﬂerate the initial population of
Solar irradiation and price ~/ frogs
g U
=
3 Calculate the objective functions
§ and the fitness functions
&
a~) 7
=
e [ Divide the frogs into memeplexes ]
7%
Output
Optimal non-dominated solutions Update the frogs and calculate
ﬂ their objective functions
[ Extract the non-dominated

solutions

Save all frogs in a new population
and calculate their fitness fu.nction/

Fig. 3. The optimization framework of energy management and distribution
network reconfiguration

(1 0bj,, <ObjIHn
Obji**-0bj, i . ,
Hovj ()= J opmopm 0PI " S0bjm <O
0 Obj,,=0bjmnaex (45)
where Obj,, and Objm** (ObjI™) are the m!" objective
function and its corresponding upper (lower) bound,
respectively, and Wopj, is the fuzzy set for m™ objective

function.
The fitness function is determined for each individual as
follows:

Nop
S o X gy, (X)

ZN"d ZivnOblj Wi X Ko, (X) (46)
where N,,4 is the number of non-dominated solution; ¢; and
w,, are the fitness function of i*" non-dominated solution and
the weighting factor (i.e. the priority grade from the decision
makers point of view) of mt" objective function, respectively.
In this study, w; = w, = w3 = 0.33 is chosen.

SFLA is implemented to solve the above optimization
problem. This algorithm models the social life of group of
frogs when they are searching food. The details of this method
are available in [28].

The frogs are divided equally into several memeplexes. In
this algorithm, the worst frog (X,,0rs¢) in each memeplex is

P =

updated according to two strategies based on the best frog in
the memeplex (Xp.s:) and the best frog in all population
(X¢pest) as follows;

Xa?r/st = Xyorst T rand X (Xpest — Xworst) (47)
X{/lv%v:st = Xworst T rand X (Xgpest — Xworst) (48)
where rand is random number between 0 and 1. In the

optimization process, the worst frog is updated by the best
frog in the memeplex as in (47). If the fitness function for
X . is better than of X,y then X, Will be replaced
by Xy otherwise X ,orsc Will be updated by the best frog
in all population as in (48). Similarly, if the fitness function
for X35V, is better than X,yorsr> Xworse Will be replaced by

s> and if not, X, o.¢ Will be replaced by a new randomly

generated frog.



This process will be applied for all memeplexes and for a
predetermined number of iterations. The framework of the
proposed strategy is depicted in Error! Reference source not
found..

III. SYSTEM MODEL AND SIMULATION RESULTS

In order to assess the performance of the proposed method,
a case study based on the 119-bus distribution network is
provided in this section.

A. Case Study

The 119-bus distribution network under study is shown in Fig.
4(a), consisting of three feeders, 15 tie-switches and 11 kV
substation [29]. The average hourly forecasted active and
reactive load profile is shown in Fig. 4(b). Four 500 kW PV
panels and their relevant batteries are installed at bus#31,
bus#42, bus#96 and bus#109. Five 500 kW diesel generators
with unit power factor and 50 kW/h up and down ramp rate
are located at bus#20, bus#28, bus#71, bus#74 and bus#111.
30 scenarios are implemented in order to simulate the
uncertainty parameters. The simulation is done in MATLAB
R2011b environment using a core-i5 processor laptop with 2.4
GHz clock frequency and 4.0 GB of RAM.

| Bus
——  Sectwonahzmg Switch
-

I |

|
. 0 P O O O O 5\".
o0\ 101 102 103 104 135 106 107 108 100 110112 113

¥ 1

—m= Tie Svatch

(F voltage Reguiator

114 115 118 17

a)  Single line 119-bus distribution network

x 10"

8- Active Power (kW)
2.5 . |OrReactive Power (kVar)

1 L
0% T s 10 15 20 25
Time (Hour)
b)  Active and reactive load profiles

Data for 119-bus standard distribution system

Fig. 4.

TABLE I
RESULTS OF DIFFERENT METHOD FOR MINIMIZING THE OPERATIONAL COST
Method Operational Cost ($)
Best Mean Worst STD C.T.
GA 13068.06 13206.7 13355.0 109.81 201
PSO 12835.64 12985.2 13355.0 212.32 164
DE 12835.64 12903.5 13161.1 99.79 178
SFLA 12820.85 12841.2 12897.1 25.32 167

C.T.: Computational Time (Second)

B. Simulation and Results

The three objective functions (Eqs. 10, 12 and 27) are
important for the reliable and cost-effective operation of the
distribution system; however, it is usually impossible to
achieve the optimal results for all of them simultaneously.
Also, the operation of diesel generators, batteries, and network
switches are different in each case. Hence, various analyses
are performed to explore the best compromise solution as will
be described in the following.

1) Single objective case study: SFLA is compared with
three different heuristic methods such as genetic algorithm
(GA), particle swarm optimization (PSO) and differential
evolution (DE), each is run 10 times to solve the DFR
optimization problem, and the comparison results are detailed
in Error! Reference source not found.. Although the PSO
reaches the optimal solution in a slightly shorter
computational time compared to the SFLA, the obtained
results by the SFLA are better than those obtained by the other
methods. And also, it has a more robust performance than
other algorithms. Therefore, in the following, only SFLA is
used.

TABLE II shows the results of the optimization results for
individual objectives and the initial condition (distribution
network without DG units, PV panels and energy storages).
Firstly, it is worth mentioning that the objective values of all
objective functions are improved due to the positive impact of
these facilities. In addition, the targeted objective (for
example, operational cost) is minimized, and subsequently, the
values of the other two objectives are calculated in each case.
According to this table, the amount of optimal operational
cost, optimal EENS, and optimal VSI are $12820.85, 340.73
kWh/year and 2.53 p.u., respectively. Also, it can be seen that
the operational cost is sharply in conflict with two other
objective functions. In other words, by minimizing operational
cost, the amount of ENS and VSI are increased (368.646
kWh/year and 3.397 p.u.). And similarly, by minimizing the
ENS and VSI, the amount of operational cost is increased to
$13413.68 and $12939.96, respectively. Similarly, the
operational cost conflicts with VSI. The optimal VSI amount
is 2.1, and in this condition, the amount of operational cost is
$13278.1.

The list of open-switches for minimizing operational cost is
shown in 0. it is worth mentioning that the radiality constraint
is satisfied in each hour. furthermore, Fig. 5 and Fig. 6 show
the diesel generators active power output and batteries active
power charge/discharge. as can be seen, almost all the diesel
generators are operated at their minimum level in order to
minimize the operational cost. also, from Fig. 6 it can be seen
that the maximum permitted number of switching back and



forth between the charging and discharging status and the
charging and discharging status constraint are satisfied for all
batteries.

The list of open-switches for minimizing operational cost is
shown in 0. It is worth mentioning that the radiality constraint
is satisfied in each hour. Furthermore, Fig. 5 and Fig. 6 show
the diesel generators active power output and batteries active
power charge/discharge. As can be seen, almost all the diesel
generators are operated at their minimum level in order to
minimize the operational cost. Also, from Fig. 6 it can be seen
that the maximum permitted number of switching back and
forth between the charging and discharging status and the
charging and discharging status constraint are satisfied for all
batteries.

TABLE 11
RESULTS OF MINIMIZING THE OBJECTIVE FUNCTIONS SEPARATELY
Method Cost ($)  ENS (kWh/year)  VSI (p.u.)
Initial Condition 15633.87 544.7785 4.0509
Cost Minimization 12820.85 368.646 3.3974
ENS Minimization 13413.68 340.7324 3.3831
VSI Minimization 12939.96 367.9338 2.5336
TABLE III

LIST OF OPEN SWITCHES FOR MINIMIZING OPERATIONAL COST

Hour
1 43-11-23-51-47- 61- 38- 56- 72- 73- 98- 82- 85- 131- 32
2 45-12-17- 53- 122- 36- 39- 57- 66- 73- 128- 105- 101- 115- 33
3 43-24-20- 53- 46- 36- 27- 54- 71- 127- 98- 105- 102- 116- 33
4 43-12-120- 52- 48- 123- 27- 56- 126- 127- 96- 81- 102- 115- 33
5 118- 16- 7- 50- 48- 61- 124- 55-70- 127- 76- 106- 101- 131- 34
6
7
8

Open Switches

42-25-120- 51- 48- 123- 38- 55- 71- 87- 128- 105- 103- 113- 34
118-14- 23- 49- 46- 36- 37- 57- 89- 127- 128- 105- 103- 115- 32
44-12- 120- 121- 48- 61- 37- 56- 66- 127- 76- 82- 85- 108- 132

9 118- 14- 23- 53- 122- 61- 39- 57- 68- 73- 75- 105- 103- 109- 33
10 44-24-21- 53- 47- 58- 37- 56- 72- 74- 96- 129- 130- 131- 31
11 41- 13- 23- 53- 122- 59- 38- 125- 70- 87- 96- 82- 102- 113- 30
12 45-15- 19- 52- 48- 58- 124- 57- 89- 87- 97- 129- 85- 108- 34
13 41-12- 23- 50- 47- 36- 124- 57- 70- 87- 76- 105- 85- 115-31

14 41- 16- 17- 121- 48- 58- 39- 57- 126- 87- 128- 81- 85- 116- 34
15 118- 14- 120- 50- 46- 58- 38- 56- 88- 74- 128- 105- 102- 116- 34
16 42- 14- 20- 52- 122- 123- 124- 55- 72- 127- 97- 105- 103- 117- 33
17 42-12- 23- 49- 48- 61- 39- 56- 71- 74- 76- 80- 100- 116- 34
18 45-15- 18- 121-48- 58- 124- 57- 71- 73- 128- 81- 102- 116- 34
19 45-15-20- 51- 48- 36- 124- 57- 72- 87- 128- 105- 85- 109- 30

20 45-16- 7- 50- 122- 58- 27- 54- 71- 86- 97- 82- 103- 109- 30

21 41-10- 18- 121- 122- 58- 38- 57- 90- 127- 96- 106- 101- 108- 33

22 43-14- 21- 51- 46- 60- 38- 57- 72- 127- 97- 81- 85- 115- 34

23 43-25-22-121- 47- 58- 39- 54- 69- 86- 75- 82- 100- 114- 34

24 118- 14- 120- 53- 48- 58- 124- 54- 68- 87- 76- 106- 103- 109- 33
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2) Multi-objective case study: As mentioned, all three
objective functions are in conflict, and it is impossible to find
a solution to have optimal operational cost, ENS and VSI
simultaneously. Therefore, the best strategy is to find a
compromise among the three conflicted objective functions. In
this regard, “Pareto optimal strategy” is applied in order to
obtain a set of non-dominated solutions, and then decision
makers would be able to have a tradeoff among the objective
functions according to their considered priority. Fig. 7, Fig. 8
and Fig. 9 show the two-dimension Pareto optimal solutions
for operational cost-ENS, operational cost-VSI and ENS-VSI,
respectively. The percentages in these figures show the
amount of conflict between the objective functions. The most
conflict is observed in the operational cost-VSI case with
70.69%, while the minimum conflict is between ENS-VSI
with 5.3%. The conflict between operational cost-ENS is
9.69%. In order to have a reliable and secure operational cost,
it is better than to find a set of three-dimension non-dominated
solutions.

Three-dimension Pareto front is shown in Fig. 10. The best
compromise solution with the equal priority weight (w; =
w, = wy = 0.33) is highlighted with a red star.

For this solution, the amounts of operational cost, ENS and
VSI are $13933.064, 373.96 kWh/year and 3.213 p.u.,
respectively.

The list of open switches for best compromise solution is
listed in TABLE IV. According to these results, the crucial
constraint for the radial structure is satisfied for each topology.
Furthermore, Fig. 11 and Fig. 12 depict the active power
output of diesel generators and active power of
charging/discharging of batteries, respectively. From Fig. 11,
it can be observed that the diesel generators are operated close
to their middle levels in order to have a secure and reliable
operation plan.

According to the energy not supplied formulation, it is
better to feed the load consumption locally instead of feeding
them through the transmission system. Then with respect to
ENS improvement, the diesel generators tend to operate at
their maximum level to feed the load consumption locally.
The same analysis can be done for VSI. In order to increase
the distribution load-ability, it is better to feed the load
consumption locally. In the other way, diesel generators tend
to operate at their minimum level in order to minimize the
operational cost, and then the best compromise makes a
tradeoff between these two different tendencies.
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3) Unbalanced case study: In this subsection, the proposed
approach is tested on an unbalanced version of the 119-bus
distribution network. Compared to the original balanced test
case, the total loads are 22654 kW and 16980 kVar at phase A,
21568 kW and 16038 kVar at phase B, and 21646 kW and
16106 kVar at phase C. Furthermore, three voltage regulators
are encompassed on the three main feeders. In this case, the
tap positions are considered in the decision variables and
optimized with the other variables simultaneously.

TABLE V shows the extracted results for individual
objective as well as the multi-objective case. According to
these results, the amount of operational cost and ENS are
almost tripled in comparison with the single-line case study.

TABLE IV
LIST OF OPEN SWITCHES FOR BEST COMPROMISE

Hour Open Switches
1 40- 14- 22- 49- 47- 60- 27- 56- 65- 73- 128- 129- 104- 114- 30
2 118- 24- 7- 52- 122- 58- 39- 125- 66- 87- 76- 106- 104- 113- 30
3 45-25- 6- 121- 122- 36- 27- 57- 70- 73- 98- 105- 85- 113- 33
4 44-25-7- 52- 47- 36- 37- 56- 71- 87- 128- 129- 103- 131- 31
5 44-12- 21- 50- 48- 59- 38- 57- 69- 127- 76- 105- 130- 108- 32
6 45-119- 23- 49- 122- 36- 124- 125- 70- 73- 98- 106- 103- 117- 32
7 118- 13- 21- 121- 122- 35- 124- 55- 90- 86- 128- 129- 103- 114- 33
8 40- 10- 18- 121- 46- 36- 38- 57- 70- 74- 97- 129- 101- 114- 33
9 44-24- 4- 53- 48- 59- 38- 125- 70- 73- 96- 129- 104- 114- 34
10 41- 13- 7- 49- 122- 58- 38- 56- 69- 86- 75- 129- 130- 116- 132
11 41- 16- 20- 53- 122- 60- 124- 54- 89- 74- 97- 129- 101- 115- 31
12 43-25-3-51-48- 61- 37- 57- 90- 74- 96- 106- 101- 117- 34
13 118- 11- 21- 49- 46- 60- 38- 54- 65- 74- 98- 80- 100- 117- 30
14 42-15- 19- 53- 48- 36- 37- 54- 69- 74- 128- 81- 85- 115- 132
15 42- 14- 23- 51- 46- 59- 37- 57- 66- 127- 98- 81- 101- 116- 30
16 44-25- 18- 51-47- 61- 27- 56- 88- 74- 96- 82- 101- 108- 33
17 43-26-21- 49- 47- 123- 37- 125- 126- 87- 76- 82- 130- 115- 33
18 42- 14- 20- 53- 48- 36- 39- 55- 69- 87- 76- 129- 130- 116- 32
19 118- 13- 23- 52- 47- 36- 37- 57- 68- 74- 128- 106- 100- 109- 132
20 44-11- 19- 53- 47- 58- 124- 55- 69- 127- 76- 82- 85- 117- 34
21 118- 119- 7- 49- 48- 123- 39- 57- 69- 87- 98- 106- 104- 117- 32
22 118- 26- 18- 52- 47- 59- 38- 54- 70- 127- 96- 82- 103- 108- 32
23 41-24- 6- 53- 122- 35- 27- 54- 65- 73- 128- 106- 103- 109- 30

24 42-119- 120- 53- 48- 59- 124- 56- 65- 127- 98- 107- 101- 131- 132
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Fig. 11. The diesel generator power scheduling for the best compromise

While, the amount of VSI represents the amount of desire
voltage stability index for the bus with the lowest stability
margin. Furthermore, the conflict between the objective
functions is obvious in the unbalanced case as well as the
single-line case, and the best compromised solution provides
the trade-off between the objective functions.

The list of open-switches and the tap-changer positions are
tabulated in TABLE VI. In accordance with these results, it is
worthwhile to note that the crucial radial constraint is satisfied
at all time intervals. Moreover, it is evident that the load
profile is followed by the tap-positions. In other words, during
the peak load period, the tap-positions tend to increase the

voltage magnitude for two reasons; the first reason is to
TABLE V
RESULTS OF OPTIMIZATION FOR THE UNBALANCED CASE

Method Cost ($) ENS (kWh/year) VSI (p.u.)
Cost Minimization ~ 37118.89 1088.581 3.1539
ENS Minimization 38118.83 1073.687 6.0478
VSI Minimization ~ 37578.26 1153.294 2.7322
Best Compromise  37175.70 1092.425 3.1532




TABLE VI

OPEN SWITCHES AND TAP CHANGER POSITION FOR THE BEST COMPROMISE

o Open Switches Tap Position

1 44,24,19,51, 121263,81 1359 353 89,7497, 107, 13 (15). (-12)
2 40,11,6,49, 122i gi, 1112;l 35:, 67,74,75,107, 15 () (10)
3 118, 14, 18, 1533,11256,5%93,7527’ TLTATS, 1) (12), (16)
4 43,24,22,5 116 51 2120 2361 1277 15372 66,127,96,(12), (-15), (-10)
5 40,14,6,52,46, 1132: 1112;1 3517 67,127,76,82, (g (15, (14)
6 44,13, 17, 53, 416(,)33,51 399 3526 90, 86, 97, 82, 3).(10). (1)
7 42, 11,20, 49, 461,011?31,133?3%5, 68,74,76,82, (15 (1), (14)
8 43,16,19,51, 418(,)iSi 1367 1537é67, 87,128,381, o 14y, (-16)
9 45,15, 18, 53,81521,02?,13187,’ 13235 88,127,98, ) (8 (15)
10 42, 15,20, 1215,6121%0 6013 3173526 70,8698, 1), (-10), (-14)
11 42,11,7,52, 47i gj 131951323 88,87.75,82, &\ (11).(10)
13 118, 16,21, 50, ﬁ)’folbé?}?’ 71,74, 96, 82, (10), 9). )
14 43,26,23,52, 121%,23,51,039&’3,3517, 68,74,98.8L, (1o (1) (9
15 45,10,19, 50, 461333: 1112;1 ;g 2,74,97,105, 0 0@
16 41,26, 120,50, 1;52 13361’3%254, 66,73,98, 8L, 14y, (1), (10)
17 44,16,18,53, 121262’61 133 31325 69,73,97,80, (5 (16) (13)
18 118, 14, 19, Szé(igégf)i 11&4;7, 89.86,128, 15\ (16).(14)
19 40,26, 17,53, 47i gjs 1112:‘1,, 3561 90.87,75,106, 15\ (16). (14)
20 40,13, 18, 49, 4163 3,81 3;; 3537 88, 73,97, 80, 1), (3). (2)
21 41,11,23,49, 12§§’316i33’7§354, 88,87,98,8L, 1) (1).(2)
23 43,24,21,53, 4Gi 315 13194,"5;1:‘70, 127,98,107, 40 s (4
24 45.13,21,53,46,59,38,57,69,73, 76,106, & o (o

101, 116, 33

avoid voltage drop, and the second one is to decrease power
losses. In the off-peak period, the tap changers will reduce the
voltage magnitude in order to avoid the over-voltage issue.
The total energy transaction of batteries during their charge
and discharge and the average active and reactive power of
DGs are listed in 0. The results indicate that the batteries at
buses 31 and 109 have more penetration in comparison with
the batteries located at buses 42 and 96.
TABLE VII
THE PENETRATION OF BATTERIES AND DGS IN THE UNBALANCED
Batteries Energy Transaction

Battery No. Bus# 31 Bus# 42 Bus# 96 Bus# 109
E (kWh) 1002.3 751.3 399.6 1190.6
The Average DGs Power Transaction
DG No. Bus#20 Bus#28 Bus#71 Bus#74 Bus# 111
P (kW) 468.92 41393  432.425 248.16 418.98
Q (kVar) 167.12 135.55 181.84 92.54 136.05
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Fig. 12. Active power of batteries during charge and discharge for the best
compromise
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Also, the results depict that the DGs at buses 20 and 74 have
the most and the least commitment in the distribution network,
respectively. The DGs at buses 28, 71 and 111 have
approximately the same commitment with a value less than the
DG at bus 28.

Aiming to have a better understanding of the improvement
in terms of VSI based on distribution network loadability,
some analysis is performed as follows.



Error! Reference source not found.Fig. 13 (upper) shows
the network voltage stability profile during the 24-hour time
horizon. According to this figure, the worst voltage stability
happens at hour #19. Furthermore, the bus-vsi profile at hour
#19 and the worst bus-vsi are shown in Fig. 13 (lower)Error!
Reference source not found.. The worst bus-vsi happens at
the bus 55 with 0.31684 p.u., and the daily voltage profile of
this bus is depicted in Fig. 14. The P-V and Q-V curves for
presented strategies are plotted in Fig. 15. The continuous-
power-flow method is used to plot these curves for the
weakest bus at the critical hour (19 o’clock) in the case study.
Obviously, by improving the VSI, the stability margin is
increased.

IV. CONCLUSION

This paper proposed a new energy management strategy in
dynamic distribution network reconfiguration considering
renewable energy resources and energy storage to improve the
distribution network security and reliability Dbesides
minimizing operational cost. The simulation results showed
that the proposed strategy obtained the reasonable and high-
quality schedules for switching, batteries charging and
discharging, and the active power values of diesel generators
in both single-objective and multi-objective frameworks.
Furthermore, the exact energy not supplied index and voltage
stability index as separate objective functions are considered
to have an optimal operation in a reliable and secure
environment. Numerical results for various cases were
performed to demonstrate the ability of the proposed strategy
in achieving the optimal solutions from the perspective of the
DISCO. The proposed distribution network voltage stability
assessment using PV and QV curves analysis distinguished the
proposed study from other studies in this area.
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