Vaasan yliopisto

This is a self-archived - parallel published version of this article in the publication archive of the University of Vaasa. It might differ from the original.

# Holomorphic operator-valued functions generated by passive selfadjoint systems 

Author(s): Arlinskiĭ, Yuri; Hassi, Seppo<br>Title: Holomorphic operator-valued functions generated by passive selfadjoint systems<br>Year: 2019<br>Version: Accepted manuscript<br>Copyright ©2019 Springer, Cham. This is a post-peer-review, pre-copyedit version of an article published in [insert journal title]. The final authenticated version is available online at: http://dx.doi.org/[insert DOI].

## Please cite the original version:

Arlinskiĭ, Y., \& Hassi, S., (2019). Holomorphic operator-valued functions generated by passive selfadjoint systems. In: Bolotnikov, V., ter Horst, S., Ran, A., Vinnikov, V. (eds), Interpolation and realization theory with applications to control theory. Operator theory: advances and applications 272. Springer Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-11614-9_1

# HOLOMORPHIC OPERATOR VALUED FUNCTIONS GENERATED BY PASSIVE SELFADJOINT SYSTEMS 

YU.M. ARLINSKIII AND S. HASSI<br>Dedicated to Professor Joseph Ball on the occasion of his 70-th birthday


#### Abstract

Let $\mathfrak{M}$ be a Hilbert space. In this paper we study a class $\mathcal{R} \mathcal{S}(\mathfrak{M})$ of operator functions that are holomorphic in the domain $\mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ and whose values are bounded linear operators in $\mathfrak{M}$. The functions in $\mathcal{R S}(\mathfrak{M})$ are Schur functions in the open unit disk $\mathbb{D}$ and, in addition, Nevanlinna functions in $\mathbb{C}_{+} \cup \mathbb{C}_{-}$. Such functions can be realized as transfer functions of minimal passive selfadjoint discrete-time systems. We give various characterizations for the class $\mathcal{R S}(\mathfrak{M})$ and obtain an explicit form for the inner functions from the class $\mathcal{R} \mathcal{S}(\mathfrak{M})$ as well as an inner dilation for any function from $\mathcal{R} \mathcal{S}(\mathfrak{M})$. We also consider various transformations of the class $\mathcal{R} \mathcal{S}(\mathfrak{M})$, construct realizations of their images, and find corresponding fixed points.


## 1. Introduction

Throughout this paper we consider separable Hilbert spaces over the field $\mathbb{C}$ of complex numbers and certain classes of operator valued functions which are holomorphic on the open upper/lower half-planes $\mathbb{C}_{+} / \mathbb{C}_{-}$and/or on the open unit disk $\mathbb{D}$. A $\mathbf{B}(\mathfrak{M})$-valued function $M$ is called a Nevanlinna function if it is holomorphic outside the real axis, symmetric $M(\lambda)^{*}=M(\bar{\lambda})$, and satisfies the inequality $\operatorname{Im} \lambda \operatorname{Im} M(\lambda) \geq 0$ for all $\lambda \in \mathbb{C} \backslash \mathbb{R}$. This last condition is equivalent to the nonnegativity of the kernel

$$
\frac{M(\lambda)-M(\mu)^{*}}{\lambda-\bar{\mu}}, \quad \lambda, \mu \in \mathbb{C}_{+} \cup \mathbb{C}_{-}
$$

On the other hand, a $\mathbf{B}(\mathfrak{M})$-valued function $\Theta(z)$ belongs to the Schur class if it is holomorphic on the unit disk $\mathbb{D}$ and contractive, $\|\Theta(z)\| \leq 1 \forall z \in \mathbb{D}$ or, equivalently, the kernel

$$
\frac{I-\Theta^{*}(w) \Theta(z)}{1-z \bar{w}}, \quad z, w \in \mathbb{D}
$$

is nonnegative. Functions from the Schur class appear naturally in the study of linear discrete-time systems; we briefly recall some basic terminology here; cf. D.Z. Arov [7, 8]. Let $T$ be a bounded operator given in the block form

$$
T=\left[\begin{array}{ll}
D & C  \tag{1.1}\\
B & A
\end{array}\right]: \underset{\mathcal{K}}{\underset{\mathcal{K}}{\oplus}} \rightarrow \stackrel{\mathfrak{N}}{\underset{\mathcal{K}}{\oplus}}
$$

[^0]with separable Hilbert spaces $\mathfrak{M}, \mathfrak{N}$, and $\mathfrak{K}$. The system of equations
\[

\left\{$$
\begin{array}{l}
h_{k+1}=A h_{k}+B \xi_{k},  \tag{1.2}\\
\sigma_{k}=C h_{k}+D \xi_{k},
\end{array}
$$ \quad k \geq 0\right.
\]

describes the evolution of a linear discrete time-invariant system $\tau=\{T, \mathfrak{M}, \mathfrak{N}, \mathfrak{K}\}$. Here $\mathfrak{M}$ and $\mathfrak{N}$ are called the input and the output spaces, respectively, and $\mathfrak{K}$ is the state space. The operators $A, B, C$, and $D$ are called the main operator, the control operator, the observation operator, and the feedthrough operator of $\tau$, respectively. The subspaces

$$
\begin{equation*}
\mathfrak{K}^{c}=\overline{\operatorname{span}}\left\{A^{n} B \mathfrak{M}: n \in \mathbb{N}_{0}\right\} \quad \text { and } \quad \mathfrak{K}^{o}=\overline{\operatorname{span}}\left\{A^{* n} C^{*} \mathfrak{N}: n \in \mathbb{N}_{0}\right\} \tag{1.3}
\end{equation*}
$$

are called the controllable and observable subspaces of $\tau=\{T, \mathfrak{M}, \mathfrak{N}, \mathfrak{K}\}$, respectively. If $\mathfrak{K}^{c}=\mathfrak{K}\left(\mathfrak{K}^{o}=\mathfrak{K}\right)$ then the system $\tau$ is said to be controllable (observable), and minimal if $\tau$ is both controllable and observable. If $\mathfrak{K}=\operatorname{clos}\left\{\mathfrak{K}^{c}+\mathfrak{K}^{o}\right\}$ then the system $\tau$ is said to be a simple. Closely related to these definitions is the notion of $\mathfrak{M}$-simplicity: given a nontrivial subspace $\mathfrak{M} \subset \mathfrak{H}$ the operator $T$ acting in $\mathfrak{H}$ is said to be $\mathfrak{M}$-simple if

$$
\overline{\operatorname{span}}\left\{T^{n} \mathfrak{M}, n \in \mathbb{N}_{0}\right\}=\mathfrak{H} .
$$

Two discrete-time systems $\tau_{1}=\left\{T_{1}, \mathfrak{M}, \mathfrak{N}, \mathfrak{K}_{1}\right\}$ and $\tau_{2}=\left\{T_{2}, \mathfrak{M}, \mathfrak{N}, \mathfrak{K}_{2}\right\}$ are unitarily similar if there exists a unitary operator $U$ from $\mathfrak{K}_{1}$ onto $\mathfrak{K}_{2}$ such that

$$
\begin{equation*}
A_{2}=U A_{1} U^{*}, \quad B_{2}=U B_{1}, \quad C_{2}=C_{1} U^{*}, \quad \text { and } D_{2}=D_{1} \tag{1.4}
\end{equation*}
$$

If the linear operator $T$ is contractive (isometric, co-isometric, unitary), then the corresponding discrete-time system is said to be passive (isometric, co-isometric, conservative). With the passive system $\tau$ in (1.2) one associates the transfer function via

$$
\begin{equation*}
\Omega_{\tau}(z):=D+z C(I-z A)^{-1} B, \quad z \in \mathbb{D} . \tag{1.5}
\end{equation*}
$$

It is well known that the transfer function of a passive system belongs to the Schur class $\mathbf{S}(\mathfrak{M}, \mathfrak{N})$ and, conversely, that every operator valued function $\Theta(\lambda)$ from the Schur class $\mathbf{S}(\mathfrak{M}, \mathfrak{N})$ can be realized as the transfer function of a passive system, which can be chosen as observable co-isometric (controllable isometric, simple conservative, passive minimal). Notice that an application of the Schur-Frobenius formula (see Appendix A) for the inverse of a block operator gives with $\mathfrak{M}=\mathfrak{N}$ the relation

$$
\begin{equation*}
P_{\mathfrak{M}}(I-z T)^{-1} \upharpoonright \mathfrak{M}=\left(I_{\mathfrak{M}}-z \Omega_{\tau}(z)\right)^{-1}, \quad z \in \mathbb{D} . \tag{1.6}
\end{equation*}
$$

It is known that two isometric and controllable (co-isometric and observable, simple conservative) systems with the same transfer function are unitarily similar. However, D.Z. Arov [7] has shown that two minimal passive systems $\tau_{1}$ and $\tau_{2}$ with the same transfer function $\Theta(\lambda)$ are only weakly similar; weak similarity neither preserves the dynamical properties of the system nor the spectral properties of its main operator $A$. Some necessary and sufficient conditions for minimal passive systems with the same transfer function to be (unitarily) similar have been established in [9, 10].

By introducing some further restrictions on the passive system $\tau$ it is possible to preserve unitary similarity of passive systems having the same transfer function. In particular, when the main operator $A$ is normal such results have been obtained in [5]; see in particular Theorem 3.1 and Corollaries 3.6-3.8 therein. A stronger condition on $\tau$ where main operator is selfadjoint naturally yields to a class of systems which preserve such a unitary similarity property. A class of such systems appearing in [5] is the class of passive quasi-selfadjoint systems, in short pqs-systems, which is defined as follows: a collection

$$
\tau=\{T, \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}
$$

is a $p q s$-system if the operator $T$ determined by the block formula (1.1) with the input-output space $\mathfrak{M}=\mathfrak{N}$ is a contraction and, in addition,

$$
\operatorname{ran}\left(T-T^{*}\right) \subseteq \mathfrak{M}
$$

Then, in particular, $F=F^{*}$ and $B=C^{*}$ so that $T$ takes the form

$$
T=\left[\begin{array}{cc}
D & C \\
C^{*} & F
\end{array}\right]: \begin{gathered}
\underset{\mathcal{M}}{\oplus} \\
\underset{\mathcal{K}}{ }
\end{gathered} \rightarrow \stackrel{\mathfrak{M}}{\underset{\mathcal{K}}{\oplus}},
$$

i.e., $T$ is a quasi-selfadjoint contraction in the Hilbert space $\mathfrak{H}=\mathfrak{M} \oplus \mathcal{K}$. The class of $p q s$-systems gives rise to transfer functions which belong to the subclass $\mathcal{S}^{q s}(\mathfrak{M})$ of Schur functions. The class $\mathcal{S}^{q s}(\mathfrak{M})$ admits the following intrinsic description; see [5, Definition 4.4, Proposition 5.3]: a $\mathbf{B}(\mathfrak{M})$-valued function $\Omega$ belongs to $\mathcal{S}^{q s}(\mathfrak{M})$ if it is holomorphic on $\mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ and has the following additional properties:
(S1) $W(z)=\Omega(z)-\Omega(0)$ is a Nevanlinna function;
(S2) the strong limit values $W( \pm 1)$ exist and $W(1)-W(-1) \leq 2 I$;
(S3) $\Omega(0)$ belongs to the operator ball

$$
\mathcal{B}\left(-\frac{W(1)+W(-1)}{2}, I-\frac{W(1)-W(-1)}{2}\right)
$$

with the center $-\frac{W(1)+W(-1)}{2}$ and with the left and right radii $I-\frac{W(1)-W(-1)}{2}$.
It was proved in [5, Theorem 5.1] that the class $\mathcal{S}^{q S}(\mathfrak{M})$ coincides with the class of all transfer functions of $p q s$-systems with input-output space $\mathfrak{M}$. In particular, every function from the class $\mathcal{S}^{q s}(\mathfrak{M})$ can be realized as the transfer function of a minimal pqs-system and, moreover, two minimal realization are unitarily equivalent; see [3, 5, 6]. For pqs-systems the controllable and observable subspaces $\mathcal{K}^{c}$ and $\mathcal{K}^{o}$ as defined in (1.3) necessarily coincide. Furthermore, the following equivalences were established in [6]:
$T$ is $\mathfrak{M}$-simple $\Longleftrightarrow$ the operator $F$ is $\overline{\text { ran }} C^{*}-$ simple in $\mathcal{K}$

$$
\Longleftrightarrow \quad \text { the system } \quad \tau=\left\{\left[\begin{array}{cc}
D & C \\
C^{*} & F
\end{array}\right], \mathfrak{M}, \mathfrak{M}, \mathcal{K}\right\} \text { is minimal. }
$$

We can now introduce one of the main objects to be studied in the present paper.
Definition 1.1. Let $\mathfrak{M}$ be a Hilbert space. A $\mathbf{B}(\mathfrak{M})$-valued Nevanlinna function $\Omega$ which is holomorphic on $\mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ is said to belong to the class $\mathcal{R S}(\mathfrak{M})$ if

$$
-I \leq \Omega(x) \leq I, \quad x \in(-1,1)
$$

The class $\mathcal{R S}(\mathfrak{M})$ will be called the combined Nevanlinna-Schur class of $\mathbf{B}(\mathfrak{M})$-valued operator functions.

If $\Omega \in \mathcal{R S}(\mathfrak{M})$, then $\Omega(x)$ is non-decreasing on the interval $(-1,1)$. Therefore, the strong limit values $\Omega( \pm 1)$ exist and satisfy the following inequalities

$$
\begin{equation*}
-I_{\mathfrak{M}} \leq \Omega(-1) \leq \Omega(0) \leq \Omega(1) \leq I_{\mathfrak{M}} \tag{1.7}
\end{equation*}
$$

It follows from (S1)-(S3) that the class $\mathcal{R S}(\mathfrak{M})$ is a subclass of the class $\mathcal{S}^{a s}(\mathfrak{M})$.
In this paper we give some new characterizations of the class $\mathcal{R S}(\mathfrak{M})$, find an explicit form for inner functions from the class $\mathcal{R}(\mathfrak{M})$, and construct a bi-inner dilation for an arbitrary function from $\mathcal{R S}(\mathfrak{M})$. For instance, in Theorem 4.1 it is proven that a $\mathbf{B}(\mathfrak{M})$-valued

Nevanlinna function defined on $\mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ belongs to the class $\mathcal{R S}(\mathfrak{M})$ if and only if

$$
K(z, w):=I_{\mathfrak{M}}-\Omega^{*}(w) \Omega(z)-\frac{1-\bar{w} z}{z-\bar{w}}\left(\Omega(z)-\Omega^{*}(w)\right)
$$

defines a nonnegative kernel on the domains

$$
\mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}, \quad \operatorname{Im} z>0 \quad \text { and } \quad \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}, \quad \operatorname{Im} z<0
$$

We also show that the transformation

$$
\begin{equation*}
\mathcal{R S}(\mathfrak{M}) \ni \Omega \mapsto \boldsymbol{\Phi}(\Omega)=\Omega_{\boldsymbol{\Phi}}, \quad \Omega_{\boldsymbol{\Phi}}(z):=(z I-\Omega(z))(I-z \Omega(z))^{-1} \tag{1.8}
\end{equation*}
$$

with $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ is an automorphism of $\mathcal{R S}(\mathfrak{M}), \boldsymbol{\Phi}^{-1}=\boldsymbol{\Phi}$, and that $\boldsymbol{\Phi}$ has a unique fixed point, which will be specified in Proposition 6.6.

It turns out that the set of inner functions from the class $\mathcal{R S}(\mathfrak{M})$ can be seen as the image $\Phi$ of constant functions from $\mathcal{R S}(\mathfrak{M})$ : in other words, the inner functions from $\mathcal{R S}(\mathfrak{M})$ are of the form

$$
\Omega_{\mathrm{in}}(z)=(z I+A)(I+z A)^{-1}, A \in\left[-I_{\mathfrak{M}}, I_{\mathfrak{M}}\right] .
$$

In Theorem 6.3 it is proven that every function $\Omega \in \mathcal{R} \mathcal{S}(\mathfrak{M})$ admits the representation

$$
\begin{equation*}
\Omega(z)=P_{\mathfrak{M}} \widetilde{\Omega}_{i n}(z) \upharpoonright \mathfrak{M}=P_{\mathfrak{M}}(z I+\widetilde{A})(I+z \widetilde{A})^{-1} \upharpoonright \mathfrak{M}, \quad \widetilde{A} \in\left[-I_{\tilde{\mathfrak{M}}}, I_{\tilde{\mathfrak{M}}}\right] \tag{1.9}
\end{equation*}
$$

where $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ and $\widetilde{\mathfrak{M}}$ is a Hilbert space containing $\mathfrak{M}$ as a subspace and such that $\overline{\operatorname{span}}\left\{\widetilde{A}^{n} \mathfrak{M}: n \in \mathbb{N}_{0}\right\}=\widetilde{\mathfrak{M}}$ (i.e., $\widetilde{A}$ is $\mathfrak{M}$-simple). Equality (1.9) means that an arbitrary function of the class $\mathcal{R S}(\mathfrak{M})$ admits a bi-inner dilation (in the sense of 8]) that belongs to the class $\mathcal{R S}(\widetilde{\mathfrak{M}})$.

In Section 6 we also consider the following transformations of the class $\mathcal{R S}(\mathfrak{M})$ :

$$
\begin{align*}
\Omega\left(\frac{z+a}{1+z a}\right)=: \Omega_{a}(z) \longleftarrow \Omega(z) \longmapsto \widehat{\Omega}_{a}(z) & :=(a I+\Omega(z))(I+a \Omega(z))^{-1},  \tag{1.10}\\
a & \in(-1,1), z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\} .
\end{align*}
$$

These are analogs of the Möbius transformation

$$
w_{a}(z)=\frac{z+a}{1+a z}, \quad z \in \mathbb{C} \backslash\left\{-a^{-1}\right\} \quad(a \in(-1,1), a \neq 0)
$$

of the complex plane. The mapping $w_{a}$ is an automorphism of $\mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ and it maps $\mathbb{D}$ onto $\mathbb{D},[-1,1]$ onto $[-1,1], \mathbb{T}$ onto $\mathbb{T}$, as well as $\mathbb{C}_{+} / \mathbb{C}_{-}$onto $\mathbb{C}_{+} / \mathbb{C}_{-}$.

The mapping

$$
\mathcal{R S}(\mathfrak{M}) \ni \Omega \mapsto \Omega_{a}(z)=\Omega\left(\frac{z+a}{1+z a}\right) \in \mathcal{R S}(\mathfrak{M})
$$

can be rewritten as

$$
\Omega \mapsto \Omega \circ w_{a}
$$

In Proposition 6.13 it is shown that the fixed points of this transformation consist only of the constant functions from $\mathcal{R} \mathcal{S}(\mathfrak{M}): \Omega(z) \equiv A$ with $A \in\left[-I_{\mathfrak{M}}, I_{\mathfrak{M}}\right]$.

One of the operator analogs of $w_{a}$ is the following transformation of $\mathbf{B}(\mathfrak{M})$ :

$$
W_{a}(T)=(T+a I)(I+a T)^{-1}, \quad a \in(-1,1) .
$$

The inverse of $W_{a}$ is given by

$$
W_{-a}(T)=(T-a I)(I-a T)^{-1}
$$

The class $\mathcal{R S}(\mathfrak{M})$ is stable under the transform $W_{a}$ :

$$
\Omega \in \mathcal{R S}(\mathfrak{M}) \Longrightarrow W_{a} \circ \Omega \in \mathcal{R} \mathcal{S}(\mathfrak{M})
$$

If $T$ is selfadjoint and unitary (a fundamental symmetry), i.e., $T=T^{*}=T^{-1}$, then for every $a \in(-1,1)$ one has

$$
\begin{equation*}
W_{a}(T)=T \tag{1.11}
\end{equation*}
$$

Conversely, if for a selfadjoint operator $T$ the equality (1.11) holds for some $a:-a^{-1} \in \rho(T)$, then $T$ is a fundamental symmetry and (1.11) is valid for all $a \neq\{ \pm 1\}$.

One can interpret the mappings in (1.10) as $\Omega \circ w_{a}$ and $W_{a} \circ \Omega$, where $\Omega \in \mathcal{R S}(\mathfrak{M})$. Theorem 6.18 states that inner functions from $\mathcal{R S}(\mathfrak{M})$ are the only fixed points of the transformation

$$
\mathcal{R S}(\mathfrak{M}) \ni \Omega \mapsto W_{-a} \circ \Omega \circ w_{a}
$$

An equivalent statement is that the equality

$$
\Omega \circ w_{a}=W_{a} \circ \Omega
$$

holds only for inner functions $\Omega$ from the class $\mathcal{R} \mathcal{S}(\mathfrak{M})$. On the other hand, it is shown in Theorem 6.19 that the only solutions of the functional equation

$$
\Omega(z)=\left(\Omega\left(\frac{z-a}{1-a z}\right)-a I_{\mathfrak{M}}\right)\left(I_{\mathfrak{M}}-a \Omega\left(\frac{z-a}{1-a z}\right)\right)^{-1}
$$

in the class $\mathcal{R S}(\mathfrak{M})$, where $a \in(-1,1), a \neq 0$, are constant functions $\Omega$, which are fundamental symmetries in $\mathfrak{M}$.

To introduce still one further transform, let

$$
\mathbf{K}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{12}^{*} & K_{22}
\end{array}\right]: \begin{array}{lll}
\mathfrak{M} & & \mathfrak{M} \\
\oplus & \oplus & \oplus \\
H & & H
\end{array}
$$

be a selfadjoint contraction and consider the mapping

$$
\mathcal{R S}(H) \ni \Omega \mapsto \Omega_{\mathbf{K}}(z):=K_{11}+K_{12} \Omega(z)\left(I-K_{22} \Omega(z)\right)^{-1} K_{12}^{*},
$$

where $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. In Theorem 6.8 we prove that if $\left\|K_{22}\right\|<1$, then $\Omega_{\mathbf{K}} \in \mathcal{R S}(\mathfrak{M})$ and in Theorem 6.9 we construct a realization of $\Omega_{\mathbf{K}}$ by means of realization of $\Omega \in \mathcal{R} \mathcal{S}(H)$ using the so-called Redheffer product; see [17, 21]. The mapping

$$
\mathbf{B}(H) \ni T \mapsto K_{11}+K_{12} T\left(I-K_{22} T\right)^{-1} K_{21} \in \mathbf{B}(\mathfrak{M})
$$

can be considered as one further operator analog of the Möbius transformation, cf. [18].
Finally, it is emphasized that in Section 6 we will systematically construct explicit realizations for each of the transforms $\boldsymbol{\Phi}(\Omega), \Omega_{a}$, and $\widehat{\Omega}_{a}$ as transfer functions of minimal passive selfadjoint systems using a minimal realization of the initially given function $\Omega \in \mathcal{R} \mathcal{S}(H)$.

Basic notations. We use the symbols dom $T, \operatorname{ran} T, \operatorname{ker} T$ for the domain, the range, and the kernel of a linear operator $T$. The closures of dom $T, \operatorname{ran} T$ are denoted by $\overline{\operatorname{dom}} T, \overline{\operatorname{ran}} T$, respectively. The identity operator in a Hilbert space $\mathfrak{H}$ is denoted by $I$ and sometimes by $I_{\mathfrak{H}}$. If $\mathfrak{L}$ is a subspace, i.e., a closed linear subset of $\mathfrak{H}$, the orthogonal projection in $\mathfrak{H}$ onto $\mathfrak{L}$ is denoted by $P_{\mathfrak{L}}$. The notation $T \upharpoonright \mathfrak{L}$ means the restriction of a linear operator $T$ on the set $\mathfrak{L} \subset \operatorname{dom} T$. The resolvent set of $T$ is denoted by $\rho(T)$. The linear space of bounded operators acting between Hilbert spaces $\mathfrak{H}$ and $\mathfrak{K}$ is denoted by $\mathbf{B}(\mathfrak{H}, \mathfrak{K})$ and the Banach algebra $\mathbf{B}(\mathfrak{H}, \mathfrak{H})$ by $\mathbf{B}(\mathfrak{H})$. For a contraction $T \in \mathbf{B}(\mathfrak{H}, \mathfrak{K})$ the defect operator $\left(I-T^{*} T\right)^{1 / 2}$ is denoted by $D_{T}$ and $\mathfrak{D}_{T}:=\overline{\operatorname{ran}} D_{T}$. For defect operators one has the commutation relations

$$
\begin{equation*}
T D_{T}=D_{T^{*}} T, \quad T^{*} D_{T^{*}}=D_{T} T^{*} \tag{1.12}
\end{equation*}
$$

and, moreover,

$$
\begin{equation*}
\operatorname{ran} T D_{T}=\operatorname{ran} D_{T^{*}} T=\operatorname{ran} T \cap \operatorname{ran} D_{T^{*}} \tag{1.13}
\end{equation*}
$$

In what follows we systematically use the Schur-Frobenius formula for the resolvent of a block-operator matrix and parameterizations of contractive block operators, see Appendices A and B .

## 2. The combined Nevanlinna-Schur class $\mathcal{R} \mathcal{S}(\mathfrak{M})$

In this section some basic properties of operator functions belonging to the combined Nevanlinna-Schur class $\mathcal{R S}(\mathfrak{M})$ are derived. As noted in Introduction every function $\Omega \in$ $\mathcal{R S}(\mathfrak{M})$ admits a realization as the transfer function of a passive selfadjoint system. In particular, the function $\Omega \upharpoonright \mathbb{D}$ belongs to the Schur class $\mathcal{S}(\mathfrak{M})$.

It is known from [1] that, if $\Omega \in \mathcal{R} \mathcal{S}(\mathfrak{M})$ then for every $\beta \in[0, \pi / 2)$ the following implications are satisfied:

$$
\left\{\begin{array}{c}
|z \sin \beta+i \cos \beta| \leq 1  \tag{2.1}\\
z \neq \pm 1 \\
|z \sin \beta-i \cos \beta| \leq 1 \\
z \neq \pm 1
\end{array} \Longrightarrow\|\Omega(z) \sin \beta+i \cos \beta I\| \leq 1 .\right.
$$

In fact, in Section 4 these implications will be we derived once again by means of some new characterizations for the class $\mathcal{R} \mathcal{S}(\mathfrak{M})$.

To describe some further properties of the class $\mathcal{R} \mathcal{S}(\mathfrak{M})$ consider a passive selfadjoint system given by

$$
\tau=\left\{\left[\begin{array}{cc}
D & C  \tag{2.2}\\
C^{*} & F
\end{array}\right] ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\right\}
$$

with $D=D^{*}$ and $F=F^{*}$. It is known, see Proposition B. 1 and Remark B. 2 in Appendix B , that the entries of the selfadjoint contraction

$$
T=\left[\begin{array}{cc}
D & C  \tag{2.3}\\
C^{*} & F
\end{array}\right]: \stackrel{\underset{\mathcal{M}}{\oplus}}{\underset{\mathcal{K}}{\oplus}} \rightarrow \stackrel{\substack{\mathfrak{M} \\
\mathcal{K}}}{\stackrel{\oplus}{\mathcal{K}}}
$$

admit the parametrization

$$
\begin{equation*}
C=K D_{F}, \quad D=-K F K^{*}+D_{K^{*}} Y D_{K^{*}}, \tag{2.4}
\end{equation*}
$$

where $K \in \mathbf{B}\left(\mathfrak{D}_{F}, \mathfrak{M}\right)$ is a contraction and $Y \in \mathbf{B}\left(\mathfrak{D}_{K^{*}}\right)$ is a selfadjoint contraction. The minimality of the system $\tau$ means that the following equivalent equalities hold:

$$
\begin{equation*}
\overline{\operatorname{span}}\left\{F^{n} D_{F} K^{*}, n \in \mathbb{N}_{0}\right\}=\mathcal{K} \Longleftrightarrow \bigcap_{n \in \mathbb{N}_{0}} \operatorname{ker}\left(K F^{n} D_{F}\right)=\{0\} \tag{2.5}
\end{equation*}
$$

Notice that if $\tau$ is minimal, then necessarily $\mathcal{K}=\mathfrak{D}_{F}$ or, equivalently, ker $D_{F}=\{0\}$.
Recall from [20] the Sz.-Nagy - Foias characteristic function of the selfadjoint contraction $F$, which for every $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ is given by

$$
\begin{aligned}
\Delta_{F}(z) & =\left(-F+z D_{F}(I-z F)^{-1} D_{F}\right) \upharpoonright \mathfrak{D}_{F} \\
& =\left(-F+z\left(I-F^{2}\right)(I-z F)^{-1}\right) \upharpoonright \mathfrak{D}_{F} \\
& =(z I-F)(I-z F)^{-1} \upharpoonright \mathfrak{D}_{F} .
\end{aligned}
$$

Using the above parametrization one obtains the representations, cf. [5, Theorem 5.1],

$$
\begin{align*}
\Omega(z) & =D+z C(I-z F)^{-1} C^{*}=D_{K^{*}} Y D_{K^{*}}+K \Delta_{F}(z) K^{*} \\
& =D_{K^{*}} Y D_{K^{*}}+K(z I-F)(I-z F)^{-1} K^{*} \tag{2.6}
\end{align*}
$$

Moreover, this gives the following representation for the limit values $\Omega( \pm 1)$ :

$$
\begin{equation*}
\Omega(-1)=-K K^{*}+D_{K^{*}} Y D_{K^{*}}, \quad \Omega(1)=K K^{*}+D_{K^{*}} Y D_{K^{*}} . \tag{2.7}
\end{equation*}
$$

The case $\Omega( \pm 1)^{2}=I_{\mathfrak{M}}$ is of special interest and can be characterized as follows.
Proposition 2.1. Let $\mathfrak{M}$ be a Hilbert space and let $\Omega \in \mathcal{R S}(\mathfrak{M})$. Then the following statements are equivalent:
(i) $\Omega(1)^{2}=\Omega(-1)^{2}=I_{\mathfrak{M}}$;
(ii) the equalities

$$
\begin{align*}
& \left(\frac{\Omega(1)-\Omega(-1)}{2}\right)^{2}=\frac{\Omega(1)-\Omega(-1)}{2}  \tag{2.8}\\
& \left(\frac{\Omega(1)+\Omega(-1)}{2}\right)^{2}=I_{\mathfrak{M}}-\frac{\Omega(1)-\Omega(-1)}{2}
\end{align*}
$$

hold;
(iii) if $\tau=\{T ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$ is a passive selfadjoint system (2.2) with the transfer function $\Omega$ and if the entries of the block operator $T$ are parameterized by (2.4), then the operator $K \in \mathbf{B}\left(\mathfrak{D}_{F}, \mathfrak{M}\right)$ is a partial isometry and $Y^{2}=I_{\text {ker } K^{*}}$.
Proof. From (2.7) we get for all $f \in \mathfrak{M}$
$\|f\|^{2}-\|\Omega( \pm 1) f\|^{2}=\|f\|^{2}-\left\|\left(D_{K^{*}} Y D_{K^{*}} \pm K K^{*}\right) f\right\|^{2}=\|\left(K^{*}(I \mp Y) D_{K^{*}} f\left\|^{2}+\right\| D_{Y} D_{K^{*}} f \|^{2} ;\right.$
cf. [4, Lemma 3.1]. Hence

$$
\begin{aligned}
\Omega(1)^{2}=\Omega(-1)^{2}=I_{\mathfrak{M}} \Longleftrightarrow\left\{\begin{array}{l}
K^{*}(I-Y) D_{K^{*}}=0 \\
K^{*}(I+Y) D_{K^{*}}=0 \\
D_{Y} D_{K^{*}}=0
\end{array}\right. & \Longleftrightarrow\left\{\begin{array}{l}
K^{*} D_{K^{*}}=D_{K} K^{*}=0 \\
K^{*} Y D_{K^{*}}=0 \\
D_{Y} D_{K^{*}}=0
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
K \text { is a partial isometry } \\
Y^{2}=I_{\mathfrak{D}_{K^{*}}}=I_{\mathrm{ker} K^{*}}
\end{array}\right.
\end{aligned}
$$

Thus (i) $\Longleftrightarrow($ iii).
Since $K$ is a partial isometry, i.e., $K K^{*}$ is an orthogonal projection, the formulas (2.7) imply that

$$
K \text { is a partial isometry } \Longleftrightarrow\left(\frac{\Omega(1)-\Omega(-1)}{2}\right)^{2}=\frac{\Omega(1)-\Omega(-1)}{2}
$$

and in this case $D_{K^{*}} Y=Y$, which implies that

$$
Y^{2}=I_{\mathfrak{D}_{K^{*}}}=I_{\mathrm{ker} K^{*}} \Longleftrightarrow\left(\frac{\Omega(1)+\Omega(-1)}{2}\right)^{2}=I_{\mathfrak{M}}-\frac{\Omega(1)-\Omega(-1)}{2} .
$$

Thus (iii) $\Longleftrightarrow$ (ii).

By interchanging the roles of the subspaces $\mathcal{K}$ and $\mathfrak{M}$ as well as the roles of the corresponding blocks of $T$ in (2.3) leads to the passive selfadjoint system

$$
\eta=\left\{\left[\begin{array}{cc}
D & C \\
C^{*} & F
\end{array}\right], \mathcal{K}, \mathcal{K}, \mathfrak{M}\right\}
$$

now with the input-output space $\mathcal{K}$ and the state space $\mathfrak{M}$. The transfer function of $\eta$ is given by

$$
B(z)=F+z C^{*}(I-z D)^{-1} C, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}
$$

By applying Appendix B again one gets for (2.4) the following alternative expression to parameterize the blocks of $T$ :

$$
\begin{equation*}
C=D_{D} N^{*}, \quad F=-N D N^{*}+D_{N^{*}} X D_{N^{*}}, \tag{2.9}
\end{equation*}
$$

where $N: \mathfrak{D}_{D} \rightarrow \mathcal{K}$ is a contraction and $X$ is a selfadjoint contraction in $\mathfrak{D}_{N^{*}}$. Now, similar to (2.7) one gets

$$
B(1)=N N^{*}+D_{N^{*}} X D_{N^{*}}, \quad B(-1)=-N N^{*}+D_{N^{*}} X D_{N^{*}} .
$$

For later purposes, define the selfadjoint contraction $\widehat{F}$ by

$$
\begin{equation*}
\widehat{F}:=D_{N^{*}} X D_{N^{*}}=\frac{B(-1)+B(1)}{2} . \tag{2.10}
\end{equation*}
$$

The statement in the next lemma can be checked with a straightforward calculation.
Lemma 2.2. Let the entries of the selfadjoint contraction

$$
T=\left[\begin{array}{cc}
D & C \\
C^{*} & F
\end{array}\right]: \begin{aligned}
& \underset{\mathcal{M}}{\oplus} \\
& \underset{\mathcal{K}}{ }
\end{aligned} \rightarrow \stackrel{\mathfrak{M}}{\underset{\mathcal{K}}{\oplus}}
$$

be parameterized by the formulas (2.9) with a contraction $N: \mathfrak{D}_{D} \rightarrow \mathcal{K}$ and a selfadjoint contraction $X$ in $\mathfrak{D}_{N^{*}}$. Then the function $W(\cdot)$ defined by

$$
\begin{equation*}
W(z)=I+z D N^{*}(I-z \widehat{F})^{-1} N, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\} \tag{2.11}
\end{equation*}
$$

where $\widehat{F}$ is given by (2.10), is invertible and

$$
\begin{equation*}
W(z)^{-1}=I-z D N^{*}(I-z F)^{-1} N, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\} \tag{2.12}
\end{equation*}
$$

The function $W(\cdot)$ is helpful for proving the next result.
Proposition 2.3. Let $\Omega \in \mathcal{R} \mathcal{S}(\mathfrak{M})$. Then for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ the function $\Omega(z)$ can be represented in the form

$$
\begin{equation*}
\Omega(z)=\Omega(0)+D_{\Omega(0)} \Lambda(z)(I+\Omega(0) \Lambda(z))^{-1} D_{\Omega(0)} \tag{2.13}
\end{equation*}
$$

with a function $\Lambda \in \mathcal{R} \mathcal{S}\left(\mathfrak{D}_{\Omega(0)}\right)$ for which $\Lambda(z)=z \Gamma(z)$, where $\Gamma$ is a holomorphic $\mathbf{B}\left(\mathfrak{D}_{\Omega(0)}\right)$ valued function such that $\|\Gamma(z)\| \leq 1$ for $z \in \mathbb{D}$. In particular, $\|\Lambda(z)\| \leq|z|$ when $z \in \mathbb{D}$.
Proof. To prove the statement, let the function $\Omega$ be realized as the transfer function of a passive selfadjoint system $\tau=\{T ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$ as in (2.2), i.e. $\Omega(z)=D+z C(I-z F)^{-1} C^{*}$. Using (2.9) rewrite $\Omega$ as

$$
\Omega(z)=D+z D_{D} N^{*}(I-z F)^{-1} N D_{D}=\Omega(0)+z D_{\Omega(0)} N^{*}(I-z F)^{-1} N D_{\Omega(0)} .
$$

The definition of $\widehat{F}$ in (2.10) implies that the block operator

$$
\left[\begin{array}{cc}
0 & N^{*} \\
N & \widehat{F}
\end{array}\right]: \begin{aligned}
& \stackrel{\mathfrak{D}_{\Omega(0)}}{\underset{\mathcal{K}}{ }} \rightarrow \begin{array}{l}
\mathfrak{D}_{\Omega(0)} \\
\mathcal{K}
\end{array}
\end{aligned}
$$

is a selfadjoint contraction (cf. Appendix (B). Consequently, the $\mathbf{B}\left(\mathfrak{D}_{D}\right)$-valued function

$$
\begin{equation*}
\Lambda(z):=z N^{*}\left(I_{\mathcal{K}}-z \widehat{F}\right)^{-1} N, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\} \tag{2.14}
\end{equation*}
$$

is the transfer function of the passive selfadjoint system

$$
\tau_{0}=\left\{\left[\begin{array}{cc}
0 & N^{*} \\
N & \widehat{F}
\end{array}\right] ; \mathfrak{D}_{\Omega(0)}, \mathfrak{D}_{\Omega(0)}, \mathcal{K}\right\}
$$

Hence $\Lambda$ belongs the class $\mathcal{R} \mathcal{S}\left(\mathfrak{D}_{\Omega(0)}\right)$. Furthermore, using (2.11) and (2.12) in Lemma 2.2 one obtains

$$
I+\Omega(0) \Lambda(z)=I+z D N^{*}(I-z \widehat{F})^{-1} N=W(z)
$$

and

$$
(I+\Omega(0) \Lambda(z))^{-1}=W(z)^{-1}=I-z D N^{*}(I-z F)^{-1} N
$$

for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. Besides, in view of (2.9) one has $\widehat{F}-F=N D N^{*}$. This leads to the following implications

$$
\begin{aligned}
& N^{*}(I-\widehat{F})^{-1} N-N^{*}(I-z F)^{-1} N=z N^{*}(I-\widehat{F})^{-1} N D N^{*}(I-z F)^{-1} N \\
& \Longleftrightarrow z N^{*}(I-\widehat{F})^{-1} N\left(I-z D N^{*}(I-z F)^{-1} N\right)=z N^{*}(I-z F)^{-1} N \\
& \Longleftrightarrow \Lambda(z)(I+\Omega(0) \Lambda(z))^{-1}=z N^{*}(I-z F)^{-1} N \\
& \Longrightarrow \Omega(z)=\Omega(0)+D_{\Omega(0)} \Lambda(z)(I+\Omega(0) \Lambda(z))^{-1} D_{\Omega(0)} .
\end{aligned}
$$

Since $\Lambda(0)=0$, it follows from Schwartz's lemma that $\|\Lambda(z)\| \leq|z|$ for all $z$ with $|z|<1$. In particular, one has a factorization $\Lambda(z)=z \Gamma(z)$, where $\Gamma$ is a holomorphic $\mathbf{B}\left(\mathfrak{D}_{\Omega(0)}\right)$-valued function such that $\|\Gamma(z)\| \leq 1$ for $z \in \mathbb{D}$; this is also obvious from (2.14).

One can verify that the following relation for $\Lambda(z)$ holds

$$
\begin{equation*}
\Lambda(z)=D_{\Omega(0)}^{(-1)}(\Omega(z)-\Omega(0))(I-\Omega(0) \Omega(z))^{-1} D_{\Omega(0)} \tag{2.15}
\end{equation*}
$$

where $D_{\Omega(0)}^{(-1)}$ stands for the Moore-Penrose inverse of $D_{\Omega(0)}$.
It should be noted that the formula (2.13) holds for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. A general Schur class function $\Omega \in \mathbf{S}(\mathfrak{M}, \mathfrak{N})$ can be represented in the form

$$
\Omega(z)=\Omega(0)+D_{\Omega(0)^{*}} \Lambda(z)\left(I+\Omega(0)^{*} \Lambda(z)\right)^{-1} D_{\Omega(0)}, \quad z \in \mathbb{D} .
$$

This is called a Möbius representation of $\Omega$ and it can be found in [12, 14, 18].

## 3. InNer functions from the class $\mathcal{R} \mathcal{S}(\mathfrak{M})$

An operator valued function from the Schur class is called inner/co-inner (or *-inner) (see e.g. [20]) if it takes isometric/co-isometric values almost everywhere on the unit circle $\mathbb{T}$, and it is said to be bi-inner when it is both inner and co-inner.

Observe that if $\Omega \in \mathcal{R S}(\mathfrak{M})$ then $\Omega(z)^{*}=\Omega(\bar{z})$. Since $\mathbb{T} \backslash\{-1,1\} \subset \mathbb{C} \backslash\{(-\infty,-1] \cup$ $[1,+\infty)\}$, one concludes that $\Omega \in \mathcal{R} \mathcal{S}(\mathfrak{M})$ is inner (or co-inner) precisely when it is bi-inner. Notice also that every function $\Omega \in \mathcal{R} \mathcal{S}(\mathfrak{M})$ can be realized as the transfer function of a minimal passive selfadjoint system $\tau$ as in (2.2); cf. [5, Theorem 5.1].

The next statement contains a characteristic result for transfer functions of conservative selfadjoint systems.

Proposition 3.1. Assume that the selfadjoint system $\tau=\{T ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$ in (2.2) is conservative. Then its transfer function $\Omega(z)=D+z C\left(I_{\mathcal{K}}-z F\right)^{-1} C^{*}$ is bi-inner and it takes the form

$$
\begin{equation*}
\Omega(z)=\left(z I_{\mathfrak{M}}+D\right)\left(I_{\mathfrak{M}}+z D\right)^{-1}, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\} . \tag{3.1}
\end{equation*}
$$

On the other hand, if $\tau$ is a minimal passive selfadjoint system whose transfer function is inner, then $\tau$ is conservative.

Proof. Let the entries of $T$ in (2.3) be parameterized as in (2.9). By assumption $T$ is unitary and hence $N \in \mathbf{B}\left(\mathfrak{D}_{D}, \mathcal{K}\right)$ is isometry and $X$ is selfadjoint and unitary in the subspace $\mathfrak{D}_{N^{*}}=$ ker $N^{*}$; see Remark B.3 in Appendix B. Thus $N N^{*}$ and $D_{N^{*}}$ are orthogonal projections and $N N^{*}+D_{N^{*}}=I_{\mathcal{K}}$ which combined with (2.9) leads to

$$
\begin{aligned}
\left(I_{\mathcal{K}}-z F\right)^{-1} & =\left(N(I+z D) N^{*}+D_{N^{*}}(I-z X) D_{N^{*}}\right)^{-1} \\
& =N(I+z D)^{-1} N^{*}+D_{N^{*}}(I-z X)^{-1} D_{N^{*}}
\end{aligned}
$$

and, consequently,

$$
\begin{aligned}
\Omega(z) & =D+z C\left(I_{\mathcal{K}}-z F\right)^{-1} C^{*} \\
& =D+z D_{D} N^{*}\left(N(I+z D)^{-1} N^{*}+D_{N^{*}}(I-z X)^{-1} D_{N^{*}}\right) N D_{D} \\
& =D+z(I+z D)^{-1} D_{D}^{2}=\left(z I_{\mathfrak{M}}+D\right)\left(I_{\mathfrak{M}}+z D\right)^{-1},
\end{aligned}
$$

for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. This proves (3.1) and this clearly implies that $\Omega(z)$ is bi-inner.

To prove the second statement assume that the transfer function of a minimal passive selfadjoint system $\tau$ is inner. Then it is automatically bi-inner. Now, according to a general result of D.Z. Arov [8, Theorem 1] (see also [10, Theorem 1], [4, Theorem 1.1]), if $\tau$ is a passive simple discrete-time system with bi-inner transfer function, then $\tau$ is conservative and minimal. This proves the second statement.

The formula (3.1) in Proposition 3.1 gives a one-to-one correspondence between the operators $D$ from the operator interval $\left[-I_{\mathfrak{M}}, I_{\mathfrak{M}}\right]$ and the inner functions from the class $\mathcal{R S}(\mathfrak{M})$. Recall that for $\Omega \in \mathcal{R} \mathcal{S}(\mathfrak{M})$ the strong limit values $\Omega( \pm 1)$ exist as selfadjoint contractions; see (1.7). The formula (3.1) shows that if $\Omega \in \mathcal{R S}(\mathfrak{M})$ is an inner function, then necessarily these limit values are also unitary:

$$
\begin{equation*}
\Omega(1)^{2}=\Omega(-1)^{2}=I_{\mathfrak{M}} . \tag{3.2}
\end{equation*}
$$

However, these two conditions do not imply that $\Omega \in \mathcal{R S}(\mathfrak{M})$ is an inner function; cf. Proposition 2.1 and Remark B. 3 in Appendix B.

The next two theorems offer some sufficient conditions for $\Omega \in \mathcal{R} \mathcal{S}(\mathfrak{M})$ to be an inner function. The first one shows that by shifting $\xi \in \mathbb{T}(|\xi|=1)$ away from the real line then
existence of a unitary limit value $\Omega(\xi)$ at a single point implies that $\Omega \in \mathcal{R} \mathcal{S}(\mathfrak{M})$ is actually a bi-inner function.
Theorem 3.2. Let $\Omega$ be a nonconstant function from the class $\mathcal{R} \mathcal{S}(\mathfrak{M})$. If $\Omega(\xi)$ is unitary for some $\xi_{0} \in \mathbb{T}, \xi_{0} \neq \pm 1$. Then $\Omega$ is a bi-inner function.
Proof. Let $\tau=\{T ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$ in (2.2) be a minimal passive selfadjoint system whose transfer function is $\Omega$ and let the entries of $T$ be parameterized as in (2.4). Using the representation (2.6) one can derive the following formula for all $\xi \in \mathbb{T} \backslash\{ \pm 1\}$ :

$$
\left\|D_{\Omega(\xi)} h\right\|^{2}=\left\|D_{\Delta_{F}(\xi)} K^{*} h\right\|^{2}+\left\|D_{Y} D_{K^{*}} h\right\|^{2}+\left\|\left(D_{K} \Delta_{F}(\xi) K^{*}-K^{*} Y D_{K^{*}}\right) h\right\|^{2}
$$

cf. [4, Theorem 5.1], [5, Theorem 2.7]. Since $\Delta_{F}(\xi)$ is unitary for all $\xi \in \mathbb{T} \backslash\{ \pm 1\}$ and $\Omega\left(\xi_{0}\right)$ is unitary, one concludes that $Y$ is unitary on $\mathfrak{D}_{K^{*}}$ and $\left(D_{K} \Delta_{F}\left(\xi_{0}\right) K^{*}-K^{*} Y D_{K^{*}}\right) h=0$ for all $h \in \mathfrak{M}$.

Suppose that there is $h_{0} \neq 0$ such that $D_{K} \Delta_{F}\left(\xi_{0}\right) K^{*} h_{0} \neq 0$ and $K^{*} Y D_{K^{*}} h_{0} \neq 0$. Then, due to $D_{K} \Delta_{F}\left(\xi_{0}\right) K^{*} h_{0}=K^{*} Y D_{K^{*}} h_{0}$, the equalities $D_{K} K^{*}=K^{*} D_{K^{*}}$, and

$$
\operatorname{ran} D_{K} \cap \operatorname{ran} K^{*}=\operatorname{ran} D_{K} K^{*}=\operatorname{ran} K^{*} D_{K^{*}}
$$

see (1.12), (1.13), one concludes that there exists $\varphi_{0} \in \mathfrak{D}_{K^{*}}$ such that

$$
\left\{\begin{array}{l}
\Delta_{F}\left(\xi_{0}\right) K^{*} h_{0}=K^{*} \varphi_{0} \\
Y D_{K^{*}} h_{0}=D_{K^{*}} \varphi_{0}
\end{array}\right.
$$

Furthermore, the equality $D_{\Omega\left(\xi_{0}\right)^{*}}=D_{\Omega\left(\bar{\xi}_{0}\right)}=0$ implies $\left(D_{K} \Delta_{F}\left(\bar{\xi}_{0}\right) K^{*}-K^{*} Y D_{K^{*}}\right) h=0$ for all $h \in \mathfrak{M}$. Now $Y D_{K^{*}} h_{0}=D_{K^{*}} \varphi_{0}$ leads to $\Delta_{F}\left(\bar{\xi}_{0}\right) K^{*} h_{0}=K^{*} \varphi_{0}$. It follows that

$$
\Delta_{F}\left(\xi_{0}\right) K^{*} h_{0}=\Delta_{F}\left(\bar{\xi}_{0}\right) K^{*} h_{0}
$$

Because $\Delta_{F}\left(\bar{\xi}_{0}\right)=\Delta_{F}\left(\xi_{0}\right)^{*}=\Delta_{F}\left(\xi_{0}\right)^{-1}$, one obtains $\left(I-\Delta_{F}\left(\xi_{0}\right)^{2}\right) K^{*} h_{0}=0$. From

$$
\Delta_{F}\left(\xi_{0}\right)=\left(\xi_{0} I-F\right)\left(I-\xi_{0} F\right)^{-1}
$$

it follows that

$$
\left(1-\xi_{0}^{2}\right)\left(I-\xi_{0} F\right)^{-2}\left(I-F^{2}\right) K^{*} h_{0}=0
$$

Since ker $D_{F}=\{0\}$ (because the system $\tau$ is minimal), we get $K^{*} h_{0}=0$. Therefore, $D_{K} \Delta_{F}\left(\xi_{0}\right) K^{*} h_{0}=0$ and $K^{*} Y D_{K^{*}} h_{0}=0$. One concludes that

$$
\left\{\begin{array}{l}
D_{K} \Delta_{F}\left(\xi_{0}\right) K^{*} h=0 \\
K^{*} Y D_{K^{*}} h=0
\end{array} \quad \forall h \in \mathfrak{M} .\right.
$$

The equality $\operatorname{ran} Y=\mathfrak{D}_{K^{*}}$ implies $K^{*} D_{K^{*}}=D_{K} K^{*}=0$. Therefore $K$ is a partial isometry. The equality $D_{K} \Delta_{F}\left(\xi_{0}\right) K^{*}=0$ implies ran $\left(\Delta_{F}\left(\xi_{0}\right) K^{*}\right) \subseteq$ ran $K^{*}$. Representing $\Delta_{F}\left(\xi_{0}\right)$ as

$$
\Delta_{F}\left(\xi_{0}\right)=\left(\xi_{0} I-F\right)\left(I-\xi_{0} F\right)^{-1} K^{*}=\left(\bar{\xi}_{0} I+\left(\xi_{0}-\bar{\xi}_{0}\right)\left(I-\xi_{0} F\right)^{-1}\right) K^{*}
$$

we obtain that $F\left(\operatorname{ran} K^{*}\right) \subseteq \operatorname{ran} K^{*}$. Hence $F^{n} D_{F}\left(\operatorname{ran} K^{*}\right) \subseteq \operatorname{ran} K^{*}$ for all $n \in \mathbb{N}_{0}$. Because the system $\tau$ is minimal it follows that $\operatorname{ran} K^{*}=\mathfrak{D}_{F}=\mathcal{K}$, i.e., $K$ is isometry and hence $T$ is unitary (see Appendix (B). This implies that $D_{\Omega(\xi)}=0$ for all $\zeta \in \mathbb{T} \backslash\{-1,1\}$, i.e., $\Omega$ is inner and, thus also bi-inner.
Theorem 3.3. Let $\Omega \in \mathcal{R} \mathcal{S}(\mathfrak{M})$. If the equalities (3.2) hold and, in addition, for some $a \in(-1,1), a \neq 0$, the equality

$$
\begin{equation*}
\left(\Omega(a)-a I_{\mathfrak{M}}\right)\left(I_{\mathfrak{M}}-a \Omega(a)\right)^{-1}=\Omega(0) \tag{3.3}
\end{equation*}
$$

is satisfied, then $\Omega$ is bi-inner.

Proof. Let $\tau=\{T ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$ be a minimal passive selfadjoint system as in (2.2) with the transfer function $\Omega$ and let the entries of $T$ in (2.3) be parameterized as in (2.4). According to Proposition 2.1 the equalities (3.2) mean that $K$ is a partial isometry and $Y^{2}=I_{\text {ker } K^{*} \text {. }}$.

Since $D_{K^{*}}$ is the orthogonal projection, $\operatorname{ran} Y \subseteq \operatorname{ran} D_{N^{*}}$, from (2.6) we have

$$
\Omega(z)=Y D_{K^{*}}+K(z I-F)(I-z F)^{-1} K^{*}
$$

Rewrite (3.3) in the form

$$
\begin{equation*}
\Omega(0)\left(I_{\mathfrak{M}}-a \Omega(a)\right)=\Omega(a)-a I_{\mathfrak{M}} . \tag{3.4}
\end{equation*}
$$

This leads to

$$
\begin{aligned}
&\left(-K F K^{*}+Y D_{K^{*}}\right)\left(I_{\mathfrak{M}}-a\left(Y D_{K^{*}}\right.\right.\left.\left.+K(a I-F)(I-a F)^{-1} K^{*}\right)\right) \\
&=Y D_{K^{*}}+K(a I-F)(I-a F)^{-1} K^{*}-a I_{\mathfrak{M}} \\
&\left(-K F K^{*}+Y D_{K^{*}}\right)\left((I-a Y) D_{K^{*}}\right.\left.+K\left(I-a(a I-F)(I-a F)^{-1}\right) K^{*}\right) \\
&=(Y-a I) D_{K^{*}}+K\left((a I-F)(I-a F)^{-1}-a I\right) K^{*} \\
&-K F K^{*} K\left(I-a(a I-F)(I-a F)^{-1}\right) K^{*}+Y(I-a Y) D_{K^{*}} \\
&=(Y-a I) D_{K^{*}}+K\left((a I-F)(I-a F)^{-1}-a I\right) K^{*}
\end{aligned}
$$

Let $P$ be an orthogonal projection from $\mathcal{K}$ onto ran $K^{*}$. Since $K$ is a partial isometry, one has $K^{*} K=P$. The equality $Y^{2}=I_{\mathfrak{D}_{K^{*}}}$ implies $Y(I-a Y) D_{K^{*}}=(Y-a I) D_{K^{*}}$. This leads to the following identities:

$$
\begin{aligned}
& K\left(-F P\left(I-a(a I-F)(I-a F)^{-1}\right)-(a I-F)(I-a F)^{-1}+a I\right) K^{*}=0, \\
& K F\left(I_{\mathfrak{M}}-P\right)(I-a F)^{-1} K^{*}=0 \\
& P F\left(I_{\mathfrak{M}}-P\right)(I-a F)^{-1} P=0 .
\end{aligned}
$$

Represent the operator $F$ in the block form

$$
F=\left[\begin{array}{ll}
F_{11} & F_{12} \\
F_{12}^{*} & F_{22}
\end{array}\right]: \begin{array}{ll}
\operatorname{ran} P & \operatorname{ran} P \\
\operatorname{ran}(I-P) & \rightarrow \\
\operatorname{ran}(I-P)
\end{array}
$$

Define

$$
\Theta(z)=F_{11}+z F_{12}\left(I-z F_{22}\right)^{-1} F_{12}^{*} .
$$

Since $F$ is a selfadjoint contraction, the function $\Theta$ belongs to the class $\mathcal{R} \mathcal{S}(\operatorname{ran} P)$. From the Schur-Frobenius formula (A.1) it follows that

$$
(I-P)(I-a F)^{-1} P=a\left(I-a F_{22}\right)^{-1} F_{12}^{*}(I-a \Theta(a))^{-1} P .
$$

This equality yields the equivalences

$$
\begin{aligned}
& P F\left(I_{\mathfrak{M}}-P\right)(I-a F)^{-1} P=0 \Longleftrightarrow F_{12}\left(I-a F_{22}\right)^{-1} F_{12}^{*}(I-a \Theta(a))^{-1} P=0 \\
& \Longleftrightarrow F_{12}\left(I-a F_{22}\right)^{-1} F_{12}^{*}=0 \Longleftrightarrow\left(I-a F_{22}\right)^{-1 / 2} F_{12}^{*}=0 \Longleftrightarrow F_{12}^{*}=0 .
\end{aligned}
$$

It follows that the subspace $\operatorname{ran} K^{*}$ reduces $F$. Hence ran $K^{*}$ reduces $D_{F}$ and, therefore $F^{n} D_{F} \operatorname{ran} K^{*} \subseteq \operatorname{ran} K^{*}$ for an arbitrary $n \in \mathbb{N}_{0}$. Since the system $\tau$ is minimal, we get
$\operatorname{ran} K^{*}=\mathcal{K}$ and this implies that $K$ is an isometry. Taking into account that $Y^{2}=I_{\mathfrak{D}_{K^{*}}}$, we get that the block operator $T$ is unitary. By Proposition $3.1 \Omega$ is bi-inner.

For completeness we recall the following result on the limit values $\Omega( \pm 1)$ of functions $\Omega \in \mathbf{S}^{q s}(\mathfrak{M})$ from [5, Theorem 5.8].
Lemma 3.4. Let $\mathfrak{M}$ be a Hilbert space and let $\Omega \in \mathbf{S}^{q s}(\mathfrak{M})$. Then:
(1) if $\Omega(\lambda)$ is inner then

$$
\begin{align*}
& \left(\frac{\Omega(1)-\Omega(-1)}{2}\right)^{2}=\frac{\Omega(1)-\Omega(-1)}{2}  \tag{3.5}\\
& (\Omega(1)+\Omega(-1))^{*}(\Omega(1)+\Omega(-1))=4 I_{\mathfrak{M}}-2(\Omega(1)-\Omega(-1)) ;
\end{align*}
$$

(2) if $\Omega$ is co-inner then

$$
\begin{align*}
& \left(\frac{\Omega(1)-\Omega(-1)}{2}\right)^{2}=\frac{\Omega(1)-\Omega(-1)}{2}  \tag{3.6}\\
& (\Omega(1)+\Omega(-1))(\Omega(1)+\Omega(-1))^{*}=4 I_{\mathfrak{M}}-2(\Omega(1)-\Omega(-1))
\end{align*}
$$

(3) if (3.5) /(3.6) holds and $\Omega(\xi)$ is isometric/co-isometric for some $\xi \in \mathbb{T}, \xi \neq \pm 1$, then $\Omega$ is inner/co-inner.
Proposition 3.5. If $\Omega \in \mathcal{R S}(\mathfrak{M})$ is an inner function, then

$$
\Omega\left(z_{1}\right) \Omega\left(z_{2}\right)=\Omega\left(z_{2}\right) \Omega\left(z_{1}\right), \quad \forall z_{1}, z_{2} \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}
$$

In particular, $\Omega(z)$ is a normal operator for each $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$.
Proof. The commutativity property follows from (3.1), where $D=\Omega(0)$. Normality follows from commutativity and symmetry $\Omega(z)^{*}=\Omega(\bar{z})$ for all $z$.

## 4. Characterization of the class $\mathcal{R} \mathcal{S}(\mathfrak{M})$

Theorem 4.1. Let $\Omega$ be an operator valued Nevanlinna function defined on $\mathbb{C} \backslash\{(-\infty,-1] \cup$ $[1,+\infty)\}$. Then the following statements are equivalent:
(i) $\Omega$ belongs to the class $\mathcal{R S}(\mathfrak{M})$;
(ii) $\Omega$ satisfies the inequality

$$
\begin{equation*}
I-\Omega^{*}(z) \Omega(z)-\left(1-|z|^{2}\right) \frac{\operatorname{Im} \Omega(z)}{\operatorname{Im} z} \geq 0, \quad \operatorname{Im} z \neq 0 \tag{4.1}
\end{equation*}
$$

(iii) the function

$$
K(z, w):=I-\Omega^{*}(w) \Omega(z)-\frac{1-\bar{w} z}{z-\bar{w}}\left(\Omega(z)-\Omega^{*}(w)\right)
$$

is a nonnegative kernel on the domains

$$
\mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}, \operatorname{Im} z>0 \quad \text { and } \quad \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}, \operatorname{Im} z<0
$$

(iv) the function

$$
\begin{equation*}
\Upsilon(z)=(z I-\Omega(z))(I-z \Omega(z))^{-1}, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\} \tag{4.2}
\end{equation*}
$$

is well defined and belongs to $\mathcal{R S}(\mathfrak{M})$.

Proof. (i) $\Longrightarrow$ (ii) and (i) $\Longrightarrow$ (iii). Assume that $\Omega \in \mathcal{R} \mathcal{S}(\mathfrak{M})$ and let $\Omega$ be represented as the the transfer function of a passive selfadjoint system $\tau=\{T ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$ as in (2.2) with the selfadjoint contraction $T$ as in (2.4). According to (2.6) we have

$$
\Omega(z)=D_{K^{*}} Y D_{K^{*}}+K \Delta_{F}(z) K^{*}, z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\} .
$$

Taking into account that, see [20, Chapter VI],

$$
\left(\left(I-\Delta_{F}^{*}(w) \Delta_{F}(z)\right) \varphi, \psi\right)=(1-\bar{w} z)\left((I-z F)^{-1} D_{F} \varphi,(I-w F)^{-1} D_{F} \psi\right)
$$

and

$$
\left(\left(\Delta_{F}(z)-\Delta_{F}^{*}(w)\right) \varphi, \psi\right)=(z-\bar{w})\left((I-z F)^{-1} D_{F} \varphi,(I-w F)^{-1} D_{F} \psi\right)
$$

we obtain

$$
\begin{aligned}
\|h\|^{2}-\|\Omega(z) h\|^{2}= & \left\|K^{*} h\right\|^{2}-\left\|\Delta_{F}(z) K^{*} h\right\|^{2} \\
& +\left\|D_{Y} D_{K^{*}} h\right\|^{2}+\left\|\left(K^{*} Y D_{K^{*}}-D_{K} \Delta_{F}(z) K^{*}\right) h\right\|^{2} \\
= & \left(1-|z|^{2}\right)\left\|(I-z F)^{-1} D_{F} K^{*} h\right\|^{2}+\left\|D_{Y} D_{K^{*}} h\right\|^{2} \\
& +\left\|\left(K^{*} Y D_{K^{*}}-D_{K} \Delta_{F}(z) K^{*}\right) h\right\|^{2} .
\end{aligned}
$$

Moreover,

$$
\operatorname{Im}(\Omega(z) h, h)=\operatorname{Im} z\left\|(I-z F)^{-1} D_{F} K^{*} h\right\|^{2}
$$

and

$$
\begin{aligned}
\operatorname{Im} z\left(\|h\|^{2}-\|\Omega(z) h\|^{2}\right)-(1- & \left.|z|^{2}\right) \operatorname{Im}(\Omega(z) h, h) \\
& =\operatorname{Im} z\left(\left\|D_{Y} D_{K^{*}} h\right\|^{2}+\left\|\left(K^{*} Y D_{K^{*}}-D_{K} \Delta_{F}(z) K^{*}\right) h\right\|^{2}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{align*}
& (K(z, w) f, g)=\left(\left(I-\Omega^{*}(w) \Omega(z)\right) f, g\right)-\frac{1-\bar{w} z}{z-\bar{w}}\left(\left(\Omega(z)-\Omega^{*}(w)\right) f, g\right)  \tag{4.3}\\
& =\left(D_{Y}^{2} D_{K^{*}} f, D_{K^{*}} g\right)+\left(\left(D_{K} \Delta_{F}(z) K^{*}-K^{*} Y D_{K^{*}}\right) f,\left(D_{K} \Delta_{F}(w) K^{*}-K^{*} Y D_{K^{*}}\right) g\right) .
\end{align*}
$$

It follows from (4.3) that for arbitrary complex numbers $\left\{z_{k}\right\}_{k=1}^{m} \subset \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$, $\operatorname{Im} z_{k}>0, k=1, \ldots, n$ or $\left\{z_{k}\right\}_{k=1}^{m} \subset \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}, \operatorname{Im} z_{k}<0, k=1, \ldots, n$ and for arbitrary vectors $\left\{f_{k}\right\}_{k=1}^{\infty} \subset \mathfrak{M}$ the relation

$$
\sum_{k=1}^{n}\left(K\left(z_{k}, z_{m}\right) f_{k}, f_{m}\right)=\left\|D_{Y} D_{K^{*}} \sum_{k=1}^{\infty} f_{k}\right\|^{2}+\left\|\sum_{k=1}^{\infty}\left(D_{K} \Delta_{F}\left(z_{k}\right) K^{*}-K^{*} Y D_{K^{*}}\right) f_{k}\right\|^{2}
$$

holds. Therefore $K(z, w)$ is a nonnegative kernel.
(iii) $\Longrightarrow$ (ii) is evident.
(ii) $\Longrightarrow$ (iv) Because $\operatorname{Im} z>0(\operatorname{Im} z<0) \Longrightarrow \operatorname{Im} \Omega(z) \geq 0(\operatorname{Im} \Omega(z) \leq 0)$, the inclusion $1 / z \in \rho(\Omega(z))$ is valid for $z$ with $\operatorname{Im} z \neq 0$. In addition $1 / x \in \rho(\Omega(x))$ for $x \in(-1,1), x \neq 0$, because $\Omega(x)$ is a contraction. Hence $\Upsilon(z)$ is well defined on $\mathfrak{M}$ and $\Upsilon^{*}(z)=\Upsilon(\bar{z})$ for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. Furthermore, with $\operatorname{Im} z \neq 0$ one has

$$
\operatorname{Im} \Upsilon(z)=\left(I-\bar{z} \Omega^{*}(z)\right)^{-1}\left[\operatorname{Im} z\left(I-\Omega^{*}(z) \Omega(z)\right)-\left(1-|z|^{2}\right) \operatorname{Im} \Omega(z)\right](I-z \Omega(z))^{-1},
$$

while for $x \in(-1,1)$

$$
I-\Upsilon^{2}(x)=\left(1-x^{2}\right)(I-x \Omega(x))^{-1}\left(I-\Omega^{2}(x)\right)(I-x \Omega(x))^{-1} .
$$

Thus, $\Upsilon \in \mathcal{R} \mathcal{S}(\mathfrak{M})$.
(iv) $\Longrightarrow(\mathrm{i})$ It is easy to check that if $\Upsilon$ is given by (4.2), then

$$
\Omega(z)=(z I-\Upsilon(z))(I-z \Upsilon(z))^{-1}, z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}
$$

Hence, this implication reduces back to the proven implication (i) $\Longrightarrow$ (ii).
Remark 4.2. 1) Inequality (4.1) can be rewritten as follows

$$
\left(\left(I-\Omega^{*}(z) \Omega(z)\right) f, f\right)-\frac{1-|z|^{2}}{|\operatorname{Im} z|}|\operatorname{Im}(\Omega(z) f, f)| \geq 0, \quad \operatorname{Im} z \neq 0, f \in \mathfrak{M}
$$

Let $\beta \in[0, \pi / 2]$. Taking into account that

$$
|z \sin \beta \pm i \cos \beta|^{2}=1 \Longleftrightarrow 1-|z|^{2}= \pm 2 \cot \beta \operatorname{Im} z
$$

one obtains, see (2.1),

$$
\left\{\begin{array}{c}
|z \sin \beta+i \cos \beta|=1 \\
z \neq \pm 1 \\
|z \sin \beta-i \cos \beta|=1 \\
z \neq \pm 1
\end{array} \Longrightarrow\|\Omega(z) \sin \beta+i \cos \beta I\| \leq 1 .\right.
$$

2) Inequality (4.1) implies

$$
I-\Omega^{*}(x) \Omega(x)-\left(1-x^{2}\right) \Omega^{\prime}(x) \geq 0, \quad x \in(-1,1)
$$

3) Formula (3.1) implies that if $\Omega \in \mathcal{R S}(\mathfrak{M})$ is an inner function, then

$$
I-\Omega^{*}(w) \Omega(z)-\frac{1-\bar{w} z}{z-\bar{w}}\left(\Omega(z)-\Omega^{*}(w)\right)=0, z \neq \bar{w} .
$$

In particular,

$$
\begin{aligned}
& \left.\frac{\Omega(z)-\Omega(0)}{z}=I-\Omega(0) \Omega(z), \quad z \in \mathbb{C} \backslash\{-\infty,-1] \cup[1,+\infty)\right\}, z \neq 0 \\
& \Omega^{\prime}(0)=I-\Omega(0)^{2}
\end{aligned}
$$

This combined with (2.15) yields $\Lambda(z)=z I_{\mathfrak{D}_{\Omega(0)}}$ in the representation (2.13) for an inner function $\Omega \in \mathcal{R S}(\mathfrak{M})$.

## 5. Compressed resolvents and the class $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$

Definition 5.1. Let $\mathfrak{M}$ be a Hilbert space. A $\mathbf{B}(\mathfrak{M})$-valued Nevanlinna function $M$ is said to belong to the class $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ if it is holomorphic outside the interval $[-1,1]$ and

$$
\lim _{\xi \rightarrow \infty} \xi M(\xi)=-I_{\mathfrak{M}} .
$$

It follows from [3] that $M \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ if and only if there exist a Hilbert space $\mathfrak{H}$ containing $\mathfrak{M}$ as a subspace and a selfadjoint contraction $T$ in $\mathfrak{H}$ such that $T$ is $\mathfrak{M}$-simple and

$$
M(\xi)=P_{\mathfrak{M}}(T-\xi I)^{-1} \upharpoonright \mathfrak{M}, \quad \xi \in \mathbb{C} \backslash[-1,1] .
$$

Moreover, formula (1.6) implies the following connections between the classes $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ and $\mathcal{R S}(\mathfrak{M})$ (see also [3, 5]):

$$
\begin{align*}
M(\xi) \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1] & \Longrightarrow \Omega(z):=M^{-1}(1 / z)+1 / z \in \mathcal{R S}(\mathfrak{M}), \\
\Omega(z) \in \mathcal{R S}(\mathfrak{M}) & \Longrightarrow M(\xi):=(\Omega(1 / \xi)-\xi)^{-1} \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1] . \tag{5.1}
\end{align*}
$$

Let $\Omega(z)=(z I+D)(I+z D)^{-1}$ be an inner function from the class $\mathcal{R S}(\mathfrak{M})$, then by (5.1)

$$
\Omega(z)=(z I+D)(I+z D)^{-1} \Longrightarrow M(\xi)=\frac{\xi I+D}{1-\xi^{2}}, \quad \xi \in \mathbb{C} \backslash[-1,1]
$$

The identity $\Omega(z)^{*} \Omega(z)=I_{\mathfrak{M}}$ for $z \in \mathbb{T} \backslash\{ \pm 1\}$ is equivalent to

$$
2 \operatorname{Re}(\xi M(\xi))=-I_{\mathfrak{M}}, \quad \xi \in \mathbb{T} \backslash\{ \pm 1\}
$$

The next statement is established in [2]. Here we give another proof.
Theorem 5.2. If $M(\xi) \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$, then the function

$$
\frac{M^{-1}(\xi)}{\xi^{2}-1}, \quad \xi \in \mathbb{C} \backslash[-1,1]
$$

belongs to $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ as well.
Proof. Let $M(\xi) \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$. Then due to (5.1) the function $\Omega(z)=M^{-1}(1 / z)+1 / z$ belongs to $\mathcal{R S}(\mathfrak{M})$. By Theorem 4.1 the function

$$
\Upsilon(z)=(z I-\Omega(z))(I-z \Omega(z))^{-1}, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}
$$

belongs to $\mathcal{R} \mathcal{S}(\mathfrak{M})$. From the equality

$$
I-z \Upsilon(z)=\left(1-z^{2}\right)(I-z \Omega(z))^{-1}, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}
$$

we get

$$
(I-z \Upsilon(z))^{-1}=\frac{I-z \Omega(z)}{1-z^{2}}
$$

Simple calculations give

$$
(\Upsilon(1 / \xi)-\xi)^{-1}=\frac{M^{-1}(\xi)}{\xi^{2}-1}, \quad \xi \in \mathbb{C} \backslash[-1,1]
$$

Now in view of (5.1) the function $\frac{M^{-1}(\xi)}{\xi^{2}-1}$ belongs to $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$.

## 6. Transformations of the classes $\mathcal{R} \mathcal{S}(\mathfrak{M})$ and $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$

We start by studying transformations of the class $\mathcal{R} \mathcal{S}(\mathfrak{M})$ given by (1.8), (1.10):

$$
\begin{gathered}
\mathcal{R S}(\mathfrak{M}) \ni \Omega \mapsto \boldsymbol{\Phi}(\Omega)=\Omega_{\boldsymbol{\Phi}}(z):=(z I-\Omega(z))(I-z \Omega(z))^{-1}, \\
\mathcal{R S}(\mathfrak{M}) \ni \Omega \mapsto \boldsymbol{\Xi}_{a}(\Omega)=\Omega_{a}(z):=\Omega\left(\frac{z+a}{1+z a}\right), \quad a \in(-1,1),
\end{gathered}
$$

and the transform

$$
\begin{equation*}
\mathcal{R S}(H) \ni \Omega \mapsto \boldsymbol{\Pi}(\Omega)=\Omega_{\Pi}(z): K_{11}+K_{12} \Omega(z)\left(I-K_{22} \Omega(z)\right)^{-1} K_{12}^{*} \tag{6.1}
\end{equation*}
$$

which is determined by the selfadjoint contraction $K$ of the form

$$
\mathbf{K}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{12}^{*} & K_{22}
\end{array}\right]: \begin{aligned}
& \mathfrak{M} \\
& \oplus
\end{aligned} \rightarrow \stackrel{\mathfrak{M}}{\oplus}+
$$

in all these transforms $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$.

A particular case of (6.1) is the transformation $\boldsymbol{\Pi}_{a}$ determined by the block operator
i.e., see (1.10),

$$
\mathcal{R S}(\mathfrak{M}) \ni \Omega(z) \mapsto \widehat{\Omega}_{a}(z):=(a I+\Omega(z))(I+a \Omega(z))^{-1}
$$

By Theorem 4.1 the mapping $\Phi$ given by (1.8) is an automorphism of the class $\mathcal{R S}(\mathfrak{M})$, $\boldsymbol{\Phi}^{-1}=\boldsymbol{\Phi}$. The equality (3.1) shows that the set of all inner functions of the class $\mathcal{R S}(\mathfrak{M})$ is the image of all constant functions under the transformation $\boldsymbol{\Phi}$. In addition, for $a, b \in(-1,1)$ the following identities hold:

$$
\boldsymbol{\Pi}_{b} \circ \boldsymbol{\Pi}_{a}=\boldsymbol{\Pi}_{a} \circ \boldsymbol{\Pi}_{b}=\boldsymbol{\Pi}_{c}, \quad \boldsymbol{\Xi}_{b} \circ \boldsymbol{\Xi}_{a}=\boldsymbol{\Xi}_{a} \circ \boldsymbol{\Xi}_{b}=\boldsymbol{\Xi}_{c}, \quad \text { where } c=\frac{a+b}{1+a b}
$$

The mapping $\boldsymbol{\Gamma}$ on the class $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ (see Theorem [5.2) defined by

$$
\begin{equation*}
\mathbf{N}_{\mathfrak{M}}^{0}[-1,1] \ni M(\xi) \stackrel{\Gamma}{\mapsto} M_{\Gamma}(\xi):=\frac{M^{-1}(\xi)}{\xi^{2}-1} \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1] \tag{6.2}
\end{equation*}
$$

has been studied recently in [2]. It is obvious that $\Gamma^{-1}=\boldsymbol{\Gamma}$.
Using the relations (5.1) we define the transform $\mathbf{U}$ and its inverse $\mathbf{U}^{-1}$ which connect the classes $\mathcal{R S}(\mathfrak{M})$ and $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ :

$$
\begin{gather*}
\mathcal{R S}(\mathfrak{M}) \ni \Omega(z) \stackrel{\mathrm{U}}{\mapsto} M(\xi):=(\Omega(1 / \xi)-\xi)^{-1} \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1], \quad \xi \in \mathbb{C} \backslash[-1,1] .  \tag{6.3}\\
\mathbf{N}_{\mathfrak{M}}^{0}[-1,1] \ni M(\xi) \stackrel{\mathrm{U}^{-1}}{\mapsto} \Omega(z):=M^{-1}(1 / z)+1 / z \in \mathcal{R} \mathcal{S}(\mathfrak{M}) \tag{6.4}
\end{gather*}
$$

where $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. The proof of Theorem 5.2 contains the following commutation relations

$$
\begin{equation*}
\mathbf{U} \Phi=\Gamma \mathbf{U}, \quad \Phi \mathbf{U}^{-1}=\mathbf{U}^{-1} \boldsymbol{\Gamma} \tag{6.5}
\end{equation*}
$$

One of the main aims in this section is to solve the following realization problem concerning the above transforms: given a passive selfadjoint system $\tau=\{T ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$ with the transfer function $\Omega$, construct a passive selfadjoint systems whose transfer function coincides with $\Phi(\Omega), \boldsymbol{\Xi}_{a}(\Omega), \boldsymbol{\Pi}(\Omega)$, and $\boldsymbol{\Pi}_{a}(\Omega)$, respectively. We will also determine the fixed points of all the mappings $\boldsymbol{\Phi}, \boldsymbol{\Gamma}, \boldsymbol{\Xi}_{a}$, and $\boldsymbol{\Pi}_{a}$.

### 6.1. The mappings $\Phi$ and $\Gamma$ and inner dilations of the functions from $\mathcal{R S}(\mathfrak{M})$.

Theorem 6.1. (1) Let $\tau=\{T ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$ be a passive selfadjoint system and let $\Omega$ be its transfer function. Define

$$
T_{\boldsymbol{\Phi}}:=\left[\begin{array}{cc}
-P_{\mathfrak{M}} T \upharpoonright \mathfrak{M} & P_{\mathfrak{M}} D_{T}  \tag{6.6}\\
D_{T} \upharpoonright \mathfrak{M} & T
\end{array}\right]: \begin{gathered}
\mathfrak{M} \\
\underset{T}{\oplus}
\end{gathered} \rightarrow \stackrel{\mathfrak{M}}{\oplus} .
$$

Then $T_{\boldsymbol{\Phi}}$ is a selfadjoint contraction and $\Omega_{\Phi}(z)=(z I-\Omega(z))(I-z \Omega(z))^{-1}$ is the transfer function of the passive selfadjoint system of the form

$$
\tau_{\boldsymbol{\Phi}}=\left\{T_{\boldsymbol{\Phi}} ; \mathfrak{M}, \mathfrak{M}, \mathfrak{D}_{T}\right\}
$$

Moreover, if the system $\tau$ is minimal, then the system $\tau_{\boldsymbol{\Phi}}$ is minimal, too.
(2) Let $T$ be a selfadjoint contraction in $\mathfrak{H}$, let $\mathfrak{M}$ be a subspace of $\mathfrak{H}$ and let

$$
\begin{equation*}
M(\xi)=P_{\mathfrak{M}}(T-\xi I)^{-1} \upharpoonright \mathfrak{M} \tag{6.7}
\end{equation*}
$$

Consider a Hilbert space $\widehat{\mathfrak{H}}:=\mathfrak{M} \oplus \mathfrak{H}$ and let $\widehat{P}_{\mathfrak{M}}$ be the orthogonal projection in $\widehat{\mathfrak{H}}$ onto $\mathfrak{M}$. Then

$$
\frac{M^{-1}(\xi)}{\xi^{2}-1}=\widehat{P}_{\mathfrak{M}}\left(T_{\boldsymbol{\Phi}}-\xi I\right)^{-1} \upharpoonright \mathfrak{M}
$$

where $T_{\boldsymbol{\Phi}}$ is defined by (6.6).
(3) The function

$$
\widetilde{\Omega}(z)=\left(z I-T_{\boldsymbol{\Phi}}\right)\left(I-z T_{\boldsymbol{\Phi}}\right)^{-1}, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}
$$

satisfies

$$
\Omega(z)=P_{\mathfrak{M}} \widetilde{\Omega}(z) \upharpoonright \mathfrak{M}
$$

Proof. (1) According to (1.6) one has

$$
P_{\mathfrak{M}}(I-z T)^{-1} \upharpoonright \mathfrak{M}=\left(I_{\mathfrak{M}}-z \Omega(z)\right)^{-1}
$$

for $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. Let

$$
\Omega_{\boldsymbol{\Phi}}(z)=(z I-\Omega(z))(I-z \Omega(z))^{-1}
$$

Now simple calculations give

$$
\begin{equation*}
\Omega_{\Phi}(z)=\left(z-\frac{1}{z}\right)(I-z \Omega(z))^{-1}+\frac{I_{\mathfrak{M}}}{z}=P_{\mathfrak{M}}(z I-T)(I-z T)^{-1} \upharpoonright \mathfrak{M} \tag{6.8}
\end{equation*}
$$

Observe that the subspace $\mathfrak{D}_{T}$ is invariant under $T$; cf. (1.12). Let $\mathfrak{H}:=\mathfrak{M} \oplus \mathfrak{D}_{T}$ and let $T_{\boldsymbol{\Phi}}$ be given by (6.6). Since $T$ is a selfadjoint contraction in $\mathfrak{M} \oplus \mathcal{K}$, the inequalities

$$
\left(\left[\begin{array}{l}
\varphi \\
f
\end{array}\right],\left[\begin{array}{l}
\varphi \\
f
\end{array}\right]\right) \pm\left(\left[\begin{array}{l}
\varphi \\
f
\end{array}\right], T_{\boldsymbol{\Phi}}\left[\begin{array}{l}
\varphi \\
f
\end{array}\right]\right)=\left\|(I \mp T)^{1 / 2} \varphi \pm(I \pm T)^{1 / 2} f\right\|^{2}
$$

hold for all $\varphi \in \mathfrak{M}$ and $f \in \mathfrak{D}_{T}$. Therefore $T_{\boldsymbol{\Phi}}$ is a selfadjoint contraction in the Hilbert space $\mathfrak{H}$ and the system

$$
\tau_{\Phi}=\left\{\left[\begin{array}{cc}
-P_{\mathfrak{M}} T \upharpoonright \mathfrak{M} & P_{\mathfrak{M}} D_{T} \\
D_{T} \upharpoonright \mathfrak{M} & T
\end{array}\right] ; \mathfrak{M}, \mathfrak{M}, \mathfrak{D}_{T}\right\}
$$

is passive selfadjoint. Suppose that $\tau$ is minimal, i.e.,

$$
\overline{\operatorname{span}}\left\{T^{n} \mathfrak{M}, n \in \mathbb{N}_{0}\right\}=\mathfrak{M} \oplus \mathcal{K} \Longleftrightarrow \bigcap_{n=0}^{\infty} \operatorname{ker}\left(P_{\mathfrak{M}} T^{n}\right)=\{0\}
$$

Since

$$
\mathfrak{D}_{T} \ominus\left\{\overline{\operatorname{span}}\left\{T^{n} D_{T} \mathfrak{M}, n \in \mathbb{N}_{0}\right\}\right\}=\bigcap_{n=0}^{\infty} \operatorname{ker}\left(P_{\mathfrak{M}} T^{n} D_{T}\right),
$$

we get $\overline{\operatorname{span}}\left\{T^{n} D_{T} \mathfrak{M}: n \in \mathbb{N}_{0}\right\}=\mathfrak{D}_{T}$. This means that the system $\tau_{\Gamma}$ is minimal.
For the transfer function $\Upsilon(z)$ of $\tau_{\Phi}$ we get

$$
\begin{aligned}
\Upsilon(z) & =\left(-P_{\mathfrak{M}} T+z P_{\mathfrak{M}} D_{T}(I-z T)^{-1} D_{T}\right) \upharpoonright \mathfrak{M} \\
& =P_{\mathfrak{M}}\left(-T+z D_{T}^{2}(I-z T)^{-1}\right) \upharpoonright \mathfrak{M} \\
& =P_{\mathfrak{M}}(z I-T)(I-z T)^{-1} \upharpoonright \mathfrak{M},
\end{aligned}
$$

with $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. Comparison with (6.8) completes the proof.
(2) The function $M(\xi)=P_{\mathfrak{M}}(T-\xi I)^{-1} \upharpoonright \mathfrak{M}$ belongs to the class $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$. Consequently, $\Omega(z):=M^{-1}(1 / z)+1 / z \in \mathcal{R} \mathcal{S}(\mathfrak{M})$. The function $\Omega$ is the transfer function of the passive selfadjoint system

$$
\tau=\{T ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}
$$

where $\mathcal{K}=\mathfrak{H} \ominus \mathfrak{M}$. Let $\Upsilon=\boldsymbol{\Phi}(\Omega)$ and $\widehat{M}=\mathbf{U}(\Upsilon)$. From (6.2) (6.5) it follows that

$$
\widehat{M}(\xi)=\frac{M^{-1}(\xi)}{\xi^{2}-1}, \quad \xi \in \mathbb{C} \backslash[-1,1] .
$$

As was shown above, the function $\Upsilon$ is the transfer function of the passive selfadjoint system

$$
\tau_{\Phi}=\left\{T_{\Phi} ; \mathfrak{M}, \mathfrak{M}, \mathfrak{H}\right\}
$$

where $T_{\Phi}$ is given by (6.6). Then again the Schur-Frobenius formula (1.6) gives

$$
\widehat{M}(\xi)=\widehat{P}_{\mathfrak{M}}\left(T_{\boldsymbol{\Phi}}-\xi I\right)^{-1} \upharpoonright \mathfrak{M}, \quad \xi \in \mathbb{C} \backslash[-1,1]
$$

(3) For all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ one has

$$
\widetilde{\Omega}(z)=\left(z-\frac{1}{z}\right)\left(I-z T_{\Phi}\right)^{-1}+\frac{1}{z} I .
$$

Then

$$
\begin{aligned}
P_{\mathfrak{M}} \widetilde{\Omega}(z) \upharpoonright \mathfrak{M} & =\left(z-\frac{1}{z}\right)\left(I_{\mathfrak{M}}-z \Upsilon(z)\right)^{-1}+\frac{1}{z} I_{\mathfrak{M}} \\
& =\left(z I_{\mathfrak{M}}-\Upsilon(z)\right)\left(I_{\mathfrak{M}}-z \Upsilon(z)\right)^{-1}=\Omega(z)
\end{aligned}
$$

This completes the proof.
Notice that if $\Omega(z) \equiv$ const $=D$, then $\Upsilon(z)=(z I-D)(I-z D)^{-1}, z \in \mathbb{C} \backslash\{(-\infty,-1] \cup$ $[1,+\infty)\}$. This is the transfer function of the conservative and selfadjoint system

$$
\Sigma=\left\{\left[\begin{array}{cc}
-D & D_{D} \\
D_{D} & D
\end{array}\right], \mathfrak{M}, \mathfrak{M}, \mathfrak{D}_{D}\right\}
$$

Remark 6.2. The block operator $T_{\boldsymbol{\Phi}}$ of the form (6.6) appeared in [2] and relation (6.7) is also established in [2].
Theorem 6.3. 1) Let $\mathfrak{M}$ be a Hilbert space and let $\Omega \in \mathcal{R S}(\mathfrak{M})$. Then there exist a Hilbert space $\widetilde{\mathfrak{M}}$ containing $\mathfrak{M}$ as a subspace and a selfadjoint contraction $\widetilde{A}$ in $\widetilde{\mathfrak{M}}$ such that for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ the equality

$$
\begin{equation*}
\Omega(z)=P_{\mathfrak{M}}\left(z I_{\widetilde{\mathfrak{M}}}+\widetilde{A}\right)\left(I_{\widetilde{\mathfrak{M}}}+z \widetilde{A}\right)^{-1} \upharpoonright \mathfrak{M} \tag{6.9}
\end{equation*}
$$

holds. Moreover, the pair $\{\widetilde{\mathfrak{M}}, \widetilde{A}\}$ can be chosen such that $\widetilde{A}$ is $\mathfrak{M}$-simple, i.e.,

$$
\begin{equation*}
\overline{\operatorname{span}}\left\{\widetilde{A}^{n} \mathfrak{M}: n \in \mathbb{N}_{0}\right\}=\widetilde{\mathfrak{M}} \tag{6.10}
\end{equation*}
$$

The function $\Omega$ is inner if and only if $\widetilde{\mathfrak{M}}=\mathfrak{M}$ in the representation (6.10).
If there are two representations of the form (6.9) with pairs $\left\{\widetilde{\mathfrak{M}}_{1}, \widetilde{A}_{1}\right\}$ and $\left\{\widetilde{\mathfrak{M}}_{2}, \widetilde{A}_{2}\right\}$ that are $\mathfrak{M}$-simple, then there exists a unitary operator $\widetilde{U} \in \mathbf{B}\left(\widetilde{\mathfrak{M}}_{1}, \widetilde{\mathfrak{M}}_{2}\right)$ such that

$$
\begin{equation*}
\widetilde{U} \upharpoonright \mathfrak{M}=I_{\mathfrak{M}}, \quad \widetilde{A}_{2} \widetilde{U}=\widetilde{U} \widetilde{A}_{1} \tag{6.11}
\end{equation*}
$$

2) The formula

$$
\begin{equation*}
\Omega(z)=\int_{-1}^{1} \frac{z+t}{1+z t} d \sigma(t), \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\} \tag{6.12}
\end{equation*}
$$

gives a one-one correspondence between functions $\Omega$ from the class $\mathcal{R} \mathcal{S}(\mathfrak{M})$ and nondecreasing left-continuous $\mathbf{B}(\mathfrak{M})$-valued functions $\sigma$ on $[-1,1]$ with $\sigma(-1)=0, \sigma(1)=I_{\mathfrak{M}}$.
Proof. 1) Realize $\Omega$ as the transfer function of a minimal passive selfadjoint system $\tau=$ $\{T ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$. Let the selfadjoint contraction $T_{\boldsymbol{\Phi}}$ be given by (6.6) and let $\widetilde{\mathfrak{M}}:=\mathfrak{M} \oplus \mathfrak{D}_{T}$ and $\widetilde{A}:=-T_{\boldsymbol{\Phi}}$. Then the relations (6.9) and (6.10) are obtained from Theorem 6.1. Using Proposition 3.1 one concludes that $\Omega$ is inner precisely when $\widetilde{\mathfrak{M}}=\mathfrak{M}$ in the righthand side of (6.10). Since

$$
\begin{aligned}
& P_{\mathfrak{M}}\left(z I_{\mathfrak{M}_{1}}+\widetilde{A}_{1}\right)\left(I_{\widetilde{\mathfrak{M}}_{1}}+z \widetilde{A}_{1}\right)^{-1} \upharpoonright \mathfrak{M}=P_{\mathfrak{M}}\left(z I_{\mathfrak{M}_{2}}+\widetilde{A}_{2}\right)\left(I_{\mathfrak{M}_{2}}+z \widetilde{A}_{2}\right)^{-1} \upharpoonright \mathfrak{M} \\
& \Longleftrightarrow P_{\mathfrak{M}}\left(I_{\mathfrak{M}_{1}}+z \widetilde{A}_{1}\right)^{-1} \upharpoonright \mathfrak{M}=P_{\mathfrak{M}}\left(I_{\widetilde{\mathfrak{M}}_{2}}+z \widetilde{A}_{2}\right)^{-1} \upharpoonright \mathfrak{M},
\end{aligned}
$$

the $\mathfrak{M}$-simplicity with standard arguments (see e.g. [3, 6]) yields the existence of unitary $\widetilde{U} \in \mathbf{B}\left(\widetilde{\mathfrak{M}}_{1}, \widetilde{\mathfrak{M}}_{2}\right)$ satisfying (6.11).
2) Let (6.9) be satisfied and let $\sigma(t)=P_{\mathfrak{M}} \widetilde{E}(t) \upharpoonright \mathfrak{M}, t \in[-1,1]$, where $E(t)$ is the spectral family of the selfadjoint contraction $\widetilde{A}$ in $\widetilde{\mathfrak{M}}$. Then clearly (6.12) holds.

Conversely, let $\sigma$ be a nondecreasing left-continuous $\mathbf{B}(\mathfrak{M})$-valued function $[-1,1]$ with $\sigma(-1)=0, \sigma(1)=I_{\mathfrak{M}}$. Define $\Omega$ by the right-hand side of (6.12). Then, the function $\Omega$ in (6.12) belongs to the class $\mathcal{R S}(\mathfrak{M})$.

Remark 6.4. If $\Omega$ is represented in the form (6.9), then the proof of Theorem 6.1 shows that the transfer function of the passive selfadjoint system $\widetilde{\sigma}_{\boldsymbol{\Phi}}=\left\{(-\widetilde{A})_{\boldsymbol{\Phi}} ; \mathfrak{M}, \mathfrak{M}, \mathfrak{D}_{\tilde{A}}\right\}$ coincides with $\Omega$. Moreover, if $\widetilde{A}$ is $\mathfrak{M}$-simple, then $\widetilde{\sigma}_{\Phi}$ is minimal.
Remark 6.5. The functions from the class $\mathcal{S}^{q s}(\mathfrak{M})$ admits the following integral representations, see [5]:

$$
\Theta(z)=\Theta(0)+z \int_{-1}^{1} \frac{1-t^{2}}{1-t z} d G(t)
$$

where $G(t)$ is a nondecreasing $\mathbf{B}(\mathfrak{M})$-valued function with bounded variation, $G(-1)=0$, $G(1) \leq I_{\mathfrak{M}}$, and

$$
\left|\left(\left(\Theta(0)+\int_{-1}^{1} t d G(t)\right) f, g\right)\right|^{2} \leq((I-G(1)) f, f)((I-G(1)) g, g), \quad f, g \in \mathfrak{M} .
$$

Proposition 6.6 (cf. [2]). 1) The mapping $\Phi$ of $\mathcal{R} \mathcal{S}(\mathfrak{M})$ has a unique fixed point

$$
\begin{equation*}
\Omega_{0}(z)=\frac{z I_{\mathfrak{M}}}{1+\sqrt{1-z^{2}}}, \quad \text { with } \quad \Omega_{0}(i)=\frac{i I_{\mathfrak{M}}}{1+\sqrt{2}} \tag{6.13}
\end{equation*}
$$

2) The mapping $\boldsymbol{\Gamma}$ has a unique fixed point

$$
\begin{equation*}
M_{0}(\xi)=-\frac{I_{\mathfrak{M}}}{\sqrt{\xi^{2}-1}} \quad \text { with } \quad M_{0}(i)=\frac{i I_{\mathfrak{M}}}{\sqrt{2}} \tag{6.14}
\end{equation*}
$$

3) Define the weight function $\rho(t)$ and the weighted Hilbert space $\mathfrak{H}_{0}$ as follows (6.15)

$$
\begin{aligned}
& \rho_{0}(t)=\frac{1}{\pi} \frac{1}{\sqrt{1-t^{2}}}, t \in(-1,1) \\
& \mathfrak{H}_{0}:=L_{2}\left([-1,1], \mathfrak{M}, \rho_{0}(t)\right)=L_{2}\left([-1,1], \rho_{0}(t)\right) \otimes \mathfrak{M}=\left\{f(t): \int_{-1}^{1} \frac{\|f(t)\|_{\mathfrak{M}}^{2}}{\sqrt{1-t^{2}}} d t<\infty\right\} .
\end{aligned}
$$

Then $\mathfrak{H}_{0}$ is the Hilbert space with the inner product

$$
(f(t), g(t))_{\mathfrak{H}_{0}}=\frac{1}{\pi} \int_{-1}^{1}(f(t), g(t))_{\mathfrak{M}} \rho_{0}(t) d t=\frac{1}{\pi} \int_{-1}^{1} \frac{(f(t), g(t))_{\mathfrak{M}}}{\sqrt{1-t^{2}}} d t .
$$

Identify $\mathfrak{M}$ with a subspace of $\mathfrak{H}_{0}$ of constant vector-functions $\{f(t) \equiv f, f \in \mathfrak{M}\}$. Let

$$
\mathcal{K}_{0}:=\mathfrak{H}_{0} \ominus \mathfrak{M}=\left\{f(t) \in \mathfrak{H}_{0}: \int_{-1}^{1} \frac{(f(t), h)_{\mathfrak{M}}}{\sqrt{1-t^{2}}} d t=0 \forall h \in \mathfrak{M}\right\}
$$

and define in $\mathfrak{H}_{0}$ the multiplication operator by

$$
\begin{equation*}
\left(T_{0} f\right)(t)=t f(t), f \in \mathfrak{H}_{0} \tag{6.16}
\end{equation*}
$$

Then $\Omega_{0}(z)$ is the transfer function of the simple passive selfadjoint system

$$
\tau_{0}=\left\{T_{0} ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}_{0}\right\}
$$

while

$$
M_{0}(\xi)=P_{\mathfrak{M}}\left(T_{0}-\xi I\right)^{-1} \upharpoonright \mathfrak{M}
$$

Proof. 1)-2) Let $\Omega_{0}(z)$ be a fixed point of the mapping $\boldsymbol{\Phi}$ of $\mathcal{R} \mathcal{S}(\mathfrak{M})$, i.e.,

$$
\Omega_{0}(z)=\left(z I-\Omega_{0}(z)\right)\left(I-z \Omega_{0}(z)\right)^{-1}, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}
$$

Then

$$
\left(I-z \Omega_{0}(z)\right)^{2}=\left(1-z^{2}\right) I_{\mathfrak{M}} .
$$

Using $\Omega_{0} \in \mathcal{R S}(\mathfrak{M})$ and the Taylor expansion $\Omega_{0}(z)=\sum_{n=0}^{\infty} C_{k} z^{k}$ in the unit disk, it is seen that $\Omega_{0}$ is of the form (6.13).

It follows that the transform $M_{0}=\mathbf{U}\left(\Omega_{0}\right)$ defined in (6.3) is of the form (6.14) and it is the unique fixed point of the mapping $\Gamma$ in (6.2); cf. (6.5).
3) For each $h \in \mathfrak{M}$ straightforward calculations, see [13, pages 545-546], lead to the equality

$$
-\frac{h}{\sqrt{\xi^{2}-1}}=\frac{1}{\pi} \int_{-1}^{1} \frac{h}{t-\xi} \frac{1}{\sqrt{1-t^{2}}} d t
$$

Therefore, if $T_{0}$ is the operator of the form (6.16), then

$$
M_{0}(\xi)=P_{\mathfrak{M}}\left(T_{0}-\xi I\right)^{-1} \upharpoonright \mathfrak{M}
$$

It follows that $\Omega_{0}$ is the transfer function of the system $\tau_{0}=\left\{T_{0} ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}_{0}\right\}$.

As is well known, the Chebyshev polynomials of the first kind given by

$$
\widehat{T}_{0}(t)=1, \widehat{T}_{n}(t):=\sqrt{2} \cos (n \arccos t), n \geq 1
$$

form an orthonormal basis of the space $L_{2}\left([-1,1], \rho_{0}(t)\right)$, where $\rho_{0}(t)$ is given by (6.15). These polynomials satisfy the recurrence relations

$$
\begin{aligned}
t \widehat{T}_{0}(t) & =\frac{1}{\sqrt{2}} \widehat{T}_{1}(t), \quad t \widehat{T}_{1}(t)=\frac{1}{\sqrt{2}} \widehat{T}_{0}(t)+\frac{1}{2} \widehat{T}_{2}(t), \\
t \widehat{T}_{n}(t) & =\frac{1}{2} \widehat{T}_{n-1}(t)+\frac{1}{2} \widehat{T}_{n+1}(t), \quad n \neq 2
\end{aligned}
$$

Hence the matrix of the operator multiplication by the independent variable in the Hilbert space $L_{2}\left([-1,1], \rho_{0}(t)\right)$ w.r.t. the basis $\left\{\widehat{T}_{n}(t)\right\}_{n=0}^{\infty}$ (the Jacobi matrix) takes the form

$$
J=\left[\begin{array}{cccccccc}
0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & . & . & . \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{2} & 0 & 0 & . & . & . \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & . & . & . \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \cdot & . \\
\vdots & \vdots
\end{array}\right]
$$

In the case of vector valued weighted Hilbert space $\mathfrak{H}_{0}=L_{2}\left([-1,1], \mathfrak{M}, \rho_{0}(t)\right)$ the operator (6.16) is unitary equivalent to the block operator Jacobi matrix $\mathbf{J}_{0}=J \bigotimes I_{\mathfrak{M}}$. It follows that the function $\Omega_{0}$ is the transfer function of the passive selfadjoint system with the operator $T_{0}$ given by the selfadjoint contractive block operator Jacobi matrix


### 6.2. The mapping $\Pi$ and Redheffer product.

Lemma 6.7. Let $H$ be a Hilbert space, let $K$ be a selfadjoint contraction in $H$ and let $\Omega \in \mathcal{R S}(H)$. If $\|K\|<1$, then $(I-K \Omega(z))^{-1}$ is defined on $H$ and it is bounded for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$.
Proof. If $|z| \leq 1, z \neq \pm 1$, then $\|K\|<1$ and $\|\Omega(z)\| \leq 1$ imply that $\|K \Omega(z)\|<1$. Hence $(I-K \Omega(z))^{-1}$ exists as bounded everywhere defined operator on $H$.

Now let $|z|>1$ and $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. Then there exists $\beta \in(0, \pi / 2)$ such that either $|z \sin \beta-i \cos \beta|=1$ or $|z \sin \beta+i \cos \beta|=1$. Suppose that, for instance,
$|z \sin \beta-i \cos \beta|=1$. Then from (2.1) one obtains $\left\|\Omega(z) \sin \beta-i \cos \beta I_{H}\right\| \leq 1$. Hence $S:=\Omega(z) \sin \beta-i \cos \beta I_{H}$ satisfies $\|S\| \leq 1$ and one has

$$
\Omega(z)=\frac{S+i \cos \beta I_{H}}{\sin \beta} .
$$

Furthermore,

$$
\begin{aligned}
I-K \Omega(z) & =I-\frac{K S+i \cos \beta K}{\sin \beta}=\frac{1}{\sin \beta}((\sin \beta I-i \cos \beta K)-K S) \\
& =\frac{1}{\sin \beta}(\sin \beta I-i \cos \beta K)\left(I-(\sin \beta I-i \cos \beta K)^{-1} K S\right)
\end{aligned}
$$

Clearly

$$
\left\|(\sin \beta I-i \cos \beta K)^{-1} K\right\|^{2} \leq \frac{\|K\|^{2}}{\sin ^{2} \beta+\|K\|^{2} \cos ^{2} \beta}<1
$$

which shows that $\left\|(\sin \beta I-i \cos \beta K)^{-1} K S\right\|<1$. Therefore, the following inverse operator $\left(I-(\sin \beta I-i \cos \beta K)^{-1} K S\right)^{-1}$ exists and is everywhere defined on $H$. This implies that

$$
(I-K \Omega(z))^{-1}=\sin \beta\left(I-(\sin \beta I-i \cos \beta K)^{-1} K S\right)^{-1}(\sin \beta I-i \cos \beta K)^{-1}
$$

Theorem 6.8. Let

$$
\mathbf{K}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{12}^{*} & K_{22}
\end{array}\right]: \begin{aligned}
& \mathfrak{M} \\
& \underset{H}{\oplus} \\
& \underset{H}{H}
\end{aligned} \rightarrow \begin{gathered}
\mathfrak{M} \\
H
\end{gathered}
$$

be a selfadjoint contraction. Then the following two assertions hold:

1) If $\left\|K_{22}\right\|<1$, then for every $\Omega \in \mathcal{R} \mathcal{S}(H)$ the transform

$$
\begin{equation*}
\Theta(z):=K_{11}+K_{12} \Omega(z)\left(I-K_{22} \Omega(z)\right)^{-1} K_{12}^{*}, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\} \tag{6.17}
\end{equation*}
$$ also belongs to $\mathcal{R S}(\mathfrak{M})$.

2) If $\Omega \in \mathcal{R S}(H)$ and $\Omega(0)=0$, then again the transform $\Theta$ defined in (6.17) belongs to $\mathcal{R S}(\mathfrak{M})$.
Proof. 1) It follows from Lemma 6.7 that $\left(I-K_{22} \Omega(z)\right)^{-1}$ exists as a bounded operator on $H$ for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. Furthermore,

$$
\begin{aligned}
& \Theta(z)-\Theta(z)^{*}=K_{12} \Omega(z)\left(I-K_{22} \Omega(z)\right)^{-1} K_{12}^{*}-K_{12}\left(I-\Omega(z)^{*} K_{22}\right)^{-1} \Omega(z)^{*} K_{12}^{*} \\
& =K_{12}\left(I-\Omega(z)^{*} K_{22}\right)^{-1}\left(\left(I-\Omega(z)^{*} K_{22}\right) \Omega(z)-\Omega(z)^{*}\left(I-K_{22} \Omega(z)\right)\right)\left(I-K_{22} \Omega(z)\right)^{-1} K_{12}^{*} \\
& \quad=K_{12}\left(I-\Omega(z)^{*} K_{22}\right)^{-1}\left(\Omega(z)-\Omega(z)^{*}\right)\left(I-K_{22} \Omega(z)\right)^{-1} K_{12}^{*} .
\end{aligned}
$$

Thus, $\Theta$ is a Nevanlinna function on the domain $\mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$.
Since $\mathbf{K}$ is a selfadjoint contraction, its entries are of the form (again see Proposition B. 1 and Remark (B.2):

$$
K_{12}=N D_{K_{22}}, K_{12}^{*}=D_{K_{22}} N^{*}, K_{11}=-N K_{22} N^{*}+D_{N^{*}} L D_{N^{*}}
$$

where $N: \mathfrak{D}_{K_{22}} \rightarrow \mathfrak{M}$ is a contraction and $L: \mathfrak{D}_{N^{*}} \rightarrow \mathfrak{D}_{N^{*}}$ is a selfadjoint contraction. This gives

$$
\Theta(z)=N\left(-K_{22}+D_{K_{22}} \Omega(z)\left(I-K_{22} \Omega(z)\right)^{-1} D_{K_{22}}\right) N^{*}+D_{N^{*}} L D_{N^{*}}
$$

Denote

$$
\widetilde{\Theta}(z):=-K_{22}+D_{K_{22}} \Omega(z)\left(I-K_{22} \Omega(z)\right)^{-1} D_{K_{22}} .
$$

Then

$$
\widetilde{\Theta}(z)=D_{K_{22}}^{-1}\left(\Omega(z)-K_{22}\right)\left(I-K_{22} \Omega(z)\right)^{-1} D_{K_{22}}=D_{K_{22}}\left(I-\Omega(z) K_{22}\right)^{-1}\left(\Omega(z)-K_{22}\right) D_{K_{22}}^{-1}
$$

and

$$
\Theta(z)=N \widetilde{\Theta}(z) N^{*}+D_{N^{*}} L D_{N^{*}}
$$

Again straightforward calculations (cf. [18, 4]) show that for all $f \in \mathfrak{D}_{K_{22}}$,

$$
\|f\|^{2}-\|\widetilde{\Theta}(z) f\|^{2}=\left\|\left(I-K_{22} \Omega(z)\right)^{-1} D_{K_{22}} f\right\|^{2}-\left\|\Omega(z)\left(I-K_{22} \Omega(z)\right)^{-1} D_{K_{22}} f\right\|^{2},
$$

and for all $h \in \mathfrak{M}$,

$$
\begin{aligned}
& \|h\|^{2}-\|\Theta(z) h\|^{2} \\
& \quad=\left\|N^{*} h\right\|^{2}-\left\|\widetilde{\Theta}(z) N^{*} h\right\|^{2}+\left\|D_{L} D_{N^{*}} h\right\|^{2}+\left\|\left(D_{N} \widetilde{\Theta}(z) N^{*}-N^{*} L D_{N^{*}}\right) h\right\|^{2} .
\end{aligned}
$$

Since $\Omega(z)$ is a contraction for all $|z| \leq 1, z \neq \pm 1$, one concludes that $\widetilde{\Theta}(z)$ and, thus, also $\Theta(z)$ is a contraction. In addition, the operators $\Theta(x)$ are selfadjoint for $x \in(-1,1)$. Therefore $\Theta \in \mathcal{R S}(\mathfrak{M})$.
2) Suppose that $\Omega(0)=0$. To see that the operator $\left(I-K_{22} \Omega(z)\right)^{-1}$ exists as a bounded operator on $H$ for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$, realize $\Omega$ as the transfer function of a passive selfadjoint system

$$
\sigma=\left\{\left[\begin{array}{cc}
0 & N \\
N^{*} & S
\end{array}\right] ; H, H, \mathcal{K}\right\}
$$

i.e., $\Omega(z)=z N(I-z S)^{-1} N^{*}$. Since

$$
T=\left[\begin{array}{cc}
0 & N \\
N^{*} & S
\end{array}\right]: \begin{gathered}
H \\
\underset{\mathcal{K}}{\oplus}
\end{gathered} \rightarrow \begin{gathered}
H \\
\underset{\mathcal{K}}{ }
\end{gathered}
$$

is a selfadjoint contraction, the operator $N \in \mathbf{B}(\mathcal{K}, H)$ is a contraction and $S$ is of the form $S=D_{N^{*}} L D_{N^{*}}$, where $L \in \mathbf{B}\left(\mathfrak{D}_{N^{*}}\right)$ is a selfadjoint contraction. It follows that the operator $N^{*} K_{22} N+S$ is a selfadjoint contraction for an arbitrary selfadjoint contraction $K_{22}$ in $H$. Therefore, $\left(I-z\left(N^{*} K_{22} N+S\right)\right)^{-1}$ exists on $\mathcal{K}$ and is bounded for all $z \in$ $\mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. It is easily checked that for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ the equality

$$
\left(I-z K_{22} N(I-z S)^{-1} N^{*}\right)^{-1}=I+z K_{22} N\left(I-z\left(N^{*} K_{22} N+S\right)\right)^{-1} N^{*}
$$

holds. Now arguing again as in item 1) one completes the proof.
Theorem 6.9. Let

$$
\mathbf{S}=\left[\begin{array}{cc}
A & B \\
B^{*} & G
\end{array}\right]: \begin{array}{ccc}
H & H \\
\underset{\mathcal{K}}{\oplus} & \rightarrow & \underset{\mathcal{K}}{\oplus}
\end{array}, \quad \mathbf{K}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{12}^{*} & K_{22}
\end{array}\right]: \begin{array}{cc}
\mathfrak{M} & \\
\underset{H}{\oplus} & \rightarrow \\
H
\end{array}
$$

be selfadjoint contractions. Also let $\sigma=\{\mathbf{S}, H, H, \mathcal{K}\}$ be a passive selfadjoint system with the transfer function $\Omega(z)$. Then the following two assertions hold:

1) Assume that $\left\|K_{22}\right\|<1$. Then $\Theta(z)$ given by (6.17) is the transfer function of the passive selfadjoint system

$$
\tau=\{\mathbf{T}, \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}
$$

where $\mathbf{T}=\mathbf{K} \bullet \mathbf{S}$ is the Redheffer product (see [17, 21]):

$$
\mathbf{T}=\left[\begin{array}{cc}
K_{11}+K_{12} A\left(I-K_{22} A\right)^{-1} K_{12}^{*} & K_{12}\left(I-A K_{22}\right)^{-1} B  \tag{6.18}\\
B^{*}\left(I-K_{22} A\right)^{-1} K_{12}^{*} & G+B^{*} K_{22}\left(I-A K_{22}\right)^{-1} B
\end{array}\right]: \underset{\mathcal{K}}{\oplus} \rightarrow \underset{\mathcal{K}}{\oplus} .
$$

2) Assume that $A=0$. Then the Redheffer product $\mathbf{T}=\mathbf{K} \bullet \mathbf{S}$ is given by

$$
\mathbf{T}=\left[\begin{array}{cc}
K_{11} & K_{12} B \\
B^{*} K_{12}^{*} & G+B^{*} K_{22} B
\end{array}\right]: \stackrel{\underset{\mathcal{M}}{\oplus}}{\underset{\mathcal{K}}{\stackrel{\mathcal{K}}{( }} \rightarrow \stackrel{\mathfrak{M}}{\oplus}}
$$

and the transfer function of the passive selfadjoint system $\tau=\{\mathbf{T}, \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$ is equal to the function $\Theta$ defined in (6.17).

Proof. By definition

$$
\Omega(z)=A+z B(I-z G)^{-1} B^{*}, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}
$$

1) Suppose that $\left\|K_{22}\right\|<1$. Since

$$
\Theta(z)=K_{11}+K_{12} \Omega(z)\left(I-K_{22} \Omega(z)\right)^{-1} K_{12}^{*}=K_{11}+K_{12}\left(I-\Omega(z) K_{22}\right)^{-1} \Omega(z) K_{12}^{*}
$$

one obtains

$$
\begin{aligned}
& \Theta(z)-\Theta(0)=K_{12}\left(I-\Omega(z) K_{22}\right)^{-1}(\Omega(z)-\Omega(0))\left(I-K_{22} \Omega(0)\right)^{-1} K_{12}^{*} \\
& \quad=z K_{12}\left(I-A K_{22}-z B(I-z G)^{-1} B^{*} K_{22}\right)^{-1} B(I-z G)^{-1} B^{*}\left(I-K_{22} A\right)^{-1} K_{12}^{*} .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
(I- & \left.A K_{22}-z B(I-z G)^{-1} B^{*} K_{22}\right)^{-1} B(I-z G)^{-1} \\
& =\left(I-A K_{22}\right)^{-1}\left(I-z B(I-z G)^{-1} B^{*} K_{22}\left(I-A K_{22}\right)^{-1}\right)^{-1} B(I-z G)^{-1} \\
& =\left(I-A K_{22}\right)^{-1} B\left(I-z(I-z G)^{-1} B^{*} K_{22}\left(I-A K_{22}\right)^{-1} B\right)^{-1}(I-z G)^{-1} \\
& =\left(I-A K_{22}\right)^{-1} B\left(I-z\left(G+z B^{*} K_{22}\left(I-A K_{22}\right)^{-1} B\right)\right)^{-1}
\end{aligned}
$$

and one has

$$
\begin{aligned}
& \Theta(z)=K_{11}+K_{12} A\left(I-K_{22} A\right)^{-1} K_{12}^{*} \\
& \quad+z K_{12}\left(I-A K_{22}\right)^{-1} B\left(I-z\left(G+z B^{*} K_{22}\left(I-A K_{22}\right)^{-1} B\right)\right)^{-1} B^{*}\left(I-K_{22} A\right)^{-1} K_{12}^{*}
\end{aligned}
$$

Now it follows from (6.18) that $\Theta(z)$ is the transfer function of the system $\tau$.
Next it is shown that the selfadjoint operator $\mathbf{T}$ given by (6.18) is a contraction. Let the entries of $\mathbf{S}$ and $\mathbf{K}$ be parameterized by

$$
\left\{\begin{array}{l}
B^{*}=U D_{A}, B=D_{A} U^{*} \\
G=-U A U^{*}+D_{U^{*}} Z D_{U^{*}}
\end{array}, \quad\left\{\begin{array}{l}
K_{12}=V D_{K_{22}}, K_{12}^{*}=D_{K_{22}} V^{*} \\
K_{11}=-V K_{22} V^{*}+D_{V^{*}} Y D_{V^{*}}
\end{array}\right.\right.
$$

where $V, U, Y, Z$ are contractions acting between the corresponding subspaces. Also define the operators

$$
\begin{aligned}
& \Phi_{K_{22}}(A)=-K_{22}+D_{K_{22}} A\left(I-K_{22} A\right)^{-1} D_{K_{22}} \\
& \Phi_{A}\left(K_{22}\right)=-A+D_{A} K_{22}\left(I-A K_{22}\right)^{-1} D_{A}
\end{aligned}
$$

This leads to the formula

$$
\begin{aligned}
& \mathbf{T}=\left[\begin{array}{cc}
V & 0 \\
0 & U
\end{array}\right]\left[\begin{array}{cc}
\Phi_{K_{22}}(A) & D_{K_{22}}\left(I-A K_{22}\right)^{-1} D_{A} \\
\Phi_{A}\left(I-K_{22} A\right)^{-1} D_{K_{22}} & \left.\Phi_{22}\right)
\end{array}\right]\left[\begin{array}{cc}
V^{*} & 0 \\
0 & U^{*}
\end{array}\right] \\
&+\left[\begin{array}{cc}
D_{V^{*}} Y D_{V^{*}} & 0 \\
0 & D_{U^{*}} Z D_{U^{*}}
\end{array}\right]
\end{aligned}
$$

The block operator

$$
\mathbb{J}=\left[\begin{array}{cc}
\Phi_{K_{22}}(A) & D_{K_{22}}\left(I-A K_{22}\right)^{-1} D_{A} \\
D_{A}\left(I-K_{22} A\right)^{-1} D_{K_{22}} & \Phi_{A}\left(K_{22}\right)
\end{array}\right]
$$

is unitary and selfadjoint. Actually, the selfadjointness follows from selfadjointness of the operators $A, K_{22}$ and $\Phi_{K_{22}}(A), \Phi_{A}\left(K_{22}\right)$. Furthermore, one has the equalities

$$
\begin{aligned}
& \|f\|^{2}-\left\|\Phi_{K_{22}}(A) f\right\|^{2}=\left\|D_{A}\left(I-K_{22} A\right)^{-1} D_{K_{22}} f\right\|^{2}, \\
& \|g\|^{2}-\left\|\Phi_{A}\left(K_{22}\right) g\right\|^{2}=\left\|D_{K_{22}}\left(I-A K_{22}\right)^{-1} D_{A} g\right\|^{2}, \\
& \left(\Phi_{K_{22}}(A) f, D_{K_{22}}\left(I-A K_{22}\right)^{-1} D_{A} g\right)=\left(D_{A}\left(I-K_{22} A\right)^{-1}\left(A-K_{22}\right)\left(I-K_{22} A\right)^{-1} D_{K_{22}} f, g\right), \\
& \left(\Phi_{A}\left(K_{22}\right) g, D_{A}\left(I-K_{22} A\right)^{-1} D_{K_{22}} f\right)=\left(D_{K_{22}}\left(I-A K_{22}\right)^{-1}\left(K_{22}-A\right)\left(I-A K_{22}\right)^{-1} D_{A} g, f\right) .
\end{aligned}
$$

These equalities imply that $\mathbb{J}$ is unitary.
Denote

$$
\mathbb{W}=\left[\begin{array}{cc}
V & 0 \\
0 & U
\end{array}\right], \quad \mathbb{X}=\left[\begin{array}{cc}
Y & 0 \\
0 & Z
\end{array}\right]
$$

Then

$$
\mathbf{T}=\mathbb{W} \mathbb{D} \mathbb{W}^{*}+D_{\mathbb{W}^{*}} \mathbb{X} D_{\mathbb{W}^{*}}
$$

and one obtains the equality

$$
\|h\|^{2}-\|\mathbf{T} h\|^{2}=\left\|D_{\mathbb{X}} D_{\mathbb{W}^{*}} h\right\|^{2}+\left\|\left(\mathbb{W}^{*} \mathbb{X}-D_{\mathbb{W}} \mathbb{J} \mathbb{W}^{*}\right) h\right\|^{2} .
$$

Thus, $\mathbf{T}$ is a selfadjoint contraction.
The proof of the statement 2) is similar to the proof of statement 1 ) and is omitted.
6.3. The mapping $\Omega(z) \mapsto(a I+\Omega(z))(I+a \Omega(z))^{-1}$.

Proposition 6.10. Let

$$
\tau=\left\{\left[\begin{array}{cc}
A & B \\
B^{*} & G
\end{array}\right] ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\right\}
$$

be a passive selfadjoint system with transfer function $\Omega$. Let $a \in(-1,1)$. Then the passive selfadjoint system

$$
\sigma_{a}=\left\{\left[\begin{array}{cc}
(a I+A)(I+a A)^{-1} & \sqrt{1-a^{2}}(I+a A)^{-1} B \\
\sqrt{1-a^{2}} B^{*}(I+a A)^{-1} & G-a B^{*}(I+a A)^{-1} B
\end{array}\right] ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\right\}
$$

has transfer function

$$
\widehat{\Omega}_{a}(z)=(a I+\Omega(z))(I+a \Omega(z))^{-1}, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}
$$

Proof. Let

Then the Redheffer product $\mathbf{K}_{a} \bullet \mathbf{S}($ cf. (6.18) $)$ takes the form

$$
\mathbf{T}=\left[\begin{array}{cc}
(a I+A)(I+a A)^{-1} & \sqrt{1-a^{2}}(I+a A)^{-1} B  \tag{6.19}\\
\sqrt{1-a^{2}} B^{*}(I+a A)^{-1} & G-a B^{*}(I+a A)^{-1} B
\end{array}\right]: \begin{array}{cc}
\mathfrak{M} & \underset{\mathcal{M}}{\oplus} \\
\mathcal{K} & \underset{\mathcal{K}}{\oplus}
\end{array} .
$$

On the other hand, for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ one has

$$
\begin{aligned}
K_{11}+K_{12} \Omega(z)\left(I-K_{22} \Omega(z)\right)^{-1} K_{12}^{*} & =a I+\left(1-a^{2}\right) \Omega(z)(I+a \Omega(z))^{-1} \\
& =(a I+\Omega(z))(I+a \Omega(z))^{-1} .
\end{aligned}
$$

This completes the proof.
6.4. The mapping $\Omega(z) \mapsto \Omega\left(\frac{z+a}{1+z a}\right)$ and its fixed points. For a contraction $S$ in a Hilbert space and a complex number $a,|a|<1$, define, see [20],

$$
S_{a}:=(S-a I)(I-\bar{a} S)^{-1}
$$

The operator $S_{a}$ is a contraction, too. If $S$ is a selfadjoint contraction and $a \in(-1,1)$, then $S_{a}$ is also selfadjoint. One has $S_{a}=W_{-a}(S)$ (see Introduction) and, moreover,

$$
\begin{align*}
& D_{S_{a}}=\sqrt{1-a^{2}}(I-a S)^{-1} D_{S} \\
& \left(I-z S_{a}\right)^{-1}=\frac{1}{1+a z}(I-a S)\left(I-\frac{z+a}{1+a z} S\right)^{-1}  \tag{6.20}\\
& \left(z I-S_{a}\right)\left(I-z S_{a}\right)^{-1}=\left(\frac{z+a}{1+a z} I-S\right)\left(I-\frac{z+a}{1+a z} S\right)^{-1}
\end{align*}
$$

where $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1, \infty\}$. Let the block operator

$$
T=\left[\begin{array}{cc}
D & C  \tag{6.21}\\
C^{*} & F
\end{array}\right]: \begin{gathered}
\mathfrak{M} \\
\underset{\mathcal{K}}{\oplus}
\end{gathered} \rightarrow \begin{gathered}
\mathfrak{M} \\
\underset{\mathcal{K}}{\oplus}
\end{gathered}
$$

be a selfadjoint contraction and let $\Omega(z)=D+z C(I-z F)^{-1} C^{*}$. Then from the SchurFrobenius formula (A.1) and from the relation

$$
T_{a}=(T-a I)(I-a T)^{-1}=\frac{1-a^{2}}{a}(I-a T)^{-1}-\frac{1}{a} I
$$

it follows that $T_{a}$ has the block form

$$
T_{a}=\left[\begin{array}{cc}
(\Omega(a)-a I)(I-a \Omega(a))^{-1} & \left(1-a^{2}\right)(I-a \Omega(a))^{-1} C(I-a F)^{-1}  \tag{6.22}\\
\left(1-a^{2}\right)(I-a F)^{-1} C^{*}(I-a \Omega(a))^{-1} & F_{a}+a\left(1-a^{2}\right)(I-a F)^{-1} C^{*}(I-a \Omega(a))^{-1} C(I-a F)^{-1}
\end{array}\right]
$$

Theorem 6.11. Let

$$
\tau=\left\{\left[\begin{array}{cc}
D & C \\
C^{*} & F
\end{array}\right], \mathfrak{M}, \mathfrak{M}, \mathcal{K}\right\}
$$

be a passive selfadjoint system with the transfer function $\Omega$. Then for every $a \in(-1,1)$ the $\mathbf{B}(\mathfrak{M})$-valued function

$$
\Omega\left(\frac{z+a}{1+a z}\right)
$$

is the transfer function of the passive selfadjoint system

$$
\tau_{a}=\left\{\left[\begin{array}{cc}
\Omega(a) & \sqrt{1-a^{2}} C(I-a F)^{-1} \\
\sqrt{1-a^{2}}(I-a F)^{-1} C^{*} & F_{a}
\end{array}\right], \mathfrak{M}, \mathfrak{M}, \mathcal{K}\right\} .
$$

Furthermore, if $\tau$ is a minimal system then $\tau_{a}$ is minimal, too.
Proof. Let

$$
C=K D_{F}, D=-K F K^{*}+D_{K^{*}} Y D_{K^{*}},
$$

be the parametrization for entries of the block operator $T$, cf. (2.4), where $K \in \mathbf{B}\left(\mathfrak{D}_{F}, \mathcal{K}\right)$ is a contraction and $Y \in \mathbf{B}\left(\mathfrak{D}_{K^{*}}\right)$ is a selfadjoint contraction. From (2.6) and (6.20) we get

$$
\begin{aligned}
\Omega\left(\frac{z+a}{1+a z}\right) & =D_{K^{*}} Y D_{K^{*}}+K\left(\frac{z+a}{1+a z} I-F\right)\left(I-\frac{z+a}{1+a z} F\right)^{-1} K^{*} \\
& =D_{K^{*}} Y D_{K^{*}}+K\left(z I-F_{a}\right)\left(I-z F_{a}\right)^{-1} K^{*}
\end{aligned}
$$

with $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1, \infty\}$. The operator

$$
\begin{aligned}
\widehat{T}_{a} & =\left[\begin{array}{cc}
-K F_{a} K^{*}+D_{K^{*}} Y D_{K^{*}} & K D_{F_{a}} \\
D_{F_{a}} K^{*} & F_{a}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\Omega(a) & \sqrt{1-a^{2}} C(I-a F)^{-1} \\
\sqrt{1-a^{2}}(I-a F)^{-1} C^{*} & F_{a}
\end{array}\right]: \begin{array}{c}
\mathfrak{M} \\
\underset{\mathcal{K}}{\oplus} \rightarrow \underset{\mathcal{K}}{\oplus}
\end{array}
\end{aligned}
$$

is a selfadjoint contraction. The formula (2.6) applied to the system $\tau_{a}$ gives

$$
\Omega_{\tau_{a}}(z)=D_{K^{*}} Y D_{K^{*}}+K\left(z I-F_{a}\right)\left(I-z F_{a}\right)^{-1} K^{*}
$$

Hence $\Omega_{\tau_{a}}(z)=\Omega\left(\frac{z+a}{1+a z}\right)$ for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1, \infty\}$.
Suppose $\tau$ is the minimal system. This is equivalent to the relations

$$
\begin{aligned}
\overline{\operatorname{span}} & \left\{F^{n} D_{F} K^{*} \mathfrak{M}: \quad n \in \mathbb{N}_{0}\right\}=\mathcal{K} \\
& \Longleftrightarrow \bigcap_{n=0}^{\infty} \operatorname{ker}\left(K F^{n} D_{F}\right)=\{0\} \\
& \Longleftrightarrow \bigcap_{|z|<1} \operatorname{ker} K(I-z F)^{-1} D_{F}=\{0\} .
\end{aligned}
$$

Using the formulas (6.20) one obtains

$$
\begin{aligned}
& \bigcap_{|z|<1} \operatorname{ker} K\left(I-z F_{a}\right)^{-1} D_{F_{a}}=\bigcap_{|z|<1} \operatorname{ker} K\left(I-\frac{z+a}{1+a z} F\right)^{-1} D_{F}(I-a F) \\
& =(I-a F) \bigcap_{|\mu|<1} \operatorname{ker} K(I-\mu F)^{-1} D_{F}=\{0\}
\end{aligned}
$$

or, equivalently,

$$
\overline{\operatorname{span}}\left\{F_{a}^{n} D_{F_{a}} K^{*} \mathfrak{M}, n \in \mathbb{N}_{0}\right\}=\mathcal{K} .
$$

This shows that the system $\tau_{a}$ is minimal.
Remark 6.12. 1) Let $T$ in (6.21) be represented in the form

$$
T=\left[\begin{array}{cc}
K & 0 \\
0 & I
\end{array}\right] \mathbb{J}_{F}\left[\begin{array}{cc}
K^{*} & 0 \\
0 & I
\end{array}\right]+\left[\begin{array}{cc}
D_{K^{*}} Y D_{K^{*}} & 0 \\
0 & 0
\end{array}\right]
$$

see Remark B.3. Then

$$
\begin{aligned}
{\left[\begin{array}{cc}
-K F_{a} K^{*}+D_{K^{*}} Y D_{K^{*}} & K D_{F_{a}} \\
D_{F_{a}} K^{*} & F_{a}
\end{array}\right] } & =\left[\begin{array}{cc}
\Omega(a) & \sqrt{1-a^{2}} C(I-a F)^{-1} \\
\sqrt{1-a^{2}}(I-a F)^{-1} C^{*} & F_{a}
\end{array}\right] \\
& =\left[\begin{array}{cc}
K & 0 \\
0 & I
\end{array}\right] \mathbb{J}_{F_{a}}\left[\begin{array}{cc}
K^{*} & 0 \\
0 & I
\end{array}\right]+\left[\begin{array}{cc}
D_{K^{*}} Y D_{K^{*}} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

2) Let the transformation $\mathbf{V}_{a}$ with $a \in(-1,1)$ be defined by

$$
\left[\begin{array}{cc}
D & C \\
C^{*} & F
\end{array}\right] \stackrel{\mathbf{v}_{\hookrightarrow}}{\mapsto} \widehat{T}_{a}=\left[\begin{array}{cc}
\Omega(a) & \sqrt{1-a^{2}} C(I-a F)^{-1} \\
\sqrt{1-a^{2}}(I-a F)^{-1} C^{*} & F_{a}
\end{array}\right] .
$$

Then for all $a, b \in(-1,1)$ one has the identities

$$
\mathbf{V}_{a} \circ \mathbf{V}_{b}=\mathbf{V}_{b} \circ \mathbf{V}_{a}=\mathbf{V}_{c} \text {, where } c=\frac{a+b}{1+a b}
$$

Proposition 6.13. The fixed points of the mapping $\Omega(z) \mapsto \Omega\left(\frac{z+a}{1+z a}\right), a \in(-1,1), a \neq 0$, consist only of constant functions.
Proof. Suppose that for some $a \in(-1,1), a \neq 0$, the equality

$$
\Omega\left(\frac{z+a}{1+a z}\right)=\Omega(z)
$$

is satisfied for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. Then, in particular, $\Omega(0)=\Omega(a)$. Therefore from Theorem 6.11 one obtains the equality $K F K^{*}=K F_{a} K^{*}$. Now

$$
F-F_{a}=a D_{F}^{2}(I-a F)^{-1}
$$

leads to

$$
(I-a F)^{-1 / 2} D_{F} K^{*}=0
$$

Taking into account that ran $K^{*} \subseteq \mathfrak{D}_{F}$, we get $K^{*}=0$. This means that $\Omega(z) \equiv \Omega(0)$. So, the fixed points of the mapping $\Omega(z) \mapsto \Omega\left(\frac{z+a}{1+z a}\right)$ are the constant functions only.
Remark 6.14. A. Filimonov and E. Tsekanovski乞 [16] considered J-unitary operator colligations that are automorphic invariant w.r.t. a subgroup $G$ of the Möbius transformations of the unit disk and its representations in the channel and state spaces. The characteristic function $W(z)$ of such a colligation satisfies the condition

$$
W(g(z)) V_{g}=V_{g} W(z), \quad \forall z \in \mathbb{D} \quad \text { and } \quad \forall g \in G
$$

where $\left\{V_{g}\right\}$ is a representation of $G$ in the channel space.
6.5. The mapping $\Omega(z) \mapsto\left(\Omega\left(\frac{z+a}{1+a z}\right)-a I\right)\left(I-a \Omega\left(\frac{z+a}{1+a z}\right)\right)^{-1}$ and its fixed points.
Proposition 6.15. Let $\tau=\{T ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$ be a passive selfadjoint system with transfer function $\Omega$. Then the passive selfadjoint system $\eta_{a}=\left\{T_{a} ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\right\}, a \in(-1,1)$, has the transfer function

$$
\widetilde{\Omega}_{a}(z)=\left(\Omega\left(\frac{z+a}{1+a z}\right)-a I_{\mathfrak{M}}\right)\left(I_{\mathfrak{M}}-a \Omega\left(\frac{z+a}{1+a z}\right)\right)^{-1} .
$$

If $\tau$ is minimal then $\eta_{a}$ is minimal, too.
Proof. Let $T$ be a selfadjoint contraction in the Hilbert space $\mathfrak{H}$ and let $a \in(-1,1)$. Due to (6.20) for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1, \infty\}$ one has

$$
\left(I-z T_{a}\right)^{-1}=\frac{1}{1+a z}(I-a T)\left(I-\frac{z+a}{1+a z} T\right)^{-1}
$$

Moreover,

$$
\begin{aligned}
(I-a T) & \left(I-\frac{z+a}{1+a z} T\right)^{-1}=\left(I-\frac{z+a}{1+a z} T\right)^{-1}-a T\left(I-\frac{z+a}{1+a z} T\right)^{-1} \\
& =\left(I-\frac{z+a}{1+a z} T\right)^{-1}+a \frac{1+z a}{z+a} I-a \frac{1+z a}{z+a}\left(I-\frac{z+a}{1+a z} T\right)^{-1} \\
& =a \frac{1+z a}{z+a} I+\frac{z\left(1-a^{2}\right)}{z+a}\left(I-\frac{z+a}{1+a z} T\right)^{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(I-z T_{a}\right)^{-1} & =\frac{1}{1+a z}\left(a \frac{1+z a}{z+a} I+\frac{z\left(1-a^{2}\right)}{z+a}\left(I-\frac{z+a}{1+a z} T\right)^{-1}\right) \\
& =\frac{a}{z+a} I+\frac{z\left(1-a^{2}\right)}{(z+a)(1+a z)}\left(I-\frac{z+a}{1+a z} T\right)^{-1}
\end{aligned}
$$

Let $\mathfrak{H}=\mathfrak{M} \oplus \mathcal{K}$. Since $P_{\mathfrak{M}}(I-z T)^{-1} \upharpoonright \mathfrak{M}=(I-z \Omega(z))^{-1}$, we get

$$
\begin{aligned}
P_{\mathfrak{M}}\left(I-z T_{a}\right)^{-1} \upharpoonright \mathfrak{M} & =\frac{a}{z+a} I_{\mathfrak{M}}+\frac{z\left(1-a^{2}\right)}{(z+a)(1+a z)}\left(I_{\mathfrak{M}}-\frac{z+a}{1+a z} \Omega\left(\frac{z+a}{1+a z}\right)\right)^{-1} \\
& =\frac{1}{1+a z}\left(I_{\mathfrak{M}}-a \Omega\left(\frac{z+a}{1+a z}\right)\right)\left(I_{\mathfrak{M}}-\frac{z+a}{1+a z} \Omega\left(\frac{z+a}{1+a z}\right)\right)^{-1} .
\end{aligned}
$$

Now consider the passive selfadjoint system

$$
\eta_{a}=\left\{T_{a} ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\right\}, \quad T_{a}=(T-a I)(I-a T)^{-1}
$$

and let $\Omega_{\eta_{a}}$ be the transfer function of $\eta_{a}$. Then from $P_{\mathfrak{M}}\left(I-z T_{a}\right)^{-1} \upharpoonright \mathfrak{M}=\left(I_{\mathfrak{M}}-z \Omega_{\eta_{a}}(z)\right)^{-1}$ we get

$$
\left(I_{\mathfrak{M}}-z \Omega_{\eta_{a}}(z)^{-1}=\frac{1}{1+a z}\left(I_{\mathfrak{M}}-a \Omega\left(\frac{z+a}{1+a z}\right)\right)\left(I_{\mathfrak{M}}-\frac{z+a}{1+a z} \Omega\left(\frac{z+a}{1+a z}\right)\right)^{-1} .\right.
$$

Hence,

$$
\Omega_{\eta_{a}}(z)=\left(\Omega\left(\frac{z+a}{1+a z}\right)-a I_{\mathfrak{M}}\right)\left(I_{\mathfrak{M}}-a \Omega\left(\frac{z+a}{1+a z}\right)\right)^{-1} .
$$

Since

$$
\begin{aligned}
\bigcap_{z \in \mathbb{D}} \operatorname{ker}\left(P_{\mathfrak{M}}\left(I-z T_{a}\right)^{-1}\right) & =\bigcap_{z \in \mathbb{D}} \operatorname{ker}\left(P_{\mathfrak{M}}\left(I-\frac{z+a}{1+a z} T\right)^{-1}(I-a T)\right) \\
& =(I-a T)^{-1} \bigcap_{\mu \in \mathbb{D}} \operatorname{ker}\left(P_{\mathfrak{M}}(I-\mu T)^{-1}\right),
\end{aligned}
$$

we conclude that if $\tau$ is minimal then also $\eta_{a}$ is minimal.
Corollary 6.16. Let $\tau=\{T ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$ be a passive selfadjoint system with transfer function $\Omega$. Let $a \in(-1,1)$ and suppose that $\sigma_{a}=\{\mathcal{T}(a) ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\}$ is a passive selfadjoint system with transfer function $\Omega\left(\frac{z-a}{1-a z}\right)$; see Theorem 6.11. Then the passive selfadjoint system

$$
\zeta_{a}=\left\{(\mathcal{T}(a))_{a} ; \mathfrak{M}, \mathfrak{M}, \mathcal{K}\right\},(\mathcal{T}(a))_{a}:=(\mathcal{T}(a)-a I)(I-a \mathcal{T}(a))^{-1}
$$

has the transfer function

$$
\Omega_{\zeta_{a}}(z)=(\Omega(z)-a I)(I-a \Omega(z))^{-1}, z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}
$$

If $\tau$ is minimal then $\zeta_{a}$ is minimal, too.
The next result shows that the Redheffer product $\mathbf{K}_{-a} \bullet \mathbf{V}_{a}(T)$ coincides with $W_{-a}(T)$.
Proposition 6.17. Let the block operator $T$ in (6.21) be a selfadjoint contraction, let $\Omega(z)=$ $D+z C(I-z F)^{-1} C^{*}$, and denote

$$
\widehat{T}_{a}=\left[\begin{array}{cc}
\Omega(a) & \sqrt{1-a^{2}} C(I-a F)^{-1} \\
\sqrt{1-a^{2}}(I-a F)^{-1} C^{*} & F_{a}
\end{array}\right]: \begin{array}{cc}
\mathfrak{M} & \mathfrak{M} \\
\mathcal{K}
\end{array} \rightarrow \underset{\mathcal{K}}{\oplus}
$$

and

$$
\mathbf{K}_{-a}=\left[\begin{array}{cc}
-a I & \sqrt{1-a^{2}} I \\
\sqrt{1-a^{2}} & a I
\end{array}\right]: \begin{gathered}
\underset{\mathfrak{M}}{\oplus} \\
\underset{\mathfrak{M}}{ }
\end{gathered} \rightarrow \stackrel{\mathfrak{M}}{\underset{\mathfrak{M}}{\oplus}} .
$$

Then the Redheffer product $\mathbf{K}_{-a} \bullet \widehat{T}_{a}$ satisfies the equality

$$
\begin{equation*}
\mathbf{K}_{-a} \bullet \widehat{T}_{a}=T_{a}\left(=(T-a I)(I-a T)^{-1}\right) \tag{6.23}
\end{equation*}
$$

Proof. It follows from (6.19) that the mapping $\mathbf{K}_{-a} \bullet \widehat{T}_{a}: \mathfrak{M} \oplus \mathcal{K} \rightarrow \mathfrak{M} \oplus \mathcal{K}$ has the form

$$
\mathbf{K}_{-a} \bullet \widehat{T}_{a}=\left[\begin{array}{cc}
(a I-\Omega(a))(I-a \Omega(a))^{-1} & \left(1-a^{2}\right)(I-a \Omega(a))^{-1} C(I-a F)^{-1} \\
\left(1-a^{2}\right) C^{*}(I-a F)^{-1}(I-a \Omega(a))^{-1} & F_{a}+a\left(1-a^{2}\right)(I-a F)^{-1} C^{*}(I-a \Omega(a))^{-1} C(I-a F)^{-1}
\end{array}\right] .
$$

Comparing this with (6.22) leads to (6.23).
Theorem 6.18. 1) If the function $\Omega$ from $\mathcal{R} \mathcal{S}(\mathfrak{M})$ is inner, then the equality

$$
\begin{equation*}
\Omega(z)=\left(\Omega\left(\frac{z+a}{1+a z}\right)-a I_{\mathfrak{M}}\right)\left(I_{\mathfrak{M}}-a \Omega\left(\frac{z+a}{1+a z}\right)\right)^{-1} \tag{6.24}
\end{equation*}
$$

holds for all $a \in(-1,1)$ and $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$.
2) If $\Omega \in \mathcal{R S}(\mathfrak{M})$ and (6.24) holds for some $a \in(-1,1)$, $a \neq 0$, then $\Omega$ is an inner function.
Proof. 1) If $\Omega \in \mathcal{R S}(\mathfrak{M})$ is an inner function, then it takes the form (3.1) and $D=\Omega(0)$. The equality (6.24) can be verified with a straightforward calculation.
2) Suppose that (6.24) holds for some $a \in(-1,1)$. Then the equality

$$
\Omega\left(\frac{z+a}{1+a z}\right)-a I=\Omega(z)\left(I-a \Omega\left(\frac{z+a}{1+a z}\right)\right)
$$

holds for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$. Letting $z \rightarrow \pm 1$, we get the equalities $\Omega(1)^{2}=$ $\Omega(-1)^{2}=I_{\mathfrak{M}}$. Moreover, with $z=0$ we get from (6.24) the equality

$$
\left(\Omega(a)-a I_{\mathfrak{M}}\right)\left(I_{\mathfrak{M}}-a \Omega(a)\right)^{-1}=\Omega(0) .
$$

Then by applying Theorem 3.3 one finally concludes that $\Omega$ is an inner function.
6.6. The functional equation $\Omega(z)=\left(\Omega\left(\frac{z-a}{1-a z}\right)-a I_{\mathfrak{M}}\right)\left(I_{\mathfrak{M}}-a \Omega\left(\frac{z-a}{1-a z}\right)\right)^{-1}$.

Theorem 6.19. Let $a \in(-1,1), a \neq 0$. Then the equality

$$
\begin{equation*}
\Omega(z)=\left(\Omega\left(\frac{z-a}{1-a z}\right)-a I_{\mathfrak{M}}\right)\left(I_{\mathfrak{M}}-a \Omega\left(\frac{z-a}{1-a z}\right)\right)^{-1} \tag{6.25}
\end{equation*}
$$

holds for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$ and for some $\Omega \in \mathcal{R S}(\mathfrak{M})$ if and only if $\Omega$ is identically equal to a fundamental symmetry in $\mathfrak{M}$.

Proof. We will use the Möbius representation (2.13) for $\Omega \in \mathcal{R} \mathcal{S}(\mathfrak{M})$,

$$
\begin{equation*}
\Omega(z)=\Omega(0)+D_{\Omega(0)} \Lambda(z)(I+\Omega(0) \Lambda(z))^{-1} D_{\Omega(0)}, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\} \tag{6.26}
\end{equation*}
$$

with a function $\Lambda \in \mathcal{R} \mathcal{S}\left(\mathfrak{D}_{\Omega(0)}\right)$ such that $\Lambda(z)=z \Gamma(z)$, where $\Gamma$ is a holomorphic $\mathbf{B}\left(\mathfrak{D}_{\Omega(0)}\right)$ valued function with $\|\Gamma(z)\| \leq 1$ for $z \in \mathbb{D}$; see Proposition [2.3.

Equality (6.25) is equivalent to the equality

$$
\left(\Omega(z)-a I_{\mathfrak{M}}\right)\left(I_{\mathfrak{M}}-a \Omega(z)\right)^{-1}=\Omega\left(\frac{z+a}{1+z a}\right) \forall z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}
$$

Now, with $z=0$ this gives the equality

$$
\left(\Omega(0)-a I_{\mathfrak{M}}\right)\left(I_{\mathfrak{M}}-a \Omega(0)\right)^{-1}=\Omega(a) \Longleftrightarrow \Omega(0)-\Omega(a)=a\left(I_{\mathfrak{M}}-\Omega(a) \Omega(0)\right)
$$

Denote $\Omega(0)=D$. Assume that $\mathfrak{D}_{D} \neq\{0\}$ and represent $\Omega \in \mathcal{R S}(\mathfrak{M})$ in the form (6.26). Furthermore, we use that $\Lambda(z)=z \Gamma(z)$. This leads to

$$
-a D_{D}\left(\Gamma(a)(I+a D \Gamma(a))^{-1} D_{D}=a\left(I_{\mathfrak{M}}-\left(D+a D_{D}\left(\Gamma(a)(I+a D \Gamma(a))^{-1} D_{D}\right) D\right) .\right.\right.
$$

It follows that

$$
\begin{aligned}
& -\Gamma(a)(I+a D \Gamma(a))^{-1}=I-a \Gamma(a)(I+a D \Gamma(a))^{-1} D \\
& \quad \Longleftrightarrow(I+a \Gamma(a) D)^{-1} \Gamma(a)=a \Gamma(a) D(I+a \Gamma(a) D)^{-1}-I \\
& \quad \Longleftrightarrow(I+a \Gamma(a) D)^{-1} \Gamma(a)=a \Gamma(a) D(I+a \Gamma(a) D)^{-1}-I \\
& \Longleftrightarrow(I+a \Gamma(a) D)^{-1} \Gamma(a)=-(I+a \Gamma(a) D)^{-1} \\
& \Longleftrightarrow \quad \Gamma(a)=-I .
\end{aligned}
$$

Since $\Gamma(z)$ belongs to the Schur class in $\mathfrak{M}$, we get

$$
\Gamma(z)=-I, \quad z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}
$$

Hence for all $z \in \mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$,

$$
\Omega(z)=D-z D_{D}(I-z D)^{-1} D_{D}=(D-z I)(I-z D)^{-1} .
$$

However, the function $(D-z I)(I-z D)^{-1}$ belongs to the class $\mathcal{R S}(\mathfrak{M})$ if and only if it is a constant function. In other words, one must have $\mathfrak{D}_{D}=\{0\}$. This means that $\Omega(z) \equiv D$, in $\mathbb{C} \backslash\{(-\infty,-1] \cup[1,+\infty)\}$, and here $D$ is a fundamental symmetry in $\mathfrak{M}\left(D=D^{*}=D^{-1}\right)$.

## Appendices

## A. The Schur-Frobenius formula for the resolvent

Let

$$
\mathcal{U}=\left[\begin{array}{ll}
D & C \\
B & A
\end{array}\right]: \begin{array}{lll}
\mathfrak{M} \\
\underset{H}{\oplus}
\end{array} \rightarrow \begin{gathered}
\mathfrak{M} \\
\mathfrak{H}
\end{gathered}
$$

be a bounded block operator. Then the resolvent $R_{\mathcal{U}}(\lambda)=(\mathcal{U}-\lambda I)^{-1}$ of $\mathcal{U}$ (the SchurFrobenius formula) takes the following block form:

$$
R_{\mathcal{U}}(\lambda)=\left[\begin{array}{cc}
-V^{-1}(\lambda) & V^{-1}(\lambda) C R_{A}(\lambda)  \tag{A.1}\\
R_{A}(\lambda) B V^{-1}(\lambda) & R_{A}(\lambda)\left(I_{\mathcal{H}}-B V^{-1}(\lambda) C R_{A}(\lambda)\right)
\end{array}\right], \quad \lambda \in \rho(\mathcal{U}) \cap \rho(A),
$$

where

$$
\begin{equation*}
V(\lambda):=\lambda I_{\mathfrak{M}}-D+C R_{A}(\lambda) B, \lambda \in \rho(A) . \tag{A.2}
\end{equation*}
$$

In particular, $\lambda \in \rho(\mathcal{U}) \cap \rho(A) \Longleftrightarrow V^{-1}(\lambda) \in \mathbf{L}(\mathfrak{M})$ and (A.1) and (A.2) imply

$$
\left(P_{\mathfrak{M}} R_{U}(\lambda) \upharpoonright \mathfrak{M}\right)^{-1}=D-C R_{A}(\lambda) B-\lambda I_{\mathfrak{M}} .
$$

## B. Contractive $2 \times 2$ block operators

The following well-known result gives the structure of a contractive block operator.
Proposition B.1. [11, [15, 19]. The block operator $2 \times 2$ matrix

$$
T=\left[\begin{array}{ll}
D & C \\
B & F
\end{array}\right]: \begin{aligned}
& \mathfrak{M} \\
& \underset{\mathcal{K}}{\oplus}
\end{aligned} \rightarrow \stackrel{\mathfrak{N}}{\underset{\mathcal{L}}{\oplus}} .
$$

is a contraction if and only if $D \in \mathbf{B}(\mathfrak{M}, \mathfrak{N})$ is a contraction and the entries $B, C$, and $F$ take the form

$$
\begin{aligned}
& B=N D_{D}, \quad C=D_{D^{*}} G, \\
& F=-N D^{*} G+D_{N^{*}} L D_{G},
\end{aligned}
$$

where the operators $N \in \mathbf{B}\left(\mathfrak{D}_{D}, \mathcal{L}\right), G \in \mathbf{B}\left(\mathcal{K}, \mathfrak{D}_{D^{*}}\right)$ and $L \in \mathbf{B}\left(\mathfrak{D}_{G}, \mathfrak{D}_{N^{*}}\right)$ are contractions. Moreover, the operators $N, G$, and $L$ are uniquely determined by T. Furthermore, the following equality holds for all $f \in \mathfrak{M}, h \in \mathcal{K}$ :

$$
\begin{aligned}
\left\|\left[\begin{array}{l}
f \\
h
\end{array}\right]\right\|^{2} & -\left\|\left[\begin{array}{cc}
D & D_{D^{*}} G \\
N D_{D} & -N D^{*} G+D_{N^{*}} L D_{G}
\end{array}\right]\left[\begin{array}{l}
f \\
h
\end{array}\right]\right\|^{2} \\
& =\left\|D_{N}\left(D_{D} f-D^{*} G h\right)-N^{*} L D_{G} h\right\|^{2}+\left\|D_{L} D_{G} h\right\|^{2} .
\end{aligned}
$$

Remark B.2. If $\mathfrak{N}=\mathfrak{M}, \mathcal{L}=\mathcal{K}$, then $T \in \mathbf{B}(\mathfrak{M} \oplus \mathcal{K})$ is a selfadjoint contraction if and only if $D=D^{*}, B=C^{*}, G=N^{*}, L=L^{*}$.
Remark B.3. Let $F$ be a selfadjoint contraction in the Hilbert space $\mathcal{K}$, then the operator given by the block operator

$$
\mathbb{J}_{F}=\left[\begin{array}{cc}
-F & D_{F} \\
D_{F} & F
\end{array}\right]: \stackrel{\mathfrak{D}_{F}}{\underset{\mathcal{K}}{\oplus}} \rightarrow \stackrel{\mathfrak{D}_{F}}{\underset{\mathcal{K}}{( }}
$$

is selfadjoint and unitary: $\mathbb{J}_{F}=\mathbb{J}_{F}=\mathbb{J}_{F}^{-1}$.
Let $\mathfrak{M}$ be a Hilbert space, let $K \in \mathbf{B}\left(\mathfrak{D}_{F}, \mathfrak{M}\right)$ be a contraction and let

$$
\left[\begin{array}{cc}
K & 0 \\
0 & I
\end{array}\right]: \stackrel{\mathfrak{D}_{F}}{\underset{\mathcal{K}}{\oplus}} \rightarrow \stackrel{\mathfrak{M}}{\underset{\mathcal{K}}{\oplus}} .
$$

Then for any selfadjoint contraction $Y \in \mathbf{B}\left(\mathfrak{D}_{K^{*}}\right)$ the block operator

$$
\begin{aligned}
T & =\left[\begin{array}{cc}
K & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
-F & D_{F} \\
D_{F} & F
\end{array}\right]\left[\begin{array}{cc}
K^{*} & 0 \\
0 & I
\end{array}\right]+\left[\begin{array}{cc}
D_{K^{*}} Y D_{K^{*}} & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
-K F K^{*}+D_{K^{*}} Y D_{K^{*}} & K D_{F} \\
D_{F} K^{*} & F
\end{array}\right] \underset{\mathcal{K}}{\mathfrak{K}} \rightarrow \underset{\mathcal{K}}{\oplus}
\end{aligned}
$$

is selfadjoint contraction. Conversely, any selfadjoint contraction
has the representation

$$
T=\left[\begin{array}{cc}
K & 0 \\
0 & I
\end{array}\right] \mathbb{D}_{F}\left[\begin{array}{cc}
K^{*} & 0 \\
0 & I
\end{array}\right]+\left[\begin{array}{cc}
D_{K^{*}} Y D_{K^{*}} & 0 \\
0 & 0
\end{array}\right]
$$

with some contraction $K \in \mathbf{B}\left(\mathfrak{D}_{F}, \mathfrak{M}\right)$ and some selfadjoint contraction $Y \in \mathbf{B}\left(\mathfrak{D}_{K^{*}}\right)$. Moreover, $T$ is unitary if and only if $K$ is an isometry and $Y=Y^{*}=Y^{-1}$ in the subspace $\mathfrak{D}_{K^{*}}=\operatorname{ker} K^{*}$.

## References

[1] Yu.M. Arlinskiĭ, Characteristic functions of operators of the class $C(\alpha)$, Izv. Vyssh. Uchebn. Zaved. Mat., 1991, No. 2, p. 13-21 (Russian). English translation in Soviet Math. (Iz. VUZ), 35 no. 2 (1991), 13-23.
[2] Yu.M. Arlinskiĭ, Transformations of Nevanlinna operator-functions and their fixed points, Methods Funct. Anal. Topology, 23 no. 3 (2017), 212-230.
[3] Yu.M. Arlinskiĭ, S. Hassi, H.S.V. de Snoo, $Q$-functions of quasi-selfadjoint contractions, Operator theory and indefinite inner product spaces, Oper. Theory Adv. Appl., 163 (2006), 23-54, Birkhäuser, Basel, 2006.
[4] Yu. Arlinskiĭ, S. Hassi, and H.S.V. de Snoo, Parametrization of contractive block operator matrices and passive discrete-time systems, Complex Anal. Oper. Theory, 1 (2007), 211-233.
[5] Yu.M. Arlinskiĭ, S. Hassi, H.S.V. de Snoo, Passive systems with a normal main operator and quasiselfadjoint systems, Complex Anal. Oper. Theory, 3 no. 1 (2009), 19-56.
[6] Yu. Arlinskiĭ and L. Klotz, Weyl functions of bounded quasi-selfadjoint operators and block operator Jacobi matrices, Acta Sci. Math. (Szeged), 76 no. 3-4 (2010), 585-626.
[7] D.Z. Arov, Passive linear stationary dynamical systems, Sibirsk. Math. Journ., 20 no. 2 (1979), 211-228 [Russian]. English translation in Siberian Math. Journ., 20 (1979), 149-162.
[8] D.Z. Arov, Stable dissipative linear stationary dynamical scattering systems, J. Operator Theory, 1 (1979), 95-126 (Russian)
[9] D.Z. Arov and M.A. Nudel'man, A criterion for the unitary similarity of minimal passive systems of scattering with a given transfer function, Ukrain. Math. J., 52 (2000), 161-172 (Russian).
[10] D.Z. Arov and M.A. Nudel'man, Tests for the similarity of all minimal passive realizations of a fixed transfer function (scattering and resistance matrix), Mat. Sb., 193 no. 6 (2002), 3-24.
[11] Gr. Arsene and A. Gheondea, Completing matrix contractions, J. Operator Theory, 7 (1982), 179-189.
[12] J.A. Ball and A. Lubin, On a class of contractive perturbations of restricted shifts, Pacific J. Math., 63 no. 2 (1976), 309-323.
[13] Yu.M. Berezansky, Expansion in eigenfunctions of selfadjoint operators, Amer. Math. Soc., Providence, R.I., 1968.
[14] T. Constantinescu, Operator Schur algorithm and associated functions, Math. Balkanica (N.S.) 2 no. 2-3 (1988), 244-252.
[15] Ch. Davis, W.M. Kahan, and H.F. Weinberger, Norm preserving dilations and their applications to optimal error bounds, SIAM J. Numer. Anal., 19 (1982), 445-469.
[16] A.P. Filimonov and E.R. Tsekanovskiĭ, Automorphic-invariant operator colligations and the factorization of their characteristic operator-functions. Funkts. Anal. Prilozh., 21 No. 4 (1987), 94-95 [Russian]. English translation in Funct. Anal. Appl., 21 No. 4 (1987), 343-344.
[17] R.M. Redheffer, On certain linear fractional transformation, J.Math. Phys., 39 (1960), 269-286.
[18] Yu.L. Shmul'yan, Generalized fractional-linear transformations of operator balls, Sibirsk. Mat. Zh. 21 (1980), No.5, 114-131 [Russian]. English translation in Siberian Mathematical Jour., 21 No. 5 (1980), 728-740.
[19] Yu.L. Shmul'yan and R.N. Yanovskaya, Blocks of a contractive operator matrix, Izv. Vuzov, Mat., 7 (1981), 72-75. [Russian]
[20] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, New York, 1970.
[21] D. Timotin, Redheffer products and characteristic functions, J. Math. Anal. Appl., 196 no. 3 (1995), 823-840.

Department of Mathematics, Dragomanov National Pedagogical University, Kiev, Pirogova
9, 01601, Ukraine
E-mail address: yury.arlinskii@gmail.com
Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700, 65101 Vaasa, Finland

E-mail address: sha@uwasa.fi


[^0]:    Date: July 5, 2018.
    2010 Mathematics Subject Classification. Primary 47A48, 93B28, 93C25; Secondary 47A56, 93B20.
    Key words and phrases. Passive system, transfer function, Nevanlinna function, Schur function, fixed point.

    This research was partially supported by a grant from the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters. Yu.M. Arlinskiĭ also gratefully acknowledges financial support from the University of Vaasa.

