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Abstract

This thesis contains new methods for bridging the gap between the pore geometry of porous
materials and experimentally measured functional properties. The focus has been on diffusive
transport in pharmaceutical coatings used in controlled drug delivery systems, but the methods
are general and can be applied to other porous materials and functional properties. Relatively
large datasets are needed to train realistic models connecting the pore geometry and diffusive
transport properties of porous materials. 3-D statistical pore models based on microscopy
images of the coating material were in this thesis used to generate large sets of pore structures,
in which diffusive transport was computed numerically. Characterization measures capturing
important features of the pore geometry were developed and used as predictors of diffusive
transport rates in multiplicative regression models. The characterization measures have been
implemented in a freely available software, MIST.

In Paper I, a Gaussian random field based pore model was developed and fitted to microscopy
images of the coating material. Due to the large size of the data, the model was formulated
using a Gaussian Markov random field approximation, which allows for efficient inference. A
new method for solving linear equations with Kronecker matrices which reduced the complexity
of the model fitting algorithm considerably was developed. The pore model was found to fit
the microscopy images well. In Paper II, characterization measures that have been shown
to provide good regression models for diffusive transport rates were developed further and
implemented. Multiplicative regression models were fitted to pore structures from the model
from Paper I, and the new methods were shown to give improved results. In Papers III and
V characterization measures that capture a type of bottleneck effect which was observed in
another set of microscopy images of the coating material (Papers III and IV), but which is not
captured by existing methods, were invented. Pore structures with this type of bottleneck were
generated using 3-D statistical pore models, and the new type of bottleneck was found to be
an important determinant of diffusive transport rates when the regression models were fitted
to simple pore structures (Paper V).

Keywords: Porous materials, controlled drug release, statistical pore model, Gaussian ran-
dom fields, Gaussian Markov random fields, efficient inference, pore geometry characterization,
bottleneck effects, diffusive transport modelling.
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1 Introductory summary
Porous materials have a wide range of applications, such as functional material design, e.g. metal-
lic foams with tailored acoustic, thermal or mechanical properties (Lefebvre et al., 2008); elec-
trochemical enginering, e.g. fuel cell optimization (Weber et al., 2014); biomedical engineering,
e.g. scaffolds for tissue engineering (Moore, 2004); and pharmaceutical engineering, in the case
of controlled drug release from pharmaceutical dosage forms (Siepmann et al., 2012, Ch. 9).
Common for all of these applications is the demand for porous materials with strictly controlled
functional properties. This thesis contains work related to a polymer material that is used as a
coating of pellets in controlled drug release systems. The dosage forms containing coated pellets
are only effective controlled release systems if the drug transport rate through the coatings are
predictable and can be calibrated with high precision (Siepmann et al., 2012).

The drug diffuses from the core of the pellets through the pore structure of leached coatings,
and the diffusive transport rate is determined by the pore geometry of the coating. As an aid
in the development of improved coatings with precise transport rates, it is therefore important
to be able to connect the pore geometry of the coatings to observed transport rates. This
thesis contains general methods for making this connection. The methods were developed
based on datasets obtained from microscopy images of the coating material, but the methods
are applicable to other types of porous materials as well, especially materials with pore volume
fractions similar to the coating material studied here. The methods are also applicable to other
functional properties, in particular thermal and electrical conductivity properties since the
governing equations for these are mathematically equivalent to the diffusion equation (Torquato,
1991), see e.g. Berg (2012); Harris and Lu (2013) and Holzer et al. (2013b).

To construct realistic models of diffusive transport, large datasets are needed to train the
models, and accurate representations of the pore geometry of the studied material are also
needed. Advances in microscopy techniques in recent years have made it possible to obtain
high-resolution 3-D images of porous materials (Heng et al., 2007; James et al., 2012; Anovitz
and Cole, 2015). Manufacturing, processing and imaging the material is however both time-
consuming and costly, as is performing diffusion experiments. Virtual experiments provide
valuable complements to real experiments.

In this thesis, 3-D statistical pore models were formulated to fit microscopy images of the
coating material (Paper I) and to capture important features of the pore geometry obtained from
the images (Paper V). Virtual experiments were performed in pore structures generated from
the pore models by computing diffusion numerically using the software Gesualdo (Gebäck and
Heintz, 2014). The virtual diffusion experiments were then used to fit multiplicative regression
models connecting the pore geometry to diffusive transport rates, for large sets of pore structures
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Figure 1: Overview of this thesis.

generated from the pore models (Papers II, V). Characterization measures that capture features
of the pore geometry that are important determinants of diffusive transport were developed
(Papers II, III, V) and used as predictors in the multiplicative regression models, following
Stenzel et al. (2016). The limiting factor in this virtual experimental setup was the numerical
diffusion simulation. A much larger set of pore structures could nevertheless be used in the
virtual experimental setup compared to what would have been reasonable for real experiments.

The main components of this virtual experimental setup that are addressed in this thesis
are shown in Figure 1. Other important components, such as microscopy imaging, image
analysis and numerical approximations of diffusive transport are addressed to some extent in
the appended papers, but are not the focus of the thesis. Now a short summary of the contents
of the appended papers:

A 3-D statistical pore model was in Paper I fitted to confocal laser scanning microscopy
images of the coating material, produced in connection with the work presented in Häbel et al.
(2017). The model was based on the family of oscillating Matérn Gaussian random fields from
Lindgren et al. (2011). A separable covariance was used to model the anisotropy in the data, and
the model was reformulated as a Gaussian Markov random field to allow for efficient inference.
A new method for solving linear equations involving Kronecker matrices, which has not been
used in this context before, was used to reduce the computational cost of the model fitting
algorithm further, allowing the model to be fitted to larger subsets of the microscopy images.
The pore model was found to fit the microscopy images well.

Characterization methods that have in Brémond et al. (1994); Stenzel et al. (2016, 2017)
been shown to be good predictors of diffusive transport (or the equivalent electrical conductivity
property) were implemented for Paper II, and were used as predictors of diffusive transport rates
in multiplicative regression models computed for pore structures generated from the pore model
from Paper I. The characterization methods were related to path length (geodesic tortuosity)
and bottleneck effects caused by variations in pore size (constrictivity), which have long been
thought to be important determinants of diffusive transport (Petersen, 1958; Currie, 1960). New
predictors were in Paper II shown to give improved multiplicative regression models, especially
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a new version of the tortuosity factor compared to the tortuosity factor used in Stenzel et al.
(2016, 2017), but the constrictivity was not a good predictor for the dataset used in the paper.

A type of bottleneck effect caused by many paths converging in the same pore, that is
not captured by the existing bottleneck measures was observed in Papers III and IV in the
pore geometry obtained from a set of focused ion beam scanning electron microscopy images
of the coating material from Fager et al. (2020). A new characterization measure, termed the
geodesic channel-strength, capturing this type of bottleneck effect was introduced in Paper III.
The effect this type of bottleneck has on diffusive transport rates was investigated in Paper V,
again using multiplicative regression models. The geodesic channel-strength and additional new
characterization measures, designed to capture other aspects of the bottleneck effect, were used
as predictors in the regression models, as were some of the predictors from Paper II.

An argument for fixing the exponent of the geodesic tortuosity in the regression models
was presented in Paper II, based on a simple model of diffusive transport in pore structures
consisting of separate, tortuous tubes. The effects of fixing the exponent were investigated
in both Paper II and Paper V. The geodesic channel-strength was in Paper V shown to be an
important complement to the geodesic tortuosity when the exponent was fixed to its theoretical
value. From the results from fixing the exponent, and also from comparing regression models
with only the tortuosity as a predictor fitted to different datasets, it was concluded that the
tortuosity explains a larger portion of the variability in transport rates than predicted by theory.
This is probably caused by a highly correlation between the tortuosity and other factors such
as the prevalence of dead ends and the bottleneck effects caused by many paths converging
in the same pore. To create a realistic model of diffusive transport that fits many different
types of pore structures, it is important to separate these effects into different characterization
measures. Paper V is a first step in this direction.

A freely available software called MIST has been developed to make the characterization
methods implemented and developed in this thesis easily available (Barman et al., 2019). The
idea of the software is to make it easy to explore the results of the characterization visually.
The type of analysis that can be performed using the software is exemplified in Papers III and
IV. The software can be downloaded from the link provided in Section 6.

The rest of the thesis is structured as follows: In Chapter 2 some details about the coating
material studied in the thesis, as well as information about the microscopy imaging methods
and image analysis methods that were used to obtain the datasets presented in Papers I, III
and IV. A background on the 3-D statistical model, model fitting algorithm, and goodness of
fit-measures which are used in Paper I is given in Chapter 3. Chapter 4 contains information
about diffusive transport, along with the main ideas underlying the characterization methods
and multiplicative regression models developed to connect pore geometry to diffusive transport
rates in Papers II–V. A detailed summary of the appended papers is given in Chapter 5, followed
by a description of the software MIST. This is followed by the appended papers.
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2 Polymer blends used as coatings in con-
trolled drug release systems

Controlled drug release is an important research area within pharmaceutical science. It can
among other things reduce the variability of performance and improve the drug effectiveness
by targeting a specific part of the body, and can help keep the concentration of the drug from
fluctuating too much (Siepmann et al., 2012, Ch. 2). Porous materials are frequently used for
controlled release. The rate of release is highly influenced by the pore geometry of the material.

The ethyl-cellulose/hydroxypropyl-cellulose (EC/HPC) material studied in this thesis (Pa-
pers I, III, IV) is used to coat pellets, which have a core containing drug enclosed by a porous
coating that controls drug release (see Figure 2). A wide range of release rates can be achieved
by using a blend of two different polymers (Siepmann et al., 2008). The HPC is water soluble
while the EC is not, and so the HPC will be leached out when the pellet is immersed in water,
creating a porous structure through which the drug can be transported. The pore structure is
determined by the polymers’ molecular weights and by processing parameters such as the tem-
perature and spraying rate used in the manufacturing (Marucci et al., 2009, 2013; Andersson
et al., 2013). The main mass transport mechanism for transport above a critical weight ratio
of 22% HPC—below which the HPC rich domains do not form a continuous phase—is diffusion
(Marucci et al., 2009).

Previous work on these free films of the EC/HPC coating material can be found in Häbel
et al. (2016) and Häbel et al. (2017), where the pore geometry was characterized and modelled
using extracted pore skeletons, and in Gebäck et al. (2015), where mass transport in the pore

Figure 2: Illustration of a coated pellet with the core containing the drug and the EC/HPC
polymer coating. The drug is transported along paths through the leached porous coating.
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space of EC/HPC films was simulated numerically and compared to experimental results.

2.1 Data collection: microscopy techniques and image analysis

As mentioned above, advances in microscopy techniques have made it possible to obtain detailed
images of the 3-D structure of porous materials. The microscopy data of the coating material
used in this thesis were, as also mentioned above, obtained using confocal laser scanning mi-
croscopy (CLSM) (Paper I) and focused ion beam scanning electron microscopy (FIB-SEM)
(Papers III, IV). The CLSM technique is non-destructive, i.e. it can be used to obtain a 3-D
stack of images of a thick sample without slicing. Higher resolution images can be obtained
using scanning electron microscopy, however images can only be obtained from the surface of
the sample. The focused ion beam is used together with the electron microscope to mill thin
slices, creating a 3-D stack of images of the sample. More details about the FIB-SEM technique
can be found in Paper IV.

The microscopy images need to be processed to extract binary representations of the imaged
pore geometry. A simple smoothing filter was applied to the CLSM images from Paper I. A
more advanced image analysis algorithm was used on the same dataset in Häbel et al. (2017) to
obtain a skeleton representation of the pore structure corresponding to the leached EC/HPC
films. A self-learning algorithm was used to obtain the pore geometry representation of the
FIB-SEM images of leached films from Papers III and IV.
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3 Spatial statistics
Spatial statistics is used to model spatial and spatio-temporal statistical dependence structures,
which enables statistical inference for complex spatial datasets. Spatial statistical methods and
models have applications in various fields, such as image analysis (He et al., 2004), cosmology
(Verde et al., 2000), geology (Foxall and Baddeley, 2002), ecology (Law et al., 2009), material
science (Mecke and Stoyan, 2002), epidemiology and spatial econometrics (Gelfand et al., 2010).
There are four main groups of spatial models: continuously indexed random fields, discretely
indexed spatial processes, point processes and random sets. Whereas a realization X(ω) of a
random variable X is a real number, a realization Φ(ω) of a random field Φ is a function

Φ(ω) : T → D.

T and D are usually Euclidean spaces, but they can also be more complex spaces, as when T
represents a surface or a network. For discrete spatial processes, T is a countable set, e.g., a
lattice (Gelfand et al., 2010). A realization of a point processes Φ on Rd consists of discrete
points Φ(ω) = {t1, t2, . . . } ⊂ Rd distributed in space. Point processes can be seen as a special
type of random set model. A realization Φ(ω) of a random set Φ is simply a subset of the domain
T . Other types of random sets include Boolean models, which are obtained by centering simple
sets on points in a point process, line and surface processes, and thresholded random fields
(Chiu et al., 2013). Realizations of three of the four types of spatial models can be found in
Figure 3.

Many models from spatial statistics have been used to model porous microstructures.
Thresholded Gaussian random fields were among the first stochastic models used (Torquato,
2002, p. 295), and such models have been used to characterize the microstructure and its re-
lation to macroscopic properties of porous media in Adler et al. (1990); Roberts and Teubner
(1995); Mukherjee and Wang (2007). Examples of other types of models being used to make
inference about properties of porous media can be found in (Yeong and Torquato, 1998; Blunt
et al., 2002; Malek et al., 2014; Kim and Pitsch, 2009; Hermann and Elsner, 2014; Gaiselmann
et al., 2014). The family of models that were used for the polymer coatings in Paper I were hi-
erarchical models where the binarized microscopy data was modelled as a random set obtained
by thresholding a Gaussian random field plus noise. For computational efficiency, the Gaussian
fields were approximated by discretely indexed Gaussian Markov random fields. These kinds
of models are described in more detail below. Pore structures generated from two random
set-models based on point processes, where the points were connected to form a network, were
also used in Paper V.
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3.1 Models

3.1.1 Random fields

A random field can also be seen as a collection of random variables

{Φt : t ∈ T},

indexed by the parameter space T . For most random fields, and for the fields we consider here,
E = R. A basic concept are the finite-dimensional distributions

ft1,...,tn(u1, . . . , un) = P (Φt1 ≤ u1, . . . ,Φtn ≤ un).

By the Kolmogorov existence theorem, for any family {ft1,...,tn , t1, . . . , tn ∈ T, n ≥ 1} of func-
tions that satisfy certain basic conditions that make them admissable as finite-dimensional
distributions, there exists a random field with those finite-dimensional distributions.

A random field is said to be stationary if the joint distributions of vectors (Φt1+t0 , . . . ,Φtn+t0)
do not depend on t0, i.e. if translating the field by t0 does not change the finite-dimensional
distributions, and it is isotropic if the finite-dimensional distributions do not change when the
field is rotated.

The covariance function of Φ is defined as

C(t, s) = Cov(Φt,Φs).

For stationary fields the covariance only depends on the difference t− s, and we can write the
covariance C(t− s). Similarly, the covariance of an isotropic field can be written as C(|t− s|),
where | · | gives the Euclidean distance of a vector. Covariance functions of random fields are
necessarily positive semi-definite functions. A random field is Gaussian if all finite-dimensional
distributions are multivariate Gaussian. Since multivariate Gaussian random variables are

(a) (b) (c)

Figure 3: A realization of (a) a point process, (b) a discretely indexed random process, and
(c) a random set. The realization in (b) is obtained by centering symmetric bivariate Gaussian
densities, with random variance, on the points in (a). The realization in (c) is obtained by
thresholding the realization in (b).
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determined by their mean and covariance matrix, a Gaussian random field is also determined
by its mean and covariance function. It follows from the Kolmogorov existence theorem that
for any positive semi-definite function C there exists a Gaussian random field with C as its
covariance function (Gelfand et al., 2010, Ch. 2).

These properties of Gaussian fields make them relatively easy to work with. Also, though it
is in general difficult to prove results about properties of random fields such as a.s. continuity
and exceedance probabilities, it is slightly easier for Gaussian fields, see Adler et al. (2013, Ch.
2.5–2.6).

Gaussian fields are the most commonly used random field (Gelfand et al., 2010, p. 149).
Other types of random fields include transformations of Gaussian fields (Adler et al., 2013),
which can be used e.g. to obtain heavier tails of the finite-dimensional distributions, and max-
stable fields (Schlather, 2002), which are used to model extreme phenomena such as annual
maximum rainfall. A classic random field application is kriging, which is used in, e.g., environ-
mental studies and climatology (Cressie and Johannesson, 2008), where a field is interpolated
from sparse observations. Kriging provides the best linear unbiased interpolation given that the
covariance of the interpolated field is known (Gelfand et al., 2010, Ch. 3). Other applications
involve excursion sets of random fields. These have been used to do inference in medical imag-
ing, determining whether signals in PET-scan images are due to noise or related to brain areas
important for specific tasks, and in astrophysics, where they have been used to understand the
galactic topography using cosmic microwave background radiation (Adler, 2000).

3.1.2 Approximations of Gaussian fields: Gaussian Markov random fields

Assume that we want to generate a realization of a Gaussian field Φ with zero mean and
covariance function C, in some finite collection of points {t1, . . . , tn} ⊂ T . That is, we want
to generate a realization of a Gaussian vector (Φt1 , . . . ,Φtn) ∼ N(0,Σ) with covariance matrix
(Σi,j)

n
i,j=1 = (C(ti, tj))

n
i,j=1.

If we only consider the memory requirements for storing a full n × n covariance matrix
Σ on a laptop with 16GB RAM, the largest full matrix we can store in Matlab (MATLAB,
2017) is n = 45000. This is if the elements of the matrix are stored in double-precision, which
provides 16 decimals of precision and requires 8 bytes storage for each element, and using the
standard setting which only allows RAM and not virtual memory to be used when creating an
array. If the points {t1, . . . , tn} are placed on a regular grid in R3, where m is the number of
points in each dimension, the largest number for which the full covariance matrix of a Gaussian
vector could be stored would be m = 3

√
n = 35. These calculations do not even take into

account memory requirements or computational complexity of covariance matrix operations.
To generate a N(0,Σ) random vector, we need to compute either the Cholesky factor of Σ
or of the precision matrix Q = Σ−1, and calculating the Cholesky factor of a full n × n
matrix requires O(n3/3) operations. To deal with these computational issues, we need to find
approximations of the Gaussian field that allow for efficient simulation and inference. Gaussian
Markov random fields, which we will now define, provide one such approximation.

A discretely indexed spatial process w = (wi)i∈T defines a function i 7→ wi, i ∈ T , where T
is a countable parameter space, and wi are random variables. It is often convenient to represent
the parameter space as T = {1, 2, . . . }. Gaussian Markov random fields (GMRFs) are spatial
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processes defined w.r.t. undirected finite graphs (T,E), T = {1, . . . , n}. E here contains the
edges of the graph, so that i, j ∈ T are neighbours if (i, j) ∈ E. The graph (T,E) can e.g.
represent a regular grid. The formal definition of a GMRF is the following:

Definition 1. A Gaussian vector w ∼ N(0,Σ) is a GMRF w.r.t. the graph (T,E) if the
precision matrix Q = Σ−1 satisties

Qi,j = 0⇐⇒ (i, j) /∈ E,∀i 6= j.

The sparsity (and graph structure) of a GMRF can be interpreted in terms of its dependence
structure. w1 and w2 are conditionally independent given w0, denoted w1 ⊥ w2 | w0, where
w0, w1, and w2 are sub-vectors of w, if the conditional densities factor as π(w1,w2|w0) =
π(w1|w0)π(w2|w0). For a non-singular multivariate Gaussian vector w,

Qi,j = 0⇐⇒ wi ⊥ wj | w−ij,

where w−ij = (w)k∈T\{i,j}. The equivalence is similar to the equivalence of zero covariance
and independent variables for Gaussian vectors. This result means that for a GMRF w, two
nodes in T which are not neighbours are conditionally independent when conditioned on the
value of all other nodes. A GMRF with a specific sparsity structure can thus be constructed
by controlling its conditional dependence structure.

GMRFs used in practice have sparse precision matrices (illustrated in Figure 4), even though
sparsity is not a part of the definition. Sparsity of the precision matrix is very useful, since
operations with sparse matrices can be much more efficient than with full matrices. For a sparse
band-matrix with bandwidth p, the cost of a Cholesky factorization is only O(n(p2 + 3p)). The
band-width of Q, after a reordering of the nodes in T , could typically be around

√
n, in which

case O(n2) operations are required (Rue and Held, 2005, Ch. 2.4.1). Additionally, the memory
requirements for storing an n × n sparse matrix with r non-zero diagonals are of order rn.
With r = 5, the size of the largest grid in R3, for which we can store the precision matrix in
Matlab (MATLAB, 2017) is around m3 for m = 370. These are large improvements compared
to when using a full matrix. In Paper I, the Gaussian field was formulated in such a way that
the feasible size of w is increased further.

Imposing sparsity on Q poses less restrictions on the Gaussian vector w than imposing
sparsity on Σ, as most covariances used for random fields can be well-approximated using
sparse precision matrices (Rue and Tjelmeland, 2002). A downside is that finding a GMRF
that approximates a specific covariance might be time-consuming. The SPDE connection of
Lindgren et al. (2011) presented below solves this problem for the most commonly used family
of covariance functions, the Matérn covariances.

GMRFs have many applications, see Rue and Held (2005, Ch. 1) for references to work in
different areas of spatial statistics, as well as for work on time-series, longitudinal and survival
data, graphical models and semi-parametric regression and splines. More details about the
construction and properties of GMRFs can also be found in Rue and Held (2005).

A low-rank representation of a Gaussian field is another commonly used method of approx-
imation. This method uses an expansion Φt =

∑∞
i=1 αiϕi(t) of the Gaussian field, where αi

are independent N(0, 1)-variables, and ϕi are deterministic functions. An approximation of
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Figure 4: The sparsity pattern of a sparse precision matrix of a GMRF (Qxy, for dataset
HPC301, of Paper I).

the Gaussian field is obtained by replacing the expansion by the sum
∑N

i=1 αiϕi(t). Different
kinds of expansions are possible: the functions {ϕi} can be a Fourier basis, orthogonal poly-
nomials, wavelets, and eigenvectors of the covariance matrix. Approximations are obtained by
only keeping low-order terms in the expansion. The gain in computational efficiency depends
on how many terms that are kept (Gelfand et al., 2010, Ch. 8). Approximations using the fast
fourier transform (FFT) can be very efficient for random field simulation, as simulation requires
O(n log(n)) operations (Lang and Potthoff, 2011). A downside with using the FFT however
is that it is difficult to extend the method beyond approximations on regular lattices, and
knowledge about the covariance (or the related spectral density) is required (Lindgren et al.,
2011). An advantage with using GMRF approximations is that likelihood-based inference in a
hierarchical model setting can be implemented efficiently. GMRF approximations are also well
suited for simulation from fields conditioned on data, in which case the precision matrix, not
the covariance, is known explicitly. More details about this can be found in Chapter 3.2.1.

3.1.3 The SPDE connection between Matérn random fields and discretely indexed
(Gaussian) Markov random fields

The Matérn family of covariance functions is the most popular family used for random fields
(Gelfand et al., 2010, p. 24). The solution Φ to the following stochastic partial differential
equation (SPDE) was shown to be a Matérn Gaussian field in Whittle (1954, 1963):

(
κ2 −∆

)(ν+d/2)/2 {τΦt} = Wt, t ∈ Rd. (1)

Here κ > 0 and ν > 0 are the usual range and smoothness parameters of Matérn Gaussian
fields, τ > 0 is a parameter that controls the variance, W is spatial Gaussian white noise,
and ∆ is the Laplacian operator. Using the finite element method (Larsson and Thomée,
2003), the Matérn Gaussian field determined by the SPDE can be approximated by a GMRF,
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Figure 5: Triangulation of a domain T , showing one piece-wise linear basis function ϕi.

allowing efficient algorithms for inference for GMRFs to be applied. This link between Gaussian
fields and GMRFs was presented in Lindgren et al. (2011), and has become widely used since.
The finite element method is used to approximate solutions to deterministic partial differential
equations (PDEs). The solution of a PDE is in a sense projected onto a low-dimensional function
space V using a variational formulation. The space V consists of functions v which are linear
combinations of basis functions {ϕi}, i.e. v(t) =

∑n
i=1 αiϕi(t), t ∈ T , where T is the domain.

The basis functions are commonly piece-wise linear or polynomial functions defined using a
triangulation of the domain. An example of a basis function for piece-wise linear functions
is shown in Figure 5. The finite element solution provides the weights α = (α1, . . . , αn) that
define the approximate solution. In the stochastic setting of the SPDE, the weights, denoted
w, are stochastic and so the finite element approximation to the SPDE is a stochastic function
v(t) =

∑n
i=1wiϕi(t), t ∈ T . These stochastic coefficients determine a GMRF w ∼ N(0,Q−1)

with a sparse precision matrix. The non-zero entries of Q depend on the parameters of the
SPDE and on the chosen basis functions {ϕi}. The triangulation of the domain makes the
GMRF approximation flexible, as the nodes in the triangulation, which correspond to the
entries of the GMRF, can be chosen to fit with observations of the field on irregularly spaced
grids and irregular domains.

Formulating the Gaussian field using the SPDE (1) in this way has other advantages too.
The SPDE formulation makes it straightforward to define random fields on manifolds, such as
the sphere, making it well suitable e.g. for global climate modelling. The coefficients κ and τ can
be allowed to vary as functions of space, yielding non-stationary fields (Lindgren et al., 2011).
Other types of non-stationary fields can also be obtained by changing the differential operators
(Bolin and Lindgren, 2011), and non-Gaussian random fields can be obtained by letting the
noise be non-Gaussian (Bolin, 2014; Wallin and Bolin, 2015). The finite element method to
obtain (Gaussian) Markov random fields enables efficient inference also for these non-stationary
and non-Gaussian fields. This is something which is not always easy for stationary Gaussian
fields, and it is even harder in non-stationary and non-Gaussian cases.

The oscillating Matérn family of Gaussian fields, and corresponding GMRF approximations,
that were used to define the model in Paper I (see Figure 6) are obtained from a complex
reformulation of the SPDE (Lindgren et al., 2011). For this family, the covariance C(t) is
negative for some t. There are not many families of covariance functions available with this
property, although a few examples can be found in Chilès and Delfiner (2012, Ch. 2.5.1).
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(a) (b)

Figure 6: Realizations from two oscillating Matérn GMRFs, with (a) a high oscillation param-
eter and (b) zero oscillation parameter. Both GMRFs have the same parameter values κ2 and
τ .

3.1.4 Hierarchical modelling

Spatial datasets are often complex. There may be multiple sources of data, with complicated
and unknown dependence structures and measurement error processes. Hierarchical modelling
provides a flexible framework to deal with this kind of data. The basic idea of hierarchical
modelling is to formulate models using conditional distributions. As a simple example, consider
y = (y1, . . . , yn) as the data, which we consider to be observations of an underlying GMRF
w with covariance Q(γ)−1, depending on parameters γ, which is observed with independent
measurement noise with variance σ2. This model, which is illustrated in Figure 7, is formulated
as

y|w,γ ∼ N(w, σ2I),

w|γ ∼ N(0,Q(γ)−1),

γ ∼ Π.

(2)

Here I ∈ Rn×n is the identity matrix, and Π is some prior distribution. The underlying GMRF
w is called a latent field. The parameters γ, called hyper-parameters, represent the highest level
in the hierarchy. The model in Paper I was formulated similarly to (2), but with an additional
step where the GMRF with added noise was thresholded to obtain the data.

In (2) the model framework is Bayesian, as we let the unknown hyper-parameters γ be
random variables. In a frequentist approach γ would instead be considered to be fixed. It is
important when formulating a model to consider the computational efficiency of algorithms for
doing inference, as well as the plausibility of the model. The form of the posterior distribution

Figure 7: A graphical representation of model (2).
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of the latent field, i.e., of w | y, is important for likelihood-based inference, see Chapter 3.2.1.
Prior distributions for parameters can also be chosen to facilitate inference, for example by
using conjugate priors. The influence of priors on inference should always be checked. For large
datasets, the prior may not influence the results much at all, but this is important to check.
The Gaussian assumptions should be verified as well.

The hierarchical model (2) can easily be extended to include more data sources by, e.g.,
letting the mean of y depend on both w and covariates. Popular hierarchical models include
generalized linear models, where the dependence on covariates is linear, and generalized addi-
tive models, where the covariates are transformed by smooth functions (Fahrmeir and Lang,
2001; Christensen et al., 2006). See Gelfand et al. (2010, Ch. 7) for more information about
hierarchical modelling in a spatial setting.

3.2 Inference

When doing inference we want to estimate the parameters of the model given data. In a Bayesian
setting this involves evaluating the marginal posterior distributions of the parameters. Taking
again model (2) as an example, the marginal posterior of γ is obtained by integrating out the
latent GMRF from the joint posterior density as

π(γ|y) =

∫

Rn

π(w,γ|y)dw,

where we use π(·) to denote densities. This integral quickly becomes intractable. The condi-
tional density π(w,γ|y) is a function of the precision matrix Q(γ) ∈ Rn×n, and just determining
the proportionality constant to evaluate π(w,γ|y) can be very computationally demanding. A
frequentist likelihood approach faces the same problems, since then the integral of the joint den-
sity π(y,w;γ) needs to be evaluated to integrate out w. The marginal posterior distribution
w|y of the latent field, which is of interest in many cases, can be just as difficult to obtain.

The best we can do is often to approximate the posterior distributions. Markov chain Monte
Carlo (MCMC) algorithms are flexible methods for doing this, which is the kind of method
that was used in Paper I. To find approximate maximum likelihood/maximum a posteriori
estimates of the parameters the expectation maximization (EM) algorithm is another alternative
(Dempster et al., 1977), along with other related iterative optimization methods (Lange, 1995).
Integrated nested Laplace approximations, which is based on numerical integration, can be used
when the latent GMRF is Gaussian (Rue et al., 2009). These methods, termed likelihood-based
methods, can all be very computationally demanding. Minimum-contrast methods (Gaetan and
Guyon, 2010), such as least-squares estimation that estimate model parameters by minimizing
the least-square distance of e.g. empirical and model covariance functions, and pseudo-likelihood
methods, that e.g. use only pairwise likelihoods, are less demanding, but are on the other hand
less exact than likelihood-based methods. Both EM-algorithms and minimum-contrast methods
have been used to fit thresholded Gaussian fields models, see Wilson and Nott (2001).
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3.2.1 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods have been used extensively in spatial statistics,
both to do inference and for simulation. Many examples of applications can be found in (Brooks
et al., 2011). MCMC methods are used when it is difficult to generate i.i.d. samples from the
distribution of interest. Instead a Markov chain that has the distribution as its invariant
distribution is used. An invariant distribution for a Markov chain (X1, X2, . . . ) is a distribution
such that if X1 has this marginal distribution, then all other elements of the Markov chain has
this distribution as well.

The term Monte Carlo stands for numerical simulation of random processes (Brooks et al.,
2011, p. 3). Monte Carlo integration is used to estimate expectations such as µ = E[g(X)].
The estimator

µ̂ =
1

n

n∑

i=1

g(Xi), (3)

where X1, . . . , Xn are i.i.d., has the approximate distribution µ̂ ≈ N(µ, σ2/n) by the central
limit theorem if σ2 <∞, where σ2 is the variance of g(X). MCMC uses the fact that a similar
central limit result holds when the i.i.d. sample is replaced by a stationary1 Markov chain
(X1, X2, . . . ) which has the distribution of X as its invariant distribution (Brooks et al., 2011,
p. 8) (under various conditions that can be found in Jones (2004)). The difference compared to
ordinary Monte Carlo is that if the central limit theorem holds for the approximation µ̂, then
the variance σ2/n of the approximate normal distribution is given by

σ2 = Var(g(Xi)) + 2
∞∑

k=1

Cov (g(Xi), g(Xi+k)) , (4)

for any i. If g is vector valued, then the variance and covariances, termed auto-covariances, in
(4) are matrices.

If X1 is generated from the invariant distribution, then the chain is stationary, in which case
the estimator (3) is unbiased (Brooks et al., 2011, p. 21). But since MCMC is used when it is
difficult to generate samples from the invariant distribution directly, the chain is often started
using some approximation of the invariant distribution, and so the chain is not stationary
and the estimator may be biased. There is however a law of large numbers that says that the
estimator (3) converges with probability one to E[g(X)] as n→∞, for almost all starting values
X1, under conditions that the Markov chain is irreducible and recurrent (Johansen et al., 2007,
Ch. 3.4). If the chain is Harris recurrent, then a central limit result holds as well regardless
of the initial distribution of X1, under the condition that it holds for one initial distribution.
The conditions here on the Markov chain determines in a sense how well the set of values that
can be attained under the invariant distribution is explored by the chain.2 Additionally, the
variance (4) of the stationary chain is the asymptotic variance of the chain, whether the chain

1A Markov chain is stationary if it is a stationary random process, i.e. if the distribution of
(Xk1+k0

, . . . , Xkn+k0
) does not depend on k0, for all k1, . . . , kn ∈ {1, 2, . . . }, n > 0.

2Irreducibility implies that the full set of values attainable under the invariant distribution of the Markov
chain can be explored, and the expected number of times a recurrent Markov chain visits any set with positive
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is stationary or not (Brooks et al., 2011, p. 8). (Xn, Xn+1, . . . ) can thus be seen to sample
the invariant distribution when the Markov chain is irreducible and recurrent, regardless of the
initial distribution, when n is large enough.

In practice, simulation of the Markov chain is often allowed to run long enough so that the
run seems to be stationary, and the first part of the run which does not seem stationary, called
the burn-in, is discarded. The remaining chain is assumed to representative of the invariant
distribution. This is a bit risky as the invariant distribution is often unknown, which makes it
difficult to determine if the run is really representative. It could be that the Markov chain only
explores a small part of the set of values attainable under the invariant distribution. Simple
methods to handle this problem are to let the chain run for a long time after it has seemingly
converged to stationarity, and to start several runs with different starting values X1, although
they do not provide any guarantees that the resulting runs are representative (Brooks et al.,
2011, Ch. 1).

Different MCMC-algorithms use different methods to update the Markov chain, i.e. to gen-
erate Xn+1 | Xn. Metropolis-Hastings updating is a common method which does not require
the normalization constant of the density πX of the invariant distribution to be known. We let
h(x) = απX(x), for some α > 0. The update works as follows:

1. Given the current state Xn, generate Y using the proposal density q(Y |Xn).

2. Accept the proposed value Y with acceptance probability

p = min

(
1,

h(Y )q(Xn|Y )

h(Xn)q(Y |Xn)

)
.

If Y is accepted, go to step 3, otherwise go back to step 1.

3. Set Xn+1 = Y .

Metropolis-Hastings algorithms are very versatile, since the proposal densities can be chosen
in many different ways: q can be taken to be a close approximation to πX from which it easy
to generate samples. It can also be unrelated to πX , and only depend on the current state Xn,
corresponding e.g. to a random walk around Xn.

Gibbs sampling is another common method to update the Markov chain. If X is a vector,
a classic Gibbs sampler would generate each element of the vector Xn+1 separately using its
marginal conditional distribution (Brooks et al., 2011, Ch. 1.12). It is common to have a hierar-
chy of updating steps in a Gibbs sampler, where some of the marginal conditional distributions
are updated using Metropolis-Hastings. This is the method that was used in Paper I.

An issue with MCMC algorithms is that they can be very time-consuming. The variance
of the estimator (3), and thus the required number of iterations of the algorithm, can be
decreased by reducing the auto-covariances of the chain. In Metropolis-Hastings updates, the
acceptance probability can be optimized to obtain low auto-covariances. For Gibbs samplers,

probability under the invariant distribution is infinite. Harris recurrence is slightly stronger, and essentially
means that the chain visits all sets that have positive probability under the invariant distribution infinitely
many times, with probability one.
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(a) (b)

Figure 8: Trajectories of a Markov chain (X1, . . . , X1000) with block Gibbs updating, showing
(a) a block with high acceptance probability, and (b) a block with low acceptance probability.
The trajectories are those of six elements of w and s, in (a) and (b) respectively, from part of
an MCMC run for HPC301 in Paper I.

blocking, where variables that are highly dependent are updated jointly, can reduce auto-
covariances significantly (see Figure 8). Each update of the Markov chain should of course also
be implemented as efficiently as possible. Updates can sometimes be made more efficient by
reformulating the model and introducing auxiliary variables that make conditional distributions
easier to simulate from in a Gibbs sampler. Auxiliary variables were used in Paper I to make
the posterior distribution of the latent field Gaussian.

To do inference for model (2), we want to construct a Markov chain ((wi,γi))
n
i=1 which

has invariant distribution w,γ | y. This Markov chain can be used to approximate posterior
marginal densities and posterior means. A simple algorithm for updating the Markov chain
according to the invariant distribution is to use a Gibbs sampler with blocking that alternates
between updating the hyper-parameters and the latent field. An update (wn+1,γn+1) | (wn,γn)
can be done by first generating γn+1 from the distribution of γ | wn,y, and then generating
wn+1 from w | γn+1,y. The posterior density for the latent field w, using that π(w|γ,y) ∝
π(y,w,γ), is

π(w|γ,y) = α exp

(
−(y −w)T (y −w)

2σ2
− wTQ(γ)w

2

)
,

where α is a normalization constant. As the density for w | γ,y is a function of w alone, only
terms including w have been kept. The posterior density in this case has the same form as a
multivariate Gaussian density, and so the posterior distribution must be Gaussian with

w | γ,y ∼ N(Q̂
−1

y/σ2, Q̂
−1

), (5)

where Q̂ = Q(γ) + I/σ2. A similar posterior distribution was obtained for the latent field
in Paper I. Updating latent fields for this type of hierarchical model can often be the most
computationally expensive step of a Gibbs sampler. For likelihood-based inference methods in
general, the usefulness of Gaussian random field approximations w depends on how easy it is
to evaluate densities of distributions such as (5). When w is a GMRF approximation, we can
use the sparsity of Q̂. In Paper I, not only the sparsity, but also a Kronecker-structure of Q(γ)
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(a) (b) (c)

Figure 9: Illustration of erosion and dilation, using a circle structuring element B, with (a) Φ,
(b) Φ⊕B and (c) Φ	B.

that results from the separability of the Gaussian field model, was taken advantage of in order
to make simulation from the posterior distribution of the latent field efficient.

3.2.2 Goodness of fit

Mathematical modelling often involves balancing model complexity with the efficiency of sim-
ulation and inference procedures that are available for the model. This is very much the case
in spatial statistics, where computational costs of simulation, let alone inference, can be con-
siderable.

There are many methods for assessing model fit. For a random set model Φ with realizations
that are subsets of T ⊆ R3, such as the model for the pore structure of EC/HPC polymer
blends presented in Paper I, measuring goodness of fit involves characterizing the geometry of
realizations of the fitted model, and comparing this characterization with data.

Basic characterization measures for stationary random sets defined on R3, are the volume
fraction p and covariance k. Many characterization measures can also be obtained by trans-
forming the random set using operations of mathematical morphology. The basic operations
are dilation (⊕) and erosion (	), which are defined w.r.t. a structuring element B as

Φ⊕B = {t + s : t ∈ Φ, s ∈ B},

and
Φ	B = {t ∈ Φ : −B + t ⊆ Φ}.

Dilation enlargens the set Φ with the structuring element B, while erosion subtracts B from Φ,
see Figure 9. These operations were defined for random closed sets in Matheron (1975).

Dilation and erosion are used to characterize the shape of random sets. Popular measures
obtainable using dilation and erosion are contact distribution functions, empty space functions
and chord length distribution functions (Chiu et al., 2013, Ch. 6). Pore size distributions
provide related measures of the shape of random sets. These are obtained as distributions of
local pore sizes. Local pore sizes are defined w.r.t. structuring elements using the operation
opening, which consists of an erosion followed by a dilation. The local pore size in a point
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t ∈ Φ is the size of the largest rescaled structuring element that fits within the set Φ and which
covers t. More details about the definition of pore size distributions are given in Appendix B
of Paper I. See also Figure 2, Paper III for an example of local pore sizes computed in a 2D
pore structure. Measures related to local pore size were used in all five papers.

Whereas pore size distributions relates to local pore size, contact distribution functions can
be seen as distributions of distances, computed using erosion w.r.t. the structuring element,
to the boundary of the set Φ. If the aim is to do a shape analysis of a random set, local
pore sizes can be easier to interpret than distances to the boundary. It is on the other hand
very difficult to obtain theoretical expressions for pore size distributions w.r.t. structuring el-
ements other than lines (Matheron, 1975, pp. 175–176). Theoretical expressions for contact
distribution functions have been obtained for many random set models, see Chiu et al. (2013,
Ch. 6.3.3). For line structuring elements, the relationship between linear size distributions and
linear contact distribution functions was derived in Matheron (1975, pp. 51–52). The linear
contact distribution functions can in turn be related to chord length distribution functions, see
Chiu et al. (2013, pp. 226–227).

The connectivity of the random set is also an important geometric characteristic. A con-
nectivity measure called the two-point cluster function has been shown to encode more relevant
information for reconstructing porous media than both high-order correlation functions and
pore size related distribution functions (Torquato, 2010). The excursion sets used to assess
the goodness-of-fit of numerically simulated diffusion in Paper I can also be seen as a connec-
tivity measure. Connectivity measures that capture pore geometry properties important for
understanding transport properties were used in Papers II-V, see the next section.

Other types of characterization measures are e.g. the Euler characteristic and related intrin-
sic volumes (Adler, 2000); functions determined by intrinsic volumes calculated for successive
erosions/dilations of the set Φ (Chiu et al., 2013, p. 229); and local distributions, which are
distributions of geometric characteristics such as intrinsic volumes computed for subsets of the
set Φ (Hilfer, 2000).
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4 Connecting pore geometry properties to
diffusive transport

The diffusive transport rate through a porous material is determined by its pore geometry.
Methods for characterizing properties of the pore geometry that have a significant impact on
diffusive transport rates were developed in Papers II-V. The focus was on methods that capture
the pore length and bottleneck effects. These factors and methods are discussed in detail in
this section. Other properties, such as the prevalence of dead ends, could also have a significant
impact on diffusive transport rates, but were not considered in this thesis.

The focus in this thesis has been on predictors that have a clear interpretation in terms
of the pore geometry. Other methods that have been used in the context of connecting pore
geometry to diffusive transport rates, or the mathematically equivalent properties of electrical
conductivity and heat conductivity (Torquato, 2002), are the high-order correlation functions
used in e.g. Liasneuski et al. (2014).

4.1 Diffusion

Diffusive transport is driven by random movement of particles, where each particle moves
according to Brownian motion. The diffusive flux J = (Jx, Jy, Jz), where Jx gives the net amount
of particles transported in the x-direction per unit area and time, Jy the net amount transported
in the y-direction, and Jz the net amount transported in the z-direction, is proportional to the
negative concentration gradient as

J = −D0∇c. (6)

Here ∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂z

), c is the particle concentration and D0 is the diffusion coefficient. Ran-
dom particle movement thus results in a net transport of particles from domains with higher
concentration to domains with lower concentration. The mass conservation law, which implies
that the rate of change ∂c

∂t
should equal ∇ · J, gives that

∂c

∂t
= −D0∆c, (7)

for constant D0, which is the well-known heat equation. Here ∆ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is the Laplace

operator.
We model the diffusive transport in pore structures as having fixed concentrations cinlet at

the inlet (z = 0) and coutlet at the outlet (z = Lz) of the pore structure. This corresponds to



22 4 Connecting pore geometry properties to diffusive transport

high concentration of drug in the core of the pellet and low concentration on the outside of
the pellet, in the case of controlled drug release. The concentration difference drives diffusive
transport from inlet to outlet. Since there is no transport in or out of pore walls, the boundary
conditions J · n = −D0∇c · n = 0 are imposed at the walls, where n is a vector normal to the
wall. The steady state solution c satisfies ∂c

∂t
= 0, is zero in the matrix (solid part of the pore

structure) and satisfies (7) in the pore space, with the described boundary equations.
In Paper II and Paper V the software Gesualdo (Gebäck and Heintz, 2014) was used to

solve (7) numerically. Gesualdo uses the lattice Boltzmann method, which simulates parti-
cle movement and interaction at a level of abstraction above the particle level using particle
distributions on regular lattices. These computations can easily be parallelized, which makes
the lattice Boltzmann method attractive for large-scale simulations. An alternative is to simu-
late diffusion on the particle level, called molecular dynamics simulations. This can however be
very computationally demanding, as large number of particles need to be simulated (Mohamad,
2011). The finite element method, described in Chapter 3.1.2, is a popular method for solving
PDEs approximately. An advantage when using the lattice Boltzmann method is that mass
conservation can be enforced, which is difficult when using the finite element method (Hughes
et al., 2000). Finite volume methods are other alternatives, which similarly to the finite element
method approximates solutions to the PDE (7) directly, instead of simulating particle dynamics,
but which can also enforce mass conservation (Eymard et al., 2000). Network models, which
can be seen as a kind of finite volume method where the dynamics are modelled on the pore
level, is another option. This method is less exact than other methods, but is efficient and can
be used for large pore systems (Blunt et al., 2013).

When explaining diffusive transport in terms of the pore geometry, we are interested in the
steady state transport J through the pore structure. We define the effective diffusion coefficient
Deff by

〈Jz〉 = −Deff∇̃c

following Gebäck et al. (2015). Here 〈·〉 denotes the average taken over the whole pore structure,
∇̃c = (cinlet − coutlet)/Lz, and Lz denotes the length of the pore structure in the z-direction.
The effective diffusion coefficient maps the applied concentration gradient over the whole pore
structure ∇̃c to the mean diffusive transport 〈Jz〉 through the structure, in the same way as
the diffusion coefficient maps the local concentration gradient to the flux in equation (6).

Let J be the flux of the steady state solution in a given pore structure, with concentration-
boundary condition (cinlet, coutlet). By the linearity of equations (6) and (7) and the boundary
conditions, keeping the pore structure constant but changing the concentration-boundary con-
dition to (c′inlet, coutlet), where c′inlet − c′outlet = α(cinlet − coutlet), leads to a rescaled solution αJ.
Similarly, rescaling the pore geometry by α, but keeping the concentration-boundary condition
constant, leads to a rescaled solution J/α. Furthermore, the average of the steady state flux
in the z-direction taken over the whole structure equals the average over any slice in the x, y-
plane, due to mass-conservation. Thus T = A〈Jz〉, where T is the total transport per unit time
through the pore structure and A is the area of a slice in the x, y-plane. The effective diffusion
coefficient is therefore proportional to the total transport per unit time, but is independent of
the concentration-boundary condition and of the size of the pore structure.



4.2 Important pore geometry factors 23

The rescaled coefficient Deff/D0 is often used, see e.g. Ghanbarian et al. (2013); Stenzel
et al. (2016). Deff/D0 can be seen as the reduction in transport rate compared to a structure
with no pore matrix, i.e. with only free diffusion. The transport ratio, defined as

TR =
Deff

εD0

,

was used in Paper II and Paper V. Here ε denotes the pore volume fraction. It holds that
TR ≤ 1 by the Wiener bounds (Wiener, 1912), and TR can be rewritten as the ratio between
the total transport through the pore structure and the total transport through an optimal pore
structure with the same pore volume fraction, see Paper II. An optimal pore structure is a pore
structure which has the highest possible transport rate for a given pore volume fraction, which
is a pore structure with straight pores aligned with the z-direction. Similarly, the relative flux
J/(D0∇̃c) was used in Paper II and Paper V (termed normalized flux in Paper II) for ease
of interpretation. Here D0∇̃c is the norm of the flux through an optimal pore structure of
any pore volume fraction. The flux through an optimal pore structure Jopt equals the flux
Jfree of free diffusion in a volume with the same applied concentration gradient ∇̃c, which is
Jfree = (0, 0,−D0∇̃c).

4.1.1 Bounds

It holds that TR ≤ 1 generally, as noted above and in Paper II. Other upper and lower bounds
have also been derived using similar methods. Here are some examples, given with respect to
the transport ratio:

Maxwell’s formula (Maxwell, 1881, Chap. 9, p. 403), TR = 1
1+ 1

2
(1−ε) , was derived for a dilute

suspension of spheres as ε → 1. It was shown in Hashin and Shtrikman (1962) that this is an
upper bound which is valid for all isotropic geometries for any value of ε, and it is the strictest
upper bound obtainable using only the pore volume. The corresponding lower bound using
only the pore volume is zero. Stricter bounds, both upper and lower, can be found by adding
more information about the pore geometry, see Torquato (1991). The isotropic assumption can
also be relaxed. As an example of a stricter upper bound, TR ≤ 1

1− 1
2
lnε holds for overlapping

spheres with Poisson distributed centers and uniform or random radii (Weissberg, 1963).

4.2 Important pore geometry factors

Two pore geometry-properties that are thought to be important for determining the rate of
diffusive transport through a pore structure are the length of paths through the pores and
possible bottleneck effects (Siepmann et al., 2012, Ch. 9). Long paths and/or the presence of
bottlenecks lead to low transport rates. These effects are illustrated in Figure 10. It can be
helpful to think of diffusion dynamics in terms of the concentration c, as diffusive flux J is
driven by a concentration gradient by (6). The most effective pore structure in terms of mean
transport, for a given pore volume, has straight pores aligned with the direction of transport,
such as the pore structure shown shown in the left of the figure. If we consider transport through
a winding, or tortuous, pore (middle pore structure), the concentration gradient is reduced due
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Figure 10: Steady state solutions computed by Gesualdo, showing concentration c (top row)
and corresponding streamlines colored by norm of relative diffusive flux (bottom row), for three
simple pores. 11 isolines of c at regularly spaced distances in the interval [coutlet, cinlet] = [1.0, 1.5]
are shown, colored by the value of the concentration. Transport was computed from top to
bottom, i.e. the inlet is at the top and the outlet is at the bottom. The color-scale of normalized
flux was cut of at 2.0.

to the increased length of the pore, decreasing the transport. The concentration gradient field
of the pore with varying pore size (right pore structure), can be seen to be less efficient than
that of a straight pore due to the large concentration drop at the two pore necks. In these
examples, the tortuous pore and the pore with varying pore size have about the same transport
efficiency in terms of the transport ratio, with TR = 0.43 and TR = 0.48, respectively. Both
increased pore length and variation in pore size was taken into account in Papers II-V.

More complex pore structures present another type of bottleneck effect, caused by many
paths converging in the same pore. An 2-d pore structure with bottlenecks of this kind is
shown in Figure 11. The transport efficiency is considerably lower in the complex pore structure
compared to the pores shown in Figure 10, with TR = 0.17. This is because, as can be seen
from the streamlines of relative flux, there is a large portion of the pore structure through which
there is very little transport. The example pore structure in Figure 11 was taken from Paper V,
where this bottleneck effect was studied. This type of bottleneck was also found in one of the
pore structures obtained from FIB-SEM images of the coating material presented in Paper III
and Paper IV.
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Figure 11: A steady state solution computed by Gesualdo, showing concentration c (top row)
and corresponding streamlines colored by norm of relative diffusive flux (bottom row), for a
simple 2-d pore structure. 31 isosurfaces of c at regularly spaced distances in the interval
[coutlet, cinlet] = [1.0, 1.5] are shown in black. An area with a strong bottleneck effect is zoomed
in on. Transport was computed from bottom to top, i.e. the inlet is at the top and the outlet
is at the bottom. The color-scale of normalized flux was cut of at 2.0.

4.2.1 Simple sectioned model for diffusion in a single pore

Simple models for steady state solutions can be useful for the understanding of the relationship
between pore geometry and transport. The simple sectioned model developed in this section is
based on similar arguments as presented in e.g. Currie (1960). A similar simple model was used
in Paper II and Paper V for the special case of a tortuous tube with constant cross-section.
Whereas the simple model from Paper II and Paper V can be used to draw conclusions about
how path length influences diffusive transport, the simple sectioned model can be used to draw
conclusions about the influence of bottleneck effects, and the influence of the interplay between
path length and bottleneck effects, as discussed in the end of this section.

The simple sectioned model is obtained by dividing a pore into n sections Sec1, . . . , Secn,
as illustrated in Figure 12. To each section Seci is associated a length Li, measured in the
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Figure 12: Illustration of the setup of the simple model, showing two pores with the division
inte sections Seci, the cross-sectional area Ai and the length Li of each section, and the height
L of the two pores.

transport direction through the section, and the cross-sectional area Ai of a plane (or length of
a line for a pore in 2D), which is defined to be perpendicular to the transport direction (black
lines dividing the two pores into sections in Figure 12). The total transport through Seci is
then assumed to equal the total transport through a straight pore with length Li and base-area
Ai. By the principle of mass conservation, the total transport per unit time, T , should be the
same for all sections. Let ci−1 and ci be the concentration at the inlet and outlet, respectively,
of section Seci. To satisfy the concentration boundary conditions, c0 = cinlet and cn = coutlet.

Transport through section Seci: The total transport through section Seci is a function of the
unknown concentration difference, as the flux in a straight pore of length Li with concentration
difference ci− ci−1 is Jfree = (0, 0,−D0(ci− ci−1)/Li). Thus the total transport through section
Seci is T = −AiD0(ci − ci−1)/Li. We define Ri = Li/(D0Ai) in analogy with Ohm’s law3, and
so

T = −ci − ci−1
Ri

. (8)

Mass conservation: As equation (8) holds for all i by the principle of mass conservation, we
have that

ci − ci−1
Ri

=
cj − cj−1

Rj

, ∀i, j. (9)

Using that
∑

i ci − ci−1 = cn − c0 = cintlet − coutlet, the solution (c0, c1, . . . , cn) is given by the

3Ohm’s law states that I = V/R, where I is the current, V is the voltage and R is the resistance. As
the equations governing electrical conductance and diffusive transport are the same, we write T = −(cinlet −
coutlet)/R, where the the total transport per unit time T corresponds to the current and the concentration
difference cinlet − coutlet corresponds to the voltage.
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set of equations

ci − ci−1 =
Ri∑
j Rj

(cintlet − coutlet), i ∈ {1, . . . , n}.

The total transport given this simple sectioned model is then

T = − 1∑
j Rj

(cintlet − coutlet). (10)

Thus we have that T = −(cintlet−coutlet)/R in analogy with Ohm’s law, where R = R1+· · ·+
Rn. This fits with the formula R = R1 + · · ·+Rn for the resistance of an electric circuit with n
resistors connected in series (Cutnell and Johnson, 2018, p. 552), with Ri being the resistance
of the i:th resistor. A similar formula has been used to compute the diffusion coefficient of a
composite material composed of n sheets, namely l/Deff = l1/D1+ · · ·+ ln/Dn, with li being the
thickness and Di being the diffusion coefficient of the i:th sheet and l being the thickness and
Deff being the effective diffusion coefficient of the composite, and has also been used when Di is
the effective diffusion coefficient of the i:th sheet (Bell and Crank, 1974). A similar model was
applied to a tube of constant cross-sectional area and to a pore of sinusoidal shape in Currie
(1960), although there the resistance R was defined using an integral over 1/A(z), where A(z)
was the area of the cross-section at position z.

The total transport (10) obtained from the simple sectioned model seems to fit reasonably
well for simple pore such as those pictured in Figure 12. For a pore with constant cross-section
area, such as the tortuous pore shown on the left in the figure, i.e. for a pore with Ai = Aj =: A,
the total transport obtained using the simple sectioned model reduces to

T =
A

τsimple
Jfree,z.

Here τsimple =
∑

j Lj/L, L is the height of the pore as indicated in the figure, and Jfree is the
flux of free diffusion with the same applied concentration gradient (cintlet − coutlet)/L. τsimple is
thus a measure of how much longer the pore is compared to the height of the pore. The total
transport through a straight pore with cross-sectional area A is AJfree,z. Thus, compared to
a straight pore with the same cross-sectional area A as the tortuous pore, the total transport
is reduced by a factor 1/τsimple. Compared to a straight pore with the same pore volume as
the tortuous pore, which has cross-sectional area τA, the total transport is reduced by a factor
1/τ 2simple, thus

TR =
1

τ 2simple
. (11)

Note that the simple sectioned model gives correct transport ratio TR = 1 for straight pores
with constant cross-sectional area. The same transport ratio as that given in (11) was obtained
in Currie (1960) and in Paper II, using similar arguments which were based on approximating
the transport through a tilted pore with constant cross-sectional area with the transport through
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a straight pore with the same length and cross-sectional area4. The exponent of 1/τ in (11)
has sometimes been claimed to be 1, not 2, in e.g. Petersen (1958) and Holzer et al. (2013b),
see Paper II. The model (11) for the transport ratio was tested in Paper V however, and was
found to fit well with numerically simulated diffusion in tortuous pores.

For a pore with constant section length Li = Lj =: Lsec, the total transport (10) obtained
using the simple sectioned model reduces to

T =
1

τsimple〈 1
Aj
〉Jfree,z,

where 〈·〉 denotes the average, τsimple =
∑

j Lj/L with L being the height of the pore as indicated
in the Figure 12, and Jfree denotes the flux of free diffusion with the same applied concentration
gradient (cintlet−coutlet)/L. τsimple is thus a measure of how much longer the pore is compared to
the height of the pore. The total transport through a straight pore with the same pore volume
as the pore with constant section length is τsimple〈Aj〉Jfree,z, since the cross-sectional area of the
straight pore is τsimple〈Aj〉, and so

TR =
1

τ 2simple〈 1
Aj
〉〈Aj〉

. (12)

A similar model was obtained in Currie (1960) for the special case of a sinusoidal pore and in
Berg (2012).

The transport ratio given by (12) is invariant to rescaling the pore, as is the true transport
ratio. It is not obvious from (12) that TR ≤ 1, though the inequality clearly holds when
〈 1
Aj
〉〈Aj〉 = 1. It is easy to show however for n = 2 by using a change of variable to x = A1/A2, in

which case the transport ratio for a given relative pore length τsimple is maximized for A1/A2 = 1,
i.e. for a pore with constant cross-sectional area. By applying the simple sectioned model
iteratively to two sections at a time, the inequality TR ≤ 1 can be shown to hold for any n.
Thus the inequality holds for TR obtained using the simple sectioned model, just as it holds
for the true solution to the diffusion equations by the Wiener bounds (Wiener, 1912).

The explicit dependence of the transport ratio on the two factors τsimple and 〈 1
Aj
〉〈Aj〉,

respectively, is shown in Figure 13. The total transport is e.g. equally reduced, with TR = 0.5,
for a pore with constant cross-sections for which τsimple =

√
2 as for a straight pore for which

A1/A2 = 0.17, though the transport reduction is a result of two different mechanisms: Suppose
that Li = Lj =: Lsec. Firstly, the concentration difference is the same for all sections for a pore
with constant cross-sections, and so the reduction in total transport comes from the reduction
in concentration difference compared to sections of a straight pore. The results for the tortuous
pore shown in the middle of Figure 10 shows that this is a reasonable approximation to the
steady state solution computed using Gesualdo. Secondly, as can be seen from the set of
equations (9), the concentration difference ci − ci−1 is greater for a section with a relatively

4Note that here a straight pore refers to a pore with constant cross-sectional area that is aligned with the
direction of transport, such as the pore to the left in Figure 10, as was done in Currie (1960) where the same
model was obtained. In Paper II a straight pore referred to a possibly tilted pore with constant cross-sectional
area.
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Figure 13: Illustration of the transport ratio computed using the simple sectioned model. (a)
The transport ratio computed using the model (11), i.e. the transport ratio of a pore with
constant pore size but increased pore length. (b) The transport ratio computed using the
model (12) with n = 2 and τsimple = 1, i.e. the transport ratio of a straight pore with varying
pore size, where A1/A2 is the ratio between the cross-sectional area of the first section and the
cross-sectional area of the second section of the pore. The maximum transport ratio TR = 1 is
attained at A1/A2 = 1.

small cross-sectional area Ai. This means that a relatively large portion of the total drop
in concentration coutlet − cinlet has to be “spent” at section Seci. This is intuitive, since the
flux through a section with small cross-sectional area has to be higher than the flux through
a section with larger cross-sectional area in order for the transport through the two sections
to be the same, and the flux is proportional to the concentration gradient. A large drop in
concentration can also be observed at the two bottlenecks in the pore with varying pore size
shown in Figure 10, as the iso-surfaces are clustered around the bottlenecks. The iso-surfaces
are not flat surfaces oriented orthogonally to the transport direction though, as is assumed in
the simple sectioned model.

The simple sectioned model for TR in (12) is only formulated for a single pore, and therefore
does not address bottleneck effects caused by many paths converging in the same pore, such
as in the pore structure shown in Figure 11 and in the data considered in Papers III-V. The
same principle should apply in this case though, i.e. a relatively large portion of the total drop
in concentration has to be “spent” at the bottleneck leading to a reduction in total transport.
Big concentration drops can be observed at the bottlenecks in the pore with varying pore size
in Figure 11.

4.3 Pore geometry measures

The factors identified as important determinants of diffusive transport in the last section were
(1) the length of a pore, or in the case of more complex pore structures the length of paths
through the porous network, (2) bottlenecks caused by variation in pore size and (3) bottlenecks
caused by many paths converging in the same pore. Available methods to characterize the first
two factors are presented in the following two sections. Methods to characterize the third factor
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were developed in Paper III and V.

4.3.1 Path lengths

Path lengths through the pore structure can be computed as the length of geodesic paths. Here,
a geodesic path GeoPathdir(p) corresponding to the point p in the pore space is the shortest
path that lies completely in the pore space and that connects the inlet and outlet to the point
p. The inlet and outlet are defined as the faces at the edge of the pore structure in the direction
dir, with dir = x, y or z. Examples of geodesic paths in a 2-d pore structure can be found in
Figure 1, Paper III and Figure 2, Paper IV. Geodesic paths were used in Paper IV to visually
explore the connectivity of pore structures obtained from microscopy images of the coating
material.

The length of the geodesic path is often given relative to the height of the pore structure,
i.e. as the geodesic tortuosity τ(p) = l(GeoPathdir(p))/L, where l(GeoPathdir(p)) is the length
of the geodesic path and L is the height of the pore structure in direction dir. 2-d examples
illustrating the tortuosity can be found in Figure 2, Paper III. The geodesic tortuosity is de-
scribed in e.g. Adler (1992); Brémond et al. (1994); Lindquist et al. (1996); Thiedmann et al.
(2009); Peyrega and Jeulin (2013); Pecho et al. (2015); Stenzel et al. (2016, 2017); Neumann
et al. (2019); and Chaniot et al. (2019). The geodesic tortuosity is sometimes called geometric
tortuosity and can also be computed from a skeleton representation of the pore structure. The
geodesic tortuosity was shown in Brémond et al. (1994); Stenzel et al. (2016, 2017) to be a
good predictor of diffusive transport rates and the equivalent property of electrical conduction.
In Paper II, a tortuosity factor was defined in such a way that the model (11) holds for pore
structures consisting of separate tubes of constant cross-sectional areas. The tortuosity factor
and standard deviation of the point-wise tortuosity τ(p), for points p in the pore space, was
used in Paper II and Paper V to predict diffusion. In Paper III and Paper IV the point-wise
tortuosities τ(p) were used to characterize the connectivity of the coating material.

The tortuosity has sometimes been defined using the model (11), and is then thought to
capture the increased length of streamlines of diffusive flux compared to the height of the
pore structure. This definition of the tortuosity, sometimes called the diffusive tortuosity, is
commonly used (Ghanbarian et al., 2013, p. 1464). This however assumes that the only factor
that reduce the transport rate are increased path lengths, as discussed in Paper II. Another
type of tortuosity, the hydraulic tortuosity, is computed as the length of streamlines of flow
(Duda et al., 2011).

4.3.2 Bottleneck effects

Bottlenecks caused by variations of pore size, such as can be observed in the pore structure
in the right of Figure 10, were identified as important factors reducing diffusive transport
rates in Owen (1952) and Petersen (1958). Methods for characterizing this type of bottleneck
in complex pore structures can be found in Holzer et al. (2013b) and Berg (2012). In Berg
(2012), a constriction factor similar to the factor 1/(〈 1

Aj
〉〈Aj〉) from model (12) was used. In

Holzer et al. (2013b), the median mercury intrusion porosimetry (MIP)-pore size was used to
characterize the size of bottlenecks. The MIP-pore size is computed similarly to the local pore
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size using successive erosions and delations (see Figure 9), with the difference that connectivity
is also taken into account. See Figure 2, Paper III, for a 2-d example of the MIP-pore size. The
constrictivity was defined in Holzer et al. (2013b) as the ratio between the median MIP-pore
size and the median local pore size, and have been used e.g. in Stenzel et al. (2016, 2017);
Holzer et al. (2013a) and Neumann et al. (2016). See Paper II and Paper III for more details
about the constrictivity, which was used in Paper II, Paper III and Paper V.

A new measure that captures bottleneck effects caused by many paths converging in the
same pore, such as can be observed in Figure 11, was introduced in Paper III. This measure,
termed the geodesic channel-strength, was computed from geodesic paths and was used in
Papers III-V (see Figure 1, Paper III, Figure 3, Paper IV and Figure 1, Paper V, for 2-d
examples of the geodesic channel-strength). This kind of bottleneck, illustrated in Figure 11
above, is not captured by the existing methods based on constrictivity described above.

4.4 Multiplicative regression models for predicting diffusion

The model (12) for TR obtained from the simple sectioned model indicate that a multiplicative
regression model of the form

TR = Predβ11 · · · · · Predβnn (13)

could be a good prediction model for the transport ratio, with model parameters β1, . . . , βn, and
with predictors Pred1, . . . , P redn that take values in the unit interval [0, 1] since TR ∈ [0, 1].
The model (12) then corresponds to Pred1 = 1/τsimple and Pred2 = 1/(〈 1

Aj
〉〈Aj〉), with β1 = 2

and β2 = 1.
A short review of multiplicative regression models that have been used to predict diffusive

transport measures such as Deff and TR can be found in Paper II. The pore volume fraction
ε, the geodesic tortuosity τ and the constrictivity were used as predictors in these regression
models. Multiplicative regression models were fitted to diffusive transport results computed
numerically using Gesualdo in Paper II and Paper V, following Stenzel et al. (2016), but with
the addition of more predictors. Both papers examine the effect of fixing the exponent to the
theoretical value 2 in order for the model to fit with the simple pore structures for which model
(11) applies, but there is more emphasis on this aspect of the modelling in Paper V.
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5 Summary of appended papers
5.1 Paper I

In Paper I a stationary Gaussian random field based model for the pore structure of the
EC/HPC coating material was fitted to parts of two sets of CLSM images from Häbel et al.
(2017), i.e. two 3-D images, corresponding to two EC/HPC films. The sets of CLSM images
were binarized using a threshold that was a function of the depth to account for a signal decrease
with depth. Parts of the CLSM images for which the stationarity assumption was reasonable
were chosen, which resulted in 3-D samples that were smaller in the z-direction compared to
in the t = (x, y)-planar sections. Each sample was represented as a vector, y = (y1, . . . , ym),
where m equalled the number of voxels in the sample. The model for y = (y1, . . . , ym) was
formulated as

yi =

{
1, if X(ti, zi) + εi ≥ u,
0, otherwise,

i = 1, . . . ,m, (14)

for a threshold u ∈ R (model (1) of Paper I, with s replaced by t). Here εi are independent
standard Gaussian random variables andX is a Gaussian field belonging to a family of Gaussian
fields defined by a coupled system of SPDEs. This family has separable covariance functions
C, i.e. covariance functions which can be written as C = CzCt, with Ct and Cz covariances of
the oscillating Matérn fields mentioned in Chapter 3.1.3 (see also Figures 3 and 4, Paper I).
t = (x, y) correspond to planar sections of the EC/HPC coating material orthogonal to the
direction of diffusive transport, which is represented by the z-axis. The separable covariance
models the anisotropy of the CLSM images, where a different structure in the t-planar sections
compared to along the z-axis can be seen.

For computational efficiency, the Gaussian field in model (14) was replaced by the corre-
sponding FEM approximation (see Section 3.1.2), defined by the GMRF w, and the model was
replaced by:

yi | w, u ∼ Be(Φ(Ai,•w − u)), i = 1, . . . ,m,

w | γ ∼ N(0,Q(γ)−1),

γ ∼ π(γ),

u ∼ π(u).

(15)

which is model (4) of Paper I (with misprint corrected). Here Be denotes the Bernoulli distribu-
tion, Φ denotes the distribution function of a standard normal random variable, and π(γ) and
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Figure 14: Graphical representation of the augmented model.

π(u) are prior distributions for the parameters and the threshold, respectively. The precision
matrix Q can be written as a Kronecker pruduct Qz ⊗Qt, due to the separability of C.

The binarized CLSM samples yCLSM, and the corresponding samples y obtained from the
model (15), were filtered to remove the noise, resulting in a model

ỹ = F (y) (16)

for the pore structure of the leached EC/HPC material. This is model (2) of Paper I.
A blocked Metropolis-within-Gibbs sampler was presented for fitting model (15) to CLSM

images. Updating the latent GMRF by sampling from its conditional distribution was the most
computationally expensive step in updating the Markov chain. Several methods were used to
increase the efficiency of this step: (1) Auxiliary variables s, the sum of the FEM approximation
evaluated at the voxels of the CLSM image plus independent noise, were introduced. The
conditional dependence structure of the augmented model is illustrated in Figure 14. These
auxiliary variables made the conditional distribution of w | s,γ, u,y ∼ N

(
Q̂
−1

A>s/σ2, Q̂
−1)

,
i.e. multivariate Gaussian. (2) Samples from this (approximate) distribution were generated
without computing full Cholesky factors of the precision matrix Q̂ by taking advantage of the
Kronecker structure of Q(γ), using the method introduced in Papandreou and Yuille (2010).
(3) The method from Papandreou and Yuille (2010) was adapted so that the full matrix Q(γ)
did not need to be stored. This was done by taking advantage of the Kronecker structure of the
precision matrix, solving the system (Qz⊗Qt)

−1b using operations on the matrices Qz and Qt

alone, see Buis and Dyksen (1996), and has to the best of our knowledge not been used in the
context of fitting GMRF based models before. This reduced the amount of elements stored in
the MCMC algorithm from O(n2

zn
2
t) to O(n2

z+n2
t), where nz and nt denote the number of voxels

in the z-direction and t-plane of the CLSM image, respectively. This significantly increased the
size of the dataset the model could be fitted to. The feasible size of simulations from the model
using the Cholesky factors also increased: on a laptop with 16GB RAM, samples larger than
600 × 600 × 600 could be generated (compare with the sizes given in Chapter 3.1.2). A more
detailed description of the algorithm can be found in the section “The MCMC algorithm” in
the appendix of Paper I, and a more detailed description of the methods for taking advantage
of the Kronecker structure of Q(γ) can be found in the section “Reducing the computational
complexity of the MCMC algorithm” in the appendix.

The comparison of the pore structures obtained from the CLSM samples and from the
corresponding fitted models (16) in Figure 15 shows that the model fits the data well. The
model fit was assessed quantitatively using the covariance, pore size, and a new measure that
characterizes diffusive flux using excursion sets: The goodness of fit using the covariance and
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Figure 15: Comparison of microscopy pore structures extracted from the CLSM images of
EC/HPC films from Häbel et al. (2017) (left) and five simulations from the corresponding
fitted models (right). The microscopy pore structures are shown from front and back. The
ordering of the microscopy samples from top to bottom is the same as the ordering of samples
HPC302–HPC404 in Tables 2 and 3 of the appendix of Paper I. Corresponding images for
HPC301 can be found in Figure 8, Paper I.

pore size were applied to both the binarized CLSM samples corresponding to model (15) and
to the filtered data corresponding to the pore model (16), see Figures 9 and 10, Paper I. The
diffusive flux and corresponding excursion sets were only computed for the filtered data, see
Figure 11, Paper I, as it is not relevant to compute diffusive transport through the noisy CLSM
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data.
The goodness of fit using covariance functions were applied to the Ct- and the Cz-covariance

functions, and not the separable covariance function C = CzCt, thus not checking the validity
of using a separable covariance function. However, the goodness of fit of the full model was
checked using both the pore size and excursions sets. The goodness of fit of the model was
checked using the full covariance C after the paper was published, and it was concluded that
the covariance seemed to fit, although the sample size in the z-direction may have been too
small for a discrepancy in the model fit to be detected.

5.2 Paper II

The pore model family from Paper I was used in Paper II to generate pore structures for which
multiplicative regression models were fitted relating the pore geometry to diffusive transport
computed numerically using Gesualdo, as illustrated in Figure 16. Pore models corresponding
to 4 × 3 × 3 parameter combinations were used of the parameters ε, θxy and θz, with 6 pore
structures generated for each pore model. The first pore model parameter was the pore volume
fraction ε of the generated pore structures, and the other two controlled the regularity of the
pore geometry in the x, y-plane and z-direction, respectively. An additional 30 pore structures
were also generated for one of the pore models.

The transport ratio, described in Section 4.1, was introduced in Paper II and multiplicative
regression models were fitted with the transport ratio TR as response variable and pore geom-
etry measures, described in Section 4.3, as predictors. I.e. multiplicative regression models of
the form

TR = αPredβ11 · · · · · Predβnn , (17)

were fitted, with model parameters α, β1, . . . , βn, and predictors Pred1, . . . , P redn. Note the
difference compared to the model (13) presented above. The model (13) could be seen as being
more accurate, since the predicted values of TR are guaranteed to take values in the unit
interval [0, 1] in that model. If the model (13) is considered the true model, there are probably
several important predictors missing in the regression models fitted in Paper II, e.g. predictors
capturing the effect of bottlenecks caused by many paths converging in the same pore (see
Figure 11) and predictors capturing the effect of dead-end pores. The intercept α can be seen
as a way of adjusting for these missing predictors. The predictors were also not restricted to
take values in the unit interval. The predictors could easily be modified to comply with this
restriction though, as shown in Paper V.

The regression model (17) was applied at the pore model level, i.e. TR was the mean of
the transport ratios and the predictors were the mean of the respective predictor computed for
the 6 pore structures generated from the particular pore model. The regression model was also
applied at the pore structure level for the pore model with 36 generated pore structures.

These regression models were constructed similarly to the multiplicative regression models
from Stenzel et al. (2016), in which the pore volume fraction, a tortuosity factor and the
constrictivity were included as predictors. Some differences with the work presented in Stenzel
et al. (2016) were the following:
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Figure 16: Illustration of the virtual experimental setup used in Papers II and V.

• More predictors were used, specifically the fraction connected pores εC , the mean of the
local pore size (PS) and the MIP-pore size (MIP) and the standard deviation of the pore
size (σPS), the MIP-pore size (σMIP) and the tortuosity (στ ).

• The tortuosity factor was defined to provide exact results for tortuous pores. The tortuos-
ity factor τ was defined in such a way that the equality TR = 1/τ 2 holds for simple pore
structures consisting of separate tubes, i.e. tortuous pores with constant pore size, which
includes the pore structures for which the model (11) applies. The tortuosity factor τ
defined in this way was computed using point-wise tortuosities τ(p) for all points p in the
pore space. The tortuosity factor used in Stenzel et al. (2016) on the other hand, denoted
τinlet, was computed using point-wise tortuosities τ(p) for points p at the inlet.

• The regression models were fitted using stepwise regression on the logarithm. The stepwise
regression resulted in regression models with a reduced number of predictors.

For the regression models fitted on the pore model level, the tortuosity factor τ was always
chosen as a predictor over τinlet by the stepwise regression. The tortuosity factor τ also explained
a large part, 97%, of the variation in transport rates. Because the regression model with only τ
as a predictor performed so well, only small increases in model fit were obtained when adding
other predictors to the regression model (Table 2, Paper II). However, when the exponent of
τ was fixed to the theoretically motivated value 2 (see model (11) and (12) above, and section
“Average of the reciprocal of the pointwise geodesic tortuosit” of Paper II), regression models
which included some of the new predictors, specifically the standard deviation-predictors, ex-
plained around twice as much of the variation compared to the regression model which only
included the constrictivity used in Stenzel et al. (2016) as a predictor (Table 3, Paper II). A
more detailed discussion of the effects of fixing the exponent of τ can be found in Section 5.5.

Decreasing the pore volume fraction decreased the transport ratio TR for all pore models
(Figure 5, Paper II). With the interpretation given for TR in the paper (see Section 4.1), this
means that the transport was reduced more compared to an optimal pore structure of the same
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pore volume fraction ε, for lower values of ε. The diffusive transport also seemed to change
in character when the pore volume was decreased: there was a higher proportion of relative
(normalized) flux close to zero, i.e. there was a higher proportion pores that did not contribute
much to the transport, for lower values of ε (Figure 6, Paper II). For a thresholded Gaussian
field-model such as the one used in this paper, when the threshold is increased, i.e. when ε
is decreased, some of the connections in the resulting pore network are severed. This should
lead to a higher prevalence of dead-ends and stronger bottleneck effects caused by many paths
converging in the same pore (simply referred to as bottlenecks in Paper II), which could explain
the higher proportion pores not contributing to the transport. Judging by the constrictivity
(Figure 5(b), appendix of Paper II), bottleneck effects caused by variations in pore size were
also stronger for lower ε.

Regression models using the tortuosity factors τ and τinlet as predictors were fitted to the
dataset with 36 pore structures. The regression model with τ as a predictor explained 67%
of the variation in TR, whereas the regression model with τinlet only explained 5% (Figure 8,
Paper II). This difference could be explained by the fact that the point-wise tortuosity τ(p) was
on average higher for points p further away from the inlet and outlet (Figure 11(b), Paper II).
I.e. τ captures to a greater extent the effect of pores that are not well-connected to the inlet
and outlet, i.e. pores for which τ(p) is large, compared to τinlet.

The dataset with 36 pore structures was also used to quantify boundary effects. An approach
to reduce errors by choosing sub-windows with the voxels close to the x, y-boundary removed
was implemented. Here the number of voxels being removed was based on the mean squared
error of computed pore geometry characterization measures and diffusion. It was concluded
that around 20% of the total number of voxels should be removed for this dataset.

5.3 Paper III

The pore geometry characterization methods from Paper II were in Paper III developed further,
and were used to characterize three sets of FIB-SEM images of leached films of the EC/HPC
coating material. The same dataset was also used in Paper IV. A detailed description of the
method used to obtain these FIB-SEM images can be found in Fager et al. (2020), but the
method is also described in more detail in Paper IV. A short description of the segmentation
algorithm used to obtain the pore geometry of the films can be found in both Paper III and IV.

As noted in Markl et al. (2018), often only simple pore geometry properties such as the pore
volume fraction are reported in pharmaceutical applications. Paper III in contrast contains a
detailed analysis of the pore shape and connectivity properties of the leached films. The three
films originally contained 22%, 30% and 45% HPC, respectively, and were referred to as HPC22,
HPC30 and HPC45. The preparation of the EC/HPC films, the FIB-SEM procedure and the
binarization algorithm are explained in detail in Paper IV.

A new method for characterizing bottlenecks caused by many paths coinciding in the same
pore, such as illustrated in Figure 11, was presented in Paper III. The new measure, termed
the geodesic channel-strength, was defined as follows:

Definition. Let G = {GeoPathdir(p), p ∈ S} be a set of geodesic paths computed in the
direction dir = x, y, or z, corresponding to points p ∈ S which are well-distributed throughout
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the pore space P . The geodesic channel-strength GeoChannel(p′) in a point p′ ∈ P is then
given by the proportion paths in G which pass through p′.

The geodesic channel-strength can be used to identify main channels, which are defined
as parts of the pore space with a high geodesic channel-strength. The main channels can be
seen as a simplification of the porous network, which can help to visually identify important
features of the network, see Figures 1 and 11, Paper III. Channels of relatively high strength,
and high variation in channel-strength between different parts of a pore structure, indicate a
bottleneck effect. However, alternative path-ways close to a channel of high strength, and the
pore size of the high strength channels should be taken into account when determining if there
is a bottleneck effect.

The geodesic channel-strength was implemented as a way of capturing the poor connectivity
in the transport direction (y-direction) in HPC22, and were applied in the transport direction for
all three films. The other methods implemented in Paper II for measuring the connectivity (the
geodesic distance and geodesic tortuosity) and bottleneck effects (the constrictivity) were also
applied. In addition, the pore size with respect to spheres, ellipses and lines were computed, as
was a measure of the local variation in pore volume fraction, and a new method for quantifying
pore shape, computed by relating maxima of the ellipse- and line-size to the sphere-size was
applied.

The pore size measures showed that pores in all three films were relatively flat (Table 2,
Paper III), with a strong anisotropy in shape, as the line-sizes were in general shorter in the y-
direction compared to in the other directions (Figure 6, Paper III). There was also an anisotropy
in path lengths, as the tortuosity in the x-direction was considerably lower compared to the
tortuosity in the y-direction (Figures 9 and 10, Paper III). These anisotropy effects could be
explained by the process that was used to create the EC/HPC films, in which layers in the
x, z-plane were sprayed consecutively onto a rotating drum, creating a different structure in the
y-direction. The same type of process was used to create the films from Paper I (Häbel et al.,
2017), which therefore also explains the anisotropy identified in that paper5.

The anisotropy trends were the same for all three films, but were stronger for lower pore
volume fractions (lower weight percentage of HPC). Similarly, the tortuosity and the maximum
geodesic channel-strength were higher for lower pore volume fractions, but were considerably
higher for HPC22 compared to the other two films (Figures 9–12, Paper III). The channel-
strength was used to identify a limiting layer in HPC22, in which there were only two channels
of relatively high strength that connected the top and bottom of the layer (Figure 11, Paper III).
The two main channels in the limiting layer were in fact the only two paths connecting the top
and bottom of the limiting layer. As the pore size of the two main channels were relatively
small compared to the proportion of paths passing through, it can be concluded that there is
a bottleneck effect in this layer. Bottlenecks such as these, which are not caused by variations
in pore size, are not captured by the existing methods found in Berg (2012) and Holzer et al.
(2013b). The low connectivity in HPC22 with these bottleneck effects could be explained by
22% HPC being at the percolation onset for the coating material, i.e. it is around 22% HPC that

5Note that the z-direction is used to denote the direction of transport through the coating material in Paper I
and Paper II, and through the pore structures generated from the pore models of Paper V, but the y-direction
is used to denote the direction of transport in Paper III and Paper IV.
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the HPC starts to form a fully connected component (Marucci et al., 2009). In conclusion, it
was found that the geodesic channel-strength provided insights into the connectivity properties
which complemented the information attained from the related geodesic distance- and geodesic
tortuosity-measures. In particular, the two bottlenecks identified in the limiting layer of HPC22
were not easily identified using the other two geodesic measures.

A “video” of the geodesic distance computed to the top in the y-direction of HPC22, which
illustrate further the effect of the limiting layer, is found in Figure 13, Paper III. Here seven
images of the geodesic distance thresholded at different levels are shown. These images illustrate
the need to visually explore the results of the pore geometry characterization to fully understand
the connectivity properties of the material. A full video with a gradually increasing threshold
can be found in the appendix of Paper III. The video can also be downloaded from this link6.

5.4 Paper IV

The dataset from Paper III was in Paper IV studied from a slightly different perspective.
The focus in Paper IV was on the structure of paths through the pore structure obtained
from the three films, in particular geodesic paths starting at a chosen inlet pore, and the
corresponding geodesic channel-strength. This is in contrast to the characterization measures
based on geodesic paths presented in Paper III, which were computed from geodesic paths
starting at the inlet defined as all pores in the top slice of the pore structure (compare Figure 1,
Paper III with Figures 2 and 3, Paper IV).

A method for visualizing the interconnectivity of the pore structure of the three films was
developed, where geodesic paths were divided into groups by length. 40 geodesic paths were
chosen randomly from three groups containing short, intermediate and long geodesic paths,
respectively, for each film. The three groups contained all geodesic paths with tortuosities lower
than the 20% tortuosity-quantile (short paths); all geodesic paths with tortuosities between the
40% and 60% tortuosity-quantile (intermediate paths); and all geodesic paths with tortuosities
higher than the 80% tortuosity-quantile (long paths). The 40 geodesic paths from the same
group and the same film were combined in one figure, creating a 3×3 table of figures (Figure 8,
Paper IV), which shows that there was a substantial difference in path structure for geodesic
paths through HPC22 compared to geodesic paths through the other two films. Paths through
HPC22 were much more winded, whereas paths through HPC30 and HPC40 were relatively
straight and short. Visualizing sets of geodesic paths in this way helps give an understanding
of the variability in path structure. The visualization quickly gets unintelligible as the number
of paths in the set is increased though. Choosing a specific inlet pore and dividing paths into
groups by lengths, as was done in Paper IV, helped to keep the visualizations interpretable.

The geodesic channel-strength, which in Paper III was computed from a large set of geodesic
paths starting at the chosen inlet pore, quantified the trends observed in the visualization of
geodesic paths. A limiting layer with only two main channels was observed in HPC22, which just
as in Paper III were concluded to be bottlenecks as these were the only two pores connecting the
top to the bottom of the pore structure. This demonstrates how the geodesic channel-strength
can be used as a method for visually identifying the central features of the porous network

6https://chalmersuniversity.box.com/s/jew08700m49a77hetyncrdrz7bq5vn5b
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by visualizing only “highly travelled” parts of the porous network. The limiting layer e.g. is
difficult to detect from visual inspection of e.g. all pores that are connected to both the top
and bottom of the pore structure, as there are more connected pores in the limiting layer than
just the two bottlenecks (see the video in the appendix of Paper III). These pores are however
not visible in the visualization of the geodesic channel-strength, as very few paths pass through
them.

5.5 Paper V

In Paper V, the new geodesic channel measure, invented in Paper III, was developed further.
Two aspects which need to be taken into account when determining if a pore with high channel-
strength is a bottleneck are (1) the size of the pore and (2) whether or not there are alternative
pathways, slightly longer than the path through the pore with high channel-strength, that can
take some of the pressure of the high channel-strength pore. Two new measures were introduced
in Paper V which address these two aspects. The first, termed the pore size-channels-measure,
relates the size of pores with high channel-strength to the maximum pore size observed in
the pore structure. The second, termed the closed pore-tortuosity, measures the increase in
tortuosity when a pore with high channel-strength is “closed of”, i.e. when a subset of the pore
is removed so that no paths can pass through it. A slightly different version of the geodesic
channel-strength was used in Paper V, for computational efficiency.

Multiplicative regression models of the form (17) used in Paper II were fitted with predictors
based on the geodesic channel strength, the two new measures, the tortuosity factor τ defined in
Paper II, the constrictivity, and two of the measures based on standard deviations of tortuosity
and pore size, respectively, found to be good predictors in Paper II. The predictors were in
Paper V restricted to take values in the unit interval. The arguments from Paper II for the
model (11), which in Paper II was used to motivate the new definition of the tortuosity factor,
was in Paper V used to motivate the core model

TR =
P

τ 2
. (18)

Here P is a compounded factor which is restricted to take the value 1 for simple pore structures
for which the model (11) is valid. General multiplicative regression models where the exponent
of τ was included as a model parameter were compared with multiplicative regression models
with the exponent of τ fixed to 2 to fit with the core model, as was also done in Paper II.

A reference-dataset, with pore structures consisting of tortuous tubes, was created to confirm
the validity of the core model. Two datasets created from relatively simple random network-
models, referred to as the Bottleneck 1- and Bottleneck 2-datasets, consisted of pore structures
with a wide variation in the bottleneck effect caused by many paths converging in the same
pore. Another dataset, termed the Polymer film-dataset, consisted of pore structures generated
from the pore model fitted in Paper I.

Multiplicative regression models were fitted either with one predictor or two predictors, for
all combinations of predictors, and either with τ added as a predictor with a free exponent or
with τ added as a predictor with a fixed exponent. The general regression models with a free
exponent of τ were referred to as the one predictor, free exponent- and the two predictors, free
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exponent-models (results given in Tables 3 and 5, Paper V). The regression models designed to
fit with the core model, i.e. models with the exponent of τ fixed to 2, were referred to as the
one predictor, core- and two predictor, core-models (results given in Tables 2 and 4, Paper V).
To get a better picture of the effect of fixing the exponent of τ , the exponent was not only fixed
to the theoretical value 2 but to values in an interval [2, kmax], where kmax was chosen large
enough so that the optimal exponent in the one predictor, free exponent-model was included in
the interval (Figure 5, Paper V).

The core model with P = 1 provided a good fit to the reference set as expected, see
Figure 4(b), Paper V. Interestingly, it was found that a simple multiplicative regression model
with only τ as predictor could explain a large part of the variation in transport ratios when
fitting the regression to each dataset separately (Figure 4(b), Paper V). The fitted exponent
of τ could in the Figure be seen to be different for each dataset and to deviate significantly
from the theoretical value 2. This effect can be explained by a strong correlation between the
tortuosity and e.g. bottleneck effects caused by many paths converging in the same pore, causing
overfitting of the regression model with only the tortuosity as predictor. These arguments can
be illustrated using the relative diffusive flux shown in three pore structures in Figure 2, Paper
V. The pore structure in the top right has less efficient transport (TR = 0.24) compared to the
other two pore structures (TR = 0.57 and TR = 0.55). The top right pore structure also has
both a stronger bottleneck and higher tortuosity compared to the other two pore structures,
illustrating the strong correlation between the two pore geometry features. Comparing the
transport ratio of the pore structure in the top right with the transport ratio of a pore structure
with the same pore volume and the same tortuosity, which according to model (11) would be
TR = 1/τ 2 = 0.60, it is also clear that the tortuosity alone does not explain the transport ratio
of the top right pore structure.

Only small improvements in model fit were observed when adding more predictors to the
multiplicative regression models, compared to when only using the tortuosity as predictor (free
exponent-models). When fixing the exponent of the tortuosity to its theoretical value 2 however
(core-models), considerable improvements were observed, especially for the predictors based on
quantiles of the geodesic channel strength. The plots of the coefficient of variation for different
predictors and different values of the fixed exponent (Figure 5, Paper V) show that the general
regression model is unidentifiable, due to the strong correlation between the geodesic channel
strength and tortuosity. When taking the arguments for the core model into account, it was
concluded that regression models of the form of the core model with the geodesic channel
measure added as predictor was the best model.
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6 MIST, a program package for visualiza-
tion and characterization of 3-D geome-
tries

The software MIST (Barman et al., 2019) was created as part of the project “Material structures
seen through microscopes and spatial statistic”, funded by the Swedish Foundation for Strategic
Research, SSF, of which this thesis is a part. Screenshots showing the user interface can be seen
in Figure 17. The software is freely available under the CC-BY licence, and was designed to in-

Figure 17: Screenshots of MIST, showing the computation (top) and visualization (bottom)
interfaces of the software.
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crease the availability of the characterization methods implemented and developed in this thesis
(geodesic paths and channel-strengths will soon be included in the characterization methods
provided in MIST). The software includes methods to visually explore the pore geometry using
the results of the characterization methods, similar to the visualization in the video included
in the appendix of Paper III (see link in Section 5.3 above).

Here is a link7 from which the software and a document with videos showing how to use the
software can be downloaded. The example pore structures shown in the instruction videos can
also be downloaded using the link.

7https://chalmersuniversity.box.com/s/37hlfkxvt61tfucob76zysblcrrshppn
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