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Development of voyage optimization algorithms for sustainable 

shipping and their impact to ship design 

 

HELONG WANG 

Division of Marine Technology 

Department of Mechanics and Maritime Sciences 

Chalmers University of Technology 

Abstract 

The environmental impacts from shipping and the societal challenges of human and property 

losses caused by ship accidents are pressuring the shipping industry to improve its energy 

efficiency and enhance ship safety. Voyage optimization is such an effective measure that has 

been widely adopted in today’s shipping market. The voyage optimization algorithm is the 

dominant part of any voyage optimization methods. The main objective of this thesis is to 

develop sophisticated voyage optimization algorithms, explore their applications to sustainable 

ship operations, and study its impact on ship fatigue design. 

In this thesis, five commonly used voyage optimization algorithms are first implemented and 

compared to provide a foundation for understanding optimization algorithms. A three-

dimensional Dijkstra’s algorithm is then developed with further improvement based on the 

comparison. It can provide globally optimal solutions and conducting multi-objective voyage 

optimization. An engine-power based multi-objective optimization algorithm is proposed for 

the aid of ship operations with power-setting in their navigation system. Furthermore, the 

influence of the uncertainties from voyage optimization inputs, e.g., metocean forecast, 

implemented ship performance models and voyage optimization algorithms, on the 

optimization results is investigated. Moreover, the capabilities of the proposed voyage 

optimization algorithms to handle other optimization objectives, i.e., less fatigue damage 

accumulation and lower fatigue crack propagation rate, is also investigated. Meanwhile, two 

statistical wave models are compared to study the variation of a ship’s encountered wave 

environment for ship fatigue design. The impact of voyage optimization aided operations on a 

ship’s encountered wave environments and fatigue life assessment is also researched in this 

thesis.  

The three-dimensional Dijkstra’s algorithm addresses the limitations of conventional voyage 

optimization algorithms and allows for voluntary speed variation. It has a great potential of 

saving fuel up to about 12% in comparison with the case study ship’s actual sailing routes. The 

ship engine setting-based optimization algorithm provides a scheme based on a genetic 

algorithm and dynamic programming concept. It has the potential to save fuel up to 

approximately 14.5% compared to the actual sailing routes. This study also shows that 

metocean uncertainties in the voyage optimization process have great influence on the 

optimization results, i.e., 3-10% difference in fuel consumption for the same voyage 

optimization method. In addition, statistical wave models have been proven to capture ship-

encountered wave statistics. It is also shown that the actual wave environments encountered by 

ships differ significantly from the wave scatter diagram provided by class guidelines. A good 

voyage optimization method can help to extend a ship’s fatigue life by at least 50%. 

Keywords: Dijkstra’s algorithm; Energy efficiency; Expected time of arrival (ETA); Genetic 

algorithm; Metocean forecast; Ship safety; Sustainable shipping; Voyage optimization 

algorithms. 
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Roman letters 

a Crack length [mm] 

𝑨 Edge set of a graph 

𝐴𝑋𝑉 Transverse projected area above the waterline including superstructures [m2] 

𝑐𝑠𝑓𝑜𝑐 Specific fuel oil consumption [g/kwh] 

𝐶𝑢, 𝐶𝑣 Current velocity towards the east and the north, respectively [m/s] 

𝐶𝐴𝐴 Wind resistance coefficient; 𝐶𝐴𝐴(0) means the wind resistance coefficient in 

head wind 

𝑪(𝑷,𝑼(𝑷)) Ship sailing constraints 

𝐷 Accumulated damage  

𝐷𝑇 Expected fatigue damage caused by the narrow band stress 

𝑫 Decision vector 

𝑓𝑖𝑐 Instantaneous cost function 

𝑓 (
𝑎

𝑤
) A dimensionless parameter in terms of the crack geometry and type of 

loading 

𝑓𝑠(𝑠) Probability density function of stress cycle ranges 

𝑓𝑧 Zero-upcrossing frequency of a signal 

𝐹𝐶 Fuel consumption [ton] 

𝑔(𝑎) Stress intensity coefficient 

𝑔𝑐 Correction function for oblique wave 

𝑮 Graph system for voyage optimization problems 

𝐻𝑠 Significant wave height [m] 

Hσ Transfer function of structural stresses 

𝐻𝑑𝑔 Mean wave direction [deg] 

𝐽 Objective function 

k Slope parameter of the S-N curve for fatigue assessment 

𝑘𝑓 Frictional resistance correction factor 

K Stress intensity factor  

m Slope parameter in the Paris law for crack propagation analysis 

𝑁0 Expected number of stress cycles 

𝑁 Number of cycles to failure 

𝑵 Geographical waypoint 

𝒑 Discrete power levels 
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𝑷 Ship state variable 

𝑃𝑏 Brake power [kW] 

𝑃𝐸 Effective power [kW] 

𝑅𝐴 Roughness allowance and still air resistance [N] 

𝑅𝐵 Resistance due to the bulbous bow [N] 

𝑅𝐹 Frictional resistance [N] 

𝑅𝑇 Calm water resistance [N] 

𝑅𝑊 Wave-making and wave-breaking resistance [N] 

𝑅𝐴𝐴 Wind resistance [N] 

𝑅𝐴𝑃𝑃 Additional resistance [N] 

𝑅𝐴𝑊 Wave resistance [N] 

𝑅𝐴𝑊𝑀 Wave reflection resistance [N] 

𝑅𝐴𝑊𝑅 Ship motion-induced resistance [N] 

𝑅𝑡𝑜𝑡 Ship total resistance [N] 

𝑆 Stress cycle range [MPa] 

𝑆𝑝 Stress perpendicular to the crack plane [MPa] 

𝑆𝑒 Encountered wave spectrum 

𝑆𝑤 Wave spectrum 

𝑆𝑥 Stress response spectrum under arbitrary sea states 

𝑆𝐶𝐹 Structural stress concentration factor 

𝑡 Time [h] 

𝑇𝑝 Peak wave period [s] 

𝑇𝑧 Zero-up-crossing (mean) wave period [s] 

𝑼(𝑷) Ship control variable in the ship state P 

𝑣𝑠 Ship service speed [m/s] 

𝑉 Ship speed through water [m/s] 
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𝑉𝑢 , 𝑉𝑣 Wind velocity towards east and north, respectively [m/s] 

𝑉𝑊𝑅𝑟𝑒𝑓 Relative wind velocity at the reference height [m/s] 

𝑤 Width of the crack plane [mm] 

𝒘 A complete route/path-vector from the departure to the destination 

𝑾(𝑷) Weather condition under the ship state P 

𝑋 Structural stresses [MPa] 
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𝛼 Intercept parameter of the S-N curve for fatigue assessment 

𝜀 Spectral width parameter 

𝜂0 Propeller open water efficiency 

𝜂ℎ Hull efficiency 

𝜂𝑠 Engine shaft efficiency 

𝜃 Ship heading angle [deg] 

𝜆 Spectral moments 

𝜌𝐴 Mass density of air [kg/m3] 

𝜎𝑥 Standard deviation of 𝑋 

 Standard normal cumulative distribution function 

Ψ𝑊𝑅𝑟𝑒𝑓 Relative wind direction at the reference height [deg] 

 Wave frequencies [rad/s] 

 

Abbreviations 

ECMWF European Centre for Medium-Range Weather Forecasts 

ETA Expected time of arrival 

GHG Greenhouse gases 

IMO The International Maritime Organization 

LEFM Linear Elastic Fracture Mechanics 

MEPC Marine Environment Protection Committee 

RAOs Response amplitude operators 

RPM Revolutions per minute 

SEEMP Ship Energy Efficiency Management Plan 
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1 Introduction 

This chapter presents the research background for the thesis, followed by the motivations and 

objectives of the work. The outline, limitations and the delimitations of the thesis are presented. 

1.1 Overall background 

Shipping is recognized as the most efficient and cost-effective transportation mode, and carries 

approximately 90% of the world trade. It provides a dependable, low-cost means of transporting 

goods globally. It facilitates commerce and helps create prosperity among nations and peoples. 

However, ship emissions are a major source of air pollutants, e.g., sulfur dioxide (SO2) and 

nitrogen oxides (NOx). Because global shipping is recovering from the historic lows of 2016 

(UNCTAD 2019), CO2 and other greenhouse gas (GHG) emissions from the maritime sector 

have increased to comprise 3% of the global GHG emissions, emitting approximately 1 billion 

tons of GHG every year (Smith et al., 2015). Emissions from international shipping have 

directly and indirectly killed approximately 50,000 people a year in Europe, at an annual cost 

to society of more than €58 billion (Raaschou–Nielsen et al. 2011). All these factors have 

caused a major concern of environmental protection in the maritime community.  

To protect the interests of the global environment and ecosystem, there have been many efforts 

to regulate air pollution from the shipping industry. The International Maritime Organization 

(IMO) established the Marine Environment Protection Committee (MEPC) to address 

environmental issues, including ship-source pollution such as oil, chemicals carried in bulk, 

sewage, garbage from ships and emissions, including air pollutants and GHG emissions. Table 

1 lists several major activities in IMO addressing air emissions from international shipping.  

Table 1. Major MEPC activities pertaining to international shipping air emissions.  

Year Event Contents 

1997 
MARPOL 

Annex VI 

Addressed ship air emissions and provided tools to reduce the adverse 

impacts from international shipping. 

1998 MEPC 42 
Began a program to monitor the average sulfur content of residual fuels from 

worldwide shipping. 

2000 MEPC 45 
An IMO study showed that the impact of ship nitrogen oxide (NOx) 

emissions continues to be the main policy driver. 

2005 MEPC 53 
Adopted amendments to the Regulations for the Prevention of Air Pollution 

from Ships in MARPOL Annex VI. 

2008 MEPC 58 
Approved the use of the Energy Efficiency Design Index (EEDI) method for 

new ships. 

2009 MEPC 59 Disseminated measures to reduce GHG emissions from shipping.  

2011 MEPC 62 
Adopted revisions to MARPOL Annex VI and mandatory energy efficiency 

measures for international shipping. 

2014 MEPC 67 
Approved the Third IMO GHG Study and adopted mandatory measures to 

address the energy efficiency of international shipping. 

2016 MEPC 70 
Approved a roadmap for developing a comprehensive IMO strategy for 

reducing ship GHG emissions. 

2018 MEPC 72 
Adopted an initial strategy for reducing ship greenhouse gas emissions, 

setting a vision to reduce GHG emissions from international shipping. 

2019 MEPC 74 
Adopted amendments to MARPOL Annex VI, supporting consistent 

implementation of the 0.5% sulfur limit. 

 

Table 1 also notes that ship energy efficiency is highly connected to air pollution and GHG 

emissions. In 1997, MARPOL Annex VI was adopted to limit air pollution from shipping. In 
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2011, IMO provided a suite of technical and operational measures, together with a ship energy 

efficiency framework, which were enforced starting in 2013. These mandatory measures further 

strengthened the energy efficiency requirements for the entire shipping industry. Many 

technical measures can be applied to increase a ship’s energy efficiency. According to the 

shipping market survey conducted by DNV GL (2015), shipping companies have become more 

willing to invest in simple and cost-effective technical measures to reduce air emissions and 

fuel cost. Among all available energy-efficiency solutions, one of the most recognized measures 

is the voyage optimization, which more than 80% of the respondent shipping companies had 

planned to implement or had already installed in their ships.In addition, voyage optimization 

systems can help ships avoid encountering harsh sea environments leading to safer maritime 

transport. According to AGCS (2019), 46 ship losses occurred in 2018. Among all the causes 

of vessel loss, sunk/submerged is the most common, with 30 losses. The sunk/submerged losses 

were in large part due to encountering bad weather. Bad weather causes ship structural damage 

and cargo losses, or even loss of crew life. In recent decades, ship size has increased rapidly 

(OECD 2015). Larger vessels are more cost-effective and safer, while the cost of incidents has 

been increasing because of the cost of claims involving large vessels. Voyage optimization 

including weather monitoring and forecasting are widely used in ship navigation to avoid severe 

weather and enhance ship safety at sea.  

Several commercial products of voyage optimizations are available in today’s shipping market, 

including Storm Geo, WNI, GAC-SMHI Weather Solutions, etc. Storm Geo (2020) 

recommends optimal ship routes by analyzing variables, including weather, currents, speed, 

ship type and age, ship stability, and its cargoes. The models used in the system are established 

by artificial intelligence with an extensive alarm system that continuously monitors vessels and 

alerts the route analyst when action is needed. These alarms cover all facets of the voyage, 

including administrative details, data quality, ship energy performance, severe motion, etc. 

WNI (2020) offers a weather-routing service to provide safe and economical route and engine 

RPM options to achieve profits for operators, using ship-specific performance models. It gives 

options for voyage optimization, including least cost (time cost and fuel cost), required time of 

arrival (RTA) with least fuel, speed-based routing, etc. It also offers a multiple engine setting 

service for routing optimization. GAC-SMHI (2020) offers comprehensive weather solution 

services to ship operators to make their ship routing schedules. The system includes onboard 

weather routing tool and online performance analysis, which provide information of weather 

forecast and expected sailing time to make proper ship routing decisions.  

For modern ship operations based on metocean forecasts, voyage optimization not only helps 

avoid bad weather but also finds routes that minimize transit time and fuel consumption without 

placing the vessel at risk of weather damage. Voyage optimization can provide an optimal route 

for voyages based on forecasted metocean data and a ship’s individual characteristics for a 

transit (Bowditch 2002). With specified environmental condition constraints, an optimal route 

can refer to minimum fuel consumption, minimum traveling time, maximum safety, or a 

combination of these factors.  

A typical voyage optimization system shown as in Fig. 1 consists mainly of the metocean data, 

the ship models, the constraints for sailing and operation, and the voyage optimization 

algorithms. The metocean data provides the potential sailing sea environments that a ship could 

encounter during the voyage. Various ship models are used to estimate a ship’s operational 

performance when sailing at sea. These models are related to the objectives used in the voyage 

optimizations (including fuel consumption, expected time of arrival (ETA), crack propagation 

rate, fatigue damage, etc.). The constraints contain information about the traffic lanes, 

maximum continuous engine rating, etc. The core part of such a system is the voyage 

optimization algorithms, which generate optimal routes for different objectives based on 
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metocean forecasts, a ship’s sailing constraints, individual characteristics, etc. Furthermore, a 

reliable voyage optimization system also requires accurate ship performance models. However, 

these performance models and metocean forecast data often contain uncertainties, which can 

largely affect the efficiency of voyage optimizations. 

In addition to the direct impacts on a ship’s operation by utilizing voyage optimizations, such 

as lower fuel consumption and air emissions, accurate expected time of arrival, etc., the voyage 

optimization systems may influence a ship’s design conditions. For example, the long-term 

wave conditions encountered by voyage optimization aided ships may be significantly different 

from the original wave statistics from design guidelines. The difference can directly affect the 

fatigue and ultimate strength design of ship structures. Fatigue will be addressed in the thesis 

work, and other relevant researches are also briefly presented as follows. 

 

 

Fig. 1. Major components of a typical voyage optimization system. 

1.2 Review on available voyage optimization algorithms 

The review of conventional voyage optimization algorithms provides a foundation for 

understanding the pros and cons of current algorithms in the shipping market. According to the 

benchmark study of various existing optimization algorithms in Paper A (Wang et al. 2017), 

conventional algorithms often optimize a ship voyage with respect to a single objective, 

targeting either minimum fuel consumption or minimum ETA. Since total fuel consumption 

and required sailing time (related to ETA) along a voyage are often in conflict, optimizing one 

objective can result in sacrificing the other objective. Thus, single-objective optimization is 
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clearly insufficient for specific requirements. Additionally, conventional optimization 

algorithms operate under the assumption or constraint that ship speed or engine power output 

is fixed as a constant during the voyage. However, this may yield unrealistic optimal results 

because voluntary speed reductions are often needed when encountering harsh sea 

environments. Conventional voyage optimization algorithms normally refer to two-dimensional 

voyage optimization algorithms, including the modified isochrone method (Hagiwara, 1989), 

the isopone method (Klompstra et al. 1992), the dynamic programming method (Chen 1978; 

De Wit. 1990; Calvert 1990), Dijkstra’s algorithm (Padhy et al. 2008), etc. These algorithms 

have been widely adopted in commercial software. Due to the limited accepted waiting time of 

shipping end-users to perform a voyage optimization (Larsson et al. 2015), conventional voyage 

optimization algorithms are the mainstream for commercial usage. They can provide optimal 

sailing course for a given voyage and can avoid or reduce the effects of specific adverse 

metocean conditions.  

The isochrone method was first introduced by James (1957). An isochrone is defined as a 

geometrical time front, which is an achievable boundary for a ship during a certain time interval. 

Hagiwara (1989) modified the isochrone method to be more suitable for computer computation, 

contributing to its current wide use in the shipping market. The method can generate a ship 

optimal routing with minimum time cost under constant engine power. It can also be used to 

obtain a ship route with a minimum fuel cost by recursively adjusting the engine power for a 

minimum time-of-arrival route. 

Klompstra (1992) introduced the isopone method, which is based on the modified isochrone 

method. It extends the isochrone method’s search region into a three-dimensional sailing space 

by adding the time dimension into the geographic sailing regions. Its difference from the 

modified Isochrone method is that it creates energy fronts instead of time fronts. A fixed fuel 

unit is regarded as a grid resolution parameter in the isopone method. It is similar to a fixed 

time unit. Since it uses a deterministic relationship function between speed and fuel, it can also 

be regarded as a two-dimensional search method. 

The dynamic programming method proposed by Bellsman (1952) is also widely used to solve 

voyage optimization problems concerning minimizing fuel consumption or accurate ETA. The 

method first predefines a grid system and then employs dynamic programming to search for the 

optimal solution at each stage of the voyage progress under constant engine power. The 

advantages of dynamic programming are two-fold. First, in a time-optimal route, once a 

waypoint is evaluated for the best time of arrival, the later waypoints in the grid system can also 

be evaluated without initiating a new dynamic-programming search. Second, this type of 

method can consider navigational constraints. In De Wit (1990), voyage optimizations using 

constant propeller revolution rate is proposed for both computationally and practically efficient 

optimization, since allowing for varying propeller revolution speeds in the optimization process 

could lead to serious computational difficulties. 

Dijkstra’s algorithm (Dijkstra 1959) has become a popular path-finding algorithm in the voyage 

optimization domain. Padhy et al. (2008) proposed utilizing Dijkstra’s algorithm to solve the 

voyage optimization problem. The proposed method uses a grid formed by latitude and 

longitude lines, and the speed is based on a given engine setting. The weight functions for nodes 

and the routes are determined by considering both involuntary and voluntary speed reductions. 

The edges of the graph are weighted by transit time. Applying Dijkstra’s algorithm to the 

defined graph yields the minimal time route.  

More complex voyage optimization algorithms have been developed over the past decade to 

improve the capability and performance of voyage optimization. Those voyage optimization 

algorithms can be categorized into two major types: deterministic and stochastic algorithms.  



5 

 

1.2.1 Deterministic algorithms for voyage optimization 

Deterministic algorithms are preferable for commercial use, as they can provide robust and 

concrete solutions. The dynamic programming method, Isochrone method, and Dijkstra’s 

algorithm are considered the most suitable methods for voyage optimization problems (Wang 

et al. 2017). Table 2 lists the deterministic voyage optimization algorithms developed in the 

past decade. It includes their operational control variables and optimization objectives.  

Table 2. Deterministic algorithms for voyage optimization. 

Name of algorithms 
Operational control variable Optimized objective 

Course Speed Power RPM Fuel ETA Others 

3D dynamic 

programming 

Shao & Zhou 

(2012) 
✓ ✓   ↓ ●  

3D dynamic 

programming 

Zaccone et al. 

(2017 & 2018)  
✓ ✓   ↓ ●  

Dynamic 

programming  

Skoglund et al. 

(2012) 
✓    ↓ ↓  

3D isochrone 
Lin et al. 

(2013) 
✓ ✓   ↓ ↓ Distance 

Improved 

isochrone  
Roh (2013) ✓    ↓  Distance 

Dijkstra’s 

algorithm 

Veneti et al. 

(2017) 
✓    ↓   

3D Dijkstra’s 

algorithm 

Wang et al. 

(2019) 
✓ ✓   ↓ ● 

Fatigue 

damage 

DIRECT 

method 

Larsson et al. 

(2014) 
✓ ✓   ↓  

Weather 

impact 

✓: involved; : not involved; Fixed: keep fixed; ↓: minimum; ●: achieve required ETA; 

 

The 3D dynamic programming method was introduced by Shao and Zhou (2012) for optimizing 

both a ship’s sailing speeds and its headings along the voyage. It uses a float state technique to 

reduce iterations during optimization to reduce computational effort, and uses a discretized 

range of speeds in iterations to calculate the best speed-variation profile for the predefined 

objective function. During each iteration, one optimal state is chosen as the parent for the next 

state. Zaccone and Figari (2017) and Zaccone et al. (2018) rebuilt the 3D dynamic programming 

method model, attempting to select the optimal path and speed profile for a ship voyage based 

on metocean forecasts. Three variables are involved: starting and arrival waypoints and time 

instants. The search domain is progressively explored, following a breadth-first approach. 

Nodes are sorted by priority to minimize the estimated number of segments. A number of nodes 

characterized by a time of arrival and a cost are identified at the end of the calculation. The 

solutions given by each end waypoint form a Pareto-frontier for a two-objective optimization 

problem. Skoglund et al. (2012) proposed a new dynamic programming approach for multi-

objective optimization by extending Dijkstra's algorithm. The method uses the concept of 

Pareto efficiency to handle multi-objective optimization, and can be used with both 

deterministic and ensemble weather forecasts.  
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Lin et al. (2013) proposed a 3D modified isochrone method for determining optimal ship routes. 

It utilizes the recursive-forward technique and a floating grid system. The recursive-forward 

algorithm for optimizing ship routing employs the weight (voyage progress) as a state variable. 

The advantage of the three-dimensional modified isochrone method is that it allows the ship 

speeds and ship headings to vary with geographic locations. In addition, it can not only 

minimize the ship’s route and resistance but can also enhance the voyage safety in advance. 

Roh (2013) proposed an improved isochrone method for determining an economical ship route 

based on the acquisition of the sea state. The method is based on the original isochrone method 

(James, 1975). The author conducted a comparative study between the A* algorithm and the 

proposed method. A comparison was conducted among four objectives, i.e., computational 

performance, speed reduction, sailing distance and fuel consumption, and showed the improved 

isochrone method had better performance. 

Veneti et al. (2017) presented an improved solution to the voyage optimization problem based 

on an exact time-dependent bi-objective shortest path algorithm that attempts to optimize two 

different conflicting objectives: fuel consumption and risk along the voyage. It creates a static 

square grid graph between the departure point and destination, with static information such as 

geographic and bathymetric information, and a dynamic grid that contains metocean conditions 

and updates itself when new data become available. Wang et al. (2019) proposed a scheme for 

applying Dijkstra’s algorithm into a three-dimensional voyage optimization problem by 

predefining the voyage and the potential sailing time as a three-dimensional directed-weighted 

graph. The method can conduct multi-objective optimization, providing an accurate ETA and 

globally optimal solutions.  

Larsson et al. (2014) introduced the DIRECT algorithm for ship voyage optimizations, which 

can find Great Circle routes, routing around obstacles such as islands, modifying speed to avoid 

a storm, and utilizing currents and wind to save fuel, based on the fuel consumption model from 

Maersk Maritime Technology. The advantage of this algorithm is that it provides fast 

convergence. However, the complexity of the optimization increases rapidly when the number 

of waypoints between the departure and the destination increases.  

1.2.2 Stochastic algorithms for voyage optimization 

It is more complicated for stochastic algorithms to establish appropriate models for solving 

voyage optimization problems, since the number of the variables is large and the variable 

dependencies are ambiguous. Table 3 lists the stochastic voyage optimization algorithms and 

their features.  

Hinnenthal (2008) proposed a multi-objective genetic algorithm that stochastically solves a 

discretized nonlinear optimization problem. For computationally efficient optimization of the 

genetic algorithm, a ship’s sailing course and velocity profiles are represented by parametric 

curves. This study’s optimization objectives are two sets of parameters that control the 

parametric curves describing ship course and velocity. Marie and Courteille (2009) proposed 

another voyage optimization method based on a meshing procedure that defines a set of possible 

routes. The advantages of this meshing method are the physics-based definition of the rhombus 

and the low number of free variables used to define a route. Pareto-optimization with a multi-

objective genetic algorithm (MOGA) is used for ship route optimization, providing a set of 

efficient solutions among different and conflicting objectives, under different constraints. 

Andersson (2015) introduced a method for multi-objective ship routing optimization, based on 

the distance-based Pareto genetic algorithm (DPGA) developed by Osyczka and Kundu (1995). 

The method can find a range of different Pareto optimal routes and conduct faster calculations 

than the grid search method. 
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Száapczynska et al. (2009) also proposed a multicriteria evolutionary weather-routing 

algorithm. The framework in the proposed algorithm is the normal genetic algorithm iterative 

process of population development, resulting in a Pareto-optimal set of solutions. The 

initialization of the objective to be optimized includes four routes: an orthodrome, a loxodrome, 

a time-optimized isochrone route, and a fuel-optimized isochrone route. Specialized operators 

are used for evolution, including a one-point crossover, a non-uniform mutation, and route 

smoothing by means of average weighting. Wang et al. (2018) proposed a hybrid voyage 

optimization algorithm based on a genetic algorithm and Dijkstra’s algorithm. Dijkstra’s 

algorithm is first implemented to obtain an optimal result; then, a genetic algorithm is applied 

to improve the results. The method can optimize a ship route with respect to multi-objectives 

and can provide optimal results with accurate ETA requirements.  

Table 3. Stochastic algorithms for voyage optimization. 

Name of algorithms 
Operational control variable Optimized objective 

Course Speed Power RPM Fuel ETA Others 

Multi-objective 

genetic algorithm 

Hinnenthal (2008) ✓ ✓   ↓ ↓  

Marie & Courteille 

(2009) 
✓ Fixed   ↓ ↓  

Andersson (2015) ✓ ✓   ↓ ↓  

Genetic algorithm 

Száapczynska et al. 

(2009) 
✓ Fixed   ↓ ↓  

Wang et al. (2018) ✓ ✓   ↓ ●  

Real-coded 

genetic algorithm 

Maki et al. (2011) ✓ ✓  Fixed ↓ ↓ 
Parametric 

rolling 

Wang et al. (2018) ✓ ✓   ↓   

Strength Pareto 

evolutionary 

algorithm 

Vettor & Soares 

(2016) 
✓ ✓   ↓ ↓  

Non-dominated 

sorting genetic 

algorithm 

Lee et al. (2018) ✓ ✓   ↓ ↓  

Ant colony 

algorithm 

Tsou & Cheng 

(2013) 
✓ Fixed   ↓ ●  

✓: involved; : not involved; Fixed: keep fixed; ↓: minimum; ●: achieve required ETA; 

 

Maki et al. (2011) introduced a real-code genetic algorithm technique searching for the 

optimum route. The optimization considers parametric rolling as one of its objective functions. 

The optimization results are robust and stable and can reduce the risk of parametric rolling. 

Wang et al. (2018) presented another version of a real-coded genetic algorithm to determine the 

minimum voyage route time for point-to-point problems in a dynamic environment. In this 

study, multi-population techniques and an elite retention strategy are employed to increase 

population diversity and accelerate convergence rates. The results show that the method can 

minimize voyage time and reduce the risk of encountering harsh weather conditions.  
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Vettor and Soares (2016) introduced a ship route optimization algorithm that uses the strength 

Pareto evolutionary algorithm to approximate the most favorable set of solutions for route 

optimization. The optimization objectives involve two sets of variables: one for the ship’s 

position and the other for its speed. It uses Dijkstra’s algorithm to generate the initial population, 

guaranteeing that all individual in the population is a feasible ship route solution.  

Lee et al. (2018) proposed a method for simultaneously determining the path and the speed for 

routing problems. The method is based on the nondominated sorting genetic algorithm. A 

sensitivity analysis and a comparative study were conducted, which showed that the method 

can yield the route with the lowest fuel consumption compared with other methods.  

Tsou et al. (2013) used the ant colony algorithm (Dorigo 1991) with a proper grid system to 

establish a route searching model that simulates a living organism’s optimum behavior. By 

properly selecting the number of ants and the parameters, the algorithm’s efficiency can be 

improved. The experimental results show that the method can help avoid heavy wind regions 

and reduce the risk of ship damage and cargo loss. 

1.3 Uncertainties of metocean data and ship performance models 

Voyage optimization algorithms, metocean forecast data, ship performance models, and 

navigation methods are considered as the most important input parameters for a voyage 

optimization method. Uncertainties in those input parameters can greatly influence the 

optimization results. According to the benchmark study on the performance of different voyage 

optimization algorithms (Wang 2018), using different algorithms can lead to different 

optimization results. Indeed, even for the same optimization algorithm, different parameter 

settings in the algorithm can result in different optimization results.  

The accuracy of the metocean forecast data also greatly influences the quality of optimization 

results. Due to the complexity and imperfection of the physical description in today’s metocean 

forecast models, as well as some uncertain and incomplete initial inputs into the forecast models, 

the metocean forecast data inevitably includes large uncertainties. The accuracy of metocean 

forecast is significantly reduced for time periods beyond 3-5 days. For example, the ensemble 

metocean forecast technique is used to provide information of the metocean forecast scatter. 

One ensemble forecast consists of 51 separate forecasts made by the same weather model, all 

activated from the same starting time. The starting conditions for each member of the ensemble 

are slightly different. Fig. 2 presents an example of significant wave height Hs (11th to 20th 

ensemble forecast data from the European Centre for Medium-Range Weather Forecasts 

(ECMWF)) for a waypoint located in the North Atlantic as in Fig. 2(a). It should be noted that 

the normal metocean forecast is one sample of the ensemble forecasts. The scatter of forecasted 

Hs widens after 3 days, indicating a decreasing metocean forecast accuracy. 

Voyage planning includes four processes: appraisal, planning, execution and monitoring (IMO 

1999; Bowditch 2002; Swift 1993). The appraisal process includes the collection of all 

information relevant to the voyage, i.e., the condition and state of the vessel, meteorological 

and oceanographic data, availability of services for voyage optimization, etc. Planning refers to 

plotting the intended voyage route, and designing a ship's route from berth to berth, preventing 

accidents by minimizing risk and navigating efficiently by reducing distance and fuel 

consumption. The execution and monitoring processes evaluate and monitor the ship operation 

to the plan and its compliance. During the planning process, the navigator determines the 

waypoints, the advance speed, and the expected time of arrival at each waypoint with the aid of 

voyage optimizations based on the data collected in the appraisal process (Bowditch 2002). If 

a voyage optimization algorithm is based on an uncertain metocean forecast, a generated 
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optimum ship route may contain large uncertainties. If the ship sails through the optimum route, 

her actual encountered sea environment may be worse than that without optimization.  

 
 

(a) (b) 

Fig. 2. The investigation location at North Atlantic (a) and the comparison of significant wave 

height Hs for 10 ensemble metocean forecast samples and hindcast metocean data (b). 

For example, according to a post-voyage analysis of a handy size container ship’s winter 

navigation in 2008, the ship planned to sail significantly south of the Great Circle route to avoid 

harsh sea storms, based on the “uncertain” metocean forecasts (Mao et al. 2010). However, 

after the voyage, it was found that the ship encountered three storms along the “optimum” route, 

as shown in Fig. 3. If the ship was sailing along the traditional Great Circle route, the ship would 

have easily avoided the three storms. In the end, the result was a 100% increase in sailing time, 

a much higher fuel consumption, and risks associated with three large storms because the 

optimal route diverged from the Great Circle route.  

  

Fig. 3. A post-voyage analysis for a winter voyage (Course 1) that encountered three large 

storms when sailing along the optimum route generated based on uncertain metocean forecast. 

Furthermore, the ship models used as objective functions estimating objectives, i.e., fuel 

consumption and ETA for voyage optimization algorithms, can also greatly affect the 

optimization results. For example, when the optimization target is minimizing ETA, the 

algorithms often attempt to set the ship’s speed as high as possible. As a consequence, fuel 

consumption can be much higher than a voyage with a normal ETA. If the target is to minimize 

fuel consumption, a later ETA may result. For the same objective, different ship models can 

lead to different optimization results, as they could provide different objective values for the 

same ship state.  
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Additionally, different operational strategies are often used by captains to operate their ships, 

including sprint and loiter sailing (high-speed sailing for the majority of a ship’s voyage, and 

slow speed in the final leg to ensure on-time arrival) (Ballou et al. 2008), constant speed, 

constant RPM or engine power sailing, etc. Furthermore, since a ship’s resistance is normally 

proportional to her sailing speed to a power between 3 and 4, lowering a ship’s sailing speed 

can significantly reduce her resistance and thus fuel consumption. Therefore, slow steaming is 

a common operation strategy today to minimize a ship’s fuel consumption when sailing at sea. 

However, slow steaming can bring many challenges to shipping companies, such as the 

economic feasibility of longer sailing time for certain voyages. Furthermore, a ship’s engine 

and propeller are designed with their highest propulsion efficiencies at a ship’s service speed 

and RPMs. The engine and propeller running efficiencies of a slow steaming ship may be 

significantly reduced, leading to high total fuel cost. The reduced sailing speeds may also 

change the capability of a ship’s voyage optimization strategy to avoid harsh sea environments. 

1.4 Impact of voyage optimization application on ship fatigue 

The main objective of most voyage optimization algorithms is to optimize a ship’s voyage for 

fuel consumption and duration. However, ocean crossing ship structures are continuously 

subjected to various types of time-varying loads from the irregular sea waves, the propulsion 

system, and cargo operations, which may cause serious fatigue damage to ship structures. Since 

the encountered wave conditions are random, the accumulation of fatigue damage is also a 

continuous random process that should be considered during the ship design process. However, 

the uncertainties associated with numerical computations for wave loads, local structural 

stresses, description of local sea environments, and wave distributions, fatigue estimation 

models are difficult to consider during a ship’s fatigue design stage.  

For example, in Fricke et al. (2002), fatigue life analysis of a simple ship structural detail was 

benchmarked using different well-recognized ship design guidelines. The study showed that 

predictions for a ship’s fatigue life using different methods/guidelines can differ greatly. 

Consequently, fatigue cracks may be initiated much earlier than a ship’s actual design life. It 

may lead to the fact that fatigue cracks may widely exist in structural components of older ships, 

and they greatly challenge a ship’s structural safety at sea.  

Voyage optimization can be used to help ships sailing in calmer sea conditions. This was 

confirmed by Olsen et al. (2005) and Mao et al. (2010), who reported that real wave 

environments encountered by ships based on long-term full-scale measurements can differ 

significantly from those used in ship fatigue design. However, minimizing the rate of crack 

propagation or accumulation of fatigue damage in ship operations is usually not prioritized by 

the voyage optimization system. Thus, it is essential to investigate whether a ship fatigue 

routing which considers the crack propagation rate or the accumulation of fatigue damage as 

the optimization objective can further reduce the probability of encountering harsh metocean 

conditions and therefore mitigate the risk of structural failure.  

During ship design, a calculation of the ship’s wave-induced loads is indispensable. The 

calculation strongly depends on a reliable description of long-term wave environments 

encountered by the ship. Wave scatter diagrams are provided by the classification society 

guidelines as a joint probability distribution of significant wave height and mean wave period. 

They reflect the long-term distribution of waves encountered by ships sailing in specific areas. 

However, the effect of voyage optimization for ships on the encountered wave scatter diagrams 

has not been considered. Voyage optimization can be expected to reduce the probability of 

encountering heavy weather conditions and reduce the encountered wave-induced loads. 

Therefore, the actual wave environments encountered by ships that have installed voyage 
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optimization systems may not be consistent with that provided by the classification societies 

(Olsen et al. 2005; Mao 2010; Mao 2014).  

1.5 Motivation and objective 

Most of the complex voyage optimization algorithms concern speed optimization, since a ship’s 

speed is one of the most crucial factors that influences its energy efficiency. According to 

IMO’s energy consumption optimization study (IMO 2016), a speed reduction of 10% typically 

reduces fuel consumption per distance by approximately 20%. Optimizing the speed profile of 

a voyage can further improve the ship’s energy efficiency during operation. However, existed 

voyage optimization algorithms concerning speed optimization can hardly provide global 

optimal solutions with accurate ETA for ship navigation, in addition to their lack of capability 

to conduct multi-objective voyage optimizations. Thus, it is indispensable to develop an 

optimization algorithm which can improve these algorithms.  

Moreover, it is often difficult for shipmasters to control speed, especially for trans-ocean ships, 

since speed is greatly influenced by environmental conditions, which can easily lead to 

involuntary speed reduction. Indeed, for trans-ocean ships, engine power or propeller revolution 

is the dominant control parameter for shipmasters. Literature related to engine power 

optimization in voyage optimization problems is scarce because of the complicated relationship 

between engine power and ship speed. Thus, it is essential to develop a method capable of shaft 

power optimization which further eases the ship's operation while reducing operational cost. 

In addition, the uncertainties from the input parameters/models for voyage optimization can 

greatly influence the optimization results. To assess the uncertainties from those input 

parameters/models, it is essential to conduct an uncertainty study to investigate the uncertainties 

of those variables. Finally, most of current voyage optimization algorithms aim to optimize a 

ship voyage for the objectives of fuel consumption and total sailing time (ETA). It is also 

important to investigate whether voyage optimization is applicable to other objectives such as 

fatigue damage, fatigue crack propagation during ship operations and ship design process.  

The main objective of this thesis is to develop new voyage optimization algorithms and apply 

voyage optimization to ship’s fatigue during operational period and design. The development 

of voyage optimization algorithms should address two areas: 1) improving commonly used 

voyage optimization algorithms; 2) investigating voyage optimization algorithm predictability 

with uncertain input parameters. Furthermore, today’s voyage optimization is mostly focusing 

on improving energy efficiency (fuel saving) in ship operation. Investigations into its other 

potential applications, such as extending a ship’s service life or ship design processes should 

be conducted. Five sub-tasks and research activities were carried out in this thesis to achieve 

these objectives: 

1) To implement and compare commonly used voyage optimization algorithms and 

identify their basic characteristics, pros and cons for actual voyage optimizations. 

2) To develop innovative voyage optimization algorithms that can overcome the 

limitations of conventional voyage optimization algorithms. 

3) To propose a systematic approach to investigate how uncertainties of various input 

parameters can affect the results of voyage optimizations. 

4) To investigate how the voyage optimizations can be used to mitigate the risk of ship 

structural failure du to large fatigue damage accumulation and crack propagation.  

5) To study the impact of various ship voyage optimizations on a ship’s long-term 

encountered wave environments and corresponding ship fatigue design. 
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1.6 Outline of the thesis 

To achieve the overall objectives, research activities carried out in this thesis are summarized 

in the seven appended papers shown in Fig. 4. Voyage optimization algorithm development is 

conducted in Papers A-D and development of potential applications of voyage optimization 

algorithms is addressed in Papers E-G. In Chapter 2, the proposed methodology is described. 

It includes the description of general voyage optimization problems, the problem modeling 

defined in Paper B and Paper C and the algorithm implementation involved in the appended 

papers, except for Paper F. The cost functions, including the fuel consumption model, fatigue 

damage and fatigue crack propagation model used in the thesis are elaborated in Chapter 3. 

Selected important results and findings are presented in Chapter 4. The conclusions and 

contributions are presented in Chapter 5. Recommended future work is described in Chapter 6, 

and the references are listed in the end of the thesis. 

 

 

Fig. 4. Structure and workflow of the appended papers to achieve thesis objectives. 

1.7 Limitations and delimitations  

Many operational control variables are involved in a ship’s operation, such as ship course, speed, 

engine power, etc. Course optimization is the most effective way to reduce the risk of 

encountering harsh sea conditions. Thus, it is adopted by most voyage optimization algorithms. 

The computability of such optimization algorithms is based on the discretization of the spatial 

region, which is the potential sailing area for ships. The calculations for the objectives such as 

fuel consumption, fatigue damage, and crack propagation are for the instantaneous state for a 

certain waypoint at a certain time. In this thesis, it is assumed that the instantaneous state is a 

mean state during a period of assumed stationary sea conditions. The total cost for an objective 

can be calculated through multiplying the mean state by the time duration.  

Moreover, ship states such as the six degrees of freedom of ship motions and trim variations 

that cannot be accumulated over a long period of time (hours) are considered “ship transient 

states” and are not considered in this thesis. In the discrete form of the spatial region, the ship 
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state is usually calculated when the ship reaches certain waypoints. The metocean data which 

can be obtained at the waypoint with a specific time (the waypoint arrival time) is often a mean 

state of the metocean condition. Thus, when calculating the ship transient environment 

condition state, the mean state of the metocean condition does not reflect the actual ship state. 

During voyage optimization algorithm development, several assumptions must be made: 

1) The hindcast data used as metocean inputs in the voyage optimizations is assumed to be 

the ground truth metocean environments encountered by the ships. 

2) The metocean data used for the voyage optimizations are not updated during the 

optimization process.  

3) The ship models are assumed to be accurate enough to reflect the ship real response and 

actual performance when sailing in specific sea environmental conditions. 

4) Inputs of voyage optimization from the metocean data only contain the data of wind, 

waves and current. The influence of other environmental parameters, such as salinity, 

tide conditions, ice conditions, etc., on ship performance is assumed to be negligible. 

Moreover, neither voyage optimization for arctic sailing nor plasticity-induced crack closure 

are considered in this thesis when the crack propagation is considered in the voyage 

optimizations. Material properties in the sea environment and corrosion are not considered in 

the fatigue assessment during the voyage optimization process. 
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2 Voyage optimization methodology  

This chapter is divided into three subsections. In subsection 2.1, the mathematical description 

of general voyage optimization problems is presented. Section 2.2 introduces the formulation 

of specific voyage optimization problems defined in Papers B and C. In Section 2.3, 

representative algorithms implemented in this thesis for solving voyage optimization problems 

are briefly presented.  

2.1 Mathematical description of voyage optimization problems 

A ship’s sailing route is defined as shown in Fig. 5 by a series of waypoints (forming the ship’s 

trajectory) and their associated times of passing. A ship’s state 𝑷⃗⃗  is defined by the waypoint 

and its associated arrival time.  

 

Fig. 5. An illustration of the ship route trajectory by its waypoints and operational conditions. 

The ship’s operational control variable 𝑼(𝑷⃗⃗ ) at ship state 𝑷⃗⃗  includes information such as the 

current velocity, heading, and engine power. For a simple description of general voyage 

optimization problems, the variables used to define a ship’s sailing route are denoted as follows: 

• Ship state variable: 𝑷 = [𝑥, 𝑦, 𝑡]𝑇  where 𝑥, 𝑦, 𝑡  represent longitude, latitude and time, 

respectively.  

• Ship control variable: 𝑼(𝑷) = [𝑉, 𝜃, … ]𝑇, where 𝑉 is the ship velocity and 𝜃 is its heading 

angle to form a ship’s operational condition at one ship state P. The ship control variable 

may contain other variables for ship operations such as engine power configuration and 

propeller revolutions.  

• Metocean conditions: 𝑾(𝑷) = [𝐻𝑠,  𝑇𝑧, 𝐻𝑑𝑔, 𝐶𝑢, 𝐶𝑣, 𝑉𝑢,𝑉𝑣,… ]
𝑇

, representing the metocean 

conditions encountered during a ship state P. 𝐻𝑠,  𝑇𝑝, 𝐻𝑑𝑔 represent the encountered wave 

conditions: significant wave height, mean wave period, wave direction, respectively. 𝐶𝑢, 𝐶𝑣 

represent the current velocities towards the east and north, and 𝑉𝑢,𝑉𝑣 are the wind velocities 

towards the north and east. The metocean conditions may contain other variables such as 

water salinity, tide conditions, etc., which are not considered in this thesis. 

• Ship sailing constraints: 𝑪(𝑷⃗⃗ , 𝑼(𝑷⃗⃗ )), which include ship sailing constraints: geometric 

constraints and control constraints (land crossing constraints, marine engine power 

constraints, etc.). The function returns a Boolean value (true or false) that indicates the 
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feasibility of the sailing conditions under all the constraints. If true is received, the sailing 

condition of 𝑷⃗⃗  and 𝑼(𝑷⃗⃗ ) is validated and the ship can sail under the sailing condition.  

For all ship states associated with the true value of the constraint function 𝑪(𝑷⃗⃗ , 𝑼(𝑷⃗⃗ )) , the 

objective function 𝐽 can be estimated by: 

𝐽 = ∫ 𝑓𝑖𝑐 (𝑼(𝑷⃗⃗ ),𝑾(𝑷⃗⃗ )) 𝑑𝑡
𝑡𝑒
𝑡𝑠

 (1) 

where 𝑓𝑖𝑐 (𝑼(𝑷⃗⃗ ),𝑾(𝑷⃗⃗ )) is the instantaneous cost function for a ship state 𝑷⃗⃗  under control 

variable  𝑼(𝑷⃗⃗ ); 𝑡𝑠, 𝑡𝑒  are the departure and arrival times, respectively. Here, the objective 

function for the voyage optimization problems can take different forms, e.g., fuel consumption, 

ship motions, expected time of arrival (ETA), fatigue damage accumulation, and crack 

propagation in a ship’s structure (Wang et al. 2018).  

The overall objective for optimum voyage planning is to find a series of suitable ship states 

𝑷⃗⃗  and the associated operational control sets 𝑼(𝑷⃗⃗ ) that will lead to the minimum/maximum 

value of 𝐽  due to optimum planning for the sea conditions 𝑾(𝑷⃗⃗ )  encountered at those 

waypoints. 𝑷⃗⃗  and 𝑾(𝑷⃗⃗ ) are the static variables used to describe states. A ship state 𝑷⃗⃗  and 

encountered metocean state 𝑾(𝑷⃗⃗ ) are determined by the operation control variable 𝑼 from its 

previous state 𝑷′⃗⃗⃗⃗  and 𝑾(𝑷′⃗⃗⃗⃗ ). Thus, the target of the voyage optimization methods is to find an 

optimum operation control set 𝑼(𝑷⃗⃗ ) under a given initial state. 

2.2 Voyage optimization modeling 

Modeling is the art of formulating the application in terms of well-described problems. Proper 

modeling of voyage optimization problems is the key to applying algorithmic design techniques. 

Voyage optimization problems similar to routing problems on land can be modeled as path-

finding problems. Modeling voyage optimization problems with path-find problems is the 

prerequisite for solving them; the essential matter is to create graphs that can properly reflect 

the problem. “In graph theory, the shortest path problem is the problem of finding a path 

between two vertices (or nodes) in a graph such that the sum of the weights of its constituent 

edges is minimized” (Kwon et al. 2007). Path-finding algorithms can be applied to solve the 

shortest path problem. Thus, by implementing a proper path-finding algorithm, the voyage 

optimization problems can be solved.  

In this section, the modeling of two voyage optimization problems is presented: the three-

dimensional optimization problem concerning the optimization of ship course and speed, and 

the engine power optimization problem concerning the optimization of ship course and 

engine power. In these two voyage optimization problems, the target is to find a ship operational 

control set 𝑼(𝑷⃗⃗ ) for a series of ship states 𝑷⃗⃗  to minimize fuel consumption and ETA. The 

difference is that in the three-dimensional voyage optimization problem, the ship operational 

control set 𝑼(𝑷⃗⃗ )  represents the ship’s velocity and heading, and in the engine power 

optimization problem, 𝑼(𝑷⃗⃗ ) represents the engine power setting and the ship’s heading. 

2.2.1 Three-dimensional optimization modeling 

The ship course optimization problem can be modeled by creating a two-dimensional graph 

system in the ship’s potential sailing area. However, a two-dimensional graph is not adequate 

for solving the optimization problem involving both ship course and speed optimization. A 
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ship’s speed depends on the sailing distance and associated travel time. Thus, the problem can 

be modeled by a graph with a spatial dimension and a temporal dimension.  

In this thesis, the problem involving both ship course and speed optimization is modeled by a 

3D graph system containing waypoints around a ship’s potential sailing region and their 

associated arrival times. In this model, a voyage is discretized into stages to form a graph 𝑮 =

(𝑷⃗⃗ , 𝑨⃗⃗ ), where 𝑷⃗⃗  is a set of predefined ship states containing the location and arrival time, and 

𝑨⃗⃗  is a set of sub-paths/edges composed of state-pairs.  

A simple example of the 3D graph is shown in Fig. 6. The 3D graph for a voyage denoted by 

𝑮 = (𝑷⃗⃗ , 𝑨⃗⃗ ) can be generated by the following six steps: 

1. Generate geographical waypoints (nodes) 𝑵⃗⃗  in the spatial region. The sub-paths/edges to 

connect waypoints between two adjacent stages are shown in the upper plot of Fig. 6. The 

voyage trajectory is divided into n stages along the reference course, which is taken here as 

the Great Circle. The distance of each stage between two adjacent waypoints along the 

reference route, Δ𝑑𝑔𝑐 = 𝑣𝑠 ∙ Δ𝑇, where 𝑣𝑠 is a ship’s service speed, and the choice of T 

depends on the temporal resolution of metocean forecast information, which is chosen as 3 

hours here. 

2. Generate an initial time set. A ship’s speed is set to vary in the range [0.5vs, 1.2vs]. In the 

temporal region, the expected arrival time set for all waypoints in the i-th stage is denoted 

by: 

𝛝𝒊  = [𝑡𝑖,1 , 𝑡𝑖,2 , … , 𝑡𝑖,𝑘] =  [
∆𝑇∙𝑖

1.2
,
∆𝑇∙𝑖

1.2
+ 𝑡,

∆𝑇∙𝑖

1.2
+  2𝑡, … , 2∆𝑇 ∙ 𝑖] (2) 

where t is defined as the time interval of a sub-path for the i-th stage, and it is initialized 

based on the spatial resolution of the waypoints and the ship’s input speed. All ship 

geographical states at the i-th stage, Ni,j, j=1, 2, …, M, are assigned with the same 

passing/arrival time set ti,k (k =1, 2,..., K) to form an irregular multidimensional 

array 𝝑(𝑖, 𝑗, 𝑘), shown by the red dots in the vertical direction of the lower plot in Fig. 6. 

3. Since the number of potential arrival times at each stage, i.e., k, increases monotonically 

instead of exponentially as the stage advances, a feasible arrival time set for the i-th stage 

can be generated. The feasible time set is then assigned to each node Ni,j in the i-th stage. 

Then, the geographical waypoints Ni,j can be transformed into a ship state Pi,j,k, shown as 

Eq. (3), where k represents the index referring to the feasible arrival time set ϑ. In Fig. 6 

(lower plot), the red dots represent the accessible time set ϑ for different stages and the 

black dots are eliminated from the initial time set [0, t, 2t, …, 2∆𝑇 ∙ 𝑖]: 

𝑷𝑖,𝑗,𝑘 = 𝑵𝒊,𝒋(𝑡𝑖,𝑘) = [𝑥𝑖,𝑗, 𝑦𝑖,𝑗 , 𝝑(𝑖, 𝑗, 𝑘)]  (3) 

𝑖 = 1,2, … , 𝑁, 𝑗 = 1, 2, … ,𝑀, and k = 1,2,…,K that varies by stage. 

4. Generate edge set 𝑨⃗⃗  for the graph. The edge generation of the nodes (ship states) from 

adjacent stages has certain constraints to mitigate the computation effort.  

5. Calculate the cost (fuel consumption) for each individual edge. The edges contain the 

information for geographical location and passing/arrival times of both nodes, the distance 

between the nodes, and the ship’s speed and heading. The metocean condition 𝑾(𝑷) can 

be extracted based on the locations and times of the nodes. The metocean condition is 

chosen as encountered by the first node of an edge, and  𝑼(𝑷⃗⃗ ) is the ship’s speed and 
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heading. The cost, as well as other outputs such as engine power and effective power for 

the ship sailing on this edge can be calculated.  

6. Add the calculated data and extracted metocean data as attributes to the edges.  

 

 

Fig. 6. An illustration of the 3D graph (a grid of waypoints) system. 

A three-dimensional voyage optimization problem model concerning the optimization of ship 

course and speed is achieved by the above procedure. The output of this model is a three-

dimensional weighted graph. An appropriate shortest path finding algorithm is required to find 

an optimal route on this graph.  

2.2.2 Engine power optimization modeling 

For ships sailing in rapidly changing environmental conditions in open sea areas, speed is 

difficult to control. Indeed, ships without strict restrictions on the voyage arrival time, such as 

tanker ships, are often controlled by engine power. In this problem model, two sets of variables 

are involved in this voyage optimization problem: the ship trajectory waypoints and the engine 

power configuration for the waypoints. The purpose of this model is to provide a scheme to 

compact two sets of variables of the ship operational control set 𝑼(𝑷⃗⃗ ) which can be properly 

used in the implemented genetic algorithm described in Section 2.3.2. 

In this model, a grid/graph system 𝑮 = (𝑵, 𝑨) is also generated. The graph is composed of a 

waypoint/node-set 𝑵 and its corresponding sub-path/edge set 𝑨 in the potential sailing area. An 

example of the grid/graph system deployed in the potential sailing area is shown in Fig. 7. The 

upper figure demonstrates the grid/graph system, and the lower figure shows its labeling system.  

First, the potential sailing area is discretized into a series of stages (for example, M stages). The 

waypoints/nodes 𝑵  in all the time stages and sub-paths/edges 𝑨  connecting waypoints at 

adjacent time stages form a grid/graph system 𝑮 = (𝑵,𝑨) . An example of the grid/graph 

system deployed is shown in Fig. 7. The upper plot demonstrates the grid/graph system and the 

bottom plot shows its corresponding labeling system. For example, the waypoint/node at the 𝑗𝑖-
th state of the i-th stage of the grid system is denoted by 𝑵𝑖,𝑗𝑖

, which contains geometric 

waypoint information, i.e., longitude 𝑥𝑖,𝑗 and latitude 𝑦𝑖,𝑗: 

𝑵𝑖,𝑗𝑖
= (𝑥𝑖,𝑗𝑖

, 𝑦𝑖,𝑗𝑖
) (4) 
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The sub-path/edges 𝑨𝑖,𝑗𝑖
 associated with waypoint 𝑵𝑖,𝑗𝑖

 is formed by connecting it with all the 

waypoints in its preceding stage: 

𝑨𝑖,𝑗𝑖
=

[
 
 
 

𝑨𝑖,𝑗𝑖
(1)

𝑨𝑖,𝑗𝑖
(2)

⋮
𝑨𝑖,𝑗𝑖

(𝑘𝑖−1)]
 
 
 

=

[
 
 
 

(𝑵𝑖−1,1 → 𝑵𝑖,𝑗𝑖
)

(𝑵𝑖−1,2 → 𝑵𝑖,𝑗𝑖
)

⋮
(𝑵𝑖−1,𝑘𝑖−1

→ 𝑵𝑖,𝑗𝑖
)]
 
 
 

 (5) 

where ki-1 is the number of waypoints in the preceding (i-1)-th stage. A complete route/path 

vector 𝒘 from the departure to the destination is formulated by selecting one adjacent sub-

path/edge at each individual stage as:  

𝒘 = [𝑨2,𝑗2(1), 𝑨3,𝑗3(𝑗2), 𝑨4,𝑗4(𝑗3),… , 𝑨𝑖,𝑗𝑖
(𝑗𝑖−1), , … , 𝑨𝑀(𝑗)] (6) 

 

 

Fig. 7. A simple example of the grid/graph system and its labeling. 

Second, a ship’s engine power is configured such that only c discrete power levels 𝒑 can be set 

for propulsion, 

𝒑 = [𝑝1, 𝑝2, … , 𝑝𝑐] (7) 

Assigning one power level to each sub-path/edge of a path vector w can form a sample routing 

plan called a decision vector 𝑫: 

𝑫 = [
𝒘

 𝒑𝑓(𝒘)] = [
𝑨2,𝑗2(1)

𝒑(𝜆2,𝑗2,1)
 ,

𝑨3,𝑗3(𝑗2)

𝒑(𝜆3,𝑗3,𝑗2)
 ,

𝑨4,𝑗4(𝑗3)

𝒑(𝜆4,𝑗4,𝑗3)
 , … ,

𝑨𝑖,𝑗𝑖
(𝑗𝑖−1)

𝒑(𝜆𝑖,𝑗𝑖,𝑗𝑖−1
)
 , … ,

𝑨𝑀(𝑗)
𝒑(𝜆𝑀,𝑗)

] (8) 

where 𝒑(𝜆𝑖,𝑗𝑖,𝑗𝑖−1
) is the power setting applied to sub-path 𝑨𝑖,𝑗𝑖

(𝑗𝑖−1). 
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The output of this model is a decision vector. In the genetic algorithm proposed in Paper C, 

the population composed of several decision vectors (which serve as candidate solutions) to the 

voyage optimization problem is evolved towards better solutions.  

2.3 Algorithm implementation for problem solving 

Dynamic programming, Dijkstra’s algorithm, and the genetic algorithm are advertised by 

weather routing companies for solving voyage optimization problems (Chen 2013). In this 

thesis, they are categorized as deterministic and stochastic algorithms. The deterministic 

algorithms include dynamic programming and Dijkstra’s algorithm, while the genetic algorithm 

is used as the stochastic algorithm in this thesis. In the following, the implementation of these 

algorithms is introduced.  

2.3.1 Deterministic algorithm implementation 

Dijkstra’s algorithm (Dijkstra 1959) is implemented in the models of Papers B and C to solve 

specific voyage optimization problems. Dijkstra’s algorithm is used mainly to find the shortest 

path with weighted graphs; the weight should be non-negative.  

Comparing to the dynamic programming method, the main advantage is that Dijkstra’s 

algorithm is well-structured and fit for weighted graphs. However, they would provide the same 

results when implemented in the same voyage optimization problem models defined in this 

thesis for the following reasons. First, the voyage in the model is divided stagewise, which 

means the ship cannot move further without crossing its next stage. Second, the graph is 

directed, which means the ship cannot move backward.  

The following demonstrates the similarity and difference between the dynamic programming 

method and Dijkstra’s algorithm implemented in the two-dimensional voyage optimization 

problem for ship course optimization.  

Let 𝑮 be a stagewise directed graph (as shown in Fig. 8) from the ship state 𝑷1 at its departure 

point via states 𝑷2,𝑖2 ,  𝑷3,𝑖3  … ,  𝑷𝑚−1,𝑖𝑚−1
 to the state 𝑷𝑚 at the destination point. Fig. 8 shows 

an example of the approaches for finding optimal sub-paths from ship state 𝑷1 to 𝑷3,3 using 

dynamic programming and Dijkstra’s algorithm.  

 

 

Fig. 8. A stagewise directed weighted graph. 

 

Dynamic programming is implemented with a back-forward approach for computational 

efficiency. Fig. 9 (a) shows an example of finding the minimum-cost sub-path for 𝑷3,3 using 

dynamic programming. 
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1) Find all the states which can reach 𝑷3,3 from a back/previous stage.  

2) For all sub-paths which can reach 𝑷3,3, find the minimum-cost sub-path, which is 𝑷1 →
𝑷2,2 → 𝑷3,3.  

3) Following the same approach, the optimal minimum cost sub-paths for all other states in 

the same i-th (current 3rd) stage as 𝑷𝑖,𝑗 can be found. Subsequently, the minimum-cost sub-

path from 𝑷1 to 𝑷𝑖,𝑗 is stored.  

4) Search forward by repeating this procedure until the destination point is reached; the result 

yields the minimum-cost optimal ship route in the graph. 

Dijkstra’s algorithm is implemented with a priority queue structure to store the sub-paths and 

their associated costs. In a priority queue, an element with a lower cost will be used before an 

element with a higher cost. Fig. 9 (b) shows an example of finding the minimum-cost sub-path 

for 𝑷3,3 by Dijkstra’s algorithm.  

1) The state 𝑷2,1 first visits 𝑷3,3. The queue stores 𝑷3,3 with the sub-path and its cost for 

𝑷2,1→ 𝑷3,3.  

2) 𝑷2,2 then visits 𝑷3,3 with a lower-cost sub-path, and the queue replaces the previous sub-

path 𝑷2,1→ 𝑷3,3 with 𝑷2,2→ 𝑷3,3.  

3) Finally, 𝑷2,3 visits 𝑷3,3 with a higher-cost sub-path. The program will do nothing.  

4) Repeat this procedure until the last state (destination) is visited; the result yields the optimal 

route. 

 

Dynamic programming Dijkstra’s algorithm 

 
 

(a) (b) 

Fig. 9. Difference in finding optimal sub-paths between 

dynamic programming (a) and Dijkstra’s algorithm (b). 

The implementation of dynamic programming for voyage optimization problems is flexible. In 

addition to a back-forward approach, it can also be implemented in the same way as Dijkstra’s 

algorithm. Dijkstra’s algorithm has a fixed pattern of implementation for solving shortest-path 

problems. Since the graph for the voyage optimization problems modeled in this thesis is 

stagewise and directed, the optimization results from dynamic programming and Dijkstra’s 

algorithm for the same problem should be identical. 

2.3.2 Stochastic algorithm implementation 

Stochastic algorithms, such as genetic algorithms and ant-colony algorithms, are widely used 

for solving voyage optimization problems (Hinnenthal 2008; Marie and Courteille 2009; 

Száapczynska et al. 2009; Maki et al. 2011; Tsou et al. 2013; Andersson, 2015; Vettor & Soares 
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2016; Lee et al. 2018; Wang et al. 2018). They can provide globally optimal solutions and 

execute multi-objective optimization for voyage optimization problems. Such algorithms begin 

with a set of feasible solutions, and then improve them by evolving the ship’s operational 

control variables, such as ship course, speed and engine power. The algorithm is never assured 

to reach the optimum (Chen 2013). The shortcomings of stochastic algorithms in this voyage 

optimization problem are quite noticeable. The initialization of stochastic algorithms such as 

the genetic algorithm, the particle swarm algorithm and the ant colony algorithm can highly 

influence the convergence of the optimization and the robustness of the optimization results. 

Additionally, the samples that must be evolved in voyage optimization problems usually 

contain many variables. Without proper sample size and selection, the result may converge to 

a locally optimal point, or even be unable to find a proper solution. 

In Paper C, the engine power-based optimization problem is solved by the genetic algorithm 

combined with deterministic algorithms that can overcome the shortcomings of the genetic 

algorithm in voyage optimization problems. Since a decision vector contains many variables, it 

is difficult to directly apply the genetic algorithm to this complex problem. Deterministic 

algorithms can generate locally optimal solutions by fixing several variables. For example, 

Dijkstra’s algorithm is used to find the path vector optimal solutions by fixing the engine power 

configuration vector. The optimal solutions for the engine power configuration vector are 

obtained by using dynamic programming with fixed path vectors. Those solutions can guide 

the genetic algorithm evolution in the right direction for fast convergence. The workflow is 

depicted in Fig. 10, and its implementation involves the following 6 steps: 

1) Generation of the initial population by deterministic methods (Dijkstra’s algorithm and 

Dynamic programming method). The individual samples in the population represent the 

decision vector described in Sub-section 2.2.2.  

2) Calculation of the fitness values of each decision vector of the population. Each decision 

vector contains two design variables, i.e. fuel consumption and sailing time.  

3) Selection of candidate solutions (routes). Since two design variables are involved in the 

optimization, multi-objective optimization is used in the population selection step. 

Instead of ranking the members with their fitness values for the selection, Pareto optimal 

solutions are selected as part of the candidates for the next generation. 

4) Evolution of the population. The crossover operator is used to combine the genetic 

information of two parents to generate new offspring, and the transfusion operator uses 

a deterministic method and a stochastic method to generate new offspring to increase 

the population diversity.  

5) Termination of the optimization. The maximum iteration number is adopted as the 

termination criterion. If the iteration number reaches the termination criterion, the 

optimization will stop. 

6) Find the optimal solution (route). The optimal solution is found in the Pareto front of 

the last generated population based on the overall objectives from ship operators. 
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Fig. 10. The workflow of implemented genetic algorithm in the thesis. 
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3 Cost functions in voyage optimization algorithms 

This chapter describes the cost functions applied in the voyage optimization algorithms. The 

cost functions are represented by different ship performance models, i.e., the fuel consumption 

model, the fatigue crack propagation model and the fatigue damage model. The models are used 

to calculate the cost under various environmental conditions.  

The models describe a ship’s performance, e.g., sailing speed (Kwon 2008), motion/damage 

response (Mao 2014), and fuel cost (Tillig et al. 2017), in terms of its loading conditions, 

encountered weather conditions, and operational conditions. These models are the core 

elements in a voyage optimization process to estimate the cost function for specific objectives. 

The fuel consumption model describes a ship’s speed and fuel consumption relationship as a 

function of the ship’s main dimensions, status and sea conditions. The fatigue damage 

accumulation model and fatigue crack propagation model are used to predict the fatigue damage 

accumulation rate and the crack propagation rate in the ship structures based on ship 

characteristics, ship status and encountered metocean conditions. 

3.1 Fuel consumption estimation model 

The energy-transfer system in a ship is complex process (Tillig et al. 2017) and contains many 

components, such as the ship resistance, hull efficiency, relative rotative efficiency, etc. To 

describe a ship’s speed-fuel relationship, the most important component is to accurately 

estimate a ship’s resistance in different conditions (Kwon 2008). Ship resistance can be divided 

into three parts, calm water resistance, added resistance due to waves and added resistance due 

to wind. Calm water resistance is one of the most important parts in describing a ship’s 

resistance. Its proportion to the total resistance will eventually determine the choice of ship 

route by the voyage optimization algorithm chosen. Since metocean conditions are the main 

factors in voyage optimization problems (Bowditch 2002), an accurate model for estimating the 

added resistance due to waves is thus an important input for a voyage optimization system. 

When sailing in severe sea conditions, added resistance due to waves will lead to a significant 

reduction of ship speed. Finally, added resistance due to wind is relatively small but crucial due 

to the direction of the wind for determining the heading angle in a voyage. 

The workflow for the ship speed-fuel prediction used in this thesis is presented in Fig. 11. It is 

a typical estimation procedure to predict the fuel consumption rate using input parameters of 

encountered metocean conditions, the ship’s individual characteristics, operational profiles, etc. 

This procedure has been implemented into an in-house code using the following mathematical 

formulas. 

Mathematically, for a sailing state at the waypoint Pi of U(Pi) in a stationary sea state W(Pi), 

(lasting from 20 minutes to 6 hours), a ship’s fuel consumption during the period of the 

stationary metocean condition can be estimated by: 

𝐹𝐶 = 𝑃𝑏 ∙ 𝑐𝑠𝑓𝑜𝑐 ∙ (𝑡𝑖+1 − 𝑡𝑖),    𝑃𝑏 =
𝑅𝑡𝑜𝑡∙ 𝑣𝑔

𝜂0∙𝜂ℎ∙𝜂𝑠
 (9) 

where vg is the ship speed and 𝑅𝑡𝑜𝑡  is the total ship resistance in the state, 𝑐𝑠𝑓𝑜𝑐 is the specific 

fuel oil consumption (unit: g/KWh), ti+1 - ti is the sailing time from the i-th stage to the next 

stage and it varies depending on individual nodes/waypoints, 𝜂ℎ, 𝜂0, 𝜂𝑠 are the hull efficiency, 

propeller open water efficiency, and engine shaft efficiency, respectively. The three efficiencies 

𝜂ℎ, 𝜂0, 𝜂𝑠 are obtained from the propeller-engine diagram and the specific fuel oil consumption 

𝑐𝑠𝑓𝑜𝑐 is retrieved from the engine SFOC diagram based on the shaft power 𝑃𝑏.  
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Fig. 11. Ship speed-fuel prediction flowchart for routing optimization. 

As shown in Fig.11, the estimation of the total resistance 𝑅𝑡𝑜𝑡  is one of the most important 

procedures for estimating fuel consumption. The total resistance 𝑅𝑡𝑜𝑡 is regarded as a function 

of ship operational condition U and metocean condition W at the sailing waypoint in voyage 

optimization process, i.e., 𝑅𝑡𝑜𝑡 =  𝑓(𝑼(𝑷𝒊),𝑾(𝑷𝒊)). It is estimated based on the speed through 

water 𝑉, which is calculated from the speed over ground on 𝑉𝑔 by considering the effect of the 

ocean current velocity. To estimate the ship’s total resistance 𝑅𝑡𝑜𝑡, it can be decomposed in 

accordance with the following equation: 

𝑅𝑡𝑜𝑡 = 𝑅𝑇 + 𝑅𝐴𝐴 + 𝑅𝐴𝑊 (10) 

where 𝑅𝑇 is the calm water resistance, 𝑅𝐴𝐴is the wind resistance, 𝑅𝐴𝑊 is the added resistance 

due to waves. 

Calm water resistance 

The calm water resistance 𝑅𝑇 can be estimated by the Holtrop-Mennen (1983) method viz: 

𝑅𝑇 = (1 + 𝑘𝑓)𝑅𝐹 + 𝑅𝑊 + 𝑅𝐴𝑃𝑃 + 𝑅𝐴 + 𝑅𝐵 (11) 

where: 

𝑘𝑓 Frictional resistance correction factor. 

𝑅𝐹 Frictional resistance. 

𝑅𝑊 Wave-making and wave-breaking resistance. 

𝑅𝐴𝑃𝑃 Additional resistance. 

𝑅𝐴 Roughness allowance and still air resistance. 

𝑅𝐵 Resistance due to the bulbous bow. 
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In the Holtrop-Mennen method, the above items are computed by empirical formulas in terms 

of, e.g., a ship’s main dimensions, ship type, the dimensions of the bulbous bow and immersed 

transom, etc. Those formulas are derived based on a large number of model tests and can give 

a rough estimate of a ship’s calm water resistance.  

Added resistance due to wind 

The resistance increase due to wind can be calculated according to ISO 15016:2015(E) by the 

formula below: 

𝑅𝐴𝐴 = 0.5𝜌𝐴 ∙ 𝐶𝐴𝐴(Ψ𝑊𝑅𝑟𝑒𝑓) ∙ 𝐴𝑋𝑉 ∙ 𝑉𝑊𝑅𝑟𝑒𝑓
2 − 0.5𝜌𝐴 ∙ 𝐶𝐴𝐴(0) ∙ 𝐴𝑋𝑉 ∙ 𝑣𝑔

2 (12) 

where: 

𝑅𝐴𝐴 is the resistance increase due to relative wind. 

𝐴𝑋𝑉 is the transverse projected area above the waterline including superstructures. 

𝐶𝐴𝐴 is the wind resistance coefficient; 𝐶𝐴𝐴(0) means the wind resistance coefficient in 

head wind. 

𝑣𝑔 is the measured ship’s speed over ground. 

𝑉𝑊𝑅𝑟𝑒𝑓 is the relative wind velocity at the reference height. 

Ψ𝑊𝑅𝑟𝑒𝑓 is the relative wind direction at the reference height. 

𝜌𝐴 is the mass density of air. 

 

Added resistance due to waves 

The added resistance in waves can significantly affect a ship’s total fuel consumption for an 

ocean crossing voyage. To estimate such resistance in actual sea state, added resistance due to 

regular waves of a unit wave amplitude and a series of wave frequencies  at an operational 

profile [V, ] is often divided into two components: 

𝑅𝐴𝑊(|𝑉, 𝜃) = (𝑅𝐴𝑊𝑅(|𝑉) + 𝑅𝐴𝑊𝑀(|𝑉)) ∙ 𝑔𝑐(𝜃) (13) 

where RAWR and RAWM denote wave reflection and ship motion-induced resistances, V and  

represent a ship’s speed and heading angle. Different empirical formulas and hydrodynamic 

theory-based numerical methods are available to get the added resistance due to waves. In this 

thesis, the semi-theoretical formulas proposed by Liu and Papanikolaou (2016) are used to 

estimate the Response Amplitude Operators (RAOs) of RAWR and RAWM but only for head sea 

operations.  

Inspired by the ideas from Alexandersson (2009), a correction function gc() is used to model 

the impact of heading angles for added resistance in waves. The correction function is 

established for specific ships based on their measurement data. Then the mean added resistance 

due to an actual sea state (of irregular waves represented by a significant wave height Hs and 

mean wave period Tz) described by an ITTC wave spectrum Sw(Hs, Tz), can be computed by: 

𝑅𝐴𝑊(𝐻𝑠, 𝑇𝑧, 𝑉, 𝜃) =  ∫ 𝑆𝑤(𝐻𝑠, 𝑇𝑧)𝑅𝐴𝑊(|𝑉, 𝜃)𝑑𝜔
+∞

0
 (14) 

In addition, other added resistances due to shallow water effect, water temperature are simply 

estimated by the method proposed in ISO15016 (2015). 



28 

 

This fuel consumption estimation model in Fig. 11 is implemented in Paper A-E and G, and 

has been validated in Paper B-D such that it can be used to predict the relationship between 

ship speed and fuel consumption rate under various metocean conditions. 

3.2 Fatigue damage accumulation model 

Ship structures are designed to behave elastically during its design life of around 20 years. The 

fatigue strength is assessed by stress-based approaches, i.e. high-cycle fatigue design principles. 

In the analysis, the material behavior is characterized by an S-N curve, with a log-linear 

dependence between the number of cycles to failure N, and the stress cycle range S, log(𝑁) =
𝛼 − 𝑘log (𝑆). Different S-N curves exist for different materials, geometries, welds, etc., the 

parameters 𝛼 and k are usually categorized based on the properties of structural details in the 

class rules. The stress ranges, here denoted by Si, (i = 1,…,n), can be obtained by the rainflow 

counting method for each sea state. Finally, the accumulated damage is calculated using the 

linear Palmgren-Miner law as: 

𝐷(𝑇) = ∑
𝑆𝑖

𝑘

𝛼

𝑛
𝑖=1  (15) 

In addition to the rainflow counting method, Fig. 12 shows a schematic of a procedure for the 

direct calculation of structural stresses. It is essential for a reliable fatigue analysis that reliable 

encountered wave environments are used in the calculation, i.e. the long-term distribution of 

sea states. In class rules, it is given as the wave scatter diagram, which can present an overall 

distribution of waves for all ships sailing in the same region. However, this diagram can rarely 

consider the practical operation conditions for an individual ship. More and more ships are 

equipped with weather routing systems, which can help the ships to avoid large storms. As a 

positive result from a fatigue damage accumulation point of view, the real encountered wave 

environments may differ significantly from the wave scatter diagram which is used in the design.  

 

 

Fig. 12. Example of the workflow of a conventional ship fatigue life 

prediction method with fatigue loads from direct calculations. 

For ship structural fatigue analysis, ship stress response along a ship route, i.e., 𝑷⃗⃗  and 𝑼(𝑷⃗⃗ ) 

here, is often divided into a series of stationary periods of metocean information, 𝑾(𝑷⃗⃗ ) = W1, 

W2, …, Wn. A sea state W is described by a classical wave spectrum 𝑆𝑤(𝜔), e.g., Pierson-

Moskowitz, JONSWAP, etc., which is a function of significant wave height 𝐻𝑠  and wave 

period 𝑇𝑧 shown in Fig. 13 (a). The transfer function or response amplitude operators (RAOs) 

of structural stresses is obtained for various ship speeds and heading angles 𝑼 = [𝑉, 𝜃]𝑇. It is 

denoted by 𝐻𝜎(𝜔|𝑉, 𝜃) shown in Fig. 13(b). 
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(a) (b) 

Fig. 13. Three typical wave spectra stress (a) and RAOs of a deck longitudinal stiffener (b). 

The variability of structural stresses, denoted by X(t) here, is mainly caused by the change of 

the wave loadings applied on ships. Hence, it is essential to get the correct wave 

(hydrodynamic) loads. The structural stresses due to the wave loads can be computed by beam 

theory. The stress is often assumed to be Gaussian and is uniquely defined by its mean value 

and spectrum. For a specific sailing speed 𝑉 and heading angle 𝜃, the stress response spectrum 

under arbitrary sea states can be computed by: 

𝑆𝑥(𝜔|𝑉, 𝜃, 𝐻𝑠, 𝑇𝑧) = |𝐻𝜎(𝜔|𝑉, 𝜃)|2𝑆𝑒(𝜔|𝐻𝑠, 𝑇𝑧)𝑑𝜔 (16) 

where 𝑆𝑒(𝜔|𝐻𝑠, 𝑇𝑧)  is the encountered wave spectrum that cannot always be explicitly 

expressed for all wave frequencies. Instead, it is enough to only obtain the spectral moments of 

the ship response for a ship’s structural integrity assessment. The n-th order spectral moments 

can be calculated by: 

𝜆𝑛 = ∫ |𝜔 +
𝜔2𝑉 cos𝜃

𝑔
|
𝑛

𝐻𝜎
2(𝜔|𝑉, 𝜃)𝑆𝑒(𝜔|𝐻𝑠, 𝑇𝑧)𝑑𝜔

∞

0
 (17) 

Let R denote the local maxima of the Gaussian stress signal X in a sea state. The distribution of 

R can be described by Rice’s distribution function: 

𝐹𝑅(𝑟) = Φ(
𝑟

𝜀𝜎𝑥
) − √1 − 𝜀2Φ(

√1−𝜀2

𝜀

𝑟

𝜎𝑥
) 𝑒

−
1

2
(

𝑟

𝜎𝑥
)
2

 (18) 

where  is the standard normal cumulative distribution function, x is the standard deviation 

of X and 𝜎𝑥 = √𝜆0,  is the spectral width parameter. If  = 0, Eq. (18) becomes Rayleigh 

distribution: 

𝐹𝑅(𝑟) = 1 − 𝑒
− 

𝑟2

2𝜎𝑥
2
,     where 𝑟 ≥ 0 (19) 

For the narrow-band Gaussian process, the number of local maxima can be computed through 

the zero-up crossing frequency of the signal X(t) as 𝑓𝑧 =
1

2𝜋
√

𝜆2

𝜆0
 . 

Since the waves in a stationary sea state are actually random processes, the stress cycle range S 

is also a random variable with the probability density function (pdf) denoted by fS(s). Then, the 



30 

 

expected value of Sk is computed by 𝐸[𝑆𝑘] = ∫ 𝑠𝑘𝑓𝑠(𝑠)𝑑𝑠
∞

0
. For a zero mean narrow band 

Gaussian stress X(t), the stress cycle range S is approximated by two times the stress amplitude 

R, i.e. S  2R. Subsequently, by means of Eq. (19), E[Sk] can be computed by: 

𝐸[𝑆𝑘] ≈ ∫ (2𝑟)𝑘𝑓𝑅(𝑟)𝑑𝑟 = (2√2𝜎𝑥)
𝑘
Γ(

𝑘

2
+ 1)

∞

0
  (20) 

where (x) is the gamma function. The expected fatigue damage computed by Eq. (15) 

becomes: 

𝐸[𝐷] =
𝑁0

𝛼
𝐸[𝑆𝑘] ≈

𝑁0

𝛼
(2√2𝜎𝑥)

𝑘
Γ(

𝑘

2
+ 1) (21) 

where N0 is the expected number of stress cycles and computed by N0 = T·fz for X(t), t  [0, T]. 

Finally, the expected fatigue damage caused by the narrow band stress X(t) denoted by DT, is: 

𝐷𝑇 = 𝐸[𝐷] ≈
𝑇

2𝜋𝛼
√

𝜆2

𝜆0
(2√2𝜆0)

𝑘
Γ(

𝑘

2
+ 1) (22) 

Equation (22) is also known as the narrow-band approximation and works quite well even for 

stress signal with spectral width parameter  up to 0.5. In this thesis, the parameters of the one-

slope S-N curve are chosen as α = 1012.76 and k = 3 according to DNV GL (2014). 

3.3 Fatigue crack propagation model  

For practical engineering application, the fatigue crack propagation estimation is mainly based 

on the Linear Elastic Fracture Mechanics (LEFM), e.g., Anderson (2017), Sumi (1998), etc. In 

this thesis, the LEFM is implemented with a ship’s spectral response analysis. It yields a simple 

but reliable fracture model for crack growth analysis in ship structures. The detailed derivation 

of the model can be founded in Mao (2014). In the following, some basic equations used in this 

thesis are briefly described.  

The crack propagation analysis is based on the linear elastic fracture mechanics (LEFM) using 

the stress intensity factor (SIF) K. For most ship steel materials, the crack growth rate 𝑑𝑎/𝑑𝑁 

against the SIF range ∆𝐾 on log-log scales looks like a sigmoidal curve as in Fig. 14. The 

fatigue crack propagation predicted by the Paris law can be written as: 

𝑑𝑎

𝑑𝑁
= 𝐶 ∙ ∆𝐾𝑚 (23) 

where a is the crack length, C and m are material parameters that can be got from design rules, 

e.g., BS7910 (2005), ∆𝐾 is the SIF range during a stress cycle, and 𝑑𝑎/𝑑𝑁 is the corresponding 

crack growth rate. For ship structures composed of shell and beam elements, the mode I crack 

is the most common case. This thesis is limited to this mode using LEFM principles. Thus, the 

SIF can be written as: 

𝐾 = 𝑆𝑝 ∙ 𝑓 (
𝑎

𝑤
)√𝜋𝑎 (24) 

where 𝑆𝑝 is the stress perpendicular to the crack plane, 𝑤 is the width of the crack plane and 

𝑓 (
𝑎

𝑤
) is a dimensionless parameter in terms of the crack geometry and loading type (Mao 2014). 
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Fig. 14. Simple fatigue crack growth relationship (BS7910 2005). 

To predict the fatigue crack propagation due to variable amplitude stresses, a fast and reliable 

spectral method proposed by Mao (2014) is used for the crack analysis. It is assuming that the 

crack increment per cycle is small, as the parameter C is very small, while the number of stress 

cycles in a sea state here is less than a few hundred. The stress response in a stationary sea state 

is often assumed to be narrow-band Gaussian processes. Then, the expected crack increment 

under the 𝑖th sea state 𝑡 ∈ [𝑇𝑖, 𝑇𝑖+1] is computed by:   

𝐸[∆𝑎𝑖] = 𝐶 ∙ 𝑔𝑚(𝑎𝑖) ∙
∆𝑇

2𝜋
√

𝜆2

𝜆0
Γ (

𝑚

2
+ 1) ∙ (2𝜆0)

𝑚

2  (25) 

where 𝑔(𝑎) can be computed by a fracture mechanics code, e.g. FRANC2D by Wawrzynek 

and Ingraffea (1991), ∆𝑇 is the time interval for a stationary sea state of ∆𝑇 = 𝑇𝑖+1 − 𝑇𝑖, 𝛤() is 

the gamma function, 𝜆0 and 𝜆2 are the zero- and second-order of the spectral moments of the 

stress 𝑆𝑝(𝑡) for 𝑡 ∈ [𝑇𝑖 , 𝑇𝑖+1]. The values of 𝜆0 and 𝜆2 can be computed by Eq. (17) for ship 

fatigue assessment.  
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4 Summary of papers 

This chapter summarizes research activities and important results described in the appended 

papers. All the papers have been categorized into three sections/groups based on their research 

topics. The first section, Development of voyage optimization algorithms starts with a 

benchmark study in Paper A that provides the essence of the voyage optimization algorithms 

commonly used in the shipping market. The results of Paper A indicate the limitations and 

drawbacks of commonly used voyage optimization algorithms. Paper B proposed a newly 

developed algorithm that overcomes these limitations, and contains other new features, such as 

course regeneration. Since most trans-ocean vessels are controlled by engine power or RPM 

rather than speed, Paper C adopts an optimization algorithm including both engine power 

optimization and course optimization for practical sailing operations. The Uncertainty study 

in Paper D is also based on the findings of Paper A. Uncertainties in the voyage optimization 

input parameters, such as the metocean forecast and the ship performance model, were not 

considered in Paper A. Thus, Paper D conducted several studies to investigate the influence 

of those uncertainties on the optimization result. 

The second section, Impact of voyage optimization on ship fatigue accumulation, includes 

the implementation of voyage optimizations in a ship’s operations to mitigate structural fatigue 

failure and its impact on fatigue assessment during a ship’s fatigue design stage. For ship 

operation, Paper E presents the potential benefits of voyage optimization to reduce the risk of 

ship structural failure due to crack propagation. In Paper F, two statistical wave models are 

compared, and their capability to predict the statistics of waves encountered by ships is 

validated, proving that actual encountered sea conditions can differ significantly from those 

provided by design guidelines. In Paper G, the impact of ship operations aided by various 

voyage optimization methods on the wave environments encountered by ships and their 

consequences on ship fatigue design is presented.  

4.1 Development of voyage optimization algorithms 

4.1.1 Summary of Paper A 

Title: “Benchmark study of five optimization algorithms for weather routing” 

Paper A benchmarks five commonly used algorithms to investigate their capabilities for 

optimum voyage planning with respect to accurate expected time of arrival (ETA), minimum 

fuel cost and storm avoidance. The advantages and disadvantages of these algorithms, i.e., 

isochrone, isopone, Dynamic programming, 3D Dynamic programming, and Dijkstra’s 

algorithm, are investigated by implementing and applying these algorithms for the voyage 

optimization of a 2800TEU containership sailing in the North Atlantic. 

In this paper, a modified isochrone algorithm is implemented by dividing a ship’s voyage into 

several sailing stages. At each stage, a ship is assumed to sail at an equivalent time period. Each 

individual stage begins by varying the ship’s heading at each interim waypoint around the 

reference route, which is the great circle path between the departure and the destination. The 

isopone algorithm optimizes a ship’s route by discretizing a voyage into several stages of equal 

fuel consumption. This method determines the waypoint of the next stage with minimum fuel 

by tracing back the headings and speeds.  

The dynamic programming method is implemented to search for a local optimum ship sub-

route with minimum fuel cost in a pre-defined waypoint/grid system based on the great circle 

reference path. The ship is assumed to sail at a fixed speed for the entire voyage. The Dijkstra 

algorithm using the same grid system as in Dynamic programming is applied to find the 
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optimum ship route. To allow for speed variations along a ship’s voyage, a 3D Dynamic 

programming method is implemented by adding a time dimension in each waypoint in the same 

pre-defined grid system of dynamic programming method. The method uses the voyage 

progress as a stage variable through voluntary or involuntary speed/power reduction.  

A container ship sailing in the North Atlantic is selected as the case study ship to benchmark 

these optimization algorithms. Two planning strategies were used for the optimization process, 

i.e., input parameters, as either fixed power or fixed speed along the ship’s voyage. In the fixed-

speed-based study, the ship keeps a constant speed during the voyage. In the constant-power-

based study, the ship keeps constant power during the voyage and its speed changes due to 

different weather and sea conditions.  

The sailing time and fuel consumption estimated by different optimization algorithms are 

presented in Table 4. In fixed speed-based voyage optimization, the sailing time and fuel 

consumption estimated by the isopone method, dynamic programming method, and Dijkstra’s 

algorithm were close to each other. The result given by the isochrone method has a longer 

sailing time because the node selection criterion was set to the lowest cost.  

Table 4. Sailing time estimated by different optimization algorithms. 

Optimization 

methods 

Isochrone Isopone 2DDP 3DDP Dijkstra 

ETA 

[h] 

Fuel 

[ton] 

ETA 

[h] 

Fuel 

[ton] 

ETA 

[h] 

Fuel 

[ton] 

ETA 

[h] 

Fuel 

[ton] 

ETA 

[h] 

Fuel 

[ton] 

Fixed speed 171.8 732.4 166.4 695.6 166.2 695.6 173.4 638.0 166.4 692.7 

Fixed power 165.6 702.1 166.0 702.7 165.7 700.3 173.4 638.0 165.6 700.1 

 

In the fixed-power voyage optimizations, the results of sailing time and fuel consumption 

estimated by all methods except the 3D dynamic programming are quite similar to each other. 

The 3D dynamic programming yields a longer sailing time and lower fuel consumption because 

of the speed variations and the voluntary speed reductions during the voyage. The results given 

by the fixed-power based study gives a smaller estimated sailing time but higher fuel 

consumption than those given by the fixed-speed based study. This is because the speed in the 

fixed-power based study is generally higher than the speed in the fixed-speed based study.  

The results show that the 3D dynamic programming method has more capabilities (voluntary 

speed reduction during harsh weather conditions) and better results (saving approximately 8% 

of fuel) for voyage planning. The 3D dynamic programming method was able to reduce speed 

when encountering a storm.  

4.1.2 Summary of Paper B 

Title: “A three-dimensional Dijkstra’s algorithm for multi-objective ship voyage optimization” 

The study of Paper A lists the limitations and drawbacks of those conventional voyage 

optimization algorithms, i.e., unable to provide globally optimal ship routes if one allows for 

speed/power variations along the voyage, unable to conduct multi-objective optimization, etc. 

Therefore, in Paper B, a new method is developed to allow for both global optimization 

capability and multi-objective optimization.  

In this method, a 3D graph/grid system is firstly generated whose nodes/waypoints are created 

with the information of geometric points in the voyage and the time set. The edges/sub-paths 

are then generated by the adjacent nodes/waypoints, considering the constraints during the 

voyage. The edges/sub-paths are assigned with weights based on weather information and cost 

function (the ship performance model). Finally, Dijkstra’s algorithm is implemented in the 3D 

graph/grid system to search candidate optimum routes with a series of ETAs.  
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The full-scale measurements of a 2800TEU container ship sailing in the North Atlantic are used 

as a comparative reference in the case study to demonstrate the capability of the proposed 3D 

Dijkstra’s algorithm (3DDA). The optimization results of the 3DDA are also compared with 

the results from other sailing approaches, i.e., the 2D Dijkstra’s algorithm (2DDA) and the great 

circle sailing. The case study voyages are divided into eastbound voyages and westbound 

voyages and the results are shown in the following Table 5 and 6.  

For eastbound voyages, shipping operators may not seriously consider voyage optimization, 

since storms in the North Atlantic always move from the west to the east. However, the results 

show that the 3DDA method has also a great potential of saving fuel up to about 12% in 

comparison with the ship’s actual eastbound sailing routes. For westbound voyages, the 3DDA 

method can always provide a route with averagely 12% of the fuel-saving in comparison with 

the actual sailing for a given ETA.  

Table 5. Results of various voyage optimizations for the eastbound voyages. 

Voyage 

name  

Optimization 

methods 
ETA [h] 

Fuel consumption 

[ton] 

Distance 

[km] 

20080117 

Actual route 90.8 249.8 3193.6 
Great circle 90.6 235.8 3130.4 

2DDA 90.5 239.7 3186.8 
3DDA 91.0 230.6 3136.9 

20080523 

Actual route 88.7 229.0 3176.2 
Great circle 88.6 220.5 3127.2 

2DDA 88.8 221.7 3164.8 
3DDA 89.0 220.4 3135.3 

20081224 

Actual route 94.7 246.4 3238.8 
Great circle 94.6 218.6 3132.1 

2DDA 94.5 222.9 3196.9 
3DDA 94.5 216.7 3132.1 

 

Table 6. Results of various voyage optimizations for the westbound voyages. 

Voyage 

name  

Optimization 

methods 
ETA [h] 

Fuel consumption 

[ton] 

Distance 

[km] 

20080129 

Actual route 105.8 309.8 3354.2 
Great circle 105.6 304.5 3168.1 

2DDA 106.2 301.2 3429.2 
3DDA 106.0 286.2 3270.9 

20080218 

Actual route 94.5 280.7 3191 
Great circle 94.5 272.0 3121.3 

2DDA 94.4 275.1 3196.5 
3DDA 94.5 269.0 3142.0 

20080424 

Actual route 92.5 314.3 3244.0 

Great circle 92.5 246.1 3129.9 
2DDA 93.2 245.7 3241.8 
3DDA 92.5 243.8 3136.4 

20081214 

Actual route 104.8 301.7 3186.7 

Great circle 105.3 272.5 3114.5 

2DDA 104.5 278.2 3329.1 

3DDA 105.0 262.2 3193.4 
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Through the comparison with other voyage optimization methods, it shows that the 3DDA 

method can provide better voluntary speed reduction or speed increase. This method has a big 

potential to lower the ship’s fuel consumption and plan the sailing schedule with a more 

accurate expected time of arrival. It is shown that the 3DDA method can help to reduce on 

average about 10% fuel consumption for all the investigated voyages involved in the case study, 

while still keep the same ETAs as the measured voyages. Meanwhile, other capabilities of the 

proposed method, i.e., multi-objective optimization and fast course regeneration & weather 

updating are also discussed in the paper.  

4.1.3 Summary of Paper C 

Title: “A ship engine power-based voyage optimization method by combing genetic algorithm 

and dynamic programming concepts” 

Course optimization is widely adopted by conventional voyage optimization algorithms. More 

complex voyage optimization algorithms, such as 3D Dynamic programming in Paper A and 

3D Dijkstra’s algorithm proposed in Paper B, concern speed optimization for further 

improvement of the optimization results. However, under the rapid-change environmental 

conditions in open sea areas, a ship’s speed is difficult to be accurately controlled. Moreover, 

ships such as tanker ships, bulk carriers who don’t have strict required time of arrivals are often 

controlled by shaft power or RPM. Researches related to engine power optimization are very 

seldom because of the complex iteration to solve the relationship between settled engine power 

and ship speeds under changing sea environments during the optimization process. In Paper C, 

a voyage optimization method under the scheme of genetic algorithm is proposed by taking 

discrete engine powers as inputs. It should be noted that the method proposed in Paper C is not 

an improved version of the one in Paper B. It introduces an approach for solving shaft power 

optimization problem. 

The scheme of the proposed method is divided into two parts, i.e., the decision vector generator 

part and the implementation of the genetic algorithm part. The decision vector generator is used 

to generate decision vectors. A decision vector represents both the trajectory of a ship route and 

its corresponding shaft power configuration. The decision vector is used as an individual sample 

in the genetic algorithm. To increase the efficiency of the convergence and prevent early local 

convergence, three types of decision vector generators are used: 

1) Heuristic decision vector generator (HDVG). 

2) Deterministic decision vector generator (DDVG). 

3) Stochastic decision vector generator (SDVG). 

The HDVG uses Dijkstra’s algorithm to generate optimal trajectories with constant shaft power 

settings. It is used to confine the search space for the genetic algorithm to improve the efficiency 

of the convergence. DDVG is used to generate shaft power configurations for certain routes by 

using a dynamic programming approach. In SDVG, a stochastic approach is used to generate 

random decision vectors including both the routes and their corresponding shaft power 

configurations.  

Several case study voyages with full-scale measurements when a chemical tanker ship was 

sailing in the North Atlantic during the year 2015 and 2016 are used to demonstrate the 

capacities of the method. Three different route planning methods are taken for the comparison: 

1) The actual sailing routes from the full-scale measurements. 

2) The results from the heuristic method. 

3) The results from the proposed method. 

The case study voyages are divided into eastbound voyages and westbound voyages. Through 

the comparison, the proposed method shows the capability of fuel-saving with averagely 5.2% 
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and 3.4% compared with the actual sailings and the heuristic routes respectively. In particular, 

the proposed method is outperforming other route planning methods under extreme 

environmental conditions. In the eastbound voyage 20160317 shown in Fig. 15, the ship sailing 

along the actual route encountered two storms and the optimal route helps avoid the storms. In 

the middle of the voyage, the actual route encountered harsh weather conditions with significant 

wave height up to 10 meters. In this extreme case, the proposed method saves fuel up to 

approximately 14.5% compared to the actual sailing route while keeping the accurate ETA. 

 

 

Fig. 15. Contour plot of significant wave height Hs for the voyage 20160307. 

  

4.1.4 Summary of Paper D 

Title: “Effectiveness of 2D optimization algorithms considering voluntary speed reduction 

under uncertain metocean conditions” 

Algorithms presented in Paper B and Paper C are developed under the assumption that the 

input parameters such as weather data and ship models are accurate. However, large 

uncertainties existed in these input parameters of voyage optimization algorithms. Meanwhile, 

due to the limited accepted waiting time from ship operators to perform a voyage optimization, 

the weather routing market is more willing to adopt two-dimensional voyage optimization 

algorithms for voyage planning.  

In Paper D, an uncertainty study for minimum fuel is conducted for two-dimensional voyage 

optimization algorithms including a course optimization algorithm and a new-proposed speed 

optimization algorithm, which consider the voluntary speed reduction along a fixed sailing 

route. The uncertainty study includes the influence of the uncertainties from the weather 

forecast, ship performance models and operational strategies. Due to the complexity and 

imperfection of the physical description in today’s weather forecast models, the weather 

forecast data is inevitably including large uncertainties. Consequently, the accuracy of the 

objective function in the voyage optimization algorithm determined by the weather forecast 

data is uncanny. In the study of the uncertainties in weather forecast, weather hindcast data is 

used to investigate the impact of the uncertainties from the weather forecast data on the 

optimization results. Meanwhile, the objective function in the voyage optimization is defined 

by the ship performance models. Two ship fuel consumption models, the Kwon’s model, and a 

semi-empirical model are used to study the uncertainties from the ship model. In addition, slow 

steaming is a common operation strategy today to minimize a ship’s fuel consumption when 

sailing at sea. Longer sailing time brings more uncertainties for voyage optimization in terms 

of slow steaming. The operational strategy, slow steaming is also concerned in the uncertainty 
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study. The full-scale measurement of the ship’s operation at sailing in the North Atlantic during 

the year 2009 is used as a reference in this study. To analyse sensitivities and robustness of two-

dimensional voyage optimization algorithms due to inputs uncertainties, three different voyage 

planning approaches are compared with the actual sailing routes in the case study: 

1) The great circle routes with fixed speed (Great Circle sailing). 

2) The routes from constant speed course optimization (CS course optimization). 

3) The routes from great circle speed optimization (GC speed optimization). 

This study mainly investigates the impact of uncertain weather forecast inputs on a ship’s 

voyage optimization solutions. The voyages are divided into westbound voyages and eastbound 

voyages. The sailing distance, sailing time (ETA), forecast fuel consumption and actual fuel 

consumption for all these investigated voyages are listed in Table 7 and Table 8 for all the 

westbound voyages and eastbound voyages respectively. For the westbound voyages, the three 

investigated voyage optimization/planning methods behave generally better than the ship’s 

actual sailing in terms of fuel consumption. In particular, the GC speed optimization method 

generates better results for most of the voyages based on weather forecast information. For the 

eastbound voyages, the GC speed optimization method can produce the best results of voyage 

planning in terms of minimum fuel consumption in the three out of four chosen eastbound 

voyages. In comparison with actual sailing, it can save about 7.5% of fuel. In comparison with 

the CS course optimization methods, it can save about 2.5%-3% of fuel-dependent on if the 

weather forecast or hindcast data is used for the analysis. 

Table 7. Results of optimized routes by various optimization methods for 5 westbound voyages. 

Voyage name Voyage strategy 
Distance 

(km) 

ETA 

(hours) 

Forecast 

fuel (ton) 

Hindcast 

fuel (ton) 

20090105 

Actual sailing 3000 93.0 187.6 188.7 

Great Circle sailing 2920 92.7 146.8 150.4 

GC speed optimization 2920 93.0 146.5 150.0 

CS course optimization 3004 92.7 154.3 155.4 

20090202 

Actual sailing 4223 138.5 454.8 477.5 

Great Circle sailing 3546 138.3 431.0 470.9 

GC speed optimization 3546 138.6 410.4 432.4 

CS course optimization 3924 137.9 372.5 445.4 

20090604 

Actual sailing 3233 93.0 229.0 232.5 

Great Circle sailing 3135 92.7 213.2 214.0 

GC speed optimization 3135 93.0 211.2 212.3 

CS course optimization 3265 92.5 222.0 223.6 

20091119 

Actual sailing 2722 89.0 175.2 176.2 

Great Circle sailing 2710 88.2 180.7 181.6 

GC speed optimization 2710 89.1 171.7 176.2 

CS course optimization 2867 87.8 182.8 184.9 

20091218 

Actual sailing 2922 98.0 206.5 222.4 

Great Circle sailing 2877 97.9 193.8 205.7 

GC speed optimization 2877 98.1 191.5 204.5 

CS course optimization 3003 97.9 206.0 220.1 
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Table 8. Results of optimized routes by various optimization methods for 4 eastbound voyages. 

 

In this paper, weather uncertainty on voyage optimization for slow steaming operations is also 

discussed. For most of the voyage, the great circle speed optimization method can generate 

better routes in terms of fuel-saving for the slow steaming operations. 

4.2 Impact of voyage optimizations on ship fatigue accumulation 

4.2.1 Summary of Paper E 

Title: “Voyage optimization for mitigating ship structural failure due to crack propagation” 

In Paper E, the impact of different ship voyage planning methods on ship fatigue crack 

propagation is investigated. It presents the potential application of voyage optimization to 

reduce the fatigue crack propagation rate. In this paper, the voyage optimization algorithms 

introduced in Paper A are further categorized into two groups, dynamic-grid-based methods, 

and static-grid-based methods. To study the benefits of voyage optimization systems on the 

reduction of fatigue crack propagation in ship structures, i.e., a potential extension of sailing 

life before crack repairs are required, voyage optimization methods are combined with a linear 

elastic fracture mechanics model which could predict the crack propagation speed in ships. In 

this paper, a 2800TEU container ship sailing in the North Atlantic with an initial crack length 

assumed to be 100 mm is assumed for the demonstration analysis.  

This study compares the crack propagations if the vessel were sailing along four planned ship 

routes, i.e., the great circle, routes optimized by the Isochrone and dynamic programming 

methods, and the measured original sailing routes. All ship routes were expected to reach the 

destination at approximately the same time (ETA as measured). The crack propagation results 

plotted in Fig. 16 shows a great reduction of crack propagation when using optimization 

algorithms in comparison with the conventional great circle sailing routes. The great circle 

routes are the shortest paths for these voyages, but the rate of fatigue crack propagation along 

these routes is much faster than those for other route planning methods. The benefit of the 

reduction of fatigue crack propagation in ship structures or sailing life extension is quite 

significant, i.e., with a maximum life extension of 100% in this case study. 

Voyage name Voyage strategy 
Distance 

(km) 

ETA 

(hours) 

Forecast 

fuel (ton) 

Hindcast 

fuel (ton) 

20090121 

Actual sailing 3537 100.5 299.4 338.9 

Great Circle sailing 3150 100.1 298.5 354.9 

GC speed optimization 3150 100.5 273.7 329.1 

CS course optimization 3353 99.7 263.9 311.9 

20090618 

Actual sailing 3172 92.0 196.9 199.2 

Great Circle sailing 3091 92.0 184.5 188.5 

GC speed optimization 3091 92.1 183.9 187.6 

CS course optimization 3184 92.1 188.8 190.9 

20091129 

Actual sailing 2781 88.0 159.3 159.3 

Great Circle sailing 2741 87.9 145.7 148.6 

GC speed optimization 2741 87.9 145.3 144.3 

CS course optimization 2796 88.3 148.5 152.4 

20091228 

Actual sailing 2903 87.0 212.8 234.7 

Great Circle sailing 2859 86.6 202.6 221.0 

GC speed optimization 2859 87.0 200.0 217.2 

CS course optimization 2908 86.1 205.3 223.4 
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In addition, this paper compares the benefits of using voyage optimizations when sailing in 

different directions, i.e., between eastbound and westbound voyages. The benefits of 

implementing a voyage optimization to aid a ship’s operation are not obvious for eastbound 

voyages in the North Atlantic, especially during summer seasons. In some winter voyages, 

crack propagation can be reduced by more than 50% if sailing along routes recommended by 

these optimization algorithms. This is because, in the North Atlantic, storms with severe 

metocean conditions always move from west to east and provide much potential for route 

planning to avoid these storms. The following sea operations do not cause as serious fatigue 

problems as the head sea operations. 

 
Fig. 16. Accumulated fatigue crack length with different route planning methods. 

 

4.2.2 Summary of Paper F 

Title: “Comparison of two statistical wave models for fatigue and fracture analysis of ship 

structures” 

In a ship’s design process, the wave-induced loads on the vessel are needed to be estimated by 

the wave scatter diagram issued by the classification societies. However, the actual wave 

environment encountered by individual ships may be not consistent with that provided by the 

classification societies that are unlikely to consider operational conditions for individual ships. 

In Paper F, two statistical wave models based on hindcast data and satellite wave 

measurements are introduced and compared with the wave statistics from classification 

guidelines and the wave measurements carried out by onboard radar. The two statistical wave 

models include a wave storm model which is based on wave scatter data extracted from the 

reanalysis dataset along ship routes and a statistical spatio-temporal wave model. The wave 

storm model is established through several steps of fitting to Weibull distributions, while the 

spatio-temporal model is based on the spatio-temporal correlation of wave from reanalysis and 

satellite measurements. 

A 2800TEU containership equipped with a hull-monitoring system is used to check the 

reliability of the two wave models. First, the wave statistics from the two statistical models are 

compared with reanalysis data and classification guidelines. It shows that the variation of 

onboard measured Hs can be well reflected by the reanalysis data, while using wave statistics 

from class guidelines may overestimate 100% of the ship’s fatigue damage. Second, the 

procedure of simulating the wave-induced structural stresses is calibrated and validated. It 
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shows that the characteristic of stress variations in the two generated stress signals agrees well 

with that of the measured stresses.  

In this paper, the capability of two statistical wave models to emulate the random nature of the 

waves is validated. First, the natural variability of the wave environment is simulated by the 

spatio-temporal and the storm wave model. It shows that the statistical variability can be well 

captured by the two models. Second, the statistical quantities of Hs simulated from the two wave 

models are further examined by the estimation of the first three moments of Hs. The first three 

moments of Hs are estimated and listed in Table 9. In Table 9, the significant wave height 

signals are coming from three different sources, i.e., extracted from ECMWF ERA5 hindcast 

dataset for the same location as the measured routes but with a varying year from 2000 to 2015, 

simulated 100 times of Hs along the measured ship routes from the storm model and the spatio-

temporal model. Table 9 shows that the wave statistics estimated from both the spatio-temporal 

model and the storm model agree perfectly well with the ERA5 extracted Hs. In addition, the 

wave models are proved to have the capability of predicting Hs of several waypoints 

conditionally on the given wave information surrounding the waypoints along the same ship 

routes. 

Table 9. Various moments of Hs as a random variable simulated by statistical wave load models. 

Yearly statistics of Hs 
ERA5 15-year data Storm model Spatio-temporal model 

Mean std Mean std Mean std 

First moment E[Hs] 3.00 0.15 2.91 0.09 3.03  0.10  

Second moment E[Hs
2] 11.52 1.41 10.78 0.90 11.58  0.92  

Third moment E[Hs
3] 55.25 12.03 49.38 8.43 55.06 8.33 

 

After proving the capabilities of two statistical wave load models to emulate the random nature 

of the waves, the application of the two wave models for ship fatigue assessment is 

demonstrated. First, the ship’s operational wave environments and corresponding stress signals 

are generated. Then, the high cycle fatigue damage is estimated for those generated stresses. 

Finally, the structural detail is simplified and an initial crack length is assumed to be 22mm. 

The crack propagations under these generated stress signals are estimated by the FASTRAN 

code. The damages and crack propagations are compared with those estimated from the 

measured stress signals. The mean and standard deviation of accumulated fatigue damages and 

the total crack growth for 1 year that are estimated from different generated stress signals are 

presented in Table 10. Table 10 indicates both the spatio-temporal wave model and the storm 

model can describe well the wave variation encountered by ships and confirms the benefits of 

using a weather routing service to avoid encountering harsh sea environment.  

Table 10. Fatigue damage estimated by S-N method and crack propagation estimated by 

FASTRAN code under different stresses during one-year ship sailing routes. 

The way to get the stress signals 
S-N fatigue damage Crack propagation [mm] 

Mean STD Mean STD 

Measured stresses 0.0133 23.65 

Simulated using ERA5 Hs of same year 0.0146 24.05 

Simulated using ERA5 Hs of 15 years 0.0132 0.0025 24.17 0.42 

Simulated using Spatio-Temporal Model Hs 0.0138 0.0014 24.59 0.53 

Simulated using the Storm Model Hs 0.0234 0.0040 26.73 0.79 
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4.2.3 Summary of Paper G 

Title: “Impact of voyage optimizations aided operation on a ship’s fatigue design” 

Paper G investigates the impact of various voyage optimizations used in assist a ship’s 

operations on the long-term wave statistics and corresponding fatigue life between design and 

operational conditions. It lists the factors that can affect the fatigue design based on stress-based 

approaches. Fatigue estimation relies on long-term wave statistics, which are normally provided 

by classification guidelines. However, different ship operations such as slow steaming and 

voyage-optimization-aided operations could greatly affect the encountered wave statistics and 

thus affect the ship’s fatigue life.  

In this paper, the wave scatter diagram from classification society guidelines (IACS 2010) used 

for ship fatigue design is used as a reference for comparison with the wave statistics during a 

ship’s operations assisted by different voyage optimization methods, which can lead to 

optimized routes with “better” planned calm sea environments.  

To study the impact of voyage-optimization-aided ship operation on the long-term statistics of 

waves encountered by ship, three years of full-scale measurements from a 2800TEU container 

ship equipped with a hull-monitoring system are used. The hull monitoring system installed on 

the studied ship has an old conventional weather routing system using the so-called Isochrone 

method for voyage optimization, in order to guide the ship’s navigation to avoid severe wave 

environment conditions. The ship was operated in the North Atlantic for transportation between 

Europe and North America.  

All the encountered wave conditions during the three-year-measurement campaign are 

extracted and statistically processed. The IACS-suggested wave scatter diagram for North 

Atlantic operation is presented as well for the comparison, shown in Fig. 17, which shows that 

the studied ship has planned safer routes and avoided extremely harsh sea areas, compared to 

the IACS guidelines.  

 

Fig. 17. Wave scatter diagram comparison for (a) IACS North Atlantic operation guideline, 

(b) actual measurements from the studied container ship; the color bar 

presents the probability of occurrence. 

To demonstrate the voyage optimization influence on wave statistics, the short-term 

encountered wave environments from four planned sailing routes of the case study ship are 

compared: 1) the actual routes; 2) the routes with minimum damage; 3) the routes with 

minimum fuel consumption; 4) the Great Circle routes. Routes 2 and 3 are optimized by the 

voyage optimization algorithm proposed in Paper B. Fig. 18 shows the fatigue damage 

accumulations over three-year sailing in North Atlantic by different ship operations. It shows 

that the fatigue life can be effectively extended by at least 50% by voyage optimizations.  
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Fig. 18. Fatigue damage accumulations for different ship operations over three years. 

 

  



44 

 

  



45 

 

5 Conclusions 

Voyage optimization recognized as one of the most effective ways to improve ships energy 

efficiency and safety has been widely implemented in the current shipping industry (DNV GL 

2015). The main objective of this thesis is to develop new voyage optimization algorithms to 

reduce a ship’s fuel consumption and air emission, as well as ensure reliable expected time of 

arrival (ETA) during a ship’s operations. In addition, this thesis also aims at studying the impact 

of voyage optimization aided ship operations on the wave environments encountered by ships 

and corresponding ship fatigue design. The innovative voyage optimization algorithms 

developed in this thesis have addressed the improvement of the state-of-art voyage optimization 

algorithm, and providing additional capabilities and features such as globally optimal solutions 

and multi-objective optimization capability. The application of voyage optimization to aid a 

ship’s operations for mitigating the risk of structural failure mainly focuses on reducing the 

crack propagation and fatigue damage accumulation in ship structures, leading to the extension 

of a ship’s service life with respect to fatigue safety.  

The results presented in the appended papers showed scientific developments in the areas of 

voyage optimization algorithms with respect to increased ship energy efficiency and enhanced 

safety during ship operations, as well as the impact of their application to a ship’s fatigue design. 

The thesis: 1) illustrates the essence of commonly used voyage optimization algorithms 

(strengths and weaknesses), 2) develops two advanced voyage optimization algorithms for fuel-

saving, which cover most ship control operations (speed operation and engine power operation), 

3) demonstrates the impact of uncertain input parameters on two-dimensional voyage 

optimization algorithms, and 4) investigates the impact of voyage optimization aided operations 

on a ship’s fatigue design.  

The main findings and conclusions are presented below, as part of the sub-goals presented in 

Section 1.5. 

The essence of the commonly used voyage optimization algorithms 

Paper A drew the conclusion that Dijkstra’s algorithm and the dynamic programming method 

are used in a predefined waypoint/grid system, and both can find the best route from a 

predefined waypoint/grid system. The solution accuracy is highly dependent on the grid 

resolution. The advantage of using a predefined grid system is that it can easily handle 

impassable areas.  

Another finding in Paper A is that the isochrone and isopone methods are more suitable for 

single-objective optimization. The 3D dynamic programming method is more capable of 

analyzing dynamic weather, essential for both voluntary and involuntary speed reduction. 

The development of new voyage optimization algorithms 

Papers B and C proposed two innovative voyage optimization algorithms, i.e., a 3D Dijkstra’s 

algorithm and a ship engine power-based voyage optimization method combining various 

optimization algorithms. The 3D Dijkstra’s algorithm proposed in Papers B is applied for ship 

operations through a series of optimum sailing speeds as navigation control inputs. It was found 

that the 3D Dijkstra’s algorithm can help reduce fuel consumption by an average of 

approximately 10% compared with actual sailing routes while maintaining the planned ETAs. 

It was concluded that the 3D Dijkstra’s algorithm is also capable of multi-objective 

optimization (minimum fuel consumption, ETA and lowest fatigue damage) with Pareto front 

analysis. Additionally, it can regenerate routes with little effort. This method can provide better 

voluntary speed reduction or speed increases for energy-efficient shipping route planning.  
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The optimization method proposed in Paper C is applied to ship operations through a series of 

optimum engine powers as navigation control inputs. It introduced a scheme for solving this 

problem by combining genetic algorithm and dynamic programming concepts. It was shown 

that the method can provide an average of 5.2% fuel savings compared with actual sailing routes 

and 3.4% over routes optimized with fixed shaft power settings.  

Impact of the input parameter uncertainties 

Paper D studied the uncertainties in voyage optimization results originated from the voyage 

optimization input parameters, i.e., the ship performance models, the metocean forecast, the 

voyage optimization algorithms and operational strategies. The results showed that using 

different ship energy performance models for two-dimensional voyage optimization algorithms 

can produce 4-10% deviations in fuel consumption estimates. A 3-10% fuel consumption 

difference is expected from the metocean forecast uncertainties for the same voyage 

optimization method. It was also concluded that sailing through the Great Circle routes with the 

proposed speed optimization algorithm is a better option, especially for slow steaming 

operations, compared with course optimization at a fixed speed.  

Reduction in fatigue crack growth rate in the ship structure 

In Paper E, the impact of using voyage optimization during the ship’s operational period on 

crack propagation is investigated. It was found that commonly used voyage optimization 

algorithms can help the ship avoid severe storm conditions, leading to diminished fatigue crack 

propagation with enhanced ship structural integrity. The dynamic programming method can 

help increase vessel fatigue service time by at least 50%. 

Impact of different ship voyage optimizations on encountered wave environments and ship 

fatigue design 

In Paper F, two statistical wave models, i.e., the wave storm model and the spatio-temporal 

wave model, were compared. It was validated that both wave models can well describe the 

wave statistics of the ship’s encountered sea environments. Additionally, it was concluded that 

the two wave models can be used to estimate the stress signals for the ship structural details and 

analyze fatigue damage accumulation and crack propagation for specific ship voyages. It was 

shown that these models have great potential to provide wave statistics for more realistic ship 

fatigue design. 

In Paper G, it was shown that the wave statistics provided by the classification guidelines for 

ship design purpose gives a harsher prediction of the encountered wave conditions compared 

with the encountered wave statistics of the actual sailings. Furthermore, the difference in wave 

statistics from various optimization methods is about 10-30%, while the difference in fatigue 

damage accumulation is more than 50%. It was concluded that the ship operations aided by the 

voyage optimization can influence the wave statistics and consequently influence the ship 

fatigue life which can be extended by at least 50% when using voyage optimization.  
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6 Future work 

Voyage optimization for long voyages 

Today’s metocean forecast institutes mostly provide 10 day forecast data to the end-users. It is 

difficult for voyage optimization algorithms to provide realistic solutions for long voyages with 

total sailing time more than 10 days in the future. Thus, innovative optimization algorithms 

should be developed to provide optimal route solutions for these long voyages.  

Impact of updating metocean forecast data during voyages on voyage optimization results  

The voyage optimization process is usually conducted before the departure of a voyage. The 

metocean forecast data is usually updated every 6 or 12 hours. When a ship has the metocean 

forecast data updated during the voyage, it can either follow the original route plan or re-

optimize the plan. It is essential to investigate the impact of updating the route plan during the 

voyage compared with the original route plan. 

Voyage optimization considering transient ship states  

A long-term focus should also address how to consider a ship’s transient states in voyage 

optimization algorithms, such as various ship motions and trim variations. Most voyage 

optimization problems are solved in discrete forms, and their objective functions normally 

describe the mean ship state during a period (hours), such as fuel consumption rate and fatigue 

damage accumulation rate. Thus, the cost of a discrete form along a candidate route can be 

calculated. It is confusing to consider a ship’s transient state as an objective to be estimated in 

a discrete form voyage optimization problem. However, it is essential to determine a ship’s 

transient state during a voyage. Thus, an appropriate approach is needed for this problem.  

Development of the ship performance model 

A ship’s performance models are key elements affecting the voyage optimization results. In the 

present study, the ship power/fuel consumption models include semi-empirical models, 

theoretical models, and basic statistical models to fit the residual between the measured 

performance and that predicted by theoretical models. These approaches provide a good 

estimate of power/fuel consumption, but they are not sufficiently accurate. Therefore, another 

area for future work is to combine theoretical modeling with machine learning algorithms to 

update a ship’s performance models in real-time.  
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