CHALMERS

UNIVERSITY OF TECHNOLOGY

Exploring the competition between variable renewable electricity
and a carbon-neutral baseload technology

Downloaded from: https://research.chalmers.se, 2020-04-24 15:29 UTC

Citation for the original published paper (version of record):

Jonson, E., Azar, C., Lindgren, K. et a (2020)

Exploring the competition between variable renewable electricity and a carbon-neutral basel oad
technology

Energy Systems, 11(1): 21-44

http://dx.doi.org/10.1007/s12667-018-0308-6

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Energy Systems
https://doi.org/10.1007/512667-018-0308-6

ORIGINAL PAPER

@ CrossMark

Exploring the competition between variable renewable
electricity and a carbon-neutral baseload technology

Emma Jonson'(® . Christian Azar' . Kristian Lindgren’ . Liv Lundberg’

Received: 4 November 2017 / Accepted: 14 September 2018
© The Author(s) 2018

Abstract

In this paper we explore the competition between variable renewable energy sources
(VRE) and a carbon-neutral baseload technology in the transition to a low-carbon
power system. We study a stylized system subject to a gradually increasing carbon tax
using an agent-based model where agents are power companies investing in new capac-
ity. The agents make predictions of the profitability of different investment options.
Five electricity generating technologies are available in the model: coal, gas, wind,
solar PV and a more expensive carbon-neutral baseload technology. We compare the
output from our model with a corresponding optimization model. We present two main
findings: (1) installed capacity of VRE initially increases with a carbon tax. However,
once the carbon tax has reached a certain level the installed capacity of VRE starts
to decline due to competition with the stylized carbon-neutral baseload technology.
(2) With limited foresight we find that the model underinvests (first 25 years) in wind
and then overinvests in wind compared to the optimal solution. The reasons for these
dynamic phenomena are explained and an extensive sensitivity analysis is carried out.
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1 Introduction

Policy analysis and decisions about energy and environmental issues are often
informed by various forms of optimization models that find the least cost optimized
pathway, e.g., GET [1], PRIMES [2], TIMES [3] and LIMES [4]. These models
implicitly assume that the large number of independent market actors all are rational
profit maximizers with full information and perfect foresight. Markets are assumed
to always be in equilibrium, which means that transient non-equilibrium phenomena
cannot be properly studied. Ex-post modeling shows that cost optimization does not
always approximate real-world electricity system transitions, see e.g. [5]. For these
reasons, other types of models may be a useful complement to optimization models
when studying the transition to a low-carbon power system.

With an agent-based modeling approach several of the assumptions in optimization
models can be relaxed. Here we may model (i) actors that operate under uncertainty
about future policies, fuel and electricity prices and other actors’ investments; (ii)
actors that are sufficiently large to exercise market power; (iii) actors that do not
necessarily make rational decisions given the information they have; and (iv) actors that
may have other objectives than pure profit maximization. For instance, cooperatives
may want to invest in solar or wind even if the profit is higher for other technologies.
Such assumptions are difficult to include in optimization models. In a world where
electric power systems are becoming increasingly complex, agent-based models may
serve as computational laboratories for the validation of market design prior to real-
world implementation [6].

We have developed an agent-based model (ABM) where agents are power com-
panies investing in the power market. Capacity expansion is driven by the agents’
expectations of future profits, which in turn depend on expectations of (1) future car-
bon prices, (2) demand, and (3) the composition of the future generation mix. (The
carbon price, demand and the generation mix together determine the electricity price.)
Because of uncertainty and risk, the agents in our model use a higher discount rate
than a social optimizer in a risk free setting. For this paper we use the model to study
the effect of limited foresight during the transition to a low-carbon power system. The
model represents a country with demand and weather conditions as in Germany, and
with stylized market conditions.

Generation companies in the power market generally face two types of problems:
the investment decision and the production decision [7]. ABMs applied to the power
market have previously been used mainly to study strategic bidding behavior on the
wholesale electricity market (e.g. [8—10]). ABMs that model capacity expansion are
fewer. An example is EMLab-Generation developed at TU Delft described in [11]
and [12]. Here agents base their investment decisions on estimates of future prices,
the costs of different generation technologies, and possibly other factors such as risk
aversion or a preference for specific generation technologies such as renewable energy.

In order to achieve a strong mitigation of greenhouse gas emissions, a transition to
a substantially different energy system is needed. The electricity sector in particular
has a large potential for decarbonization given technologies such as wind power, solar
PV, nuclear, thermal power plants with carbon capture and storage (CCS) and solar
thermal coupled with hydrogen storage. These technologies can be divided into two
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main categories: the first is variable renewable energy sources (VREs), which include
wind and solar power. The output from these technologies is intermittent since it is
determined by weather. The second category includes carbon-neutral technologies
with baseload characteristics such as nuclear, thermal power plants with CCS and
solar thermal coupled with hydrogen storage. They have high investment costs but rel-
atively low variable operating costs and their economic model is based on them selling
electricity during most hours of the year. These technologies are also “dispatchable”,
meaning that they can adjust output in response to demand.

The aim of this paper is to analyze how VREs, i.e., non-dispatchable technologies,
compete with conventional fossil fuels (gas and coal) and dispatchable carbon-neutral
technologies under increasing carbon taxes. Hirth [13] analysed the optimal wind
deployment in steady state for various carbon taxes. A similar study has been done by
de Sisternes et al. [14]. In our paper, we take this analysis one step further by analyzing
the transient non-equilibrium development of the electricity system under increasing
carbon taxes using an ABM. In addition, we compare our result with those obtained
using an optimization model and analyze why the models give similar but somewhat
different results. In addition, we find a couple of properties of the behavior of wind
and solar when competing against fossil and carbon-neutral dispatchable electricity
technologies, that also Hirth and de Sisternes et al. have noted, and we analyze and
explain these features and the mechanisms behind them further.

The paper is structured as follows. In Sect. 2 we describe our ABM. Section 3
declares the data used. Section 4 describes our results. In Sect. 5 we discuss our
results and Sect. 6 concludes.

2 Methodology

Agent-based modeling is, in our perspective, a mathematical modeling approach in
which decisions serving as driving mechanisms in the time development of the system
are explicitly represented. In the literature it is often said to be a computational method
that enables a researcher to create, analyze, and experiment with models composed
of agents that interact within an environment [15]. In these models individual entities
(the agents) and their interactions are directly represented and the agents’ decision
rules are explicitly specified. The ABM presented in this paper is designed to study
the electricity system and to capture both investments in power plants made over time
and output (dispatch). ABMs have been used in different areas of economics [16] and
calls are being heard to increasingly use this type of modeling to better estimate the
costs of climate change mitigation [17]. We believe that this modeling approach can
play an important role in the study of power system transitions. The ABM presented
in this paper is a first step in our attempt towards a more developed representation of
investors in the power market. The agents in our model are power companies investing
in new capacity. They are characterized by their beliefs about the future power system
and future carbon tax. The model runs in 1-year steps.

We model a stylized power system with one single node. Trade of electricity with
other regions and electricity storage are not included in the present version. Variability
of supply and demand is explicitly represented as time slices over the year, with each
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time slice characterized by a certain wind and solar availability as well as a certain shift
in the demand schedule. The model horizon is 70 years and we have no stochasticity
in the model.

2.1 Supply and demand

We assume an ideal electricity market in the sense that neither producers nor consumers
make strategic bids to affect the market price. Power plants are dispatched according
to the merit order (i.e., according to marginal cost of production) and each hour a
price is determined that clears the market. We model demand as iso-elastic, so that the
relation between the delivered and consumed power g, and corresponding price p; in

time slice 7 is
p €
T
dr = 40,7 (-) (1)
Po

where € is the short term price elasticity of demand and pq is a constant. We use
elasticity € = —0.05 and py = 3.25 cent/kWh. The “demand reference level” g . is
a parameter that shifts the demand curve in each time slice reflecting the variations of
demand over seasons and times of day. In this version of the study we utilize German
hourly demand levels from year 2011 as a proxy for g .. This is a simplification, since
a low (high) demand level in a certain hour may have been the result of a high (low)
price in that hour, rather than a change in consumer preferences.

In each year the power system is characterized by the installed capacity of the
different power technologies together with the age profile of the plants. For each time
slice the model finds the price that clears the market, i.e., the price at when demand
equals supply. The last dispatched plant may operate at a fraction of its full capacity.
In this model, the plants with the highest variable operating cost must rely on hours
of scarcity to make sufficient revenues to pay back the investment costs. In reality
plant owners may use market power to affect prices even during hours when demand
is below total capacity, if the excess capacity is sufficiently small [18]. This option is
not allowed here.

The year is divided into time slices where each slice t is characterized by demand
reference level qo, -, wind power output and solar power output as the shares of installed
capacity. Appendix A describes the time slicing further. In this study we let the time
slicing representation of the year be constant over the modeling horizon (i.e., no change
in demand reference level or solar and wind patterns from one year to another). We
ignore any operational considerations such as minimum up and down times, ramp rates
and part-load performance, which allows us to disregard any chronology within a year.
(Costs associated to start-ups and shutdowns are also ignored.) Finally we disregard
must-run requirements of conventional power plants necessary for grid services like
voltage stabilization etc.

We assume that plants start to operate the year after the investment decision is
made and the investment cost is paid. Each plant produces electricity whenever the
electricity price is higher than or equal to the variable operating cost. The model starts
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at time # = 0 with an equilibrium capacity of power plants, given a carbon tax of 0
$/tCO;, and with a uniform distribution of remaining plant lifetimes.

2.2 The investment decision

Investment decisions are made as follows. Each year the agents form expectations
about future installed capacity, the future demand and the future carbon tax. Based on
these expectations the agents calculate the future electricity price if a new investment
were to be made in each type of power plant. The predicted electricity price is then
used to assess the net present value (NPV) of each investment option. In this study
we let agents use a discount rate of 8%/year. This rate is chosen to represent the long
term return on capital corrected for risk that an agent investing in power plants would
typically assume. In the power market each plant type has its own risk profile that is
also strongly affected by the overall capacity mix of the market [19]. The discount
rate used typically also varies with type of investor and country. See e.g. [20,21] for
more details. For simplicity we assume that all actors have the same discount rate for
all investment options.

We assume that agents (companies) are profit maximizers and that in order to
achieve that goal, they rank projects based on their profitability index (PI),! i.e., the
NPV of future net revenues divided by the investment cost. In addition, since some
types of power plants have significantly longer life times than others, we have corrected
for this by looking at the expected annuitized net revenues (per euro invested), i.e.,
the highest

CRF * PI 2)
where
r(1 +r)T
CRF = ———M— 3
1+nT -1 )

is the capital recovery factor, T is the lifetime of the project and r is the discount rate.”

We assume in this model that agents know how much installed capacity there is of
each power plant type, which plants will be decommissioned during the year, and how
many new plants that currently are being invested in by other agents. Agents also know
the carbon tax and the level of demand for the following year. Agents therefore have
relatively detailed information about the conditions of the power system the following
year, but no additional knowledge beyond that. For this study, agents assume that the
conditions of the following year will hold into the future.

! When funds are limited companies maximize profits by prioritizing the projects with the highest prof-
itability index. Although few companies face capital rationing in absolute terms many of them have self
imposed capital constraints. Reasons for this are that companies want to limit their level of indebtedness
and also want to avoid problems from growing too fast. Thus, ranking projects by their profitability index
is a common capital budgeting technique in industry [22].

2 Asa sensitivity analysis we tested other ranking criteria, e.g. NPV, and the results were very similar.
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We have implemented the model in the following way. In a given year agents are
first randomly selected to make investments in new power plants, which they do if
there are plants that they expect to be profitable. Information about the investment is
made public to the other agents, which means that subsequent investment decisions
take into account previous decisions in the same year. When no more agents want to
invest, power plants that have reached the end of their lifetimes are decommissioned
one at atime. The agents assume that the plants that have not yet been decommissioned
will continue to operate in the following year. After each decommissioning the agents
make a new prediction and invest in new power capacity if they want to. Plants start to
produce electricity at the beginning of the following year. The chosen implementation
guarantees that the agents make a correct estimation of future prices as long as the
model remains in a steady state over time.

Different types of power plants generally differ in size. For instance, nuclear power
plants typically have higher capacity than wind power parks. At the same time not
all power plants of the same type are equally large. A 1000 MW nuclear power plant
may have a positive NPV while a 1100 MW plant is assessed to be unprofitable. In
this implementation we let agents invest in power plant modules of just 50 MW at a
time, in order to not disfavor technologies with large plant sizes and to limit the effect
that each investment has on prices. The resulting total investments, after a year of
accumulated decisions, typically correspond to plants larger than the module value.

In this first study agents do not take their existing portfolios into account when
making an investment. They only consider the new investment opportunity in isolation.
They are also homogeneous in their strategies. This means that the exact number of
agents is insignificant for our analysis. If any new power plant is expected to be
profitable, one of the agents will make the investment. Agents are not allowed to
change their minds once an investment decision is taken.

2.3 The optimization model

The ABM will be compared with an optimization approach that finds the optimal
path of investments assuming full information of all aspects of the system for the full
time period. The optimization model is a standard non-linear optimization based on
maximization of total surplus of consumers and producers, thus reflecting a market
equilibrium solution of the transition without uncertainty. The details of the opti-
mization model implementation is presented in Appendix B. The optimization model
represents the same stylized power system, and with the same supply and demand
characteristics, as the ABM. If the same discount rate is used the two models find the
same steady state.

3 Data

We have chosen to apply our model to a power system resembling Germany in terms of
demand as well as solar and wind potential. Data on wind speeds and solar insolation
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Table 1 Parameter values

Coal Gas Solar PV Wind CN-Baseload

Investment costs (€/kW) 1450 900 800 1500 6000
Variable operating costs?

(cent/kWhy;) 2.0 4.5 0 0 1.0
Emissions intensity

(g CO2/kWhyy) 1000 450 0 0 0
Lifetime (years) 40 30 25 25 40
LCOEP  (cent/kWh,;) 3.7 5.6 7.1 5.0 8.2

4Excluding the carbon tax
bL evelized cost of electricity, assuming a load factor of 80% for the dispatchable power technologies and
a discount rate of 8%/year

were taken from the European Centre for Medium-Range Weather Forecasts® with a
temporal resolution of three hours. We use data from year 2008, which is a year with
close to average wind speeds in Northern Europe. The wind speed is taken from level
59 corresponding to a hub height of approximately 93 meters. The wind speed data
was processed by applying an output function simulating state-of-the-art wind power
plants, as described in [23]. The solar insolation data was processed with an output
function simulating fixed silicon solar cells, as described in [24]. We assume that wind
power plants and solar cells are distributed homogeneously over the country, i.e., we
do not give priority to sites with above-average wind conditions. The modeled capacity
factors of the wind and solar PV fleets are 32% and 12%, respectively. This can be
compared with the observed capacity factor of German on-shore wind power in 2015,
which was 22.7% [25]. The low capacity factor can be attributed to older plants having
shorter towers, shorter blades and comparatively larger generators than modern ones.
Many countries do already today have wind power capacity factors above 32%, e.g.
Ireland, Norway and the United States [25]. The electricity demand data are for year
2011, which is a typical year in terms of demand, obtained from ENTSO-E.*

3.1 Scenario and parameter values

Five types of power plants are included: coal-fired power plants, natural gas fired
plants, solar photovoltaic (PV) systems, wind power plants and a generic carbon-
neutral baseload technology (CN-Baseload). Each type of power plant is characterized
by an investment cost, a variable operating cost, a CO, emission intensity and a
fixed plant lifetime (see Table 1). The model is initiated with a fleet of power plants
corresponding to the equilibrium capacity in our system without a carbon tax. The
model is run with a pre-defined carbon tax trajectory (see Fig. 1) where a carbon tax
is introduced after 10 years starting at 0 €/ton CO and increasing linearly up to 100
€/ton CO, in year 50. The tax remains at that level until year 70. In the EU there

3 http://www.ecmwf.int

4 https://www.entsoe.eu/data/data-portal/consumption/
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Fig. 2 Installed capacity by year (a) and electricity produced (b) in the ABM. a Installed capacity. b
Electricity produced

is already a price on CO; emissions, but it is low. Given the current high supply of
emission rights, it may take a decade before the price of CO; emissions increases.

4 Results
4.1 Electricity generation and installed capacity

The aim of this paper is to explore how VRE and a carbon-free baseload power
technology compete in the transition to a low-carbon power system. Figure 2 shows
the installed capacity over time and the annual electricity generation in our model. The
first years, when there is no carbon tax, our power system is dominated by coal-fired
power plants and complemented with a small amount of gas as peak capacity. When
the carbon tax is introduced both VRE and CN-Baseload gain a relative advantage
compared to coal fired plants, and compete with each other for room in the energy mix
as the tax continuously increases. Wind power is the first carbon-neutral technology
that is introduced after the adoption of the carbon tax. As the carbon tax continues
to increase CN-Baseload and solar PV eventually start growing while wind declines.
This happens despite the fact that CN-Baseload has a higher LCOE than wind. At the
end of the model run also the installed capacity of solar PV declines. When the carbon
tax stabilizes the installed capacity of the different technologies eventually reach their
steady state levels.
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Fig.3 The capacity factors of CF
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The capacity factors of CN-Baseload, coal and gas are shown in Fig. 3. CN-Baseload
has alow variable operating cost and appears early in the merit order. Its capacity factor
is always high, in the range of 82-95%. In this model we let demand be elastic and
we have no curtailment of VREs. The capacity factors of solar PV and wind therefore
lie at constant levels over the years, at 32% and 12%, respectively.

For gas and coal the story is different. In year 30 we can see a sudden dramatic
increase in the electricity generation of gas. This technology starts out as peak capacity
running only a few hundred hours per year but then increases its capacity factor to
around 80%. At the same time coal decreases its electricity generation. The reason is
that coal and gas switch places in the merit order when the tax is sufficiently large.
From year 30 the capacity factors of both coal and gas decrease continuously as the
carbon tax grows. The reason is the expansion of VREs and CN-Baseload that appear
first in the merit order.

4.2 The electricity price

Figure 4 shows the development of the electricity price over time. The average yearly
electricity price increases when the carbon tax is introduced (see Fig. 4a). The reason is
that the carbon tax increases the variable operating costs of coal and gas, which raises
the electricity price during the hours when these power sources set the electricity price.
It should be noted that the electricity price does not increase in line with the carbon
tax after a few decades. The higher cost for fossil power leads to an increasing share
of VRE and CN-Baseload in the electricity system, and the cost of these technologies
does not increase with the carbon tax, i.e., the price increase expected from the increase
in the carbon tax is mitigated by the increasing use of VRE and CN-Baseload. We
also have a shift towards more hours with gas on the margin instead of coal. Since the
former technology is less carbon intensive than the latter, the average electricity price
becomes less affected by the carbon tax.

Figure 4b shows the average revenues received by CN-Baseload, solar PV and wind.
We note that the average revenues differ by technology. This is explained by the fact
that different technologies generate electricity at different points in time and that the
electricity price varies over time. In particular we note that the average revenues per
kWh received by wind power remain at a comparatively low level even as the average
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Fig.4 a Average electricity price by year and b average revenues from sold electricity by power technology
and year. a Average electricity price. b Average revenues by technology
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Fig. 5 Installed capacity by year of CN-Baseload, solar PV and wind, in the ABM and the corresponding
optimization model

electricity price rises. This can be explained in the following way. Agents in the model
invest in wind (or any technology) as long as there is profit to be made, i.e., the net
present value of all revenues exceed total costs including the investment costs. This
means that if the average revenue received per kWh of electricity sold by the wind
operators is higher than the LCOE for wind power, agents will invest in more wind
since there is profit to be made. When that is done, the average revenue drops since the
price of electricity will drop the more wind there is in the market. Investments in wind
will stop when the average revenue drops below the LCOE for wind. Thus, for that
reason the average price of electricity received by wind operators will hoover close to
the LCOE of wind. The reason for the drop in the revenues received (during the years
30-45) has to do with transient non-equilibrium phenomena due to limited foresight
of the agents. The same reasoning applies to solar PV and other technologies.

4.3 Comparison with an optimization model

How does limited foresight affect the competition between VRE and a carbon-neutral
baseload technology such as nuclear? To answer that question we compare what hap-
pens in the ABM with our optimization model of the same electricity system.

In Fig. 5 we show the installed capacities of CN-Baseload, wind power and solar
PV in the ABM and the optimization model when both models have the same discount
rate of 8%/year. The installed capacity of wind is lower in the ABM than in the optimal
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Fig. 6 Ex-post profitability index of CN-Baseload, solar PV and wind power in the ABM as a function
of the year of investment. (The figure shows the profitability index for all years, not only the years when
investments actually were made.) The profitability index is calculated with a discount rate of 8%/year

solution during the first years after the carbon tax is introduced. Between years 25 and
50 this relationship is reversed. Both of these observations can be explained by the
agents’ limited foresight. In the first years the agents are ignorant of the increase in the
carbon tax which means that they underinvest in wind power. In the later years they
fail to anticipate the subsequent introduction of CN-Baseload in the power system and
therefore over-invest in wind.

The installed capacity of CN-Baseload is lower in the ABM than in the optimization
model in the transient phase. Due to the over expansion of wind power from year 25
there is less room for CN-Baseload to expand profitably in the ABM (prices become
depressed). We also note that the ABM invests more in solar PV in years 35-40 than
what is given by the optimal solution. Less installed capacity of CN-Baseload makes
it possible for solar PV to expand more. At the end of the model run when the carbon
tax has stabilized, the two models eventually find the same steady state.

Figure 6 shows the ex-post profitability index of the ABM as a function of the
year the investments are made, calculated with a discount rate of 8%/year. We can
see that the profitability index of wind ends up well below zero during most of the
model run, except in the final years. We note that even though the installed capacity of
wind is lower than the optimal solution in years 15-20, the profitability index is still
negative during these years. The reason is the subsequent over-investment in wind
power, which reduces the revenues also for the wind power plants that were built
earlier. In summary, the over-investment of wind (compared to the optimal solution)
reduces the competitiveness of CN-Baseload, but also decreases its own profits by
expanding “too much”.

Figure 7 shows the CO; emission trajectory for three model runs (an ABM run
with a discount rate of 8%/year and two runs with the optimization model, one with
a discount rate of 4%/year and one with a discount rate of 8%/year). We can see that
the emissions are slightly higher in the ABM than in the optimization model with r
= 8%lyear (i.e., for the same discount rate). The reason for this is that the carbon-
neutral technologies are introduced earlier in the optimization model than in the ABM
since there is perfect foresight in the optimization model which means that the ever
increasing carbon tax is taken into account in the investment decision in the model.
Between years 10 and 35 there is also more gas in the former model than in the latter. It
is also interesting to compare with the optimization model with a discount rate of only
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Fig.7 Yearly emissions for the Mt CO2 /yr
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4%lyear (Opt4). In this case the annual emissions are significantly lower, since the
lower discount rate tends to benefit technologies with a higher investment cost (like
solar, wind and nuclear). Since optimization models typically use the risk free social
rate of discount (which is lower than private discount rates) they likely overestimate the
CO; reduction that would take place in the real world as a consequence of a carbon tax.
Although the mechanism behind this is well understood this (likely) underestimation
of the required carbon tax is rarely pointed out when results from optimization models
are presented. Two recent exception are Iyer et al. [26] and Hirth and Steckel [27].

Both the ABM and the optimization model describe the development of a power
system over time as it undergoes a transition. The models are generally not in steady
state in any particular time step, except in the initial and final years when all costs are
constant over time. In Appendix C we estimate the steady state capacities for each tax
level for comparison.

4.4 Sensitivity analysis
4.4.1 Therole of gas

In this section we examine the sensitivity of our results with respect to the price of
natural gas. Figure 8 shows the installed capacity of CN-Baseload and wind for three
different levels of the gas price: 3.5 cent/kWh, 4.5 cent/kWh (baseline) and infinity
(a case where gas is not available). As before we see a “rise and decline” behavior
of wind when the system is exposed to an increasing carbon tax. We also note that
the final installed capacity of wind, which might be surprising, is higher the lower the
price of gas. The reverse is true for CN-Baseload.

4.4.2 A scenario with favorable conditions for solar PV

In this section we examine how solar PV responds to a carbon tax when it is the sole
source of VRE, and the meteorological conditions for solar power are more favorable.
We do this by running our ABM again in the absence of wind power and with higher
solar insolation. For this analysis we increase the capacity factor of solar PV with
50%, which roughly corresponds to the conditions in countries such as Israel and
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Fig.8 Installed capacity of CN-Baseload (a) and wind (b). The figure illustrates three scenarios: a gas price
of 3.5 cent/kWh, 4.5 cent/kWh (baseline) and infinity. a CN-Baseload. b Wind

Fig.9 Installed capacity of GW
CN-Baseload and solar PV in
the ABM when we omit wind

power and increase the capacity 80 — CN-Baseload
factor of solar PV with 50% 60l
PV
——
40t
20+
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Mexico. Figure 9 shows the installed capacity of CN-Baseload and solar PV under
these conditions. We can see that the installed capacity of solar PV first increases but
eventually declines again, whereas CN-Baseload continues to grow. Solar PV is in
this scenario around four times higher than in our base case at the end of the model
horizons.

4.4.3 A carbon-neutral dispatchable technology with peak load characteristics

Our generic carbon-neutral baseload technology (CN-Baseload) has a high investment
cost (6000 €/kW) and low variable operating cost (1 cent/kWh,;). We now study a sce-
nario where this technology is replaced by a different carbon-neutral technology with
a low investment cost (350 €/kW) and high variable operating cost (6.3 cent/kWh,;).
The lifetime is still 40 years. We call this technology CN-Dispatchable.

Figure 10 shows the installed capacities by year in our model in this “CN-
Dispatchable scenario”. Figure 11 compares the installed capacity of wind and the
generic carbon-neutral technology to the baseline scenario. We see that when CN-
Baseload is replaced by CN-Dispatchable the “rise and decline” of wind disappears.

The installed capacity of CN-Dispatchable in year 70 is larger than that of CN-
Baseload in the baseline scenario (as seen in Fig. 11) but the electric output is smaller.
The capacity factor of CN-Dispatchable at the end of the model horizon is only
50% while it is 95% for CN-Baseload. Given these capacity factors the LCOE is
7.1 cent/kWh for CN-Baseload but only 7.0 cent/kWh for CN-Dispatchable. We can

@ Springer



E.Jonson et al.

Fig. 10 Installed capacity by GW
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Fig. 11 Installed capacity in our baseline scenario (CN-Baseload and Wind*) and in the CN-Dispatchable
scenario (CN-Dispatchable and Wind**)

conclude from this that wind is able to gain a significantly larger market share when it
competes against CN-Dispatchable than when it competes against CN-Baseload, even
though CN-Dispatchable has a lower LCOE than CN-Baseload.

4.4.4 A social risk-free rate of discount

The agents in our ABM use a discount rate of 8%/year. This is higher than what is
typically assumed in optimization models. In these models the discount rate is often
chosen with the aim of representing the preferences of society as a whole under risk-
free conditions. In this section of the sensitivity analysis we let the agents use a value
of 4%/year. This value represents the social risk-free rate of discount and lies within
the ranges of estimates using both descriptive and normative approaches [28-30].

GwW
80p — CN-Baseload ABM4
60} ' - CN-Baseload ABM8
400 H s — Wind ABM4
20l : ’ - Wind ABM8

070 20730 40 50 60 7o

Fig. 12 Installed capacity by year of wind, PV and CN-Baseload when agents use a discount rate of 4%year
(ABM4) and 8%/year (ABMS)
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Figure 12 shows the installed capacities by year of CN-Baseload and wind. We
can see that wind still shows a “rise and decline” behavior as the system is exposed
to an increasing carbon tax. We compare the output with the original model run with
a discount rate of 8%/year (ABMS&) and make two observations: first, the carbon-
free technologies are introduced earlier. The reason for this is that CN-Baseload and
wind are very capital intensive technologies, which means that the price drop from a
lower discount rate is larger than for other technologies. Second, the final capacity of
CN-Baseload increases with a lower discount rate, while the reverse is true for wind.
CN-Baseload is more capital intensive than wind and therefore increases its market
share at the expense of wind when these two technologies are the main competitors.

5 Discussion
5.1 Why does the wind power capacity decline with very high carbon taxes?

It is interesting to note that the installed capacity of wind first increases with a carbon
tax and then decreases. The basic mechanism behind this can be explained in the
following way. In Fig. 13 we display the levelized cost of generating electricity (LCOE)
over time for the main technologies in this analysis (with data from Table 1).

Initially, when the carbon tax is zero or very low, coal is the most competitive
technology (see Fig. 13) and the electricity system is also dominated by coal. As the
carbon tax increases, coal becomes more expensive and by the year 15-20, wind is
beating coal (with this measure). In Fig. 2a we see that wind starts to expand rapidly
behind this point in time

However, with the carbon tax level that is reached around the year 30, coal also
becomes more expensive than CN-Baseload. This means that there will be no more
investment in coal, because coal is beaten by both wind and CN-Baseload. We can
thus see in Fig. 2a that CN-Baseload increases over the period 30-55.

But here an interesting question arises. Why is it that CN-Baseload also beats wind
(at least partly) for the carbon taxes that prevail beyond the year 30 even though the
LCOE of CN-Baseload is significantly higher than that of wind? (As the carbon tax
increases and CN-Baseload expands, the installed capacity of wind is reduced to less

c/kWh
14}
12
10F — CN-Baseload
8 Coal
6 — Wind
a4k
2F

01020 30 40 80 60 70 Y

Fig. 13 LCOE for coal, wind and CN-Baseload as a function of time. The change in LCOE is for the sake
of simplicity and clarity only driven by the increase in the carbon tax
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than half of what it was at its peak.) The reason for this has to do with the fact that
wind is an intermittent technology.

In an electricity system, there is demand for electricity all the time, but wind is an
intermittent technology. Wind without storage (or a lot of trade with other regions)
cannot meet demand at all points in time so market incentives will trigger investments
in dispatchable technologies. In our model investments will be made in CN-Baseload
when the carbon tax is sufficiently high. Once CN-Baseload is expanded, it is cheaper
to run those plants than to build wind power plants, i.e., the variable operating cost
of CN-Baseload is lower than the LCOE of wind. For that reason, CN-Baseload takes
most of the market once the carbon tax makes coal (and gas) too expensive.

Finally, our results and analysis illustrate that LCOE is sometimes a poor measure
of comparing the competitiveness of electricity generating technologies. The reason
for this is that LCOE only refers to the cost of generating the electricity and disregards
from the revenues. For technologies that generate electricity at the same time, this is
not a problem since their average revenues will be the same. Under these circumstances
LCOE is useful as seen here in our analysis of what happens in our ABM when CN-
Baseload starts to compete with coal. But for wind, and in particular solar, the average
revenues may differ substantially from the average price of electricity, in particular
when large amounts of wind and solar are put in place in the electricity system. Under
these conditions, LCOE is not a good measure of the competitiveness of the different
technologies. We see here in our model analysis that investments are made in CN-
Baseload despite the fact that its LCOE is higher than that of wind (and solar).

So far, we have explained why CN-Baseload expands at the expense of wind despite
the fact that it is (according to LCOE) a more costly technology than wind. Now, we
also need to explain why wind takes a larger share of the electricity market around
the years 25-30 than around the year 50, i.e., when it competes primarily against coal
than when its primary competitor is CN-Baseload.

This has to do with the fact that the variable operating cost for coal (with the carbon
tax) is much higher than the variable operating cost of CN-Baseload and that the
electricity price is set by the variable cost of the marginal power technology in the
system. (The exception is when generating capacity is scarce and prices are pushed
up even higher.) When there is a lot of coal in the market and the carbon tax is
relatively high (e.g., years 25-30), wind is more competitive than when coal has been
pushed out by CN-Baseload. For that reason the optimal level of wind drops once
CN-Baseload enters the market (becomes competitive over coal and gas). However, if
CN-Baseload is replaced by a different carbon-neutral dispatchable technology with
a high variable operating cost (i.e., CN-Dispatchable in Sect. 4.4.3) wind may keep
its competitiveness.

Thus, we can make the following more general observation. Assume that an
intermittent technology like wind, competes in an electricity system with either a
dispatchable technology A or a dispatchable technology B. Assume further that tech-
nologies A and B have the same ex ante estimated levelized cost of electricity (given a
certain load factor) but that A has lower variable cost and higher investment cost than
B (i.e., technology A could be nuclear and B could be a biogas fueled combined cycle
power plant). Still, the resulting share of wind when allowed to compete against either

@ Springer



Exploring the competition between variable renewable. . .

of these technologies, will be higher or even much higher when competing against B
than competing against A.

5.2 The electricity price

In Sect. 4.2 we show how the electricity price develops over time in our model. We find
that the price rises as the carbon tax increases. It is interesting to compare this result
with other empirical and modeling studies of how the expansion of VREs impacts the
electricity price, e.g., [31-39].

In these studies, the price of electricity drops with the expansion of VRE. It drops
both on average and, more significantly, during the hours when wind and solar gen-
erates most of its electricity. The reason for this is that solar and wind have low (or
close to zero) running costs and decrease the price through the merit order effect (see
e.g. Hirth [40]). The studies cited here concern markets where wind and solar are
introduced through a subsidy scheme. It is important to keep in mind that a lower
electricity price does not necessarily imply lower total costs for the consumer since
the subsidy is paid via a levy on top of the electricity price or by the government.

In our study we assume that there is no subsidy and that the only policy incentive to
reduce emissions is the carbon tax. Under these conditions, there is a relative drop in
the electricity price compared to the increase that otherwise would have been expected
without VREs. However, there is no absolute drop in the electricity price as a result
of the introduction of VRE as is the case in many countries today that introduce VRE
through subsidy scheme. This distinction may be important to keep in mind.

5.3 Limited foresight of agents

In this paper we use our ABM to study the effect of limited foresight during the
transition to a low-carbon power system. Limited foresight in energy systems models
is not new, see e.g. [41—44]. The motivation for such an assumption is, as often stated,
to better simulate market behavior, in comparison with optimization models, and the
decision environment under which decision makers must operate. In future work we
intend to study different learning mechanisms and how they affect a transition of the
power system.

6 Conclusions

In this study we present an agent-based model (ABM) of a dynamic power system
where agents are power companies investing in new capacity. Our agents form expec-
tations about several unknowns: the level of the future carbon tax, the future power
demand and the future mix of energy technologies that a new power plant will have
to compete with. The agents can choose to invest in wind, solar PV, fossil fuel based
power technologies and a generic carbon-neutral baseload technology (i.e., a technol-
ogy with no carbon emissions and a high capital cost and low operating cost such as
nuclear power.) There is no storage technology in the model. We impose a carbon tax
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on our power system and observe how the competition between these technologies
plays out. We compare our ABM with an optimization model that maximizes the sum
of consumer and producer surplus, given the same discount rate as the agents use.

We find that the use of wind initially increases with the carbon tax, but that (perhaps
somewhat counterintuitively) the use of wind drops when the carbon tax increases
beyond a certain level. For high carbon taxes, the carbon-neutral baseload technology
expands and eventually outcompetes a certain fraction of the total wind capacity. The
reason for this, and under which circumstances it holds, is thoroughly investigated in
the paper.

Our conclusions depend on the technoeconomic assumptions made. For instance,
we have not assumed that any storage technologies are available. Haegel et al. [45]
assume that an electricity storage price of only $0.025/kWh per round trip (charge-
discharge) could be reached by 2030. The introduction of low cost storage technologies
in our model could significantly affect our results. In future work we plan to include
storage technologies in order to explore such scenarios.

In the ABM our agents have limited foresight. We find that agents initially under-
invest in wind when the carbon tax is introduced but later over-invest in wind as the
tax increases further, compared to the optimal solution.

We also find that optimization models may overestimate the CO; reduction asso-
ciated with a given carbon tax. There are two main reasons for this. (1) Optimization
models implicitly assume that all actors have perfect foresight and (2) they typically
use a social discount rate that is lower than what real actors actually use. Out of these
two it is the second feature that has the largest effect in our study. The discount rate
affects the relative cost of different technologies and a lower discount rate favors capital
intensive but low emitting technologies such as solar, wind and nuclear. This mech-
anism is well known but is rarely pointed out by researchers who use optimization
models.

We also find that higher average electricity prices may be expected when an intro-
duction of VRE is driven by an increasing carbon tax. This stands in contrast to results
obtained in many other papers on the impact of a large scale introduction of VRE on
electricity prices (see e.g. [31-39]). However, these papers focus on cases where wind
and solar power is introduced through a support scheme rather than a price on carbon.
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Appendices
A.Time slicing

Time slicing is a method of representing intra-annual variability of e.g. renewable
energy output and consumer demand in energy systems models. Each time slice aggre-
gates together all hours that fulfill the characteristics of the slice, irrespective of when
during the year they occur. Lehtveer et al. [46] evaluate time slicing in two dimen-
sions, wind and solar PV output, and find that as little as 3> to 4 slices may provide
acceptable solutions for large integrated assessment-type models. In their study they
assume that solar output and electricity demand are correlated. Since our models are
relatively simple with low computational requirements we can afford to increase the
number of slices by including demand as a third dimension. We have chosen to divide
each dimension into four different levels: low, medium-low, medium-high and high
(see Fig. 14), so that we get 4> = 64 time slices. Table 2 shows the number of hours
in a year that is allocated to each time slice.

The top row of Fig. 14 shows the load duration curves for solar PV and wind as
shares of total capacity, and demand, that we use as input data to our time slicing. The

Table 2 The time slicing is done in three dimensions: demand reference level g (see Eq. 1), wind output
and solar output

Low wind Medium-low wind Medium-high wind High wind
Low solar
Low qo 28 146 65 25
Med.-low ¢ 256 1027 751 283
Med.-high go 153 645 434 255
High q¢ 16 63 70 73
Medium-low solar
Low ¢qo 34 128 53 21
Med.-lowgq 104 398 213 72
Med.-High go 59 268 235 119
High gg 10 34 33 46
Medium-high solar
Low qo 24 35 19 7
Med.-low go 124 227 163 81
Med.-high go 264 703 419 138
High q¢ 17 52 89 53
High solar
Low g 0 0 0 0
Med.-low g 23 15 15 1
Med.-high ¢ 48 102 10 8
High gg 1 3 2 0

The table shows the number of hours that is allocated into each time slice
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Fig. 14 Load duration curves for solar PV, wind and demand. The top row shows the original data that
we use. The bottom row shows the data when we have converted each of the data series into four discrete
levels. a Solar output, original. b Wind output, original. ¢ Demand, original. d Solar output. e Wind output.
f Demand

bottom row shows the levels and duration of solar and wind output, and demand, after
the time slicing is done.

B. The optimization model

The optimization model represents the same stylized power system as the ABM, with
one single node, no electricity storage and no trade with other regions. As in the ABM,
variability of supply and demand is explicitly represented as time slices over the year,
with each time slice characterized by a certain wind and solar availability as well as
a certain shift in the demand schedule. The model runs in time steps of 5 years and
maximizes the discounted sum of consumer and producer surplus over the modeling
period of 70 years. The consumer surplus, CS(¢), in time step ¢ is given as

CS@t) =

Zpt(t) q: (1) )

1+e€

where K is a constant, p; is the electricity price [€/MWh] in time slice t, ¢, is the
quantity electricity consumed [MWHh] in time slice 7, and € is the short term price
elasticity of demand (see Sect. 2.1). The producer surplus P S(#) in time step ¢ is

PS@ =YY (pe(t) — v — ertax () gic() — Ci()) I; CRE; | ()

i T

where v; is the variable operating cost of technology i, ¢; is the emission intensity of
technology i and g; ; is the amount of electricity sold by technology i in time slice 7.
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C; (¢) is the installed capacity [MW] of technology i in time step #, /; is the investment
cost [€/MW] of technology i and C R F; is the capital recovery factor of technology i.

Since we use 5-year times steps, we assume that system characteristics are constant
over a 5-year period around the year of the considered time steps. (For the last time step
in the optimization, though, only the two immediately preceding years are included
together with the final year of the optimization period.) The optimization problem can
then be formulated as

T-1

max ; ds B3 S(t) +d3 5T S(T) (6)

where 8 = 1/(1 + r), the number of time steps 7 = 14 and S(¢) = CS(¢) + PS(t) is
the sum of consumer and producer surplus. The factor ds = =2+ 8~ + 1+ B+ p2
corrects for the different discount factors internally within a 5-year step, and similarly
does d3 = B~ 4+ B~ + 1 for the last time step including the three years at the end.
The annual investments X (¢), composed by investments x; (¢) in the different power
technologies i in MW, are the independent variables that determine CS and P S. The
capacity of the initial plants in time step 0, as well as the carbon tax throughout the
modeling period are given. The discount rate r is 4% (if nothing else is stated) and
represents the social rate of discount. As in the ABM the initial plants have a uniform
distribution of remaining plant lifetimes. The model is non-linear due to the elastic
demand in each hour given by Eq. (1). We solve the optimization problem with a
local search heuristic, starting from a feasible solution. A heuristic can in general not
guarantee to identify the optimal solution. We do note, however, that the optimization
model finds the same steady state as the ABM as long as the same discount rate is used.

C. The steady state solution

Both the ABM and the optimization model describe the development of a power system
over time as it undergoes a transition. The models are generally not in steady state in

GW
— ABM
80+
--- Opt
o _ Steady state
40}
20+

‘ ‘ ‘ . yr ‘ ‘ ‘ ‘ ‘ . yr
0 10 20 30 40 50 60 70y 0 10 20 30 40 50 60 70y

(a) CN-Bascload (b) wind

Fig. 15 Installed capacity by year in the ABM and the optimization model of CN-Baseload (a), wind power
(b) and solar PV (c). The solid black lines indicate the steady state solution for the tax level associated with
each year. a CN-Baseload. b Wind
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any particular time step, except in the initial and final years when all costs are constant
over time. Here we estimate the steady state capacities for each tax level. Figure 15
shows the steady state solution of CN-Baseload and wind for the tax level associated
with each year. The capacity trajectories of the ABM and the optimization model are
also included for comparison. For the ABM and the optimization model we show the
solution for each year over time but for the steady state solution we show the level of
installed capacity that our models approach over time if the tax remains constant.

References

1. Azar, C., Lindgren, K., Andersson, B.A.: Global energy scenarios meeting stringent CO; constraints-
cost-effective fuel choices in the transportation sector. Energy Policy 31(10), 961-976 (2003)

2. Blok, K., de Jager, D., Hendriks, C., Kouvaritakis, N., Mantzos, L.: Economic evaluation of sectoral
emission reduction objectives for climate change—comparison of topdown and bottom-up analysis of
emission reduction opportunities for CO» in the European Union. Ecofys, AEA and NTUA, Report
for European Commission, DG Environment, Brussels, September (2001)

3. Blesl, M., Kober, T., Kuder, R., Bruchof, D.: Implications of different climate protection regimes for
the EU-27 and its member states through 2050. Clim. Policy 12(3), 301-319 (2012)

4. Haller, M., Ludig, S., Bauer, N.: Decarbonization scenarios for the EU and MENA power system:
considering spatial distribution and short term dynamics of renewable generation. Energy Policy 47,
282-290 (2012)

5. Trutnevyte, E.: Does cost optimization approximate the real-world energy transition? Energy 106,
182-193 (2016)

6. Tesfatsion, L.: Electric power markets in transition: agent-based modeling tools for transactive energy
support. Handbook of Computational Economics, vol. 4. Elsevier, Oxford (2017)

7. Murphy, FH., Smeers, Y.: Generation capacity expansion in imperfectly competitive restructured
electricity markets. Oper. Res. 53(4), 646-661 (2005)

8. Browne, O., Poletti, S., Young, D., et al.: How does market power affect the impact of large scale wind
investment in energy only wholesale electricity markets? Energy Policy 87(C), 17-27 (2015)

9. Sun,J., Tesfatsion, L.: Dynamic testing of wholesale power market designs: an open-source agent-based
framework. Comput. Econ. 30(3), 291-327 (2007)

10. Nicolaisen, J., Petrov, V., Tesfatsion, L.: Market power and efficiency in a computational electricity
market with discriminatory double-auction pricing. IEEE Trans. Evolut. Comput. 5(5), 504-523 (2001)

11. De Vries, L.J., Chappin, E.J., Richstein, J.C.: EMLab-Generation, an experimental environment for
electricity policy analysis. TU Delft (2013)

12. Richstein, J.C., Chappin, E.J., de Vries, L.J.: Cross-border electricity market effects due to price caps
in an emission trading system: an agent-based approach. Energy Policy 71, 139-158 (2014)

13. Hirth, L.: The optimal share of variable renewables. Energy J. 36(1), 127-162 (2015)

14. De Sisternes, F.J., Jenkins, J.D., Botterud, A.: The value of energy storage in decarbonizing the elec-
tricity sector. Appl. Energy 175, 368-379 (2016)

15. Gilbert, N.: Agent-Based Models, vol. 153. Sage, Thousand Oaks (2008)

16. Farmer, J.D., Hepburn, C., Mealy, P., Teytelboym, A.: A third wave in the economics of climate change.
Environ. Resour. Econ. 62(2), 329-357 (2015)

17. Stern, N.: Economics: current climate models are grossly misleading. Nature 530(7591), 407409
(2016)

18. Ranci, P, Cervigni, G.: The Economics of Electricity Markets: Theory and Policy. Edward Elgar,
Cheltenham (2013)

19. Tietjen, O., Pahle, M., Fuss, S.: Investment risks in power generation: a comparison of fossil fuel and
renewable energy dominated markets. Energy Econ. 58, 174-185 (2016)

20. Noothout, P., de Jager, D., Tesniére, L., van Rooijen, S., Karypidis, N., Briickmann, R., Jirous, F., Bre-
itschopf, B., Angelopoulos, D., Doukas, H., et al.: The impact of risks in renewable energy investments
and the role of smart policies. DiaCore report (2016)

@ Springer



Exploring the competition between variable renewable. . .

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Energimarknadsinspektionen: Okad andel variabel elproduktion Effekter pi priser och producenters
investeringsincitament. Swedish Energy Markets Inspectorate (2016). http:/www.ei.se. Accessed 29
Mar 2017

Brealey, R.A., Myers, S.C., Allen, F., Mohanty, P.: Principles of Corporate Finance. Tata McGraw-Hill
Education, New York Clty (2011)

Thorson, L., Johansson, V.: Modelling of wind power—a techno-economic analysis of wind turbine
configuration. Master’s thesis, Chalmers University of Technology (2016)

Norwood, Z., Nyholm, E., Otanicar, T., Johnsson, F.: A geospatial comparison of distributed solar heat
and power in Europe and the US. PloS One 9(12), 112442 (2014)

IEA Wind TCP 2015 Annual Report: PWT Communications. LLC, Boulder, CO. (2016). http://www.
ieawind.org

Iyer, G.C., Clarke, L.E., Edmonds, J.A., Flannery, B.P., Hultman, N.E., McJeon, H.C., Victor, D.G.:
Improved representation of investment decisions in assessments of CO; mitigation. Nat. Clim. Change
5(5), 436-440 (2015)

Hirth, L., Steckel, J.C.: The role of capital costs in decarbonizing the electricity sector. Environ. Res.
Lett. 11(11), 114,010 (2016)

Kolstad, C., Urama, K., Broome, J., Bruvoll, A., Carifio-Olvera, M., Fullerton, D., Gollier, C., Hane-
mann, W.M., Hassan, R., Jotzo, F., et al.: Social, economic and ethical concepts and methods. In:
Climate Change 2014: Mitigation of Climate Change, pp. 173-248 (2014)

Zhuang, J., Liang, Z., Lin, T., De Guzman, F.: Theory and practice in the choice of social discount rate
for cost-benefit analysis: a survey. ERD working paper series (2007)

Hermelink, A.H., de Jager, D.: Evaluating our future. The crucial role of discount rates in European
Commission energy system modelling The European Council for an Energy Efficient Economy (eceee)
& Ecofys (2015)

Sdenz de Miera, G., del Rio Gonzilez, P., Vizcaino, I.: Analysing the impact of renewable electricity
support schemes on power prices: the case of wind electricity inSpain. Energy Policy 36(9), 3345-3359
(2008)

SensfuB, F., Ragwitz, M., Genoese, M.: The merit-order effect: a detailed analysis of the price effect of
renewable electricity generation on spot market prices in Germany. Energy Policy 36(8), 3086-3094
(2008)

. Woo, C.K., Horowitz, 1., Moore, J., Pacheco, A.: The impact of wind generation on the electricity

spot-market price level and variance: the Texas experience. Energy Policy 39(7), 3939-3944 (2011)
Gil, H.A., Gomez-Quiles, C., Riquelme, J.: Large-scale wind power integration and wholesale elec-
tricity trading benefits: estimation via an ex post approach. Energy Policy 41, 849-859 (2012)
O’Mabhoney, A., Denny, E.: The merit order effect of wind generation on the Irish electricity market
(2011). http://mpra.ub.uni-muenchen.de/56043/. Accessed 24 Mar 2017

MacCormack, J., Hollis, A., Zareipour, H., Rosehart, W.: The large-scale integration of wind generation:
impacts on price, reliability and dispatchable conventional suppliers. Energy Policy 38(7), 3837-3846
(2010)

Wiirzburg, K., Labandeira, X., Linares, P.: Renewable generation and electricity prices: taking stock
and new evidence for Germany and Austria. Energy Econ. 40, S159-S171 (2013)

Clo, S., Cataldi, A., Zoppoli, P.: The merit-order effect in the Italian power market: the impact of solar
and wind generation on national wholesale electricity prices. Energy Policy 77, 79-88 (2015)

Dillig, M., Jung, M., Karl, J.: The impact of renewables on electricity prices in Germany—an estimation
based on historic spot prices in the years 2011-2013. Renew. Sustain. Energy Rev. 57, 7-15 (2016)
Hirth, L.: The market value of variable renewables: the effect of solar wind power variability on their
relative price. Energy Econ. 38, 218-236 (2013)

Hedenus, F., Azar, C., Lindgren, K.: Induced technological change in a limited foresight optimization
model. Energy J. 27, 109-122 (2006)

Keppo, 1., Strubegger, M.: Short term decisions for long term problems-the effect of foresight on model
based energy systems analysis. Energy 35(5), 2033-2042 (2010)

Chen, H., Ma, T.: Technology adoption with limited foresight and uncertain technological learning.
Eur. J. Oper. Res. 239(1), 266-275 (2014)

Welkenhuysen, K., Piessens, K.: The essential role of uncertainty and limited foresight in energy
modelling. Self J. Sci. (2017) http://www.sjscience.org/article?id=598. Accessed 11 Mar 2017

@ Springer


http://www.ei.se
http://www.ieawind.org
http://www.ieawind.org
http://mpra.ub.uni-muenchen.de/56043/
http://www.sjscience.org/article?id=598

E.Jonson et al.

45. Haegel, N.M., Margolis, R., Buonassisi, T., Feldman, D., Froitzheim, A., Garabedian, R., Green,
M., Glunz, S., Henning, H.M., Holder, B.: Terawatt-scale photovoltaics: trajectories and challenges.
Science 356(6334), 141-143 (2017)

46. Lehtveer, M., Mattsson, N., Hedenus, F.: Using resource based slicing to capture the intermittency of
variable renewables in energy system models. Energy Strat. Rev. 18, 73-84 (2017)

@ Springer



	Exploring the competition between variable renewable electricity and a carbon-neutral baseload technology
	Abstract
	1 Introduction
	2 Methodology
	2.1 Supply and demand
	2.2 The investment decision
	2.3 The optimization model

	3 Data
	3.1 Scenario and parameter values

	4 Results
	4.1 Electricity generation and installed capacity
	4.2 The electricity price
	4.3 Comparison with an optimization model
	4.4 Sensitivity analysis
	4.4.1 The role of gas
	4.4.2 A scenario with favorable conditions for solar PV
	4.4.3 A carbon-neutral dispatchable technology with peak load characteristics
	4.4.4 A social risk-free rate of discount


	5 Discussion
	5.1 Why does the wind power capacity decline with very high carbon taxes?
	5.2 The electricity price
	5.3 Limited foresight of agents

	6 Conclusions
	Acknowledgements
	Appendices
	A. Time slicing
	B. The optimization model
	C. The steady state solution
	References




