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Cavity Resonator Sensor and Temporal Signals Analysis for Object
Detection in Granular Flows

Johan Nohlert, Thomas Rylander, and Tomas McKelvey

We present a microwave measurement system for detection
of objects in granular media flowing through pipes. The system
comprises a resonant cavity sensor operated in several high-order
modes that yield spatially periodic sensitivities, and a microwave
transceiver for high-speed S-parameter measurements. The tem-
poral signatures resulting from the passage of an object and the
temporal correlations of the noise caused by flow inhomogeneities
are incorporated in a matched filter detector, which is shown to
perform uniformly better than two reference power detectors.
The input to the detectors is a real-valued signal obtained from
the first principal component of the complex S-parameter data
for each resonant mode. The detection capabilities of the system
are evaluated by experiments where many object passage events
are observed in granulates flowing down a vertical pipe. We
study the detection of dielectric and metal objects of different
size in microcrystalline cellulose pellets and glass beads. Reliable
detection is demonstrated for metal objects down to 2-4 mm and
Delrin objects down to 4-6 mm in diameter at a mass flow rate
of 100 kg/h depending on the background material.

Index Terms—Powders, flow measurement, microwave mea-
surement, cavity resonator, matched filter, signal detection

I. INTRODUCTION

Powders and granular materials are vastly encountered in
many material processing industries such as the pharmaceuti-
cal, food, agriculture, cement, mineral processing and power
generation industry [1]. Here, the use of in-line measurement
techniques for material characterisation is an important tool
for quality control and process optimisation. In this paper,
we focus on one particular aspect of quality control, namely
to detect undesirable objects in flowing granular materials.
By undesirable objects, we mean discrete solid items that
somehow contaminate the material of interest. Such objects
may cause damage and wear of process equipment [2] or lead
to quality issues and consumer hazards if objects appear in the
final product, particularly for foods and pharmaceuticals [3].
An undesirable object is, in general, characterised either
by an anomalous substance, or that its size is considerably
larger than the background powder particles, or both these
aspects simultaneously. Undesirable objects characterised by
anomalous size can appear due to agglomeration of powder
particles, or due to insufficient milling in cases where the
powder is made by grinding a solid material. The problem
to detect objects with anomalous size can be viewed as a
special case of particle size measurement, a topic well studied

This research was supported by Chalmers and the Swedish Innovation
Agency VINNOVA via a project within the centre ChaseOn.

J. Nohlert (nohlertj@chalmers.se) is with ABB Corporate Research,
Västerås, Sweden. T. Rylander and T. McKelvey are with the department
of Electrical Engineering, Chalmers University of Technology, Gothenburg,
Sweden.

in the literature. On-line particle size monitoring techniques
include laser-based measurements [4], optical imaging [5] and
particle collision analysis using piezo-electric sensors [6], me-
chanical resonances [7], acoustic techniques [8], and radar [9].
Recently, Sun et al. [10] developed a technique specifically
for detecting the presence of large biomass particles in a
background of wood dust during pneumatic conveying, based
the vibrations and acoustic signals generated by the collisions
between the particles and the pipe wall. However, since all
the particles of interest do not necessarily collide with the
wall at the location of the sensor, this approach is not suitable
for applications aiming for complete detection of all objects.
Industrial flow monitoring techniques should preferably be
non-intrusive and allow for robust in-line operation in harsh
industrial environments. In this respect, optical techniques
have the drawback of being sensitive to dust adhering to
the optical access windows. Acoustic and vibration-based
methods often require probes that protrude into the material
flow to obtain sufficient sensitivity and, furthermore, may be
susceptible to ambient acoustic noise and vibrations.

This paper presents a microwave measurement technique
for detecting objects in granular dielectric materials that flow
down a vertical pipe by the aid of gravity, a situation that
could occur in several of the above mentioned industries. The
detection is here based on deviations in the complex permit-
tivity ε = ε′ − jε′′ of the mixture of background powder and
an object. Microwave sensors are widely used for industrial
characterisation of liquid, solid and granular materials [11]–
[13]. Among the available microwave sensor types, resonator
sensors and especially cavities, provide the highest sensitivity
to small variations in the permittivity [14]. Therefore, a cavity
sensor is selected for the current measurement problem to
enable the detection of small objects, possibly with low con-
trast in bulk permittivity. The presented microwave detection
system comprises a cavity resonator sensor mounted in a
pipe, a high speed microwave transceiver, and an algorithm
for detecting objects in flowing granular materials based on
the measured microwave transmission coefficient S21. This
microwave technique is non-intrusive and insensitive to dust
deposition and to electromagnetic interferences, which makes
it suitable for harsh industrial flow environments. The cavity
sensor, which extends 700 mm along the flow direction and has
a quadratic cross-section, supports (among others) the resonant
modes TE101-TE109. These modes provide spatially periodic
sensitivities (1 to 9 sensitivity maxima) in the direction of
the flow, resulting in temporally periodic signals when an
object or a flow inhomogeneity passes through the sensor.
The idea pursued in this paper is to utilise these temporal
signals for detection of objects using a matched filter detector
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that incorporates the statistical properties of the flow and the
specific signatures resulting from an object passage. Kobayashi
et al. [15] used a similar sensor for measuring the mass flow
of pulverised coal, which requires that the flow speed and
material density are measured simultaneously. Their approach
is based on a frequency tracking circuit to measure at high
speed the resonant frequency of the mode TE119 where the
flow speed is estimated based on the zero-crossing of the au-
tocorrelation function of the time-varying resonant frequency
shift. A similar approach to mass flow measurement using
a single high-order resonant mode is presented in [16]. The
current paper extends the principle to exploit the periodic
spatial sensitivity of high-order resonant modes for particulate
flow measurements, in the sense that multiple modes are used
simultaneously to detect objects in the flow based on temporal
signatures in the data.

An experimental set-up for gravity-fall powder distribution
and automatised release of test objects into the flow is de-
veloped, which allows us to gather large amounts of data
from many object passage events to evaluate the detection
performance statistically. The detection performance is eval-
uated for spherical metal and dielectric objects in granulates
consisting of microcrystalline cellulose pellets and glass beads,
respectively. The uncertainty in the obtained detection ratios
is estimated using the bootstrap method.

II. MEASUREMENT SYSTEM

A. Sensor design considerations

Fluctuations in the local powder density does to some
extent propagate downstream with the flow velocity, so that
the cross-correlation of the density at two points separated a
certain distance in the direction of the flow, peaks at a time-
lag corresponding to the transit time between the two points.
This is the principle for cross-correlation based flow velocity
measurements [17]. However, due to the continuous mixing
of the density fluctuations resulting from various multiphase
flow effects for granular media [18], it is expected that the
degree of correlation decreases with the separation distance.
The idea pursued in this paper is therefore to use a microwave
sensor that measures over a sufficiently long flow distance,
so that the correlation between the density at the two ends
of the sensor has decayed substantially. The mixing (or de-
correlation) of the flow occurring over this distance reduces
the coherence of the temporal waveforms obtained from the
sensor. On the contrary, a small target object that resembles a
point perturbation in the permittivity that travels downstream
with a certain velocity yields an output waveform that remains
coherent and resembles the pure spatial sensitivity function of
the sensor. Hence, we expect that the difference in the temporal
signature between the powder flow and an object passage
can be exploited to improve the detection by a matched-filter
detector.

To find a suitable sensor length, we have performed ex-
periments where we study the mixing effects in powders
flowing down a vertical transparent pipe using video capture at
1000 frames per second. Based on a spatio-temporal analysis
where we study the autocorrelation of the pixel intensity with

respect to space and time lag (assuming that the pixel intensity
corresponds to the local powder density), we conclude that a
sensor length of 700 mm is sufficient to achieve a significant
degree of de-correlation, for a pipe diameter of 36 mm and a
range of powder materials and mass-flow rates of interest.

B. Microwave sensor

Our sensor, shown in Fig. 1, consists of a rectangular metal
cavity with square cross-section and length Lz = 700 mm.
The cavity connects to a circular stainless steel pipe with the
inner diameter D = 36 mm (1.5 inch industrial standard) via
circular holes in the cavity’s end-plates in the xy-plane. A
polycarbonate pipe with 2 mm wall thickness is used to guide
the flowing material through the sensor. This pipe is fixed in
the position where its inner surface coincides with the inner
surface of the metal pipe by a shallow countersink in each
of the cavity’s end-plates and by contracting forces from the
end-plates.

The cavity supports a number of resonant modes operating
below the cut-off frequency fTE11

c for the dominant waveguide
mode TE11 in the circular pipe [19]. At frequencies below
fTE11

c , the fields are evanescent in the inlet and outlet pipe
sections which prevents radiation losses and yields a sensing
region that is confined to the cavity section. Four coupling
loops positioned according to Fig. 1 are used to enable
measurements of transverse electric modes with dual polarisa-
tions, in particular the modes TE10m and TE01m as expressed
in rectangular waveguide mode nomenclature. Although the
sensor’s four probes allow for simultaneous measurements
with two different polarisations, we measure in this paper only
at port 1 and 2 and leave port 3 and 4 terminated with 50 Ω
loads.

Figure 2 shows the measured and simulated S-parameters
of the sensor. These measurements are performed using a
commercial vector network analyser (Rohde-Schwarz ZNBT8)
and the simulations are done using a finite element model
implemented in Comsol Multiphysics [20]. The resonances
observed are indicated by the corresponding mode labels.
Of particular interest are the modes TE101-TE109, whose
computed electric fields are shown in Fig. 3.

We now consider a spatially varying complex permittivity
perturbation ∆ε = ε−ε0 relative to the air-filled cavity, which
models the flowing powder and an undesirable object, possibly
present at the same time. Assuming that the material under test
is non-magnetic, i.e. µ = µ0, the resulting perturbation ∆fm
in the resonant frequency f res

m of a mode m (relative to the
resonant frequency of the air-filled cavity) is, to leading order,
given by

∆f res
m

f res
m

= −
∫
V

∆ε|Em|2dv∫
V

(ε0|Em|2 + µ0|Hm|2) dv
. (1)

Here, Em and Hm are the electric and magnetic fields of
mode m in the empty cavity and V is the cavity’s volume [21].
Eq. (1) prescribes a spatial filtering of ∆ε with the squared
electric field as weighting function (i.e. |Em|2 is the spatial
sensitivity). Although Eq. (1) is exact only in the limit ∆ε→
0, it is still qualitatively informative for larger perturbations
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Figure 1. The cavity resonator sensor including coupling loops and associated ports. All dimensions are in millimeters.
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Figure 2. Measured and simulated S-parameters for the empty sensor.

since any increase in ε′ will lead to a decrease in Re{f res
m },

and any increase in dielectric loss ε′′ yields an increase in
Im{f res

m } (i.e. lowering of the Q-value) [21]. In this paper,
we consider dilute powder flows with volume fractions below
1 % which, given the Maxwell-Garnett mixing rule, yields an
effective permittivity that satisfies ε′eff < 1.03 [22]. Hence the
permittivity perturbations are generally small, which indicates
that Eq. (1) is adequate for modelling how powder flow
inhomogeneities and objects will affect the observed temporal
signatures in the sensor data.

As seen in Fig. 3, the modes TE10m have sinusoidal field
variation in the axial direction z and relatively uniform field
in the transverse plane. Consequently, their spatial sensitivity
can be approximated by the function

hm(z) =

{
Am sin2

(
mπz
L

)
z ∈ [0, L]

0 otherwise,
(2)

where Am is a real positive constant amplitude. A single
particle traveling through the sensor with constant speed v
will thus give rise to a resonant frequency that oscillates with
time t according to hm(vt) as the particle passes the maxima
and nulls of the electric field. The spatial frequency response
associated with hm(z) is given by its Fourier transform

Hm(kz) =

∫ ∞
−∞

hm(z)e−jkzzdz, (3)

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j)

Figure 3. Electric field for the empty sensor with the field magnitude shown by
color and the field direction by arrows or streamlines. (a)-(i): Field distribution
in the yz-plane for the modes TE101-TE109 in order from left to right. (j):
Field distribution in the xy-plane, which applies to all the modes TE101-
TE109.

which can be readily calculated although the result is omitted
here for brevity. Figure 4 shows hm(z) and |Hm(kz)|2 for
m = 9. It is seen that modes with periodic spatial sensitivity
act simultaneously as bandpass and lowpass filters in the
spatial domain. The output signal of such mode (i.e. the
resonant frequency or a reasonably linear function thereof) is
therefore mainly sensitive to one particular spatial frequency
of the material that moves through the sensor, and to its
average value. This principle is the basis for spatial filtering
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Figure 4. Ideal spatial sensitivity of mode m = 9 for L = 0.7m. (a)
With respect to the spatial coordinate z; (b) with respect to the spatial
frequency kz where the peaks at nonzero frequency occur approximately at
kz = ±2πm/L.

velocimetry [23]. A longer sensor yields a higher spatial
frequency resolution which is manifested by more narrow-
band peaks in |Hm(kz)|2. Furthermore, a longer sensor makes
it possible to have a larger number of resonant modes in a
given range of measurement frequencies of interest (2-3 GHz
in our case).

A corresponding small metal object at a position r essen-
tially removes a small part of the cavity volume which yields
a resonant frequency perturbation that is approximately given
by [21]

∆f res
m

f res
m

=
Vobj

(
µ0|Hm(r)|2 − ε0|Em(r)|2

)∫
V

(ε0|Em|2 + µ0|Hm|2) dv
. (4)

Hence, the resonant frequency decreases when the metal
object approaches a position of maximum electric field and it
increases when the object approaches a position of maximum
magnetic field. We thus conclude that the temporal signature
of a metal object passage is different from that of a dielectric
object in general.

C. Measurement electronics

The measurement response of the sensor is acquired using
a custom microwave transmitter and receiver instrument that
enables a high measurement speed. This instrument is based
on a heterodyne transmitter and receiver controlled by an
FPGA and it measures the amplitude and phase of sinusoidal
signals transmitted through the sensor between ports 1 and 2
together with the coaxial cables that connect the measurement
instrument to the sensor. The frequency of the stimulus signal
is repeatedly swept over a discrete set of measurement fre-
quencies with a minimum frequency separation of 5 MHz. This
electronics yields a dynamic range of approximately 50 dB, but
we emphasise that the instrument noise is overshadowed by the
variability in the data due to random material movement and
hence, the level of instrument noise is not a limiting factor for
the object detection capability. The instrument is programmed
before each experiment to measure at three adjacent frequency
points around the expected mean value of each resonant fre-
quency, which depends on the intended material loading. After
the data is collected, we select for each mode one measurement
frequency fm among the three adjacent frequencies that yields
the largest variance in the data during the material flow. As
the sensitivity and hence the data variance is maximised at

resonance, the selected measurement frequency fm is as close
as possible to the average f̄ res

m of the resonant frequency for
mode m during powder flow for the particular experiment.
The frequency sweeps are repeated at a rate of 500 sweeps per
second and hence our effective sampling rate is Fs = 500 Hz.
Further details on this electronics is given i [24].

The data obtained from the instrument are the raw nu-
meric values from the A/D converter at the receiver. In the
following, we use the complex data representation wm(t) =
Im(t) + jQm(t) where Im(t) and Qm(t) are the in-phase and
quadrature signal components at the measurement frequency
fm at time t. The measurement frequency fm is chosen such
that the mode TE10m is excited. Thus, wm(t) is related to
the complex transmission coefficient S21(fm) at measurement
frequency fm upon normalisation by the transmitted signal’s
amplitude and phase. However, it should be emphasised that
no calibration in the sense of physically connecting sepa-
rate calibration standards to the instrument ports has been
performed to compensate for delay and damping in cables
or any internal characteristics of the transmitter and receiver.
This implies that significant systematic errors are present in
wm(t) if it is viewed as a representation of S21(fm). Instead
of addressing the calibration problem, we focus in this paper
on the development of detection algorithms that can handle
instrument calibration errors, including slow drifts.

III. SIGNAL PROCESSING

A. Measurement model

Given that the sensor acts as a spatial filter mainly in the
axial direction z, the time-domain measurement response in
the raw data for channel m can be modelled as

wm(t) = am

∫ L

0

hm(z)∆ε(z, t)dz + bm. (5)

Here, ∆ε(z, t) is the deviation in the permittivity relative to
air, and hm(z) is the spatial sensitivity given by Eq. (2).
Furthermore, am and bm are complex coefficients which
account for the fact that the complex data wm(t) (which
resembles S21) is distributed over an elongated region in the
complex plane. Thus, the size and orientation of the elongated
data region is modelled by am and its center is represented
by bm. It should be noted that am and bm may vary slowly in
time due to e.g. variations in the material’s moisture content
and flow properties, or temperature variations influencing the
measurement electronics. In the following, we assume that
am and bm are constant on the time-scale associated with the
transit time for the material (powder or object) to pass through
the sensor, which is represented by ∆ε(z, t).

Equation (5) prescribes a linear relation between S21 and
∆ε which is supported by the following argument: As the
transmission response of a cavity can be well described by a
pole-series model [25], we may write

S21 =
∑
k

βk
fm − f res

k

≈ C +
βm

fm − f res
m

≈ C +
βm

(fm − f̄ res
m )2

∆f res
m . (6)
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Here, βk are the residues associated with the poles f res
k which

fluctuate due to background material movement while fm
is fixed. The first approximate equality applies because the
pole f res

m dominates the total response at the measurement
frequency fm. The second approximate equality is obtained
as the first-order Taylor expansion with respect to ∆f res

m =
f res
m − f̄ res

m where f̄ res
m is the mean value of f res

m . By invoking
Eqs. (1) and (2), the linear spatial filtering relation between
S21 and ∆ε prescribed by Eq. (5) is established. The first-
order Taylor expansion is accurate if the fluctuations ∆f res

m

are small in comparison with the bandwidth of the resonant
mode m when the flowing material is present.

In section III-B we present a pre-processing algorithm
which aims to determine the coefficients am and bm for each
channel in order to map the raw data wm(t) onto a new data
sequence xm(t) according to

xm(t) = Re

{
wm(t)− bm

am

}
. (7)

The coefficients am and bm are determined such that the di-
rection of maximum variance in the complex plane for wm(t)
(this direction usually corresponds to variations in the material
density) is mapped onto the real part of (wm(t) − bm)/am.
Hence, for sufficiently small real-valued permittivity perturba-
tions and in absence of instrument noise, we have the relation

xm(t) =

∫ L

0

hm(z)∆ε(z, t)dz. (8)

In the following, we assume that this pre-processing is ade-
quately performed and hence we use the data xm(t) for all
further estimation and detection tasks.

We assign a null hypothesis H to the situation where no
object is present in the material flow, and an alternative hypoth-
esis K to the event where a small object with random arrival
time is present in the same material flow. In the idealised case
where the powder and object travels with uniform speed v and
no powder mixing occurs, we have the following model

H : ∆ε(z, t) = wε(z − vt) (9)
K : ∆ε(z, t) = wε(z − vt) + sε(z − vt). (10)

Here, wε(z) is a spatial random process that represents the
deviation in the permittivity of the powder at time t = 0.
Furthermore, sε(z) = Aδ(z − za) (where δ is the Dirac
distribution) models the perturbation in the permittivity due
to a small dielectric object whose arrival time is controlled
by the uniformly distributed random variable za. Given the
z and t dependence prescribed by Eqs. (9) and (10), Eq. (8)
takes the form of a convolution. Under the assumption that
the processes wε and sε are stationary and ergodic, the power
spectrum of xm(t) under each hypothesis is given by

Pxm(ω|H) = v−1Pwε(kz)|Hm(kz)|2 (11)

Pxm(ω|K) = v−1 (Pwε(kz) + Psε(kz)) |Hm(kz)|2 (12)

where Pwε and Psε denote the power spectra of wε and sε,
respectively, and kz = ω/v. The impulse assumption for the
target signal sε yields a power spectrum Ps which is flat over
the relevant frequency band.

From a detection-theoretical point of view, it may seem
natural to formulate a detector based on a hypothesis test that
involves all available data in an analysis window containing,
say, W consecutive samples from each of the M different
channels [26]. For the analysis window to be larger than the
passage time of an object, it is required that W > FsL/v.
For Gaussian distributed data, the joint likelihood function is
parametrised by a covariance matrix of size MW × MW
that encodes all correlations between mutual channels and
relevant time-lags. Such covariance matrix however turns out
to be rank deficient because all the channels observe the same
underlying stochastic permittivity, although through different
spatial filters, which prompts for regularisation to obtain a
sufficiently well-conditioned covariance matrix estimate from
data. Furthermore, the computational effort associated with
estimation, inversion and multiplication of large covariance
matrices may be prohibitive for real-time detection applica-
tions. Therefore, we consider an alternative approach where
we seek to linearly combine the data from different channels
according to

x[n] =

M∑
m=1

αmxm[n] =

∫ L

0

h(z)∆ε(z, tn)dz, (13)

where the real-valued channel weights αm are to be de-
termined by a suitable criterion. Here, the discrete sample
times are given by tn = nTs with sampling interval Ts =
1/Fs = 2 ms. The second equality in Eq. (13) is obtained
by interchanging the order of summation and integration and
using the following relation for the combined spatial filter

h(z) =

M∑
m=1

αmhm(z), (14)

which has the corresponding frequency response

H(kz) =

M∑
m=1

αmHm(kz). (15)

We now consider the problem to design the combined spatial
filter H(kz) by choosing the coefficients αm in order to
make the signature of an object as prominent as possible in
the combined data x[n] for some given flow condition. We
therefore seek to maximise the signal to noise ratio (SNR)

SNR =

∫∞
−∞ Psε(kz)|H(kz)|2dkz∫∞
−∞ Pwε(kz)|H(kz)|2dkz

=
αTAα

αTBα
, (16)

where α = [α1, . . . , αM ]T, and

(A)mn =

∫ ∞
−∞

Psε(kz)H
∗
m(kz)Hn(kz)dkz (17)

(B)mn =

∫ ∞
−∞

Pwε(kz)H
∗
m(kz)Hn(kz)dkz. (18)

Here, H∗m denotes complex conjugate of Hm. The SNR, as
expressed in Eq. (16), involves the total power of the signal and
noise data, irrespectively of the direction of the signal in the
data space relative to the dominant eigenvectors of the noise.
This is in contrast to the detectors presented in section III-C
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which aim to exploit such directional signal aspects. It is how-
ever reasonable to expect that a filter H(kz) that maximises
the SNR will also be beneficial for the detection performance
observed in real experiments, although no general optimality
is claimed. One reason for selecting the channel weights αm
based on the SNR criterion is that it requires observations
only of the noise (i.e. powder flow) statistics, and can thus
be implemented in a real-time detection system. Furthermore,
our empirical observations regarding the relation between the
choice of αm and the resulting detection performance indicates
that this is an adequate strategy, which is also inherently
adaptive to changing flow conditions.

The Rayleigh quotient in Eq. (16) is maximised by the
eigenvector associated with the largest eigenvalue to the gen-
eralised eigenvalue problem

Aα = λBα. (19)

Hence, by denoting the solutions to this equation as(
λ(i),α(i)

)
with the eigenvalues arranged in descending order

λ(1) > · · · > λ(M), the SNR-optimal channel weights are
given by α = α(1). To compute the matrix B, we use an
estimate of the noise power spectrum obtained by expanding
Pwε(kz) in terms of unknown coefficients cj and basis func-
tions φj according to

Pwε(kz) =

M−1∑
j=−(M−1)

cjφj(kz). (20)

The basis functions φj(kz) are piecewise constant with the
properties φi(kz)φj(kz) = δij (where δij is the Kronecker
delta), φj(−kz) = φj(kz), and

∑∞
j=−∞ φj(kz) = 1 for all

kz , and they are defined according to

φj(kz) =

{
1 if 1

2 (k̂j−1 + k̂j) < kz ≤ 1
2 (k̂j + k̂j+1))

0 otherwise
(21)

where k̂j denotes the location of the peak of |H|j|+1(kz)| that
occurs approximately at the frequency (j+ 1)2π/L rad/m for
j 6= 0 and at zero frequency for j = 0.

We seek to estimate Pwε from Eq. (11) using an estimate
P̂xm for the power spectrum of the data xm[n] which is
computed according to

P̂xm(ω) =

W∑
l=−W

r̂xm [l]ej(ω/Fs)l, (22)

where r̂xm [l] is the sample autocorrelation sequence of xm[n]
given by

r̂xm [l] =
1

Ntot

Ntot−1−l∑
n=0

xm[n+ l]xm[n]. (23)

Here Ntot is the total number of samples in a measurement
sequence. The coefficients cj are computed by inserting the
expansion (20) into Eq. (11) and setting the weighted residual
to zero using weighting functions φi (i.e. Galerkin’s method).

This yields the following over-determined system of linear
equations D(1)

...
D(M)


 c0

...
cM−1

 =

 b(1)

...
b(M)

 (24)

where

(D(m))ij =

∫ ∞
−∞

φi(kz)φj(kz)|Hm(kz)|2dkz (25)

(b(m))i =

∫ ∞
−∞

φi(ω)P̂xm(ω)dω (26)

for i, j = 0, . . . , (M − 1). The weighting functions φi(ω) in
the ω domain are defined analogously to φi(kz) in Eq. (21)
using the corresponding peaks in P̂xm(ω). The coefficients
c0, . . . , cM−1 obtained from the least-squares solution to
Eq. (24) then yield the estimated permittivity spectrum via
Eq. (20) using the symmetry property c−j = cj . The matrix
A is computed in an analog fashion, where we use the ide-
alised signatures hm(t) given by Eq. (2) with unit amplitudes
Am = 1 and apply the same pre-processing and spectrum
estimation procedure as for the noise data that leads to the
matrix B.

B. Data pre-processing

We assume that complex data wm[n] = wm(nTs) is avail-
able at the measurement frequencies fm, m = 1, . . . ,M close
to the resonant frequency of the M = 9 different modes. The
discrete time samples n = 0, . . . , N − 1 are uniformly spaced
in time with sampling frequency Fs = 1/Ts = 500 Hz, and we
assume that all noise statistics are stationary during any time
interval of length NTs. Data sequences that contain more than
N samples are analyzed in a sliding-window fashion. Here, we
estimate all parameters that describe the statistics of the noise
(except bm[n] which is calculated according to Eq. (27), and
r̂xm in Eq. (23) where all pre-processed data in a measurement
sequence is used) based on data in an estimation window con-
taining the samples n = n0, . . . , n0 +N − 1 for some starting
time n0. These parameter values are used to evaluate the output
of the detection algorithms in a succeeding analysis window
containing the samples n = n0 +N, . . . , n0 +N+Ns−1. The
estimation window is then successively shifted Ns samples and
the above procedure is repeated, until the entire measurement
sequence is covered.

The pre-processing procedure aims to map wm[n] onto a
new real-valued data sequence xm[n] that mainly accounts for
the variation in the material density. In particular, an increase
in the real part of the effective permittivity (either due to the
background material or an object) should yield a deviation
in xm[n] with the same sign for all channels m, given that
the dielectrics have sufficiently small losses. The conformity
of the signs in the different channels is essential to obtain
the correct temporal signatures when different channels are
linearly combined, as described in sections III-A and III-C.
The pre-processing uses data which is collected when a
granular material is flowing in the sensor where no objects
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are assumed to be present. We first remove the d.c. and low-
frequency components by subtracting from wm[n] the moving
average

bm[n] =

K−1∑
k=0

g[k]wm[n− k] (27)

where g[k] are Hamming window coefficients. Next,
we decorrelate the real and imaginary parts of
(wm[n] − bm[n]) and normalise their variances by letting
y[n] =

[
Re(wm[n]− bm[n]), Im(wm[n]− bm[n])

]T ∈ R2

and compute the sample covariance matrix Σ̂y =

N−1
∑N−1
n=0 y[n]y[n]T. From the eigenvalue factorization

Σ̂y = QΛQT we obtain a new data representation
z[n] = Λ−1/2QTy[n] =

[
z1[n], z2[n]

]T
. By ordering the

eigenvalues according to (Λ)11 ≥ (Λ)22, we ensure that z1 is
associated with the direction of largest variance in wm, which
usually corresponds to variations in the material density
if the material has sufficiently small losses. The desired
pre-filtered data is then obtained as xm[n] = z1[n], i.e. the
largest principal component that accounts for the majority
of the variability in wm − µm. This is done independently
for all channels m = 1, . . . ,M . Finally, we adjust the signs
according to xm[n] ← xm[n] sign

(∑N−1
n=0 x1[n]xm[n]

)
for

m = 2, . . . ,M , to ensure that an increase in the effective
permittivity yields a deviation in xm which has the same sign
for all channels.

C. Detection algorithm

Given the channel coefficients αm selected by the procedure
described section III-A, we combine the M channels xm[n]
into a single time-sequence x[n] using Eq. (13). At each time
n, we vectorise W subsequent time-samples of x according to

x[n] = [x[n−W + 1], . . . , x[n]]T ∈ RW . (28)

The length of the analysis window is set to W = d1.1FsL/ve
to include one transit time through the sensor with some
margin at the flow speed v. The flow speed is estimated based
on the non-zero peak locations ωpeak

m in the power spectra
P̂xm(ω) and the corresponding non-zero peak locations kpeak

m

of |Hm(kz)| according to v̂m = ωpeak
m /kpeak

z,m for each mode
m = 2, . . . ,M , and a single flow speed is computed as the
average v = (M − 1)−1

∑M
m=2 v̂m. The detection problem is

formulated as a hypothesis test according to

H : x[n] = v[n] (29)
K : x[n] = s[n] + v[n] (30)

with null hypothesis H (no object present) and alternative
hypothesis K (object present). Here, the noise v[n] models
the response due to permittivity variations in the granular
flow as well as measurement noise, and the target signal
s[n] represents the waveforms caused by the passage of an
object. The target signal is not completely known but contains
unknown parameters to be estimated from data. Therefore,
we apply the generalised likelihood ratio test (GLRT) where

all unknown parameters are replaced by their maximum-
likelihood (ML) estimates [26]. This yields

TGLRT(x[n]) = log

(
p(x[n]|K)

p(x[n]|H)

) K
≷
H

η, (31)

where p is the probability density function of the data under
each hypothesis. Hence, we accept the alternative hypothesis
K if the test statistic TGLRT exceeds the threshold η. We make
the assumption that the noise is zero-mean multivariate normal
distributed according to v[n] ∼ N (0,Σ), which is reasonable
given the pre-processing described in section III-B. Since the
entries of v[n] are subsequent time-samples, the covariance
matrix Σ is an autocorrelation matrix with a Toeplitz structure
that is given by

Σ =

 rv[0] . . . rv[W − 1]
...

. . .
...

rv[W − 1] . . . rv[0]

 (32)

where rv[l] = E[v[n+ l]v[n]] is the autocorrelation sequence
for the noise v[n]. We compute an estimate Σ̂ of the true
covariance matrix Σ by replacing rv[l] in Eq. (32) by the
corresponding sample autocorrelations

r̂x[l] =
1

N

N−1−k∑
n=0

x[n+ l]x[n], (33)

based on data x[n] collected when a flowing granular material
is assumed present in the sensor without any objects. The
estimated covariance matrix Σ̂ (which is not an ML estimate)
is used in both PDF:s in the likelihood ratio. Hence, Eq. (31)
is the correct GLRT only if the estimated covariance matrix is
assumed to be the true covariance matrix, so that the remaining
parameters to be estimated from data are those describing the
signal s[n].
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Figure 5. Target waveforms observed by each mode due to 6 mm Delrin
spheres (solid curves) and 6 mm steel spheres (dashed curves) falling through
the sensor.

The target signal s[n] is constructed from the waveforms ob-
tained by the averaged results from 50 repeated measurements
on a single object falling through the sensor. These waveforms,
which are slightly different for metal and dielectric objects
as discussed in section II-B, are shown in Fig. 5 where the
effect of acceleration is discernible. A comparison with the
theoretical waveforms in Fig. 4(a) and Fig. 11 shows good
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agreement regarding the principal shape and periodicity. To
account for an unknown polarisability and speed of a real
object, we parametrise the target signal using the following
model

s(λ, θ)[n] = Hλθ[n] ∈ RW , (34)

where Hλ =
∑M
m=1 αmsλm ∈ RW×1 and θ[n] ∈ R. Here, λ is

a parameter that controls the duration of the target waveform
and hence the speed of the object according to

sλm = [(0b(1−λ)Wc)T (s̃λm)T]T ∈ RW (35)

where 0P is a column vector with P zeros and s̃λm is a vector
that contain dλW e uniformly spaced samples of the measured
target waveform for mode m. The ML estimates of θ and λ
at each time,

θ̂, λ̂ = arg max
θ,λ

p(x[n]|K; θ, λ) (36)

are computing by a two-step procedure where we first fix λ
and solve for the resulting θ̂ (which enters linearly in the signal
model) according to

θ̂λ[n] = (HT
λ Σ̂−1Hλ)−1HT

λ Σ̂−1x[n]. (37)

Next, we insert the estimate θ̂λ into the likelihood function
that we subsequently maximize with respect to λ by means of
grid search over a finite number of values {λq}Qq=1 which are
selected to account for an expected range of object speeds. For
fixed λ, the estimated signal is given by ŝλ[n] = Hλθ̂λ[n] =
Pλx[n], where

Pλ = Hλ(HT
λ Σ̂
−1

Hλ)−1HT
λ Σ̂
−1

(38)

is a projection matrix that projects onto the subspace of RW

spanned by the single column of Hλ, i.e. the expected target
signal. If we consider only the data-dependent part of the log-
likelihood ratio in Eq. (31), the detection criterion can then be
written

TMF(x[n]) =
(
Pλ̂x[n]

)T
Σ̂−1

(
Pλ̂x[n]

) K
≷
H

η′. (39)

Here, we have used the relations xTΣ̂
−1

ŝλ = ŝT
λ Σ̂
−1

ŝλ and
ŝλ = Pλx. The detection criterion (39) can be viewed as
an incoherent noise-whitening matched filter whose output
compared to a threshold η′ determines the detection decision.
We therefore refer to this detector as a matched filter detector
(MF). An interpretation of the test statistic in Eq. (39) is that
we first compute the projection of the data in the direction
of the expected target signal, and subsequently calculate the
power of this projection whitened with respect to the noise
statistics. Hence, this detector yields a high output value if
the data contains the expected target signal, especially if this
signal points in a direction in RW where the noise is weak.

A different approach to the detection problem is to let the
detection be based entirely on a measure of the deviation from
the noise characteristics, without incorporating any directed in-
formation about the expected target waveforms. This approach
can be followed by increasing the dimensionality of the signal

subspace (e.g by adding columns to Hλ) so that the projection
matrix in Eq. (38) becomes a full-rank matrix that maps any
data vector x[n] onto itself. The test-statistic (i.e. the data-
dependent part of the log-likelihood ratio) then becomes

TTPD = xT[n]Σ̂
−1

x[n]. (40)

We refer to this detector as a temporal power detector (TPD)
since the test statistic is the power of the noise-whitened
temporal signal Σ̂

−1/2
x[n]. This detector is sensitive to any

temporal variation in the data that differs from the noise
statistics as prescribed by Σ̂, and therefore requires no prior
knowledge about the actual target waveforms. This detector
can be particularly effective if the object travels at a higher
speed than the background material which yields unusual high-
frequency components in the target waveform.

Yet another option is to use a detector that exploits the
instantaneous correlations between different channels but ig-
nores all aspects of the temporal variation. By forming a data
vector from different channels at a single snapshot according
to xSPD[n] = [x1[n], . . . , xM [n]]T, a spatial power detector
(SPD) can be formulated with the test statistic

TSPD(xSPD[n]) = xT
SPD[n]Σ̂−1

SPDxSPD[n] (41)

where Σ̂SPD is the sample covariance matrix of xSPD. This
is similar to the detector used in [24] although, here, the
measured data is subject to another type of pre-processing.
The term spatial here refers to the aspect that the different
channels (i.e. modes) have different spatial sensitivity patterns.
The detection performance of the three detectors presented in
the foregoing are compared in section IV.

IV. RESULTS

A. Experimental setup

We evaluate the performance of our detection system using
an experimental setup shown in Fig. 6. The granulate is stored
in a conical hopper made of stainless steel and the granules
are discharged through the hopper outlet where an adjustable
valve controls the mass flow rate. The granulate is directed by
a funnel into a vertical buffer pipe where the main acceleration
occurs, and then down the sensor. The funnel is also used
to direct the test objects down the pipe. The test objects are
stored in holes in a perforated disc that is rotated step-wise
using a stepper-motor, and each object is released into the
flow when its hole is aligned with a hole in the underlying
slab. The time at which each object is released is thereby
known with high accuracy, which makes it possible to reliably
predict a time interval where the object is present in the sensor.
The powder and the objects are collected at the bottom end
of the sensor in a bucket standing on a scale that measures
the mass repeatedly over time so that the instantaneous mass
flow can be obtained by time differentiation of the total mass.
The microwave transceiver described in section II-C measures
repeatedly S21 between the sensor ports 1 and 2 and is
controlled by a PC. This setup allows us to study the detection
capabilities under representative industrial conditions where
granulates are flowing by the aid of gravity.
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Figure 6. Experimental setup including hopper, object release system, sensor
and microwave measurement electronics. All dimensions are in millimetres.

B. Detection performance evaluation

The granular materials used to study the detection perfor-
mance are (i) spherical pellets of microcrystalline cellulose
(MCC) with diameters in the range 700-1000µm (Cellets R©

700, Harke Pharma GmbH) and (ii) glass beads (SiO2-
dominated) with diameter range 200-400µm intended for
sand blasting. Both granulates are discharged at a rate of
100 kg/h. We use test objects that consist of steel and Delrin
(polyoxymethylene), respectively, which are spherical with
diameters 2, 4, 6 and 8 mm. We also study white pepper
seeds as test objects, which are approximately spherical with
an average diameter of 4 mm.

The target waveforms used in the matched filter detector
are obtained from the measured signatures shown in Fig. 5
and we use the dielectric-response waveforms when Delrin
or pepper objects are tested, and metal-response waveforms
when steel objects are tested. Investigations show that by
choosing the right waveform (dielectric or metal) for the object
being tested yields a small but consistent improvement in the
detection performance. Each measurement sequence consists
of discharging one completely filled hopper which takes ap-
proximately 3 minutes. During this time, 70-100 identical test
objects are released into the flow with 2 seconds between
subsequent objects. We define a test interval from 0.2 to 0.8

seconds after each object is released, during which the object
is assumed to have entered and exited the sensor. Similarly,
we define a set of validation intervals of the same length
(0.6 s) during which no object is assumed present. A positive
detection made during a test interval is therefore classified
as correct and a positive detection made during a validation
interval is classified as incorrect. For a given detector and
a given threshold, we compute the detection and false-alarm
rates as the ratios of the number of true and false detections to
the total number of test and validation windows, respectively.

C. Data illustration

Here we present intermediate results to illustrate the steps
in the pre-processing and detection algorithms. Figure 7 shows
the distribution of the raw data wm[n] in the complex plane
together with an ellipse that represents the covariance matrix of
Re[wm] and Im[wm], as described Section III-B. If the semi-
axes of this ellipse are represented by the local coordinate axes
u1 and u2, then the pre-processed data xm[n] is the variance-
normalised projection of the data (wm[n]−bm) in the direction
of u1 (i.e. the first principal component), where bm is the mean
of wm. The resulting pre-processed data xm[n] is shown as a
function of time in Fig. 8. For low-loss materials, an increase
in the material density and hence in the effective permittivity
yields a variation in wm mainly in the direction of u1 (and
thus in xm) as indicated in Fig. 7.

The sample autocorrelations r̂xm [l] and the associated
power spectra P̂xm(ω), which are calculated according to
Eqs. (23) and (22), are shown in Fig. 9 for flowing MCC
granules without any objects. The average flow speed v
among modes 2-9 (estimated as described in section III-C)
varies between 3.4 m/s and 3.7 m/s for different measurement
sequences for both MCC and glass beads. The average particle
volume fraction can be calculated as

ν =
ṁ

Av(ρp − ρair)
(42)

where ṁ = 100 kg/h is the particle mass flow rate, A =
π(D/2)2 is the cross-section area of the pipe and ρair =
1.2 kg/m3 is the assumed density of air. Given the solid mass
densities ρp = 1300 kg/m3 for MCC and ρp = 2400 kg/m3

for glass (obtained by measuring the bulk density and assum-
ing random close-pack with volume fraction 0.64), we obtain
a volume fraction during flow of approximately 0.6 % for the
MCC particles and 0.3 % for the glass beads.

Given the data spectra P̂xm shown in Fig. 9, we estimate
the permittivity spectra P̂sε and P̂wε of a small dielectric
object and of the powder flow, respectively, as described in
section III-A, and these estimates are shown in Fig. 10. Here,
we notice that the spectrum of the object’s permittivity is
essentially flat, as expected. Furthermore, we notice that P̂wε is
relatively small at low frequencies (kz ≈ 0) and at the higher
frequencies corresponding approximately to the passband for
mode 7-9. From the permittivity spectra, we compute the SNR-
optimized channel weights αm as described in section III-A
which are presented in Tab. I. The sensitivity h(z) and the
associated transfer function H(kz) of the combined spatial
filter obtained from these channel weights is shown in Fig. 11.
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It is seen that the combined filter has a large gain at the spatial
frequencies where P̂wε is small in comparison with P̂sε , which
makes sense.

Figure 7. Distribution of the raw data wm in the complex plane for mode
m = 9 due to powder and due a white pepper seed object. The dashed ellipse
represent the covariance matrix of the variations in Re[wm] versus Im[wm]
around their mean values, and the major axes of the ellipse are represented
by the local coordinate axes u1 and u2.
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Figure 8. Pre-processed data xm[n] versus time for mode m = 9 with a
white pepper seed present at the highlighted time interval.

Table I
SNR-OPTIMAL CHANNEL WEIGHTS FOR MCC PELLETS FLOWING AT

100 KG/H.

α1 α2 α3 α4 α5 α6 α7 α8 α9

0.01 0.02 0.02 0.03 0.04 0.06 0.12 0.49 -0.86

D. Detection results

We compare the detection performance of the matched filter
detector in comparison with the temporal and spatial power
detectors, based on measurement sequences that each involves
70-100 object passages with a total duration of approximately
3 minutes. We analyse the data in blocks of length N = 5000
samples (10 seconds) that are successively shifted Ns = 500
samples, where all parameters describing the statistics of the
noise (except bm[n]) are re-evaluated for each block. The
length of the Hamming-window in Eq. (27) is set to K = 500
samples (1 second). Furthermore, the estimated flow speed
determines the length W of the analysis window according
to W = d1.1FsL/ve = 114 samples (0.23 seconds) if the
flow speed is v = 3.4 m/s.
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Figure 9. (a) Sample autocorrelations r̂xm and (b) power spectra P̂xm for
each individual mode m = 1, . . . , 9, based on a data sequence where MCC
pellets are flowing at 100 kg/h with no objects present. The peaks in the
spectra are marked by filled circles.
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Figure 10. Estimated permittivity spectra P̂sε (left figure) and P̂wε (right
figure) for a dielectric object and for MCC pellets flowing at 100 kg/h,
respectively.

The detection performance can be characterised by the
receiver operating characteristics (ROC) where PD is plotted
versus PFA for all values of the threshold. Figure 12 shows the
ROC for 4 mm steel objects in MCC granules, where we notice
that the matched filter detector performs clearly better than the
power detectors. The area under the ROC-curve (AUC) is here
used as a summary statistic to characterize the overall detector
performance [27] where AUC= 1 corresponds to perfect
classification and AUC= 0.5 is equivalent to random guessing.
The detection performance in terms of AUC is summarised
in Table II for the available test objects in MCC and glass
granulates, where the uncertainty in the AUC is calculated by
means of bootstrapping using 10’000 bootstrap resamples [28].
The interval limits presented in the table are obtained as the
points where the cumulative distribution function (CDF) of the
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Figure 11. Spatial sensitivity for modes 1-9 and the combined spatial filter
obtained from the channel weights αm presented in Table I, in the spatial
domain (top figure) and in the spatial frequency domain (bottom figure).
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Figure 12. ROC curves for the detection of 2 mm steel balls in glass beads
flowing at 100 kg/h, for (a) the spatial power detector, (b) the temporal power
detector, and (c) the matched filter detector. The result is based on 92 object
passage events during 235 seconds of powder flow.

empirical bootstrap distribution for the AUC attains the values
0.1 and 0.9. Here, we notice that the matched filter performs
uniformly better than the other detectors. The difference is
most clear for the steel objects, where also the temporal power
detector performs better than the spatial power detector. This
may be due to that the steel objects obtain a higher fall
speed due to their higher mass density. This, and possibly
the fact that metal objects give rise to different waveforms
than dielectric objects as shown in section III-C, yields object
waveforms that are more distinguishable relative to the density
fluctuations of the dielectric powder.

The smallest metal objects that can be reliably detected
in this paper are significantly larger than the detection limit
for commercial metal detectors [29]. For dielectric objects,
however, we are not aware of any publication that presents
quantitative detection results for flowing granular materials
except the previous publications by the authors [24], [30].
In [31] and [32], X-ray imaging is used for detecting various
metal and dielectric objects in static material samples. Al-
though significant improvements by multi-modal X-ray imag-
ing is demonstrated in [32], it is clear that low-density objects
(plastics, wood, rubber) are particularly challenging to detect
by X-ray, especially if the background material has significant
texture.

Table II
AREA UNDER THE ROC-CURVE FOR COMBINATIONS OF GRANULATE AND
TEST OBJECT, USING THE SPATIAL POWER DETECTOR (SPD), TEMPORAL
POWER DETECTOR (TPD) AND MATCHED FILTER DETECTOR (MF). THE

INTERVAL LIMITS ARE THE AUC-VALUES THAT CORRESPOND TO THE
10% AND 90% LEVELS OF THE EMPIRICAL BOOTSTRAP CDF.

MCC pellets (100 kg/h)
SPD TPD MF

steel 4mm 0.996 - 0.999 0.999 - 1.000 0.999 - 1.000
steel 2mm 0.518 - 0.622 0.467 - 0.572 0.525 - 0.629
delrin 8mm 1.000 - 1.000 1.000 - 1.000 1.000 - 1.000
delrin 6mm 1.000 - 1.000 0.999 - 1.000 1.000 - 1.000
delrin 4mm 0.750 - 0.825 0.559 - 0.648 0.837 - 0.895
delrin 2mm 0.469 - 0.564 0.472 - 0.566 0.512 - 0.604
pepper 4mm 0.843 - 0.902 0.844 - 0.902 0.948 - 0.981

glass beads (100 kg/h)
SPD TPD MF

steel 4mm 1.000 - 1.000 1.000 - 1.000 1.000 - 1.000
steel 2mm 0.705 - 0.781 0.796 - 0.863 0.977 - 0.990
delrin 8mm 1.000 - 1.000 1.000 - 1.000 1.000 - 1.000
delrin 6mm 1.000 - 1.000 1.000 - 1.000 1.000 - 1.000
delrin 4mm 0.988 - 1.000 0.988 - 0.997 1.000 - 1.000
delrin 2mm 0.505 - 0.601 0.504 - 0.594 0.579 - 0.665
pepper 4mm 1.000 - 1.000 0.999 - 1.000 1.000 - 1.000

V. CONCLUSION

We present a microwave measurement system for detecting
dielectric and metal objects in flowing granular materials. The
system comprises a resonant cavity sensor for measurements
in pipes, a fast-sampling microwave transceiver, and a signal
processing algorithm for object detection and estimation of
statistical flow properties. The sensor supports nine resonant
modes which act as periodic spatial filters for the permittivity
of the material in the pipe. We present a matched filter
detection algorithm that incorporates the statistics of the noise
due to material density fluctuations, and pre-recorded target
waveforms arising due to the passage of an object.

We present a pre-processing procedure that utilises the
stochastic variation of the background medium to remove the
effect of an uncalibrated measurement instrument. The pre-
processed data is obtained from the first principal component
of the complex S-parameter data, which is used as a real-
valued input to the detection algorithms. We also present
a method for estimating the power spectrum of a dielectric
particle flow as function of spatial frequency. Based on these
estimates, we combine the resonant modes such that the signal-
to-noise ratio is maximised.

Experiments that involve repeated observations of up to 100
identical test objects in granular materials that flow by the
aid of gravity, are used to assess the detection performance.
For a granulate consisting of microcrystalline cellulose pellets
flowing at 100 kg/h, we achieve perfect detection of metal
spheres down to 4 mm in diameter and Delrin spheres down
to 6 mm in diameter. For glass beads flowing at 100 kg/h, we
obtain good detection of metal spheres down to 2 mm and
of Delrin spheres down to 4 mm in diameter. The matched
filter detector is shown to perform uniformly better than two
reference power detectors. The signal processing algorithm is
based on linear processing which makes it straight-forward
to implement in a real-time detection system, possibly using
uncalibrated low-cost microwave measurement hardware.
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