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Fabian Hanning 
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Chalmers University of Technology 

Abstract 

High temperature resistance and strength requirements make nickel-based superalloys the material of 

choice for the hot section of aero engines. Fabrication in terms of combining wrought and cast parts in 

the manufacturing of hot structural components enables component optimisation via the use of 

wrought high-strength parts, where geometrical constraints allow, and cast parts to produce complex 

geometries. Such an approach requires that the materials involved are weldable. Due to the complex 

microstructure of precipitation hardening nickel-based superalloys, welding comes with the risk of 

weld cracking, more specifically solidification cracking, heat affected zone (HAZ) liquation cracking 

and strain age cracking (SAC). While the first two types require a liquid phase to be present, SAC 

occurs during heating to post-weld heat treatment, in which age-hardening reactions coincide with the 

relaxation of weld residual stresses. Increasing engine operating temperatures as well as the 

intermittent cycling of land-based gas and steam turbines motivates research on the weldability of 

highly temperature-stable alloys. 

Hence, the main objective of this work has been the investigation and analysis of microstructural 

changes and their effect on weldability in terms of susceptibility towards weld cracking of the nickel-

based superalloys Haynes® 282® and ATI 718Plus®. This has been addressed by the means of repair-

welding studies and a simulative test approach using a Gleeble system. Microstructural changes were 

found to significantly affect HAZ cracking in cast ATI 718Plus®, where high amounts of Laves phase 

showed an increased resistance towards cracking. Haynes® 282® shows good weld-cracking resistance, 

as no HAZ cracks were present after multi-pass weld operations and subsequent post weld heat 

treatments. A simulative Gleeble test was developed to provide more data on ductility in the SAC 

temperature range and its dependence on ongoing microstructural changes during thermal exposure. 

Comparison with Waspaloy showed that the high resistance of Haynes® 282® towards SAC is 

correlated with the moderate age-hardening kinetics of the alloy and the rapid formation of a grain 

boundary strengthening carbide network. Furthermore, grain size was found to be a major factor 

affecting ductility and hence SAC susceptibility. 

Keywords: Nickel-based superalloys, welding, weldability, post-weld heat treatment,  
weld cracking, hot cracking, strain age cracking, Haynes 282, ATI 718Plus, Waspaloy, Gleeble  
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1. Introduction 
The hot section of aero engines and of gas turbines in general represents a severe environment for the 

materials being used there. The high temperature combined with the requirements for high strength 

and resistance to creep, fatigue, and hot corrosion narrow down the list of applicable materials. Since 

their development in the mid-20th century, nickel-based superalloys have been the material of choice 

for this demanding application [1]. 

Large structural components such as engine housings or turbine exhaust casings have traditionally 

been manufactured as a single-piece casting. This enables the production of parts with complex 

geometries but comes with the drawback of reduced strength as compared to wrought material. An 

optimisation strategy is the so-called assembly approach, in which large structural components are 

manufactured out of small parts that are joined together by welding [2]. Taking advantage of the high 

strength of wrought material when allowed by the geometrical constraints enables weight savings 

while still allowing for the production of complex shaped components. Furthermore, by eliminating 

the need for large castings, the lead time can be reduced and production costs can be lowered. 

This fabrication concept requires the materials involved to be readily weldable; the complex 

microstructure of nickel-based superalloys, however, often results in challenges. For several years, the 

standard material has been Alloy 718 due to its temperature stability up to ~650 °C and its adequate 

fabricability [3]. Because the efficiency of the combustion process increases with temperature, jet 

engine development has begun to require new materials that are applicable in even more severe 

environments. 

The use of materials with increased thermal stability often goes hand in hand with a higher risk of 

weld cracking. Hot cracking with crack formation in the fusion zone (solidification cracking) and the 

heat affected zone (liquation cracking) is often observed in nickel-based superalloys. Different 

mechanisms exist, and it is not uncommon to find several types of hot cracks after welding. Not all 

aspects of hot cracking in nickel-based superalloys alloys are well understood, despite the materials 

having been used for decades. Furthermore, the development of new alloys, such as ATI 718Plus®, 

requires additional research. Apart from hot cracking phenomena, precipitation hardening superalloys 

give rise to another major challenge, referred to as strain age cracking (SAC). This cracking 

phenomenon occurs while heating to solution heat treatment during the post weld heat treatment 

(PWHT) and is related to the relaxation of weld residual stresses coinciding with the precipitation of 

hardening phases in the material. Being able to control SAC was one of the main drivers for the 

development of Alloy 718, for which the sluggish hardening response of its main hardening phase, 
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gamma double prime, makes it almost immune to SAC. Nevertheless, its limited temperature 

resistance led to the development of new alloys, one of which is Haynes® 282®. Its maximum service 

temperature is 150 °C greater than that of Alloy 718, but it uses the gamma prime phase as a hardening 

precipitate whose more rapid precipitation kinetics may adversely affect cracking resistance. As a 

fairly new alloy, there is limited data and fundamental knowledge on its weldability and on the 

mechanisms governing weld cracking in it, motivating more detailed investigations. 

1.1. Aim 
The aim of this research is to obtain fundamental knowledge on the weld cracking behaviour of nickel-

based superalloys. Welding plays a vital role in the production of hot structural components of aero 

engines, including the possibility of carrying out welding operations for repair and remanufacturing. 

The first objective of this work is thus to investigate and understand the weld cracking behaviour in a 

repair welding scenario for the precipitation hardening nickel-based superalloys ATI 718Plus® and 

Haynes® 282®. The research questions (RQ) formulated out of this objective are 

RQ 1: Which weld cracking mechanisms are present during repair operations? 

RQ 2: How do microstructural changes resulting from heat treatments affect weld cracking behaviour 

in a repair welding operation? 

In contrast to the sluggish hardening effect of Alloy 718, which is based on the precipitation of the 

gamma double prime phase, gamma prime hardening materials have a potentially higher susceptibility 

towards SAC. While the general cause of SAC has been established, the underlying mechanisms are 

still not fully understood. Furthermore, the use of new alloys requires investigations to evaluate their 

resistance to this type of weld cracking. This defines the second set of objectives of this work: 

• Establishing the current state of research on SAC, including the identification of the most 

important mechanisms; 

• Evaluating available testing methods regarding SAC susceptibility and developing a suitable 

test approach to investigate the underlying mechanism; and 

• Investigating the SAC mechanism in Haynes® 282® and understanding the materials’ level of 

resistance towards cracking.  

The related research questions are 

RQ 3: How do changes in microstructure affect strain age cracking? 

RQ 4: What are the key components of the SAC mechanism in Haynes® 282®? 
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2. Superalloys for aero engine applications 
The severe environment present in the hot sections of aircraft engines requires highly stable materials 

in terms of temperature resistance and strength at high temperatures. At the turbine inlet, the 

temperature can now surpass 1500 °C [4]. This exceeds the melting point of nickel-based superalloys 

by over 100 °C, thus requiring active cooling and the application of thermal barrier coatings to the 

exposed material. This is even more important for structural components since the precipitation-

hardening superalloys applied there usually have to be kept below approximately 800 °C [5]. 

Generally, nickel-based superalloys can be grouped into three categories based on their strengthening 

mechanism: solid solution strengthening, precipitation hardening, and oxide dispersion strengthening. 

While solid solution strengthening is used where strength requirements are moderate and high 

temperature resistance and good corrosion properties are necessary, precipitation hardening grades are 

the material of choice for structural applications in aero engines. 

Numerous superalloys are commercially available; they all contain a complex mixture of alloying 

elements that influence their mechanical properties through various effects on the microstructure. The 

elements Co, Cr, Fe, Mo, Ta and W are used for solid solution strengthening as the deviation of their 

atomic radii and electronic structure is not too large when compared to the nickel atom. The solubility 

of these elements is hence quite high [6]. Other alloying elements lead to the formation of secondary 

phases that can be used for precipitation hardening. Typical hardening precipitates and the alloying 

elements used to form them are the gamma prime phase γ’ (Ni3Al, Ti) and the gamma double prime 

γ’’ (Ni3Nb). Several elements result in the formation of carbides that are often used to control the grain 

size in the material (W, Ta, Ti, Mo, Nb, Cr). Some elements, however, promote the formation of 

brittle topologically closed packed (TCP) phases (Nb, Ti, V, Zr, Ta, Al, Si) [7]. The potential of some 

alloying elements to form different phases, some of which are needed to obtain the required properties 

while others are of a detrimental nature, requires fundamental knowledge about the physical 

metallurgy as well as precise process control. 

2.1. The gamma prime phase (γ’) 
The gamma prime phase γ’ is the main hardening phase for precipitation strengthened nickel-based 

superalloys. It has the nominal chemical composition Ni3Al and a face centred cubic crystal structure. 

Al can be substituted by Ti and Ta; γ’ is thus often denoted as Ni3(Al,Ti) [8]. Its face centred structure, 

combined with a low mismatch in the lattice parameter, makes γ’ coherent with the nickel matrix and 

allows for homogeneous precipitation within the matrix. This leads to fast precipitation kinetics, while 

particle growth is slow [9]. For small particle diameters and during earlier stages of ageing, the 

particle shape is spherical, as shown exemplarily in Figure 1 (a) for Haynes® 282® exposed to 950 °C 
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for 30 min. Based on lattice mismatch and particle size, the shape can change to cubes or to plates, 

which reduces the surface energy by matching the structure of the matrix, as shown exemplarily in 

Figure 1 (b) for γ' found in as cast ATI 718Plus®.  

 

Figure 1: (a) Microstructure of wrought Haynes® 282®, heat treated at 950 °C for 30 min; spherical γ' and 
secondary carbides at the grain boundaries are indicated by arrows. (b) Cuboidal γ' present in as cast 
ATI 718Plus®. 

2.2. Carbides 
Different types of carbides can be present in nickel-based superalloys. Cubic MC-type carbides, rich in 

Ti, Nb, and Ta, form above the solidus temperature of the matrix and are hence present from the 

primary manufacturing process. The amount and size can change during the subsequent heat 

treatments, but some MC carbides normally remain in the material. During heat treatments, secondary 

carbides can form. These are of the M6C or M23C6 type and are usually formed by solid state reactions 

of the type 

𝑀𝑀𝑀𝑀 + 𝛾𝛾 = 𝑀𝑀23𝑀𝑀6 + 𝛾𝛾′    (1) 

Secondary carbides usually form at the grain boundaries and are therefore often intentionally 

precipitated for grain size control as well as to inhibit grain boundary sliding [10]. If present in long, 

continuous films, they can, however, have detrimental effects on the mechanical properties and 

weldability of the alloy. 

2.3. Other phases 
Beyond the γ’ phase being used as a hardening precipitate in most of the precipitation hardening 

superalloys, weldability issues led to the development of Alloy 718, which instead uses the metastable 

gamma double prime phase (γ’’). This phase is a body centred tetragonal phase with the nominal 

chemical composition of Ni3Nb. Like the γ’ phase, it is coherent with the nickel matrix, albeit showing 

significantly larger mismatch. This results in a steeper increase in strength but also in more sluggish 

precipitation kinetics and reduced thermal stability. As a metastable phase, γ’’ decomposes into the 
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incoherent and stable delta phase (δ), which is accompanied by a loss in strength [10]. The complex 

chemical composition of superalloys allows for several other phases to be present in the 

microstructure, notably detrimental TCP phases that can form after long time service exposures [9]. In 

Nb-bearing alloys such as Alloy 718 and ATI 718Plus®, the hexagonal Laves phase, which affects 

weldability due to its low melting point, can be present [7]. The presence of Nb segregation in cast 

materials and welds can cause the formation of the Laves phase, which is not thermodynamically 

stable at nominal alloy compositions. The presence of a γ'-Laves eutectic significantly extends the 

solidification range of Nb-bearing alloys and for ATI 718Plus® lies at approximately 1163 °C [11]. 

Considering that such Laves phase induced melting can be explained by a pseudo-binary system as 

reported by [11, 12], when exceeding a local Nb concentration of approximately 8 - 9 wt.-%, the 

formation of a γ-Laves eutectic should be expected during high temperature exposure. Such an 

increase in Nb concentration can be present from melt segregation or via local enrichment due to the 

constitutional liquation mechanism. The latter is described in more detail in the following chapter. 

Borides can have the same effect as carbides if finely dispersed and have been reported to have a 

positive effect on creep life [13]. Borides can nonetheless have a negative effect on heat affected zone 

(HAZ) liquation cracking, as further explained below. 
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3. Processing of nickel-based superalloys 
Nickel-based superalloys are generally available in both wrought and cast form. While wrought 

material exhibits good microstructural homogeneity and high strength, it is not useable for complex 

shapes without extensive machining, if it is even possible. For cast materials, on the other hand, the 

shape can be controlled with a much larger degree of freedom. This comes with the disadvantage of a 

significantly more segregated and inhomogeneous microstructure, resulting in reduced strength. 

Wrought superalloys are primarily produced using vacuum induction melting (VIM). The obtained 

ingots are then refined by electro slag re-melting (ESR) and/or vacuum arc re-melting (VAR) 

techniques [9]. After annealing, drawing and forging, further heat treatments are necessary to obtain 

the required material properties. 

A typical heat treatment procedure is schematically shown in Figure 2. As an initial step, a solution 

heat treatment is carried out to dissolve secondary phases in the microstructure. Note that such a 

treatment does not affect primary MC-type carbides since their dissolution temperature lies above the 

solidus of the matrix. Air cooling or water quenching is used depending on the alloy to prevent 

microstructural changes during cooling to room temperature. The term ‘mill annealing’ refers to this 

treatment, representing the material condition typically delivered from the primary manufacturer. Any 

hardening heat treatments are usually carried out after further manufacturing of components. To 

achieve the required material properties, age hardening is necessary. In most cases, this is done via a 

two-step process (cf. Figure 2). The higher aging temperature is used to obtain the desired amount and 

morphology of secondary carbides, and during the second aging step hardening precipitates, like γ’, 

are formed in the material. The first step is used to create a supersaturated solid solution during the 

subsequent aging, which is necessary for the efficient aging of γ’. If a bimodal size distribution is 

desired, the first step can be further divided into a set of temperatures, as is common practice for 

Alloy 718 or Waspaloy [14, 15]. The same heat treatment procedure also has to be carried out after 

welding to relieve weld residual stresses and to obtain uniform properties throughout the component. 

This can cause problems in the form of weld cracks, as discussed in the following section. 
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Figure 2: Schematic 2-step heat treatment cycle for nickel-based superalloys. 
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4. Welding of superalloys 
Welding plays a major role in the fabrication of hot structural components using nickel-based 

superalloys. This is based on the possibility of joining different materials with few limitations on the 

shape and previous manufacturing steps. One example is the trend of introducing welding to the 

fabrication of hot structural parts of jet engines. These components, made out of nickel-based 

superalloys, have traditionally been produced as large single-piece castings [2]. Using welding as a 

joining technique allows for the combination of high-strength wrought parts and complex shaped cast 

parts and yields both weight and cost reductions [16]. Welding processes have experienced significant 

advancements that paved their way into the production of structural components in the aero engine 

industry. However, the most common techniques used in fabrication are still gas tungsten arc welding 

(GTAW), laser beam welding (LBW), plasma arc welding (PAW) and electron beam welding (EBW) 

[17]. Apart from enabling the manufacturing of large structural components, welding is heavily relied 

on for repair operations. These are often necessary during production but also in maintenance and 

overhaul operations. The high cost of turbine components often makes repair the more economically 

feasible alternative when compared to complete replacement of damaged parts. 

Especially when joining sophisticated alloys, such as superalloys, high demands are placed on process 

control and on the weld geometry. The rapid heating and cooling cycle, together with the mechanical 

restraint from the joint, can create numerous residual stresses in the material [18]. This in turn can lead 

to cracking and distortion. Furthermore, microstructural changes due to the weld thermal cycle require 

additional treatments of the welded components. Various PWHT are carried out to relieve weld 

residual stresses and to obtain the desired microstructural and mechanical properties in the material. 

Welding of superalloys can also result in the formation of weld cracks, with the complex 

microstructure of superalloys generally making these materials difficult to weld. Knowledge of the 

underlying mechanisms is a requirement for being able to produce crack-free welds, explaining the 

high research interest in weld cracking phenomena in superalloys [17, 19]. 

4.1. Weld cracking 
The cracking mechanisms occurring in nickel-based superalloys can be divided into different groups, 

based on the temperature range within which they occur. Cold cracking is usually not directly 

connected to welding and includes hydrogen embrittlement at ambient temperatures. Warm cracking 

phenomena, such as strain age cracking and ductility dip cracking, occur at high temperatures in the 

heat affected zone (and fusion zone during multi pass welding operations) but do not require a liquid 

phase to be present. They are hence also referred to as solid state cracking. Hot cracking occurs at high 
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temperatures and requires the presence of liquid phases, with possible crack formation in both the 

fusion zone (FZ) and heat affected zone (HAZ) [9]. 

4.1.1. Solidification cracking 

Weld solidification cracking occurs in the FZ, where cracks are formed during the passage of the 

liquid-solid two-phase region upon cooling. Several theories of weld solidification cracking have been 

proposed during the last 60 years but not all aspects are fully understood yet. In general, two main 

factors in its occurrence can be identified, namely the presence of restraint and of a susceptible 

microstructure. The former can result from the formation of thermal stresses during cooling, as a 

temperature and heating/cooling rate gradient between the fusion zone and base material is present. 

The restraint is further influenced by the weld bead geometry, workpiece design, and thickness, heat 

input during welding, and mechanical fixture (external restraint). Early theories include the shrinkage-

brittleness theory [20] and the strain theory of hot tearing [21]. These were combined into the 

generalised theory of super-solidus cracking by Borland in the early 1960s [22]. In general, the 

solidification process is described as 

• Stage 1: Primary dendrite formation in a continuous liquid with relative movement between all 

phases being possible. 

• Stage 2: Dendrite interlocking, leaving only the liquid as a mobile phase. 

• Stage 3: Grain boundary development with creation of a semi-continuous network, restricting 

the liquid phase from moving freely. 

• Stage 4: Solidification of the remaining liquid. 

It is assumed that cracking occurs exclusively in stage 3, which is referred to as the ‘critical 

solidification range’ (CSR), since backfilling would occur at earlier stages. After complete 

solidification, contraction stresses are compensated uniformly and no cracking occurs. 

In general, a short solidification range is beneficial for resistance to cracking, as thermal restraint plays 

an increasing role at lower temperatures. Due to their high alloying content, nickel-based superalloys 

are prone to segregation, resulting in the local suppression of the melting point. In particular, minor 

alloying elements such as P, S, B, C, and Zr have a negative influence on cracking resistance [7, 23] 

because they are reported to accumulate at grain boundaries and interdendritic areas and form 

intermetallic compounds, such as M3B2 and Ni7Zr2 in the case of Inconel 738LC [24, 25]. Alloys 

containing large amounts of Nb, such as Alloy 718, are especially prone to the formation of cracks due 

to the strong segregation of this element, which causes the formation of NbC carbides and Laves phase 

eutectics in interdendritic areas. This is accompanied by a significant reduction in melting point in the 
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interdendritic areas [16, 26]. The presence of large amounts of eutectic liquid can, however, facilitate 

backfilling, which reduces the amount of cracks in the material [16, 27, 28]. 

4.1.2. Heat affected zone liquation cracking 

In contrast to weld solidification cracking, which occurs in the FZ of the weld, HAZ liquation cracking 

is localised to the partially melted zone usually referred to as the PMZ. This zone lies in the HAZ and 

is in close proximity to the FZ. Its main characteristic is the presence of a liquid fraction, formed when 

the effective solidus temperature is exceeded during heating. The presence of stresses during 

subsequent cooling can then cause crack formation. The liquid can form by different mechanisms, 

namely segregation induced liquation, constitutional liquation and eutectic melting. 

Segregation induced liquation is based on the local suppression of the solidus temperature. Elements 

like S, P, and B are especially known to segregate within the microstructure and are usually enriched 

near grain boundaries. The segregation behaviour of these elements and their effect on weldability has 

been thoroughly studied, particularly for Alloy 718 [29–39]. Apart from boron, which has been found 

to have a positive influence on creep resistance and stress rupture life [13], the general effect of these 

elements is detrimental and their concentrations are usually kept at a minimum level. 

Constitutional liquation can occur if second phase particles (i.e. precipitates) are present in the matrix. 

The mechanism was originally introduced for maraging steels by Pepe and Savage [40] and was later 

adapted to explain HAZ liquation cracking in Alloy 718 by Owczarski et al. [41]. A key factor in the 

mechanism is fast heating, so that particles can survive despite not being thermodynamically stable 

above the eutectic temperature (assuming the phase interactions can be described by a eutectic 

system). Under the further assumption of equilibrium conditions at the phase boundary between matrix 

and particle, a concentration gradient develops around the particle during its subsequent dissolution. 

When reaching the eutectic temperature, the reaction zone around the particle liquates. It should be 

noted that the particle itself does not melt, as e.g. TiC has a melting point far above that of the nickel 

matrix [7]; only the solute enriched reaction zone contributes to the melt formation. This mechanism 

has been observed especially for Nb-bearing alloys such as Alloy 718 and ALLVAC 718Plus [16, 41] 

but has also been reported for other precipitation hardening alloys [27, 42–44]. Figure 3 shows an 

example of constitutional liquation of NbC carbides in cast ATI 718Plus®. 
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Figure 3: Constitutional liquation in cast ATI 718Plus®, showing the formation of γ-Laves eutectics 
around NbC particles [45] (PAPER III). 

Eutectic melting is only found in cast alloys and relates to the strong segregation in interdendritic 

areas, as shown in the example of cast ATI 718Plus® in Figure 4. It has been observed in cast Alloy 

718 by various authors [16, 19, 46]. Related to their generally more segregated microstructure, cast 

alloys are considered more susceptible to HAZ liquation cracking than wrought alloys. 

 

Figure 4: (a) Eutectic melting involving Laves phase in cast ATI 718Plus® in interdendritic areas. (b) 
Magnified section from (a) showing the structure of the γ-Laves eutectic. 

4.1.3. Solid state weld cracking phenomena 

In contrast to the hot cracking phenomena described above, solid state cracking, or warm cracking, 

does not require a liquid phase to be present in the material. Solid state cracks can occur in several 

alloy systems and material types. 

A material group that shows cracks during reheating after welding is the solid solution strengthened 

nickel-based superalloys. The presence of a dip in ductility over an intermediate temperature range 

was already found in 1912 by Bengough, who investigated aluminium, copper and copper alloys [47]. 

Rhines and Wray later reported the presence of a ductility dip below the recrystallisation temperature 

in copper alloys, nickel alloys, austenitic stainless steels, titanium alloys and aluminium alloys [48]. 
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The mechanism of ductility dip cracking (DDC) proposed by Rhines and Wray is based on grain 

boundary shearing at temperatures below the recrystallisation temperature [48]. Grain boundary 

shearing was also found to be the reason for DDC by Arkoosh and Fiore, who investigated 

Hastelloy X. They attributed localised deformation at the grain boundaries to excessive intragranular 

carbide precipitation [49]. Later investigations from Ramirez and Lippold [50, 51] and Noecker and 

DuPont [52, 53] also found an influence of carbides on localised deformation. They however report 

carbides to be beneficial in inhibiting grain boundary sliding if they precipitate at grain boundaries. 

Yamaguchi et al. found that sulphur segregation leads to grain boundary embrittlement and hence 

causes DDC [54]. The negative effects of sulphur and other impurities like phosphorous and hydrogen 

has also been reported in later studies by Collins et al. [55], Nishimoto et al. [56–58] and Saida et al 

[59]. However, Ramirez and Lippold found that while impurities have a negative impact, the absence 

of S and P cannot completely prevent ductility dip cracking [50, 51]. They proposed that the main 

influencing factor on DDC is grain boundary tortuosity, leading to a more resistant material due to 

reduced strain concentration. This is in good agreement with the findings of Noecker and DuPont [52, 

53] and has also more recently been confirmed by Chen et al [60]. 

The phenomenon of reheat cracking has been investigated by various authors for austenitic stainless 

steels and ferritic low alloy CrMoV steels. It has also been referred to as stress relief cracking in some 

studies, as stress relief has been identified as a main influencing factor. Younger and Baker 

investigated reheat cracking in austenitic steels and found a relationship between cracking 

susceptibility and strain-induced intragranular carbide precipitation (TiC, NbC, M23C6) in the 

temperature range of 550 to 950 °C [61]. Other early studies include that of Bentley, who found that V 

carbide precipitation in CrMoV steels leads to embrittlement [62]. He concludes that a large amount of 

finely dispersed carbides leads to the greatest embrittlement (i.e. a low stress relief temperature, 

favouring nucleation over growth reactions). Fast carbide precipitation in the grain interior during 

heating has been attributed to a supersaturation of carbide forming elements due to fast cooling after 

welding [63]. Other researchers found a negative influence of sulphide precipitation [64] and of the 

presence of carbides at grain boundaries [65]. Dhooge and Vinckier have thoroughly reviewed the 

literature on reheat cracking in steels and summarise the available mechanisms as follows [66, 67]: 

• Intragranular carbide precipitation, leading to relatively weaker grain boundary areas; the 

precipitation of carbides at grain boundaries has also been reported and is associated with the 

formation of denuded zones around grain boundaries (i.e. zones with lower alloy content). 

• Precipitates at grain boundaries induce void formation or promote boundary decohesion 

during grain boundary sliding. 

• Stress induced segregation of impurities to grain boundaries, leading to embrittlement. 
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4.1.4. Strain age cracking 

The solid state cracking mechanism that can be observed in precipitation hardening nickel-based 

superalloys is strain age cracking (SAC), also referred to as reheat cracking or PWHT cracking. The 

general mechanism of SAC was studied in the early 1960s and 70s by various researchers [68–75]. It 

is generally accepted that the occurrence of cracks during the PWHT cycle is caused by the 

simultaneous presence of stresses in the HAZ and low ductility in this region. This is explained as 

follows. During cooling from welding a significant amount of restraint is built up in the HAZ due to 

thermal stresses and external weld restraint. The former is caused by the temperature gradient present 

from the base metal to the weld fusion zone. The residual stresses are partially relieved during 

heating to the PWHT, which coincides with the precipitation of hardening phases (cf. Figure 5) 

[70]. 

 

Figure 5: Schematic time-temperature regime for a welding operation followed by heating to PWHT. The 
dashed line represents the precipitation curve of a TTT diagram [76] (Paper I). 

The precipitation reaction is believed to lead to the higher strength of the grain interior as compared 

to the grain boundaries. The deformation (i.e. stress relaxation) is thus localised to the grain 

boundaries. When grain boundary sliding is not accompanied by volume deformation, high stresses 

develop, especially at grain boundary triple points, and intergranular cracks form [48, 61]. Different 

authors claim an additional effect of contraction stresses due to γ’ precipitation based on the difference 

in lattice parameters of the γ matrix and γ’ [69, 70, 77, 78]. 
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4.1.4.1. Chemical composition 

SAC is a precipitation-related phenomenon. It is thus strongly influenced by the chemical 

composition, which has been investigated by various authors [68, 71, 75, 79]. Nonetheless, when 

examining the effect of trace elements, the results are often contradictory. This is mainly related to the 

fact that it is difficult, if not impossible, to alter the concentration of one element without changing 

that of the others at the same time. Combined with the often limited number of different heats 

available for an investigation, the results have to be interpreted with care. The elements forming the 

hardening phases have the largest influence on the cracking response. Increased Al+Ti content has 

been reported to lead to higher cracking susceptibility [70, 73]. This is shown in Figure 6, the so-called 

Prager-Shira diagram [70]. The figure provided has been updated with more recent alloy 

compositions; Al+Ti contents above the grey line indicate reduced weldability [76]. 

 

Figure 6: Al and Ti concentrations of some commercially available superalloys; low weldability above 
grey line [76] (Paper I). 

The effect of C has been investigated in several studies. Carbon has been found to be beneficial due to 

grain size control [72, 75, 80]; however, its effect on HAZ liquation cracking should also be 

considered when evaluating the overall weldability of an alloy. Other elements like Fe, Mn and S have 

been reported to not have a significant effect on SAC, while B can have a similar effect to that of C 

and can increase stress rupture life [13, 75]. Research on the role of B has mostly been related to HAZ 

liquation cracking in Alloy 718, where it was found to have a negative impact [29–39]. 

  

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

A
l [

at
.%

]

Ti [at.%]

Udimet 500

Udimet 720

IN 939

René 41

Waspaloy

Haynes 282

ATI 718Plus

Inconel X-750

Alloy 718



 
16 

 
 

4.1.4.2. Effect of microstructure 

Apart from hardening precipitates, the effect of microstructure can be divided into grain size and 

homogeneity. The former has a positive effect if kept on a low level [79, 81] since the distribution of 

loads over a larger grain boundary area reduces the local stress level. Inhomogeneities like segregation 

are more of a concern in cast materials; their effect is generally seen in the form of increased hot 

cracking susceptibility. If a welded part is already pre-damaged when put through post weld heat 

treatment, further cracking can be triggered [19]. 

The hindering of dislocation movement and hence hardening caused by precipitates like γ’ is based on 

the mismatch with the matrix phase, with a higher mismatch leading to an increased hardening effect. 

An effect of mismatch on the development of contraction stresses and hence on SAC susceptibility has 

been proposed in early studies [69, 70, 77]. More recent computer simulations by Andersson indicate a 

positive correlation between negative lattice mismatch and cracking resistance [78]. The lattice 

parameter change of the γ phase as a function of δ , γ’ and γ” has been investigated for Alloy 718 by 

Liu et al. [82]. They reported a decrease for higher precipitate contents. However, no information is 

available about the misfit created by the precipitation reactions. Tiley et al. investigated René 88DT by 

means of synchrotron X-ray and neutron diffraction and reported that the lattice mismatch increased 

with aging time while initially decreasing as a function of temperature [83]. Another study by 

Whitmore et al. on Allvac 718Plus showed a small negative lattice mismatch between γ and γ’ after 

aging, following a HAZ simulation with deformation. [84]. Note that the investigation was more 

focused on morphology and chemical composition. The measurement was conducted at room 

temperature and consequently does not necessarily reflect the conditions in the PWHT temperature 

range in terms of lattice parameter misfit. Measurements of the lattice mismatch during creep in a 

single crystal nickel-based superalloy by Dirand et al. led to the conclusion that the misfit is strongly 

dependent on temperature, stress and previous plastic deformation [85]. Available data indicate a 

relationship between lattice parameter misfit and SAC, though quantifiable data collected in the time-

temperature range where SAC occurs has yet to be obtained. 

4.1.4.3. Effect of material condition and welding process 

Crack formation during PWHT is related to low ductility in the HAZ, combined with stress relaxation 

processes. The localisation to the HAZ is related to its lower strength as compared to the base 

material. It is thus reasonable that softer base material should decrease susceptibility to SAC. This has 

been confirmed by several investigations [70, 74, 81, 86, 87]. Fully age hardened base material led to 

the most severe cracking in the heat affected zone. Over-aged material, on the other hand, has been 

found to have a beneficial influence on SAC resistance as the lower strength of such a microstructure 

results in stress relaxation in the base material [81]. The thermal stresses generated during the welding 



 
17 

 
 

operation strongly depend on the heat input. This becomes clear when comparing the effects of 

GTAW and EB welding on SAC. Since low heat input can in turn lead to HAZ liquation cracking [88–

90], a balance has to be found to achieve the overall best cracking resistance. 

The mechanisms and the main influencing factors related to SAC can be summarised as follows [76]: 

• Strain 
- Weld restraint 
- Precipitation-induced stress 

• Stress relaxation 
- Initial magnitude of stress 
- Time-temperature regime 
- Young’s modulus 

• Precipitation kinetics 
- Chemical composition 
- Strain (higher dislocation density facilitates nucleation) 

• Stress localisation at grain boundaries 
- Grain size 
- Grain boundary conditions (e.g. precipitates) 

4.2. Weld cracking tests 
Weldability testing is characterised by the numerous tests that are tailored towards investigating 

specific cracking phenomena that occur during welding [91, 92]. This can cause poor correlation 

between studies due to their different setups and test parameters even when the same phenomenon is 

being investigated. Weld cracking tests can be categorised by the phenomenon they are used to study 

or by their approach [7]. Using the latter classification, the tests can be divided into representative and 

simulative tests. 

A material’s weldability under specified conditions can be evaluated via welding trials. Such tests can 

provide a realistic benchmark of welding performance and when coupled with microstructural 

analysis, can provide valuable insight into which weld cracking mechanisms are present under the 

studied conditions. As such, welding trials are useful as starting points for a larger investigation or to 

test hypotheses based on simulative test data. Using systematic analysis, some quantitative data such 

as crack length can be obtained from such tests. Welding trials, however, only cover a limited range of 

process parameters, and often the boundary conditions during welding, such as restraint level and 

temperature profile, are not precisely known. Nevertheless welding trials are still used today, often in 

conjunction with repair welding [45, 93–99]. 
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Simulative tests, on the other hand, use the mechanical and thermal conditions present during welding 

to investigate weld cracking with a more precisely controlled parameter set. While specialised 

equipment that includes actual welding exist, e.g. the Varestraint test [100], many methods focus on 

temperature cycling and mechanical loading. Out of the tests used to study hot cracking phenomena, 

the hot ductility test (HDT) is one of the more frequently used methods. Here, the thermal cycle in the 

base metal heat affected zone (HAZ) is simulated by rapid heating and cooling, which is followed by 

pulling test specimens to fracture for the evaluation of ductility [101, 102]. A set of test temperatures 

is chosen up to a temperature close to the melting point (TL), at which point the material cannot sustain 

any load, and a ductility curve is generated for on-heating and on-cooling cycles. This allows for the 

investigation of the brittle temperature range (BTR). Figure 7 schematically shows a ductility 

signature measured during the HDT with important points indicated on the graph. The rapid ductility 

loss in the on-heating curve is related to the onset of liquation in the material [7]. On-cooling tests are 

performed by first heating a test specimen to a peak temperature (TPeak), typically 50 °C below the  

nil-strength temperature (NST). 

 

Figure 7: Schematic hot ductility signature curve from the HDT with important temperatures indicated 
on the graph. Adapted from [16]. 

Other important parameters that can be obtained from the HDT are the nil-ductility temperature 

(NDT), ductility recovery temperature (DRT), ductility recovery rate (DRR), and ratio of ductility 

recovery (RDR). The method makes it possible to study the liquation behaviour in the HAZ during 

welding and can be used to compare different materials [16]. 

The HDT is carried out using a Gleeble thermomechanical simulator, which was originally developed 

at the Rensselaer Polytechnic Institute in the 1950s [103]. The general setup is shown in Figure 8. The 

machine is capable of heating small test specimens at rates of up to 105 °C/s via resistance heating. 

The machine uses closed-loop temperature control via a thermocouple spot welded to the specimen 

centre as indicated in Figure 8 (b). Heat is conducted towards the water-cooled jaws, resulting in a 
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narrow, parabola-shaped temperature distribution in the specimen. If heat conduction into the jaws 

does not result in the desired cooling rate, the cooling can be accelerated by spraying different 

quenching mediums onto the specimen. The thermal profile can be simultaneously coupled with 

mechanical loading, allowing for e.g. the compensation of thermal expansion or pulling samples to 

fracture while controlling the temperature. 

 

Figure 8: Gleeble 3800 system (a), test specimen during heating, with thermocouple placement, copper 
grips and quenching unit indicated by white arrows (b). 

Several approaches have been followed to investigate SAC, including self-restrained tests such as the 

circular patch test, constant load rupture (CLR) tests, stress-to-fracture tests, stress relaxation tests and 

tests measuring ductility [76], as summarised in Table 1. 

Table 1: Test methods to investigate SAC in nickel-based superalloys, summarised from [76] (PAPER I). 

Type of test Advantages/ Disadvantages 

Constant load rupture tests (CLR) 
Time to failure measured 
Does not predict well 

Stress relaxation tests Hard to create material rankings                   
Can provide insight into mechanism 

Stress to fracture tests Does not indicate resistance towards SAC 

Tests measuring ductility 
Can be used to rank materials                           
Good indicator for SAC susceptibility 

One of the more commonly used testing approaches that measures ductility follows the idea of 

simulating the slow heating to PWHT, combined with acquiring ductility data in the temperature range 

where SAC occurs. This test is referred to as the constant heating rate test (CHRT) [79]. While for the 

original test a clamshell furnace was used, the Gleeble thermomechanical simulator enables fast 

heating and cooling cycles that are comparable to those present during welding. This yields the ability 
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to add a fast heating and cooling cycle in advance of the CHRT in order to create a microstructure 

similar to that found in the HAZ of welds where SAC occurs; the thermal cycle of the test is shown 

schematically in Figure 9. The modified CHRT takes advantage of the more capable testing equipment 

available today in welding research and enables the screening of different alloys based on their 

susceptibility towards SAC. The testing of microstructures corresponding to those found in the HAZ 

of actual welds ensures that the test results can be related to real applications. While requiring a 

metallographic investigation of tested samples, testing HAZ simulated microstructures also includes 

the effect of potential weaknesses such as liquation cracks that can form during the welding process. 

The effect of such a pre-damaged microstructure has been found to negatively affect the performance 

of the material during simulated PWHT cycles [19]. 

 

Figure 9: (a) Schematic time-temperature cycle of the modified CHRT test [76] (Paper I). (b) Typical test 
result showing a drop in ductility. 

While useful for screening purposes, such a test does not provide insight into the underlying 

mechanisms. Since SAC is a precipitation-related cracking phenomenon, investigation of the 

precipitation kinetics in the SAC temperature range, combined with short exposure times in the range 

of PWHT heating rates, could provide a better understanding of this cracking phenomenon. 
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5. Experimental methods 

5.1. Materials and heat treatments 

Cast ATI 718Plus® 

ATI 718Plus® is a derivative of Alloy 718, developed to increase the maximum service temperature. 

This is achieved by increasing the amount of Al+Ti in the material, which results in the γ' phase being 

the main hardening precipitate. Its thermal stability is thus increased by ~50 °C as compared to 

Alloy 718. Initially developed as a wrought material, a cast version was soon available, increasing the 

applicability of the alloy. Development was carried out in a material affordability initiative in the 

United States, which resulted in a modified chemical composition of cast ATI 718Plus® with higher 

Nb content [104, 105]. ATI 718Plus® in the form of investment cast plates has been used in 

PAPER III. The chemical composition is provided in Table 2. 

Table 2: Chemical composition in wt.-% of the investment cast ATI 718Plus® studied in this work. 

Ni Cr Co Mo Ti Al Fe Mn Si C B Nb W 

Bal 20.72 8.34 2.71 0.75 1.50 9.31 0.01 0.04 0.05 0.005 6.02 1.00 

Haynes® 282® 

Haynes® 282® is a relatively new γ’ hardening superalloy [106] that has been developed to provide 

increased thermal resistance as compared to Alloy 718, which due to its main hardening precipitate the 

γ’’ phase, can withstand temperatures of up to 650 °C. The γ’ phase present in Haynes® 282® instead 

enables a maximum service temperature of 800 °C.  

In this thesis, Haynes® 282® has been investigated in the form of a wrought bar (Paper II) and a 

3.15 mm (1/8 in) rolled sheet (Papers IV, V, and VI). The chemical compositions are given in Table 

3. Test specimens have been machined using abrasive waterjet cutting. 

Table 3: Chemical composition of the investigated Haynes® 282® in wt.-%. 

 Ni Cr Co Mo Ti Al Fe Mn Si C B 
Wrought bar        
(Paper II) Bal 19.55 10.46 8.70 2.02 1.45 1.17 0.06 0.07 0.063 0.004 
Rolled sheet       
(Papers IV-VI) Bal 19.49 10.36 8.55 2.16 1.52 0.37 0.05 0.05 0.072 0.005 
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Waspaloy 

Waspaloy is a γ' hardening nickel-based superalloy that belongs to the early generations of 

precipitation hardening superalloys. Its chemical composition is relatively similar to that of 

Haynes® 282®. Waspaloy, however, has a higher Al+Ti content. This increases the thermodynamic 

stability of the γ' phase. This material has been investigated in Paper V using a 3.15 mm (1/8 in) sheet 

with the chemical composition given in Table 4. The material was supplied in a mill-annealed, 

solutionised material condition. 

Table 4: Chemical composition of the investigated Waspaloy sheet material in wt.-%. 

Ni Cr Co Mo Fe Mn Al Ti 

Bal. 19.08 13.56 4.52 1.57 0.08 1.41 3.00 

Zr B C Cu P S Si  

0.041 0.006 0.080 0.03 0.003 -* 0.05  
 

5.2. Heat treatments 
Apart from the as-received material conditions, emphasis has been placed on the effect of heat 

treatments (HT) on microstructural development and the influence of HT on resistance towards weld 

cracking. 

ATI 718Plus® 

Cast material is typically put through a homogenisation heat treatment to level out the elemental 

segregation present due to the casting process. For Nb-bearing alloys the brittle Laves phase is of 

concern; it forms due to accumulation of Nb in the interdendritic regime during solidification. The 

phase is not thermodynamically stable at the nominal alloy composition and can therefore be dissolved 

by homogenisation heat treatments. Homogenisation heat treatments have been carried out below, at, 

and above the incipient Laves melting temperature of the material of 1163 °C [11]. The temperatures 

were chosen as 1120, 1160, and 1190 °C, with exposure times of 4 and 24 h. Note that while such 

homogenisation heat treatments are commonly carried out in conjunction with hot isostatic pressing 

(HIP) in industry to remove casting defects, a lab-scale furnace at ambient pressure was used in the 

present study. 

Haynes® 282® and Waspaloy 

In Paper II, heat treatments on Haynes® 282® were performed in a vacuum furnace with a heating rate 

of 4-11 °C/min and Ar forced convection cooling, resulting in a cooling rate of >50 °C/min. The 

investigated temperatures were chosen to: 
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• Dissolve γ’ in the material at 1010 °C, based on the γ’ solvus of 997 °C [106]. Exposure time 

was set to 1 h. 

• Remove secondary M23C6 carbides (solvus 1019 °C) without affecting primary and M6C 

carbides at 1120 °C (0.5 h exposure time). This temperature represents the lower limit of the 

recommended solution annealing window [107]. 

• Produce a coarse grained microstructure by heat treating the material at 1150 °C for 2 h. 

• Age harden the material at 788 °C for 8 h. 

Furnace heat treatments were used in Papers IV-VI to put material through an age-hardening heat 

treatment (Papers IV and V) and to produce a coarse-grained microstructure (Paper VI). Heat 

treatments were carried out under an Ar-protective atmosphere with a gas flow of 100 l/h. Table 5 

shows the heat treatment parameters used for Haynes® 282® [99, 107] and Waspaloy [15]. 

Table 5: Heat treatments carried out on Haynes® 282® and Waspaloy in Papers IV-VI. 

Haynes® 282® age hardening HT 1010 °C 1 h + 788 °C 8 h 

Haynes® 282® coarse-grained microstructure 1150 °C 2 h 

Waspaloy age hardening HT 995 °C 2 h + 845 °C 4 h + 760 °C 16 h 

In Paper IV a test matrix was developed to study the temperature range where SAC occurs, resulting 

in 5 investigated temperatures (750–950 °C) and 12 exposure times (5–1800 s), as shown in Figure 10. 

 

Figure 10: Temperatures and exposure times used to investigate the SAC susceptibility of Haynes® 282® 
[108] (Paper III). 

While all following investigations used the same temperature-time parameter window, the number of 

studied exposure times was reduced in Papers V and VI. 
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5.3. Welding 
Manual GTAW was used in Papers II and III. In the former, circular grooves were filled with 

Haynes® 282® filler wire using a tungsten-2% thorium (WT-20) electrode. Ar gas was used as a 

shielding gas with a nozzle gas flow of 8-15 l/min. A matching chemistry filler material in the form of 

1.14 mm wire was used with negative polarity and two welding currents, 120 and 140 A. The interpass 

temperature was approximately 50 °C and was reached by quenching with Ar gas in between layer 

depositions. While the welding parameters were similar in Paper III, linear grooves of 

30 x 10 x 10 mm and a bottom radius of 5 mm were filled using ATI 718Plus® filler wire. Figure 11 

shows filled weld grooves for Haynes® 282® and cast ATI 718Plus®. 

 

Figure 11: (a) Welded disc of Haynes® 282®, Paper II. [99]. (b) Linear groove design used in Paper III for 
cast ATI 718Plus®. 

5.4. Gleeble testing 
A Gleeble 3800 thermomechanical simulator was used in Papers III-VI. In Paper III, the heating 

portion of the HAZ thermal cycle was simulated to help explain the cracking behaviour in cast 

ATI 718Plus®. Parameters similar to those of the hot ductility test (HDT) were used [109], with a 

111 °C/s heating rate and 0.03 s holding time followed by pulling samples to fracture at 55 mm/s. 

Papers IV-VI investigate the influence of exposure time on the SAC susceptibility of Haynes® 282® 

and Waspaloy by controlling the exposure time in the γ' precipitation temperature range. The test 

parameters are listed in Table 6. 
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Table 6: Parameters used for Gleeble testing in Papers IV-VI. 

Temperature [°C] 750 800 850 900 950 
Exposure time [s] 5 10 15 20 30 60 120 180 300 600 1200 1800 
Heating rate [°C/s] 1000 
Cooling rate (T>500 °C) [°C/s] 100 
Stroke rate [mm/s] 0.011 0.055 0.55 55 
Chamber pressure [mbar] 0.1 
Thermocouple Type K 
 

5.5. Sample preparation and investigation techniques 

5.5.1.  Metallographic preparation 

Samples were mounted in hot mounting resin, followed by automatic grinding and polishing. For 

microstructural analysis, samples were electrolytically etched with 10wt.-% oxalic acid at 3V DC  

for 3-5 s. To analyse γ’ in Paper IV, a second etchant was used, which removes γ’ and carbides while 

leaving the matrix unaffected. This has been found to lead to more accurate results in image analysis 

[110]. The etchant consists of 50 ml 37 wt.-% HCl, 25 ml 65 wt.-% HNO3, 2 g CuCl2 and 200 ml DI 

H2O. Samples were submersed for 40 s at room temperature. 

5.5.2.  Microstructural analysis 

Microstructural characterisation was initially carried out using light optical microscopy. In the case of 

crack analysis, non-etched samples were used as a first step. An Olympus BX60M light optical 

microscope was used for all investigations. For area measurements, an Olympus SZX 9 stereo 

microscope was used. Selected samples were further investigated using electron microscopy, for 

which a Leo 1550 FEG SEM, equipped with Oxford instruments EDS and EBSD detectors, and a 

ZEISS Evo 50 SEM were used. 

Transmission electron microscopy (TEM) was used on selected samples in Papers III-V. A 

JEOL 2100F field emission TEM with 200 kV acceleration voltage was used. Samples were analysed 

with selected area (SA) diffraction and TEM EDS, and images were recorded in bright and darkfield 

contrast. Preceding the TEM investigations, selected samples were thinned to 100 µm by manual 

grinding on P320 to P600 SiC grinding paper. This was followed by dimple grinding to 45–50 µm 

with a Gatan Model 656 dimple grinder and electropolishing in a 10:90 methanol:perchloric acid 

solution at −40 °C using a Struers Tenupol-3 twinjet electropolisher. Samples were polarised to  

10–20 V DC, so that a current density of 0.09 A/cm2 was obtained. The process was terminated upon 

hole detection by the machine, which was achieved by a laser-based system. 
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5.5.3.  Electrolytic phase extraction 

Electrolytic phase extraction was used in Paper III to enable the study of secondary phases present in 

cast ATI 718Plus® via powder X-ray diffraction (XRD). The method used here is described in 

ASTM E963 [111] and shown in Figure 12. Extraction was carried out by submerging a rectangular 

sample in a solution consisting of 100 ml HCl, 900 ml methanol and 17.6 g tartaric acid. To dissolve 

the matrix phase, samples were polarised to 0.1 mA/cm2 and kept in the solution for 4 h. The extracted 

powder was filtrated using a 0.8 µm filter paper and dried for further analysis. 

 

Figure 12: Experimental setup for electrolytic phase extraction from cast ATI 718Plus®. 

5.5.4.  X-ray diffraction (XRD) on extracted powder 

A Bruker D5000 powder diffractometer was used for XRD analysis on extracted powder from cast 

ATI 718Plus®. The step size was 0.01°, and the holing time per step was set to 4 s. Peak analysis and 

indexing was carried out using the pdf 2018+ database. 

5.5.5.  Hardness testing 

A Shimadzu HMV-2 and a Struers Durascan 70 G5 microhardness tester were used to measure 

Vickers hardness with a force of 0.5 kgf (HV0.5). Measured values represent the average of 5 

indentations. 

5.5.6.  JMatPro modelling 

JMatPro v.11.2 in conjunction with the nickel-based superalloy database was used to model the phase 

stability of the investigated alloys. 
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6. Summary of results and discussion 
This thesis is the outcome of 4.5 years of research that led to the 6 appended papers. The results of the 

papers are presented here in condensed form and put into relation with the research objectives. 

6.1. Microstructural characterisation 
Apart from the as-received material condition, emphasis was placed on the effect that different heat 

treatments have on the microstructural evolution and weld cracking behaviour. The material 

characterisation of the investigated alloys is presented below in summarised form. 

6.1.1.  Cast ATI 718Plus® 

Cast microstructures are heavily segregated, which is especially visible for Nb-bearing nickel-based 

superalloys. In those alloys, the Laves phase forms as a terminal solidification product due to Nb-

segregation in the melt. Furthermore, Nb-rich MC-type carbides are typically present. The high Nb-

content of secondary phases present in interdendritic areas produces a strong elemental contrast in 

SEM BSD images, as shown in Figure 13 b. 

 

Figure 13: As-cast microstructure of ATI 718Plus®, with the large grain structure visible in (a) and Nb-
rich precipitates in interdendritic regions shown in SEM BSD contrast (b) [45]. 

The phases present in the as-cast microstructure of ATI 718Plus® were identified as Laves phase,  

Nb-rich MC-type carbides and γ' by the use of transmission electron microscopy. Figure 14 

exemplarily shows TEM results confirming the presence of Laves phase via TEM EDS and SA 

diffraction analysis. 
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Figure 14: TEM brightfield image of Laves phase in as-cast ATI 718Plus® (a). TEM EDS results are in (b), 
while SA diffraction patterns show a hexagonal P63/mmc structure with [𝟐𝟐𝟐𝟐����𝟒𝟒𝟒𝟒] (c), [𝟑𝟑𝟑𝟑𝟔𝟔�𝟒𝟒] (d) and 
[𝟒𝟒𝟒𝟒𝟐𝟐�𝟒𝟒] (e) [45]. 

Homogenisation heat treatments are used to dissolve the Laves phase, which is not thermodynamically 

stable at the nominal alloy composition. It was, however, found that a significant amount of Nb-rich 

phases remained in the microstructure after the 1120 °C 4-h heat treatment. The efficacy of the 

homogenisation heat treatments can be seen in Figure 15. The XRD analysis performed on 

electrolytically extracted powder shown here confirms the dissolution of the Laves phase for the 

1190 °C 24-h heat treatment, whereas Laves peaks are still present for samples heat treated at 1120 °C 

for 4 h. 

 

Figure 15: (a) Area fraction of Nb-rich precipitates for different heat treatments and exposure times. 
(b) XRD spectrum from electrolytically extracted powder of cast ATI 718Plus®, with as-cast (bottom) and 
1120 °C 4 h (middle) showing Laves phase peaks in contrast to 1190 °C 24 h (top) [45]. 
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6.1.2.  Haynes® 282® 

A typical as-received microstructure of a Haynes® 282® forged bar studied in Paper II is shown in 

Figure 16 (a), while Figure 16 (b) shows a sample prepared from sheet metal (Papers IV-VI). The 

grain size of both material conditions is comparable at 55 ± 5 and 51 ± 7 µm, respectively. In both 

materials, primary MC-type carbides are present in the form of stringers. 

 

Figure 16: Microstructure of Haynes® 282® in the as-received condition of a forged bar (Paper II) (a) and 
sheet metal (b) (Papers IV-VI).  

The as-received Haynes® 282® sheet material has a hardness of 265 ± 3 HV, which is higher than 

expected for a fully solutionised, γ'-free microstructure. The presence of 2.2 ± 0.4 nm diameter γ' was 

confirmed using TEM selected area (SA) diffraction analysis. Figure 17 shows a TEM darkfield image 

where γ' precipitates are visible as bright spots. The corresponding SA diffraction pattern in Figure 

17 (b) clearly shows the presence of γ' sublattice reflections. 

 

Figure 17: (a) TEM darkfield image using the <0-11> γ' diffraction spot on the gamma [100] zone axis as 
indicated in (b) [108] (Paper IV). 
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The presence of γ' can be related to precipitation reactions occurring during cooling from solution heat 

treatment. Forged bar specimens (Paper II) exhibit even slower cooling after heat treatment, resulting 

in higher hardness of 315 ± 7 HV. 

Various heat treatments were performed on Haynes® 282® to investigate the effect of microstructural 

evolution on weld cracking resistance. No significant distinction can be made based on hardness when 

comparing a forged bar (375 ± 5 HV, averaged over all age hardened discs) and sheet material 

(380 ± 5 HV) after a conventional two-step age hardening heat treatment. The heat treatment produced 

a distinct grain boundary carbide network. Secondary carbides present in the material were identified 

as Mo-rich M6C and Cr-rich M23C6 (Paper IV). The age hardening heat treatment produced γ' 

precipitates with an average diameter of 18.4 ± 3 nm. The presence of a grain boundary carbide 

network and γ' precipitates after conventional age hardening is shown in Figure 18. 

 

Figure 18: (a) Grain boundary carbide network in Haynes® 282® after a conventional 2-step age 
hardening heat treatment. (b) Fine γ' precipitates with 18.4 ± 3 nm diameter in TEM darkfield contrast 
using the <0-11> γ' diffraction spot on the gamma [001] zone axis [108] (PAPER IV). 

Apart from the formation of grain boundary carbide networks and changes in hardness due to γ' 

precipitation, it was attempted to produce large grain size via heat treatment at the upper limit of the 

solutionising temperature window. The heat treatment at 1150 °C for 2 h led to significant grain 

growth in both the forged bar and sheet material, as shown in Figure 19. An approximately fourfold 

increase in grain size was observed for the sheet material, and grain growth was even more 

pronounced for the forged bar. It is noteworthy that the latter showed a wider variation in grain size, 

which may be related to the less uniform microstructure along the diameters of the forged discs as 

compared to the sheet metal, for which more uniform material conditions can be assumed. 
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Figure 19: Large grain size in Haynes® 282® after heat treatment at 1150 °C for 2 h; forged bar (a) 
(Paper II) and rolled sheet (b) (PAPER VI) [99, 108].  

Haynes® 282® has a reported γ' solvus of 997 °C [106], and thus precipitation and coarsening reactions 

are expected when heat treating the material in the temperature range of 750–950 °C (Papers IV-VI). 

The presence of fine γ' in the as-received material makes it likely that particle growth is the 

dominating mechanism. Particle size evolution follows the Lifshitz-Slyozov-Wagner (LSW) theory as 

shown in Figure 20, supporting this hypothesis. 

 

Figure 20: Average γ' particle radius after isothermal exposure. LSW fit is indicated by dashed lines. Also 
shown are microstructure images taken after 300 and 1800 s thermal exposures at 850 and 950 °C. 
Adapted from [108] (PAPER IV). 

The γ' precipitation led to a significant hardness increase for all investigated temperatures. The 

relatively short exposure time of 1800 s was able to increase the hardness to 367 ± 5 HV, which is 

close to the hardness achieved by a conventional age hardening heat treatment. The hardness evolution 

is shown in Figure 21 and is in good agreement with data found in the literature [112–114]. 
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Figure 21: Hardness of Haynes® 282® after isothermal exposure. Hardness for conventionally age 
hardened material is included to show the progress of the age hardening during short thermal exposure 
[108] (PAPER IV). 

The hardness of the material with large grain size was not significantly affected for the forged bar, but 

lower values were observed for the sheet material. Hardness in Haynes® 282® is mainly affected by the 

presence of the γ' phase [114]. Some contribution of grain size can, however, be expected, and it is 

described by the Hall-Petch relationship: 

𝜎𝜎𝑦𝑦 = 𝜅𝜅
𝐷𝐷0.5,    (2) 

where κ is the Hall-Petch slope and D is the grain size. Using data for κ from [115], it becomes clear 

that the effect of grain size on the material’s hardness is low. This is further supported by the 

insignificant hardness change in the forged bar material, leaving changed γ' precipitation and growth 

conditions as reasons for the lower hardness. More rapid cooling after the heat treatment is hence the 

most likely explanation. 

Haynes® 282® forms secondary M23C6 and M6C carbides during heat treatment at 750–950 °C  

[108, 112]. While some M6C carbides are already present in the microstructure, isothermal exposure 

produces a continuous grain boundary carbide network in the material. This is evident in Figure 22, 

which shows grain boundary carbide evolution as a function of temperature and exposure time. 

 

Figure 22: Grain boundary carbide network evolution in Haynes® 282® [108] (PAPER IV). 



 
33 

 
 

6.1.3.  Waspaloy 

Waspaloy has an as-received microstructure that, similar to Haynes® 282®, contains fine γ' that has 

precipitated during cooling in the mill-annealing process. The higher content of Al+Ti in Waspaloy 

stabilises the γ' phase and results in faster precipitation kinetics as compared to Haynes® 282®. The 

microstructure of Waspaloy in the as-received condition is shown in Figure 23 (a), while the presence 

of fine γ' is visible in Figure 23 (b). 

 

Figure 23: (a) Microstructure of as-received Waspaloy sheet material. (b) TEM darkfield image using the  
<2-1-1> γ' diffraction spot on the gamma [102] zone axis. γ' precipitates are visible as bright spots [116]. 

A conventional age hardening heat treatment that includes three temperature steps for Waspaloy leads 

to the microstructure shown in Figure 24. The first aging step at 996 °C causes the formation of coarse 

γ' in the material. No carbide precipitation occurs here since the solution temperature of M23C6 

carbides is 965 °C [116]. During the subsequent steps a discrete network of M23C6 carbides and coarse 

γ' is formed on the grain boundaries while a bimodal γ' distribution develops. The γ' particle sizes are 

133 ± 34 nm and 34 ± 7 nm, with the hardness being increased to 411 ± 3 HV0.5. 

 

Figure 24: (a) Waspaloy after conventional three-step age hardening heat treatment. (b) γ' precipitates 
visible in TEM darkfield contrast using the <1-10> γ' diffraction spot on the gamma [112] zone axis [116]. 
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Isothermal exposure in the 750–950 °C temperature range led to γ' evolution following a t1/3 

relationship (LSW theory). This is in good agreement with the literature data [117]. In contrast to 

Haynes® 282®, the development of a grain boundary carbide network is not as pronounced. At 950 °C 

only a few carbides are present owing to the close proximity to the carbide solvus temperature. While 

a continuous network was formed at 800 and 850 °C within 1800 s, isothermal exposure at 50 °C only 

resulted in minor carbide formation. Thermodynamic simulations with JMatPro show a clear 

difference in carbide precipitation kinetics for Waspaloy and Haynes® 282®. The latter furthermore 

contains two carbide species, which increases the total carbide phase fraction and explains the 

difference in microstructural evolution between the two alloys. 

 

Figure 25: Secondary carbide phase fractions for Haynes® 282® and Waspaloy as a function of 
temperature for 1800 s (a) and 100000 s (b) [116] (PAPER V). 

In contrast to the carbide precipitation kinetics, the higher Al+Ti content of Waspaloy  

(4.5 vs. 3.6 wt.-%) results in a higher phase fraction and more rapid precipitation of the γ' phase. This 

is reflected by hardness measurements as shown in Figure 26 in the form of time-temperature-hardness 

(TTH) diagrams.  

 

Figure 26: TTH diagrams for Haynes® 282® (a) and Waspaloy (b) for exposure times up to 1800 s. 
Contour spacing 10 HV [116] (PAPER V). 
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6.2. Repair welding characteristics of cast ATI 718Plus® and wrought 

Haynes® 282® 
Representative weldability testing can provide a realistic benchmark of the materials’ weld cracking 

resistance. The results of repair welding trials are presented here for cast ATI 718Plus® (Paper III) 

and wrought Haynes® 282® (Paper II) and are related to Research Objective I. 

While solidification cracking was found in the fusion zone layers of cast ATI 718Plus®, the dominant 

cracking mechanism is HAZ cracking. Measured total crack length was higher in the base metal HAZ 

as compared to the FZ. The difference is even more pronounced when taking the investigated cross-

sectional area into account, which was 3:1 for FZ vs. HAZ. Furthermore, an effect of pre-weld 

microstructure on weld cracking is observed for the HAZ. As-cast microstructure and the 1120 °C 4-h 

treatment showed the lowest total crack length (TCL), as indicated in Figure 27 (a). The difference 

becomes more evident when comparing the average crack length (Figure 27 (b)), which is significantly 

lower for those material conditions.  

 

Figure 27: Total crack length (a) and average crack length (b), measured in the base metal HAZ as a 
function of heat treatment condition [45] (PAPER III).  

The main difference between the homogenisation heat treatments investigated in this study is their 

ability to dissolve the Laves phase. Short, disconnected cracks were formed in interdendritic areas 

when Laves phase was present in the microstructure. Homogenisation heat treatments that dissolved 

the Laves phase instead produced long cracks on former solidification grain boundaries. This is 

apparent in Figure 28, where the different crack appearances for as-cast and the 1190 °C 24-h 

homogenised condition are shown. 
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Figure 28: Crack appearance in base metal HAZ of (a) as-cast material and (b) 1190 °C 24-h homogenised 
condition. Note melted gamma-Laves eutectics as indicated by black arrows. White arrows point to crack 
locations on solidification grain boundary [45] (PAPER III). 

Based on these observations a liquation mechanism for HAZ cracking has been proposed. In Laves-

free microstructures, constitutional liquation of Nb-rich MC-type carbides is found to contribute to the 

formation of liquid on solidification grain boundaries. Otherwise liquid is assumed to form by matrix 

melting, with a possible effect of boron segregation. Liquid formed on solidification grain boundaries 

can spread over a wide area, lowering the load bearing capabilities of the material. The abundance of 

Laves phase in the as-cast and 1120 °C 4-h material condition produced a large amount of liquid 

during welding due to gamma-Laves eutectic melting. A high amount of liquation has been found to 

lower cracking [88], which can be rationalised by applying Borland’s generalised theory and Pellini’s 

theory of hot tearing [21, 22]. The availability of large amounts of liquid enables greater mobility of 

the remaining solid matrix phase and can thus help to accommodate stresses generated from the weld 

thermal cycle.  

Repair welding of Haynes® 282® showed that regardless of the welding parameters applied in the 

study (with 120 A welding current being typical welding conditions and 140 A representing a more 

severe environment), no cracks were present in the base metal HAZ. Instead, all cracking was 

confined to the FZ. No correlation between base metal heat treatment history and cracking response 

could be observed. The cracking response was instead strongly influenced by the heat input, with the 

use of 140 A welding current leading to 1.5× more cracks in the weld deposit layers, as visible in 

Figure 29. 
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Figure 29: Total number of cracks per weld deposit layer. (a) Pre-weld heat-treated discs (1-4). (b) Pre + 
post-weld heat treated discs (5-8). Results for 140 A are normalised to account for differences in sampling 
size for the two conditions [99] (PAPER II). 

Furthermore, it can be observed that the cracking response is independent of both the pre-weld 

microstructure and PWHTs (cf. total number of cracks in Figure 29 (a) and (b)). Supported by 

microstructural analysis showing a dendritic structure on the crack surfaces and the location on 

solidification grain boundaries, the cracks were classified as solidification cracks. Small voids without 

signs of liquid phases being present were also found in the FZ layers. These voids were initially 

considered to be potential SAC. The EDS analysis, however, revealed the presence of aluminium-rich 

oxides. This led to the assumption that the voids are in fact related to oxide layers present from the 

welding process that have not been properly removed, cf. Figure 30. 

 
Figure 30: Aluminium-rich oxide layer and a presumed start location (140 A welding current) [99] 
(PAPER II). 

Hardness measurements in both FZ layers and base metal HAZ revealed that 3-4 weld deposit layers 

are necessary for the hardness to exceed 300 HV in the weld metal. The HAZ showed the same trend, 

but a slightly quicker hardening response, with only two weld deposit layers being required to reach 

this hardness level. The absence of SAC in the material suggests that either the weld residual stresses 

were below a critical level or that the hardening response was too slow for SAC to occur in the 
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material. This indicates that SAC is not a major concern and that instead, solidification cracking 

should be expected when welding Haynes® 282®. This is a good sign for the application of the alloy as 

a supplement for Alloy 718. Nevertheless, the mechanism of SAC and the resistance of candidate 

alloys for future application in the aero engine sector need to be further investigated. While showing 

the material’s weldability under realistic conditions when carrying out repair welding studies, a test 

setup that also enables a higher degree of control over test parameters, such as stress and temperature, 

is needed to understand the underlying mechanisms and to provide a more reliable statement about the 

SAC susceptibility of Haynes® 282®. 

The repair welding characteristics of cast ATI 718Plus® and wrought Haynes® 282® can be 

summarised as follows: 

• HAZ cracking is the dominant weld cracking mechanism in cast ATI 718Plus®; 

• Laves phase can be removed by homogenisation heat treatments; 

• HAZ cracking in cast ATI 718Plus® is correlated with the amount of Laves phase; 

• Laves phase reduces HAZ cracking due to the formation of large amounts of liquid in the 

HAZ; 

• Haynes® 282® shows generally good weldability, with only solidification cracks found in the 

fusion zone of multi-pass welds; 

• No cracks were found in the base metal HAZ, irrespective of base metal microstructure; and 

• The results suggest that the hardening response of the material is too slow to cause SAC in 

conjunction with the weld residual stresses present in the studied setup. 

6.3. Development of a testing procedure to investigate the SAC mechanism 
For new alloys in particular, welding trials can provide a useful impression of the actual welding 

response of the material, which can then be used for further, more controlled studies. Screening tests 

are important for investigating the relative resistance of different alloys towards SAC. Paper I 

reviewed the literature to identify the underlying mechanisms and influencing factors of SAC, which 

have been presented in abbreviated form in the introduction part of this thesis. A review of the 

research on SAC over the years indicates that while initial investigations focused on the general 

mechanism, more novel research has focused on the development of testing procedures using modern 

equipment and the investigation of new alloys. Another part of Paper I was the evaluation of the test 

methods available for assessing susceptibility towards SAC. It was found that several methods have 

been developed over the years, although none of them is able to address all aspects of SAC. Tests 

measuring ductility were found to be the most promising approach [76]. 
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To study the effect of microstructure on SAC susceptibility (Research Objective II), a test that 

enables the study of short exposure times in the SAC temperature range is necessary to consider the 

rapid precipitation of the γ' phase in SAC susceptible materials. The microstructural component of 

strain age cracking is composed of the effect of hardening precipitates (γ') and the condition of grain 

boundaries where stresses are localised. Using a Gleeble system enables precise control of the thermal 

cycle, combined with the ability to rapidly deform material; a Gleeble system was thus chosen to carry 

out the experiments. The general observation from the constant heating rate test (CHRT), that is, the 

loss of ductility in the intermediate temperature range, was taken as a starting point for the test design. 

As the loss in ductility is less severe for alloys with a reduced amount of hardening elements, such as 

Al and Ti, the susceptibility to SAC strongly depends on alloy composition [19, 118, 119]. Based on 

that, an interrelationship of ductility and precipitation kinetics has been proposed [70], but no 

quantified data is available yet. 

Since the CHRT uses a constant heating rate to reach the different test temperatures, the effect of 

hardening reactions cannot be investigated as exposure time is not a controlled parameter. The new 

approach instead utilises fast heating of 1000 °C/s and subsequent isothermal exposure to obtain 

microstructures with varying precipitation structure. The test temperatures were selected based on the 

results of a previous CHRT investigation such that the test covers the temperature range around the 

drop in ductility [19]. In the CHRT, the total exposure time in the precipitation temperature range is 

20-30 min, including both the heating and mechanical testing parts of the test [118, 119]. Hence, the 

two longest exposure times in the new approach were considered to reflect conditions comparable to 

those of the CHRT. The Gleeble system utilises resistance heating to achieve rapid temperature 

changes. With water-cooled grips, this results in a parabola-shed temperature distribution along the 

specimen axis. When testing at elevated temperatures, such a non-uniform temperature distribution is 

not a problem and is in fact beneficial if the steep thermal gradients present in weld heat-affected 

zones are to be simulated. When testing precipitation hardening superalloys in the temperature range 

where age hardening reactions occur, such a setup can, however, cause problems. The γ' precipitation 

occurring in the sample centre can cause increased strength relative to the colder, not hardened parts of 

the specimen. The problem has previously been recognised, and two approaches have been applied as 

a solution. Norton and Lippold used steel jaws that reduced heat conduction as compared to the 

standard copper ones. Test samples then show a more uniform temperature distribution, preventing 

off-centre fractures [120]. A narrower high-temperature zone enables faster temperature control, and 

thus this work followed the approach taken by Metzler, who used a radius, instead of a constant gauge 

width, to compensate for lower strength along the specimen axis [119]. Finite element simulations 
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show the effect of specimen geometry on the failure location, as shown in the results from Paper IV 

presented in Figure 31. 

 

Figure 31 Simulated total equivalent plastic strain for a specimen with constant gauge length (a) and 26 
mm radius (b). Optimised specimen geometry is shown in (c) [108]. 
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6.4. The effect of microstructure on SAC 
The short thermal exposure studied (5-1800 s) caused significant changes in the microstructure as 

shown in the previous chapter. The correlation between the microstructural evolution and the ductility 

of Haynes® 282® and Waspaloy has been investigated in Papers IV-VI. It was found that the fracture 

mode in the investigated temperature range is dependent on the rate of deformation. Intergranular 

fracture, which is characteristic of SAC, was only found when stroke rates were sufficiently low. High 

stroke rates, on the other hand, resulted in grain rupture, as shown in Figure 32. 

 

Figure 32 Fracture surfaces of Waspaloy for fast (55 mm/s) and slow (0.055 mm/s) stroke rates, showing 
grain rupture and intergranular fracture, respectively [116] (Paper V). 

Contrary to expectation, the ductility of Haynes® 282® is not affected by ongoing hardening reactions, 

as similar values were obtained for both the 120 and 1800 s exposure times in the lower range of the 

investigated temperature window. While hardness increased significantly during thermal exposure, an 

effect was only seen when deformation was characterised by grain rupture (i.e. for high deformation 

rates). Figure 33 presents the ductility of Haynes® 282® as a function of temperature and exposure 

time for 55 mm/s (a) and 0.055 mm/s (b). It is apparent that a direct effect of γ' precipitation is only 

present if grain rupture is the dominating fracture mode (fast stroke rates). If deformation is localised 

onto the grain boundaries, no clear change in ductility can be observed over the investigated exposure 

time range. 
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Figure 33: Ductility of Haynes® 282® as a function of temperature for different exposure times for (a) 55 
mm/s and (b) 0.055 mm/s stroke rate. 

Waspaloy, on the other hand, does show a decrease in ductility when comparing 120 s and 1800 s 

exposure times, cf. Figure 34. 

 

Figure 34: Ductility of Waspaloy as a function of temperature for different exposure times for (a) 55 mm/s 
and (b) 0.055 mm/s stroke rate [116]. 

At the same time, a conventional heat treatment led to higher ductility. This is noteworthy as this 

material condition also shows the highest hardness. While a very similar age hardening effect is 

observable even after 1800 s isothermal exposure, the major difference in microstructure is the 

presence of a continuous grain boundary precipitate network consisting of discrete carbide and γ' 

particles in conventionally aged Waspaloy. Thermal exposure in the temperature range where the 

ductility minimum occurs led to the formation of grain boundary carbide networks; however, the 

amount of precipitates on the grain boundaries is reduced, and no discrete particle morphology is 

observable. 
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The ductility response of Waspaloy helps to explain the ductility response of Haynes® 282®, as the 

latter has a higher phase fraction of secondary carbides (cf. Figure 25), which increases the 

strengthening effect on the grain boundaries. This appears to be sufficient to offset the effect of the 

more moderate hardness increase Haynes® 282® has as compared to Waspaloy. 

The comparatively high ductility measured for Waspaloy is unexpected considering the reportedly 

higher SAC susceptibility of the material. A possible explanation is the smaller grain size of 

Waspaloy, which is approximately 50% of that of Haynes® 282® (24 ± 5 vs. 55 ± 5 µm). 

Grain size is generally considered to have a negative effect on SAC susceptibility due to the 

concentration of stresses onto a smaller grain boundary area [79, 81]. The effect of grain size is clearly 

observable for Haynes® 282®, where a fourfold increase in grain size after heat treatment at 1150 °C 

for 2 h not only widened the temperature range in which low ductility occurs but also decreased the 

ductility in general, as shown in Figure 35 (cf. Figure 33 (b)). 

 

Figure 35: Ductility as a function of temperature for large grain size Haynes® 282® [121] (Paper VI). 

Considering the combined results of Papers IV-VI, the effect of microstructural evolution on the 

ductility of Haynes® 282® can be understood as the combined effect of the rapid formation of a grain 

boundary carbide network and a moderate hardness increase due to γ' precipitation. This is in contrast 

to Waspaloy, for which a lower amount of grain boundary precipitates cannot compensate for the more 

rapid γ' precipitation and the resulting grain interior hardening. Grain size has a significant effect on 

the ductility response and should be kept small to increase the material’s ductility. 
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7. Conclusions 
The weld cracking behaviour of precipitation hardening nickel-based superalloys has been investigated 
in this thesis by means of repair welding trials and the development of a simulative test procedure 
using a Gleeble system. The conclusions are grouped into two categories based on the research 
questions:  

Effect of microstructural evolution on weld cracking during repair welding operations (RQ 1 and 2) 

• The efficiency of homogenisation heat treatments of cast ATI 718Plus® to dissolve Laves 
phase was investigated using advanced microstructural characterisation. Incomplete Laves 
phase dissolution has been correlated with increased resistance towards HAZ liquation 
cracking. The presence of Laves phase provides large amounts of liquid during the weld 
thermal cycle, which has been connected to an increased capability of the material to relax 
weld thermal stresses. 

• Haynes® 282® shows good resistance towards HAZ cracking, while the observed solidification 
cracking was found to be dependent on the welding parameters, such as heat input. Post-weld 
heat treatments did not cause strain age cracking in the material, indicating good resistance of 
Haynes® 282® towards this cracking phenomenon. 

The developed Gleeble-based simulative test procedure enabled investigation of the effect of rapid 
microstructural changes, such as γ’ precipitation, on strain age cracking of Haynes® 282® (RQ 3 and 4) 

• The ductility response of Haynes® 282® and hence its SAC susceptibility is largely 
independent of heat treatment. The rapid formation of a grain boundary carbide network has 
been found to counter the effect of the age hardening of the grain interior due to γ' 
precipitation. 

• Key components of the SAC mechanism have been identified as γ' precipitation, grain 
boundary strengthening by secondary carbides, and grain size. The combination of the 
moderate age hardening kinetics in Haynes® 282® combined with the rapid formation of a 
grain boundary carbide network have been identified as a main reason for the material’s good 
resistance towards SAC. This has been further verified by a comparison to Waspaloy, which 
shows an increased susceptibility towards strain age cracking due to its more rapid 
precipitation kinetics and reduced carbide stability. Apart from microstructural evolution, 
grain size has been found to be a main factor governing the ductility response. 
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8. Future work 
The effect of Laves phase on the weld cracking behaviour of cast ATI 718Plus® should be investigated 

in more detail. It is suggested to carry out further temperature profile simulations using the Gleeble 

system to better understand the active liquation and solidification mechanisms of the alloy. The effect 

of minor elements such as boron should also be investigated, e.g. by using secondary ion mass 

spectroscopy (SIMS) analysis. 

The repair welding studies provided valuable information on realistic performance of the investigated 

materials. Nonetheless, the tests only evaluate a single weld geometry, i.e. they do not allow for a 

variation in weld thermal stresses. As such, the investigation of more geometries or using a more 

controlled setup, as the Varestraint test does, could provide insight into the materials’ weld cracking 

characteristics over a range of stress levels and test parameters. 

The SAC investigations were carried out on base material with different heat treatments to investigate 

the effect of microstructural changes. Since SAC typically occurs in the HAZ of welds, testing 

microstructures obtained after a HAZ thermal cycle simulation is a logical next step. It was found that 

the grain boundary condition is of high importance for the SAC mechanism. Consequently, it is 

suggested to study the evolution of grain boundary precipitates in more detail by advanced material 

characterisation. It would furthermore be interesting to study the deformation mechanism on the grain 

boundaries and if grain boundary strength can be enhanced via special pre-weld heat treatments.  

It is further suggested to investigate the SAC susceptibility of other, more recently developed 

materials such as ATI 718Plus®. Considering the application of different material forms in the 

manufacturing of aerospace components, investigating the effect that microstructures resulting from 

different production routes such as casting can have on SAC susceptibility could add further to the 

understanding of weld cracking in nickel-based superalloys.  
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