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Aging of Lean NOX Trap Catalysts and Hydrocarbon Trapping in Cold-Start 

Applications 

Rasmus Jonsson 

Department of Chemistry and Chemical Engineering 

Chalmers University of Technology 

Abstract 

 It is well known that combustion processes worldwide give rise to emissions such as nitrogen 

oxides (NOX), carbon monoxide (CO), hydrocarbons (HC) and particulates. For vehicles, the 

method for handling these emissions has been through the development of the catalytic 

converter. For the diesel engine, the Lean NOX Trap (LNT) has been used since the 90s and is 

designed to function well in the high air/fuel ratio in which the diesel engine operates. The LNT 

often consist of a storage compound, e.g. barium, where NOX is stored in lean conditions (high 

air/fuel ratio). During short rich pulses (low air/fuel ratio) the NOX is released and reduced over 

the noble metal sites. Over time in use, these catalytic converters are exposed to the conditions 

that may reduce the catalytic properties of the catalyst and deactivation studies are therefore 

critical. Gasoline vehicles are often equipped with a hydrocarbon trap, to store HCs from the 

engine during the cold-start. The aim is that at higher temperature, when the catalyst is 

functioning, the HCs desorb and are oxidized.  

Chemical poisoning of an LNT catalyst, i.e. Pt/Ba/Al2O3, was studied thoroughly. Both 

deactivation by phosphorus (P) as well as by zinc (Zn) was examined, because these elements 

can be found in the lubricant oil. The catalysts were exposed to P in two different ways. In the 

first study, P was introduced through gas-phase exposure by evaporating phosphoric acid.  In 

the second study, both P and Zn were introduced to the Pt/Ba/Al2O3 catalyst through wet 

impregnation. The main findings were that gas-phase exposure results in an axial distribution 

where P can exist in different oxidation states at different positions over the washcoat. 

Moreover, it could be seen that Zn may help to suppress the deactivation caused by P on the 

LNT catalyst, and the suggested reason is due to formation of zinc phosphates. Furthermore, 

the main cause for deactivation of the LNT catalyst by P is attributed to the interaction between 

P and Ba.  

The effect of catalyst composition was examined for HC Traps. The effect of promoting 

zeolites, by the addition of Pd, La and Fe, was studied. The addition of Fe did not show any 

significant effect on the toluene storage and release in comparison to zeolite beta. However, 

both Pd and La exhibited positive effects. The addition of La resulted in both an increase in the 

storage of toluene and an increase in the desorption temperature for toluene in wet conditions, 

which is beneficial. However, at higher La loadings, no beneficial effect of La could be seen. 

Lastly, during mixed-HC temperature programmed desorption experiments, an interaction 

mechanism between propane and toluene could be observed which resulted in higher adsorption 

capacity of propane on zeolite ZSM-5. 

Keywords: LNT, NSR, Phosphorous, Zinc, Catalyst Deactivation, HC Trap, Cold-start, 

Toluene, La 
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1 Introduction 

1.1 Background 

In today’s society, we are highly dependent on an efficient transport sector for both business 

and personal logistics. Most motorized vehicles use combustion engines, which can give rise to 

emissions of nitrogen oxides (NOX), carbon monoxide (CO), and unburned hydrocarbons (HC). 

The field of exhaust abatement has been working actively to reduce these emissions in the last 

decades. Reducing these emissions is important for environmental and health reasons [1]. 

One of the earliest methods for treating these emissions that is still relevant today in gasoline-

fueled vehicles is the three-way catalyst (TWC). The TWC is named for treating three 

components, namely NOX, CO, and HC and converting these emissions into N2, CO2, and H2O. 

This is made possible by the two main components of the TWC catalyst. These components are 

the noble metals, such as Pd or Rh and the oxygen storage component (OSC), such as CeO2 and 

ZrO2. The TWC is designed to operate in a stochiometric ratio that corresponds to a 14.6 air/fuel 

ratio by weight. In this stochiometric condition, the NOX bi-product is almost eliminated due to 

no excess of air in the combustion process. This allows the TWC catalyst to primarily oxidize 

CO and HC in the exhaust, which is done efficiently. However, having the engine operate in a 

stochiometric condition is not good for the fuel economy. Therefore, to improve fuel economy, 

it is preferable to have the engine operate with excess air, in lean conditions.  

In order to remove the NOX in lean conditions, diesel vehicles mostly use either selective 

catalytic reduction (SCR) or a lean NOX trap (LNT) to reduce the NOX in the exhaust. The SCR 

catalyst, often equipped on trucks or heavy-duty vehicles, relies on the usage of urea, which is 

hydrolysed and decomposed into NH3, which in the next step, reduces NOX to form N2 and 

H2O. This technique requires the use of urea, therefore, LNT was introduced by Toyota in the 

1990s [2–4]. The LNT catalyst is built on two essential components, a noble metal and a NOX 

storage component. The engine alternates between lean phases (large excess of air) and short 

rich pulses (no excess of air). During the lean phase, NOX in the exhaust is stored in the NOX 

storage component, such as barium. During the rich pulses the stored NOx is released and 

reduced by CO and HC over the noble metal sites to form N2 and H2O [5–7]. 

New catalytic converters can efficiently reduce the NOX to N2 and H2O. However, over time, 

catalytic converters may slowly deactivate for several reasons. Thermal aging is one 

deactivation mechanism that is hard to avoid. It is caused by exposure to the high temperatures 

that result in either the sintering of particles, which reduces the number of active sites on the 
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catalyst or collapse of the support material. Chemical poisoning, usually foreign substances, 

can deactivate the catalytic converter, resulting in blockage of active sites on the catalyst. These 

foreign substances are often introduced through fuel impurities or combusted oil lubricants. 

Deactivation of the catalyst results in an increase in the release of pollutants and is important to 

understand in detail and to prevent if possible. 

Once catalytic converters have reached the temperature where they become active, usually 

called the “light-off” temperature, they operate with high efficiency. During the cold start of a 

vehicle, before light-off has been reached, catalytic converters are inefficient in removing 

pollutants from the exhaust [8–11]. For this reason, NOX adsorbers and HC traps can be used 

to store the pollutants in the exhaust gas system until the light-off temperature has been reached. 

These trapping components are often based on zeolites that have a high surface area. These 

zeolites are often impregnated with a metal ion to adjust and improve the properties of the NOX 

adsorber or HC trap in order to increase the temperature of desorption. Improvements in HC 

traps materials are important in order to steer the release temperature of the HCs to the optimum 

temperature window. 

 

  

1.2 Objective 

One of the objectives of this work is to increase the understanding of chemical poisoning by 

phosphorous and zinc on an LNT catalyst. Paper I focuses on the gas-phase exposure of 

phosphorous to Pt/Ba/Al2O3 and the effects of an uneven distribution of phosphorous onto the 

catalyst. Paper II reports on the effect of combining zinc and phosphorous on Pt/Ba/Al2O3 to 

study how these common poisoning species behave separately and in combination. 

Large amount of the pollutants are released during the cold start and it is therefore critical to 

reduce the emissions at low temperature. Therefore, Papers III and IV focus on hydrocarbon 

trapping. Paper III reports on Pd/BEA impregnated with La and Fe to evaluate the synergy of 

different combinations of metals in the adsorption and desorption of toluene and propene during 

cold start applications. Paper IV mainly focuses on the effect of La in HC-trap materials. This 

includes different La loadings onto samples with different zeolites as the support material, such 

as zeolite beta, ZSM-5, and SSZ-13.  
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2 State of the art 

2.1 NOX storage mechanisms 

2.1.1 Catalyst components 

NOX Storage and Reduction (NSR) has been a very important concept for removing NOX from 

diesel vehicles since it was introduced by Toyota in 1996 [12]. The NSR catalyst, also denoted 

Lean NOX trap (LNT), operates by altering between lean and rich phases. The lean phase refers 

to a mode in which the engine operates with a large excess of air. In the rich phase, which only 

lasts for a short period, the engine operates at a lower ratio air-fuel ratio. The concept of NSR 

is to take advantage of the reduction capacities of CO, H2, and hydrocarbons in the rich phase 

to reduce the stored NOX from the lean phase into N2. Figure 1 depicts a schematic of this 

process; in the figure, NO  is oxidized by O2 on a noble metal to form NO2 in lean conditions, 

after which NO2 is stored on the storage component. After switching to rich conditions, 

reducing agents, marked “R,” are adsorbed onto the noble metal where they react with the stored 

NOX to form N2. 

 

 

 

Figure 1. An illustration of the NSR process. NOX is stored on a NOX storage component and thereafter reduced by reducing 

agents to N2. The illustration is from Takahashi et al. [2]. 

 

The NOX storage compound, which is a key component in an LNT catalyst, is traditionally 

composed of alkali metals and alkaline earth metals, e.g. barium [3,6,13–20]. The effectiveness 

of such a metal correlates to the basicity of the metal. Kobayashi et al. have shown this when 

they studied the NOX storage capacity of different metals [21]. They have concluded that the 
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order of NOX storage capacity amongst alkali metals and alkaline earth metals followed K > Ba 

> Sr > Na > Ca > Li > Mg. Even if K has a higher NOX storage capacity than Ba, it has poor 

stability at high temperatures [22].  

Al2O3 is a common support material for LNT catalysts, both because of its high surface area 

and its NOX storage capacity. However, NOX storage on Al2O3 is more dominant in lower 

temperature ranges than NOX storage on barium [23]. Shimizu et al. [24] have studied the 

impact of different support materials for Pt/Ba (MgO, Al2O3, ZrO2, and SiO2). Those authors 

found that even though Al2O3 did not contribute to the highest NOX storage capacities, it 

contributed better than the other support materials to the reduction capacities of the catalyst, 

which was due to its acid-base properties.  

The noble metal, where reactions take place, is of major importance for obvious reasons. A 

noble metal that frequently occurs in LNT catalyst formulations is Pt [2,13,14,17,18,25–29]. 

However, other noble metals are often used in combination with Pt, such as Pd and Rh, and 

different noble metals exhibit different properties [21]. Salasc et al. [30] have compared two 

catalyst formations, Pt/BaO/Al2O3 and Pd/BaO/Al2O3, where they found that Pd contributed to 

better NOX storage capacity at 300°C, while the catalyst with Pt proved to perform better at 

400°C. They explained this phenomenon with NOX binding stronger to Pt at 300°C, resulting 

in a blocking of active sites on Pt, which inhibits the reduction of stored NOX in the rich phase 

[30]. Andonova et al. [31] have found when comparing Pt to Rh, that Rh had better NOX 

reduction abilities, however, Pt improved the NOX storage during the lean phase. 

Oxygen storage materials, such as ceria and zirconia, can be added to the LNT catalyst. Ji et al. 

[32] have found that the incorporation of CeO2 into a Pt/Rh/BaO/Al2O3 catalyst enhanced NOX 

conversion at temperatures in the range of 150-350°C. However, at higher temperatures, the 

conversion was lower with CeO2 present in the catalyst formation [32]. For the TWC catalyst, 

CeO2 has been found to promote the thermal stability of the Al2O3 support and increase the 

dispersion of the noble metal [33].  

In summation, the LNT catalysts usually consist of an Al2O3 support with the possible addition 

of CeO2. Commonly used noble metals are Pt, Rh, and Pd where Pt seems to occur more 

frequently than the others, either by itself or in combination with the other two. Based on 

literature, Ba has been found overall to be more efficient than other alkali metals and alkaline 

earth metals as a NOX storage component. 

 

2.1.2 NOX storage and reduction mechanisms 

Barium species in Pt/Ba/Al2O3 usually appear in the form of BaO, Ba(NO3)2, Ba(OH)2, and 

BaCO3. Ba(OH)2 and BaCO3 are formed due to H2O and CO2, which are the primary products 

of the combustion process. A study of NOX storage performed by Lietti et al. has indicated a 

hierarchy between these species [34]. In the lean phase, NOX was found to adsorb to free BaO, 

and, subsequently, a slip of water was observed, which indicated the storage of NOX on 

Ba(OH)2. A slip of CO2 also occurred, indicating that storage on BaCO3 had occurred in the 

last step.  
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In lean conditions, NO from exhaust gas reacts with O2 on the surface of the platinum particles 

to form NO2, which is then stored on BaO as Ba(NO3)2. NOX can be stored as both nitrites and 

nitrates on BaO. Lietti et al. [34] have proposed that barium nitrites can be formed by 2NO + 

O* +BaO reacting to form Ba(NO2)2. For the storage of NO as nitrates, platinum or other noble 

metals must be present in order to oxidize the NO to NO2, however, the storage of NO2 does 

not require the presence of Pt since the NO2 can adsorb directly onto the BaO and Al2O3 sites 

[35]. Several reaction pathways have been proposed for the NO2 storage mechanism. Olsson at 

al. [18,36] have suggested a pathway with direct interaction with BaO sites, denoted S, where 

no CO2 or H2O is present during the experiments. 

𝑁𝑂2 (𝑔)  +  𝑆 ↔ 𝑆 − (𝑁𝑂2) 
(1) 

𝑆 − (𝑁𝑂2)  ↔ 𝑆 − 𝑂 + 𝑁𝑂 (𝑔) 
(2) 

𝑁𝑂2 (𝑔)  +  𝑆 − 𝑂 ↔ 𝑆 − (𝑁𝑂3) 
(3) 

𝑁𝑂2 (𝑔)  +  𝑆 − (𝑁𝑂3) ↔ 𝐵𝑎(𝑁𝑂3)2 
(4) 

2𝑆 − 𝑂  ↔ 2𝑆 + 𝑂2(𝑔) 

 

(5) 

𝑃𝑡 − 𝑁𝑂2  +  𝑆 − (𝑁𝑂3) ↔ 𝐵𝑎(𝑁𝑂3)2+ Pt 
(6) 

 

Reaction (1) describes the adsorption of NO2 onto BaO, which, in Reaction (2), can lead to the 

formation of NO gas and BaO-O. Reaction (3) describes the formation of BaO-NO3, which can 

further form NO2-BaO-NO3, referred to as Ba(NO3)2, through Reaction (5). The formation and 

decomposition of Ba(NO3)2  can be enhanced in the presence of Pt due to spillover from NO2 

adsorbed onto Pt (Reaction (6)).  

Figure 2 shows the thermodynamic restrictions between NO and NO2. At lower temperatures, 

NO2 is more favored than NO, however, at higher temperatures, NO is more favored. A low 

amount of NO2 was formed at low temperature in the experiment presented in Figure 2, and the 

reason for this is that the reaction was kinetically limited at low temperature. Since NO is 

favored at higher temperatures, according to thermodynamics, most NOX in the exhaust gas 

from combustion processes is in the form of NO, which is about 90% of all NOX [37]. The ratio 

between NO and NO2 depends on the temperature of the catalyst [38]. This is clear from NO2 

Temperature Programmed Desorption (TPD) studies where the release of NOX at lower 

temperatures favors NO2, while at higher temperatures, NO is more favored [5,23]. Therefore, 

both the storage component, barium, and the noble metals, Pt, Pd, and Rh, are essential for the 

function of an LNT catalyst. 
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Figure 2. Temperature ramp with 600 ppm NO and 8 vol-% O2. The image displays the experimental concentrations of NO 

and NO2 compared to thermodynamic equilibrium. Image is from Olsson et al [38]. 

The lean phase is the desired mode of operation for both fuel economy and low CO2 emission. 

Ideally, the lean phase should be as long as possible in relation to the rich phase, however, 

restrictions come with the NOX storage capacity in the catalyst [3]. Perng et al. [39] have shown 

by comparing different lean/rich cycle lengths, all with a ratio 6:1, that the cycles with 6s lean 

phase and 1s rich phase exhibited the highest conversion of both NOX and C3H6. The catalyst 

used for the study was a Pt/Rh/BaO/CeO2/Al2O3 LNT. This shows the importance to consider 

both ratio and frequency, in other words, the total time spent in the lean phase and the frequency 

of switching between phases. 

As mentioned in Section 2.1.2 regarding the hierarchy of Ba(NO3)2, BaCO3, and Ba(OH)2, H2O 

and CO2 affect the NOX storage properties of the catalyst [40]. Epling et al. [40] have studied 

the NOX storage capacity of a Pt/Ba/Al2O3 catalyst with and without H2O and CO2 in the gas 

mixture. They found that CO2 strongly affected the NOX trapping property of the catalyst at all 

temperatures investigated and more so at high temperatures. At lower temperatures, H2O 

inhibited the NOX trapping more than at higher temperatures. In addition, reports have shown 

that an increase in the concentration of H2O may contribute to a higher conversion of NOX [21].  

CO and hydrocarbons are not fully combusted in the engine during the rich phase. Several 

research studies have examined regeneration during the rich phase using CO, [41,42] C3H6, 

[18,39,43–45] as well as H2 [6,15,20,26,29,46] as the reducing agents. Abdulhamid et al. [42] 

have compared the properties of H2, CO, and C3H6 as reducing agents on Pt/Ba/Al2O3, and they 

found that H2 and CO performed better at lower temperatures than C3H6. The foremost products 

formed in the reduction of NOX by H2 were N2 and NH3, however, some N2O was also formed. 

Nova et al. [29] have studied the gases formed by the reduction of NOX with the aid of H2 in 

the rich phase on the Pt/Ba/Al2O3 catalyst. Firstly, the formation of N2 dominated the 

regeneration in the early stage, thereafter, the formation of NH3 increased as the concentration 

of N2 decreased. Similar to that study, Lietti et al. [17] have compared products from the 

reduction of NOX with the aid of  H2 with a reduction of NOX by NH3. With both reducing 

agents, they observe the formation of N2 early in the rich phase with a slightly higher formation 
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of N2 with NH3 as the reducing agent. They concluded from this observation that the reduction 

of NOX with H2 was caused by the formation of NH3, which then further reacted with stored 

NOX to form N2 and H2O. Furthermore, they concluded that Ba(OH)2 was formed on the surface 

of the catalyst through the reduction of NOX with H2 and NH3.  Partridge et al. [6] have studied 

the reduction patterns of H2 on Pt/Ba/Al2O3 using spaci-MS measurements. They found that 

NH3 formed at the same time as N2, indicating that NH3 is an intermediate species in the 

reduction of NOX with H2, and the formed ammonia, therefore, reacted with the stored NOX. 

These results are in good agreement with the study by Lietti et. al. [17]. C3H6 is also a good 

reducing agent, but it is not as good as H2. Reactions between C3H6 and NO require higher 

temperatures and form CO2, H2O, and N2 as the main products [18]. Another drawback with 

reducing NOX with C3H6 is the formation of N2O as a bi-product [43]. 

To summarize, BaO can react to form different compounds, such as Ba(NO3)2, BaCO3, and 

Ba(OH)2, which are associated with NOX, CO2, and H2O, respectively. Ba(OH)2 has been found 

to have less stability than Ba(NO3)2 and BaCO3, both of which have a similar level of stability. 

There are three reducing agents commonly used in research on NSR activity on LNT catalysts; 

these are H2, CO, and C3H6. These three reducing agents have different reaction pathways and 

have optimal operation at different temperatures. The products from the reduction of NOX with 

H2 are, through NH3 as an intermediate species, N2 and H2O, whereas C3H6 forms CO2, H2O, 

and N2. 

 

2.2 Deactivation mechanisms 

Deactivation of catalysts is a common problem that affects most catalysts regardless of type. 

There are different mechanisms behind catalyst deactivation, and these are often divided into 

groups: thermal aging, attrition/crushing, fouling, and poisoning. These four groups differ in 

how they affect the catalyst and the causes of deactivation.  

Thermal aging causes the sintering of catalytic particles or other important compounds in the 

catalyst formulation. Sintering reduces the surface area and decreases dispersion, which usually 

results in a lowering of the catalytic activity [47–49]. The sintering rate increases drastically 

with increasing temperature and also increases in the presence of water vapor [49]. A common 

way of measuring the dispersion of catalytic particles is through Transmission Electron 

Microscopy (TEM) images, where it is possible to estimate particle size [48]. The dispersion of 

catalytic particles can also be estimated using chemisorption, where the amount of chemisorbed 

species is correlated to the number of available noble metal sites [47].  

Attrition and crushing of the catalyst are related to damage to the structure of the catalyst. 

Cracks in the washcoat can appear due to pressure gradients in the cavities, shear stress caused 

by high velocity fluids, or physical damage to the catalyst [49].  

Fouling or blockage of a catalyst is what happens when the surface of the catalyst is covered, 

which hinders the diffusion of molecules from the gas or liquid phase from reaching the catalyst 

surface. One of the more common fouling effects is the accumulation of soot. The combustion 

of diesel and other types of fuel generate soot, which can clog exhaust gas systems [50]. Diesel 
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particulate filters are commonly a part of the catalytic system to remove soot. Fouling can also 

be connected with the accumulation of phosphorous in the catalyst in the form of a phosphorous 

glaze, which can contain zinc [51]. 

Chemical poisoning is caused by the chemisorption of molecules onto the active sites of the 

catalytic particle, which results in a reduction of catalytic activity. Sulphur poisoning is one 

example of chemical poisoning in the field of catalysis; it causes major problems for automotive 

catalytic systems [2,52–55]. Other poisoning compounds on platinum and palladium catalysts 

are, for example, lead, phosphorous, and zinc [49].  

 

2.2.1 Field-Aged catalysts 

After years in traffic, the catalytic activity of most catalytic converters usually decreases. 

Characterization of field-aged three-way catalysts has shown the accumulation of several 

foreign species. A commonly found specie in these catalysts was sulphur, which has decreased 

over the years due to low sulphur levels in gasoline and diesel. However, a further decrease in 

sulphur is still of great interest for improving the durability of catalytic converters [52,56]. 

Other common species found in field-aged catalysts are phosphorous, zinc, and calcium [51,57–

59]. Characterization of a field-aged catalyst containing these compounds revealed a loss of 

catalytic performance. Understanding the mechanisms for this and preventing poisoning or 

treating aged catalysts is of great interest in the research field.  

The main source of phosphorous and zinc in field-aged catalysts is from oil lubricants, such as 

zinc dithiophosphate (ZDDP) [51,60–62]. ZDDP contains Zn, P, and S, which have a degrading 

effect on the properties of a catalyst. During operation, the lubricant slowly combusts, and these 

species accumulate slowly in the catalyst.  Oil lubricants are important for the durability and 

functionality of an engine, therefore, they are not easily exchanged for the purpose of 

prolonging the durability of catalytic converters. 

 

2.2.2 Phosphorous and Zinc poisoning 

The usage of oil additives is important for the durability of combustion engines, however, 

additives affect catalytic converters. Williamson et al. studied the effects of oil additives on 

three-way catalysts in 1985 and found an accumulation of P and Zn, which reduced catalytic 

properties [63]. They found that the combination of both P and Zn was worse than each specie 

alone; components found in the additives accumulated in the catalytic converter. 

Characterizations of field-aged TWCs from the late 1990s have shown a clear gradient 

distribution of phosphorous and zinc from the front of the catalyst to the back [57,58,64,65]. 

These characterization measurements revealed that phosphorous stayed on the surface of the 

washcoat and did not penetrate into the washcoat. It was also found that zinc formed a glass 

together with phosphorous, and the same was true for magnesium and calcium in field-aged 

catalysts. Other catalyst components that phosphorous affects are CeO2 and Al2O3, due to the 

formation of CePO4 and AlPO4 [57,58,66]. The chemical poisoning of CeO2 by phosphorous 

causes cerium to be locked to the oxidation state Ce(III), which hinders the functionality of 
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oxygen storage that is dependent on the ability of Ce to switch between Ce(III) and Ce(IV) [67–

70].  

The effects of ZDDP on Diesel Oxidation Catalysts (DOC) is the same as for TWCs in the sense 

that similar compounds accumulate in the catalyst [51]. The zinc phosphates form a glass in the 

front of the catalyst and more towards the surface whilst sulphur penetrates deeper into the 

catalyst and is more spread out. Scott et al. have found that phosphorous affects the hydrocarbon 

and CO oxidation of a DOC catalyst [71].  

A study carried out by Kröger et al. [72] compared the wet impregnation of a phosphorous 

precursor, a solution of (NH4)2HPO4, on a TWC catalyst and the gas-phase exposure of an 

evaporated solution of (NH4)2HPO4 to the catalyst configuration. They concluded that the same 

phosphorous species formed on the catalyst regardless of method of exposure; the species found 

in the study was the same as the species found in field-aged catalysts. To conclude, both wet 

impregnation and gas-phase exposure are relevant methods for studying the phosphorous 

poisoning of catalysts.  

There are also studies that focus on the phosphorus deactivation of SCR catalysts, such as Fe-

BEA and Cu-BEA, that are exposed to evaporated H3PO4. Andonova et al. [73] have studied 

the gas-phase exposure of an evaporated solution of H3PO4 to a Cu/BEA NH3-SCR catalyst. 

Their study revealed two different degrading effects that occurred from the exposure to the 

phosphoric acid solution. Firstly, they found condensation of the H3PO4 solution in the pores 

of the zeolite structure, which caused a blockage mechanism. Secondly, the redox capacity of 

the Cu in the catalyst configuration was reduced due to chemical poisoning by the phosphorous. 

Studies carried out by Shwan et al. [74,75], which focused on the phosphorous poisoning of Fe-

BEA zeolite by the vapor of a phosphoric acid solution, showed clear signs of degradation. By 

comparing different concentrations and times of exposure of the phosphoric acid vapor to the 

catalyst, they could conclude that the formation of P2O5 tends to form early in the poisoning 

procedure, whilst during longer times of exposure, PO3
- starts to form. They also found that 

phosphorous poisoning was more severe for the SCR reaction at low temperatures than at high 

temperatures.  

There are ways to reduce the effect of oil additives and restore phosphorous-poisoned catalytic 

converters. Rokosz et al. [57] and Sumida et al. [66] have performed oxalic acid washing of 

phosphorous-poisoned catalysts, and they found that most of the catalytic functions could be 

restored using this method. They also found that it was possible to decrease the amount of 

phosphorous accumulated in a catalyst by using other types of oil additives. Wang et al. have 

compared different types of ZDDP with different levels phosphorous volatility [60]. Those 

authors found that oil additives that had a higher molecular weight reduced the volatility of 

phosphorous but were still able to maintain a low wear effect. Thus, cooperation across different 

research fields is important in order to solve problems with poisoning.  

In summation, phosphorous has been found to have a deactivating effect on catalysts. A gradient 

distribution of phosphorous over a catalyst can often be observed when characterizing field-

aged catalyst. CePO4 and AlPO4 were formed in catalysts containing Ce and Al. The addition 
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of Zn to a TWC catalyst has been found to increase the deactivation of the catalyst slightly, 

however, Zn has less effect than P on the deactivation of the TWC catalyst. 

 

2.2.3 Aging of LNT catalysts 

In the early stage of the deployment of the LNT catalyst, Takahashi et al. reported on the 

sensitivity of the LNT catalyst towards SO2 [2]. Multiple studies have examined sulphur-

poisoning mechanisms and also found more sulphur-tolerant materials. To inhibit the formation 

of BaSO4, Yamazaki et al. [76] conducted a study where they exposed Pt/Ba/”X”/Al2O3 to SO2, 

where X is different transition metals. They found higher resistance to sulphur poisoning with 

the addition of Fe to the Pt/Ba/Al2O3 configuration. Other means to affect resistance to sulphur 

poisoning is to use a different catalyst configuration. Le Phuc et al. [54] have compared a 

catalyst configuration more similar to TWCs, Pt/CexZrxO2. Their catalyst configuration 

performed well as an NSR catalyst, however, it accumulated more sulphur than Pt/Ba/Al2O3 

but had greater regeneration properties in reducing atmospheres than Pt/Ba/Al2O3. With 

traditional LNT configurations, newer studies have found that the addition of strontium to 

Pt/Ba/Al2O3 helps prevent sulphur poisoning largely through the formation of SrSO4, which 

leaves Ba to function as initially intended [53]. These findings are not a final proposition for 

the issue with sulphur, however, many important findings have been revealed in this research 

field. 

A comparison of sulphur and phosphorous shows that sulphur tends to have a greater impact 

on the catalyst than phosphorous [77]. However, the effects of phosphorous need to be 

examined more over an LNT catalyst, since oil additives cause phosphorous to accumulate in 

the catalyst. Galisteo et al. have studied the wet impregnation of an aqueous (NH4)2HPO4 

solution on Pt/BaAl2O3 [78] using a P/Ba ratio ranging from 0-0.7 wt-%. They observed that 

the NOX storage capacity decreased almost linearly to the amount of phosphorous the catalyst 

was impregnated with. Moreover, the BET surface area decreased, as suspected, with a higher 

amount of phosphorous in the samples. Using XRD, a clear trend was observed with a lower 

formation of BaCO3 in samples with a larger P/Ba ratio. From this result, the authors concluded 

that barium phosphates were likely formed. Christou et al. have studied TWCs and the effect 

of phosphorous alone and in combination with Ca and Zn [79]. They found that Zn and Ca 

added to the deactivation of a catalyst, although most of the deactivation originated from the 

phosphorous. To the best of our knowledge, there are no studies in the literature that consider 

the synergy of phosphorus and zinc during the deactivation of LNT catalysts, which was 

examined in the Paper II.  

In summation, sulphur has been found to severely poison LNT catalysts. BaSO4 is often formed  

when an LNT catalyst is poisoned by sulphur, however, the addition of components such as Sr 

has been found to decrease formation of BaSO4. A linear deactivation of the LNT catalyst was 

found when it was impregnated with different amounts of P. High concentrations of 

phosphorous have been associated with high degree of deactivation. 
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2.3 Cold start and passive HC traps 

Catalytic converters have been around for a long time and have been developed to efficiently 

remove NOX, CO, and HC from exhaust during the operation of combustion engines. When the 

light-off temperature is reached, they perform well in the system they are designed for. 

However, during a cold start, it could take about 1 to 3 min to reach the light-off temperature 

[11,80]. The light-off temperature for a TWC catalyst varies between 250 to 400°C, which is 

dependent on the gas species in the exhaust [81,82]. NOX-adsorbers and HC traps could be used 

to store pollutants until they can react on the activated catalytic converter in an attempt to bridge 

the temperature gap during the cold start. For gasoline engines, the most redundant HCs in the 

exhaust gas are ethene and methane, however, toluene is the largest if basing the comparison 

on C1 (i.e. toluene contains seven C1 species, while methane only one) [83]. Therefore, it is 

important for HC traps to have the ability to efficiently adsorb both large and small HC 

molecules. With efficient adsorption, it is also important for the HC trap to have a sufficiently 

high temperature of desorption for the different types of HCs in order to bridge the temperature 

gap of the cold start. 

 

2.3.1 HC-trap materials and mechanism 

The main component used for HC trapping is zeolites [84–87]. Zeolites have a unique structure 

due to pore size and channel volume. Zeolites with a smaller pore size often have a higher 

resistance towards dealumination at exposure to high temperature, this makes them more 

suitable for automotive applications [88]. Liu et al [89] have studied HC trapping on Ag-ZSM-

5 using FTIR spectroscopy. They found that, after hydrothermal aging, the number of Si-OH 

species and non-framework alumina increased, whilst the number of Si-OH-Al framework 

linkages decreased, which indicates dealumination and a reduced number of Brønsted acid sites. 

At high temperatures, the stability of small-pore zeolites is better than for large-pore zeolites, 

however the small pore size contributes to steric hindrance for the adsorption of larger HC 

compounds such as toluene. Westermann et al [90] have compared the adsorption of unburned 

HC compounds on several different zeolites based on the structural properties of the zeolites. 

They found a correlation between the pore size of the zeolite structure where zeolites with a 

larger pore size adsorbed more HC than zeolites with a smaller pore size. Moreover, Park et al. 

[91]  found the same pattern as they screened toluene adsorption over different zeolites. The 

larger pore size of a zeolite facilitates the adsorption of toluene.  

 Another important characteristic of zeolites is the acidity. The ratio between Si and Al, often 

mentioned as SiO2/Al2O3 ratio (SAR), plays an important role since it correlates to the number 

of Brønsted acid sites in the zeolite structure. Hydrogen bonding has been proposed to take 

place between the -OH group and the C=C in alkene molecules in the adsorption of alkenes. 

This was suggested by Spoto et al. [92] when they studied the oligomerization of ethene and 

propene on zeolite H-ZSM-5 using in-situ FTIR spectroscopy. A decrease in Si/Al ratio of the 

zeolite, i.e. more Brønsted acid sites, has proven to aid in the adsorption of toluene. This was 

found by Azambre et al. [93] when they studied HC-TPDs with three different hydrocarbon 

species (propene, toluene, and decane) on zeolite Y. The authors found that the adsorption of 
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the C3 and C7 hydrocarbons increased with a low Si/Al ratio, whereas C10 decreased with a 

low Si/Al ratio.  

The effect of water vapor on HC-trap material is relevant to understand since H2O is one of the 

largest products from combustion processes. Fuel types containing ethanol that are hydrophilic, 

such as E85, might be helped by the presence of H2O. The opposite is true for hydrophobic HC 

species, such as toluene, alkanes, and alkenes. This was shown by Park et al. [91]  when they 

mapped toluene adsorption and desorption on different ion-exchanged zeolites in both wet and 

dry conditions. Those authors observed that H2O partially inhibited toluene adsorption for all 

zeolites studied, indicating the importance of considering H2O. This effect is clearly 

demonstrated in Figure 3, where toluene adsorption is shown for a number of zeolites in the 

presence and absence of water. Furthermore, Luo et al. [94] studied of the adsorption of iso-

pentene on zeolite beta and found that zeolites with a low Si/Al ratio were more affected by 

H2O than zeolites with a high Si/Al ratio. This was seen by that the heat of adsorption for the 

HC decreased more in the presence of water for beta with low Si/Al ratio, while it was similar 

for Si/Al ratio of 200 (with 0% H2O present in the feed: -51.4 kJ/mol for BEA38 and -50.6 

kJ/mol for BEA200; with 10.9% H2O present in the feed: -42.9  kJ/mol for BEA38 and -50.1 

kJ/mol for BEA200).  

In summation, using zeolites with a smaller pore size provides thermal stability and a reduced 

risk of dealumination, whereas a larger pore size contributes to improved HC trapping. To 

further improve the zeolite, the Si/Al ratio is important to consider since it is a determining 

factor for the balance of Lewis acid sites and Brønsted acid sites which are the main sources of 

interaction between zeolite and hydrocarbons. Moreover, Brønsted acid sites are important for 

interaction with e.g. propene, but for a low Si/Al ratio, water inhibition has a more pronounced  

impact.  
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Figure 3. Amount of toluene trapped onto H, Na, Li, Mg, K, Ca, Mn, Fe, Co, Ni, Sr, Ag, Ce, 

and Ba ion-exchanged under dry (●), wet (▲), and temperature ramping (■) conditions: (A) X, 

(B) M10, (C) USY, (D) ZSM5, (E) FER760, and (F) Beta zeolites. Image and caption from 

Park et al. [91]. 

 

 

2.3.2 Adsorption properties of different hydrocarbons 

The adsorption capacity of the HC trap is strongly affected by the temperature of the exhaust 

gas and the trapping material. Studies have been conducted on the adsorption of toluene at 

different temperatures [95]. These studies indicate that the adsorption capacity deceases with 
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an increase in temperature. Daldoul et al. [96] have studied HC trapping capacity of zeolite 

ZSM-12 during an accelerated heating rate (3, 6, and 9°C/s). They found evidence that the 

temperature of desorption is affected by the heating rate, and an increase in heating rate 

postpones the temperature of desorption of the hydrocarbon species. In a study by Yamamoto 

et al. [97], different cold-start parameters for HC traps were examined and it was found that an 

increase in HC-trap volume resulted in a decrease in the heating rate and a delay in light-off 

time and also a decrease in desorption rate. This indicates that the volume of the HC trap plays 

an important role in the design of a HC-trap system. Goralski et al. [98] have compared the 

volume of an HC trap with the storage capacity of hydrocarbon and modeled HC trapping. As 

the volume of the hydrocarbon trap increased, the heating rate decreased. Their result agrees 

well with the work by Yamamoto et al. [97] mentioned above.  

Several different hydrocarbons are present in the exhaust during a cold start. Both small 

hydrocarbons, such as ethylene, and large aromatic hydrocarbons, such as toluene, are found in 

the exhaust of gasoline engines. Czaplewski et al. [99] have simulated a one-dimensional HC 

trap with both small and large hydrocarbons present. They found that, in multi-HC TPD, the 

temperature of desorption increased for smaller molecules compared to a single-HC TPD. The 

reason for this was attributed to the steric hinderance of the larger molecules on the smaller 

molecules. The adsorption of an HC mixture with C3, C7, and C10 present in the feed has been 

studied by Westermann et al. [81]. They found that smaller HCs adsorbed faster in the zeolite, 

but C3 was replaced by C7, and C7 was replaced by C10 over time. They explained this 

replacement effect as larger HC molecules adsorbing stronger than small molecules onto the 

HC trap, but the rate of adsorption was slower. Furthermore, adsorbed hydrocarbons in a zeolite 

framework may undergo both catalytic cracking or polymerization, leading to coking. 

Westermann et al. [81] have observed both of these phenomena. Those authors found that the 

larger hydrocarbons cracked into smaller ones during the desorption step of the TPD. 

Polymerization of alkenes was proposed to originate from the interaction between Brønsted 

acid sites and the C=C bond in the alkene molecule. These results clearly indicate that there is 

an inherent uncertainty when desorbed hydrocarbons from HC traps are measured.  

In summation, the volume of the HC trap has been shown to play an important role in the 

desorption of hydrocarbons. An increase in HC-trap volume decreases the rate of desorption of 

trapped HC but delays the light-off of the catalyst. It has been shown that a drastically increased 

temperature ramping speed benefit HC traps by increasing the temperature of desorption. The 

interaction between hydrocarbons of different sizes and properties is important in mixed 

hydrocarbon adsorption. Larger hydrocarbons may replace smaller adsorbed hydrocarbons, 

however, larger hydrocarbons may also increase the temperature of desorption for smaller 

hydrocarbons, due to sterical hindrance.  

 

2.3.3 Metal-ion incorporation into HC traps 

To further increase the adsorption of hydrocarbons and improve the temperature of desorption 

for them, ion-exchange and the incorporation of cations into the zeolite have been proven 

successful in several studies [95,100–103]. Two major attributes of cations have been found to 

be of importance for trapping hydrocarbons. These are the Lewis acidity of a cation and its size, 
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as observed by Takamitsu et al. [101]. They studied ion-exchange onto zeolite beta and ZSM-

5. They examined a range of different cations, and Na provided the highest temperature of 

desorption for the studied metal ions. Those authors concluded that if only the cation was of 

importance, the strongest Lewis acid would contribute to the highest temperature of desorption. 

If the framework oxygen of the zeolite was only of importance, the cations with a lower Lewis 

acidity would contribute to a higher temperature of desorption since they contribute to a higher 

charge on the framework oxygen. Since the cation Na is located in between these extremes, it 

was concluded that both Lewis acid strength and the size of a cation play an important role in 

the performance of an ion-exchanged HC trap.  

The silver ion has been one of the more promising cations for hydrocarbon trapping. Liu et al. 

[89] have studied Ag+ onto zeolite ZSM-5 for cold-start purposes and compared it to H+ and 

Cu2+. They concluded that, in the presence of water, the ion-exchanged Ag-ZSM-5 performed 

very well in contrast to Cu2+ and H+, which were more affected by water inhibition. A similar 

conclusion was reached by Kang et al. [95] when they studied the adsorption of different 

hydrocarbons onto Ag-BEA. Addition of Ag was found to improve the adsorption capacity of 

ethylene and toluene during wet conditions. However, those authors did not observe any 

improvement in the adsorption and desorption of hexane in the presence of water, and this is 

due to the more hydrophobic by nature of hexane. One reason for the enhanced adsorption of 

toluene in ion-exchanged Ag-BEA was attributed to the interaction between the Ag ion and the 

phenyl ring of the toluene [89]. Figure 4 clearly shows that phenyl-H+ interaction weakens in 

presence of water, whereas phenyl-Ag+ remains strong. 

 

Figure 4. FT-IR spectra of toluene adsorbed in hydrated and dehydrated condition (at 350°C 

under vacuum) Ag5.0
+H0.6

+-ZSM-5. Image and caption from Liu et al. [89]. 
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Palladium, similar to the silver ion, has demonstrated positive effects when added to zeolite 

beta for cold-start purposes. Xu et al. [104] have studied the effect of HC-trap Pd-BEA on 

trapping ethanol in cold-start conditions. Their results clearly showed that the addition of small 

quantities of Pd (0.1 to 0.2 weight percentage) provided a catalytic effect to the HC trap, which 

converted a significant portion of the stored ethanol to CO2. These findings have great value 

since this is an alternative route for hydrocarbon trapping rather than just focusing on an 

increase in the temperature of desorption. Adding the ability to convert stored HC into CO2 is 

highly beneficial. Moreover, Lupescu et al. [105] have studied Pd on zeolite beta as 

hydrocarbon trap together with a base redox active metal on a direct-injected Ford Focus. They 

concluded that Pd provides new adsorption sites (chemisorption), which give an HC trap with 

oxidation properties. They also observed that the addition of a base redox active metal helped 

to stabilize Pd and prevent sintering effects.  

Takamitsu et al. [101] have found that Na had comparably good HC-trapping properties on 

zeolite beta and ZSM-5. This was attributed to Na size and Lewis acidity. However, Buke et al. 

[106] studied the aging of HC traps, and they compared H-BEA, N-BEA, and La-BEA and 

found that La, which has a relatively large atomic diameter, performed as well as Na for HC-

trapping purposes. This may be an indication that there is more to be explored in regard to 

which factors are important for trapping hydrocarbons for cold-start purposes.  

In summation, many studies indicate that Ag is a promising addition to HC traps. The 

motivation for Ag is that it provides a resistance to water inhibition. Two factors that are of 

great importance for the efficiency of a cation in an HC trap, are Lewis acidity and the ability 

to enhance the charge of oxygen in a zeolite framework. Usually larger cations tend to 

contribute to the charge of oxygen in the zeolite framework. The addition of Pd to an HC trap 

may contribute catalytic properties to the trap, which are useful for further minimizing the 

release of hydrocarbons during the cold start.  
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3 Experimental 

3.1 Synthesis of catalyst 

3.1.1 Synthesis of LNT catalyst, Pt/Ba/Al2O3 

The model LNT catalyst used for both studies presented in this thesis was Pt/Ba/Al2O3 with 2 

wt-% Pt and 16 wt-% Ba. Details concerning the preparation can be found in Papers I and II.  

The support material, γ-Al2O3, was impregnated with a platinum precursor using the incipient 

wetness impregnation technique. Thereafter, the mixture was dried at 90°C for 2h, and then the 

mixture was calcined in an oven at 550°C for 2h. For the impregnation of barium with Pt/Al2O3 

powder, a procedure similar to the one for the impregnation of platinum was used, however, 

due to limitations in the solubility of barium acetate, the impregnation was performed in three 

steps with calcination between each impregnation step. Impregnation with platinum before 

barium is based on the study by Lindholm et al. [23], where higher NOX storage capacity was 

found when Al2O3 was impregnated with platinum before being impregnated with barium.  

The synthesized catalyst material was coated on a honeycomb-shaped ceramic monolith 

substrate (20 mm in length, 21 mm in diameter with 400 cpsi). The catalyst powder was mixed 

with 10 wt-% boehmite as a binder material, and to further improve adhesiveness during 

coating, the powder mixture was mixed in a solution of 50 vol-% ethanol and 50 vol-% MilliQ 

water. The targeted washcoat weight for each monolith was 700 mg, and they were calcined at 

550°C for 2h with a temperature ramp of 5°C/min. 

 

3.1.2 Synthesis of HC-Trap material for cold-start purposes  

The hydrocarbon trapping material for Paper III and Paper IV was based on zeolite beta, ZSM-

5, and SSZ-13. These zeolites were ion-exchanged for enhanced trapping properties. See Papers 

III and IV for more details. 

The zeolites used as support material for the HC traps had the targeted SiO2/Al2O3 ratio of 

approximately 25 to facilitate comparison of the zeolite structure. Incipient wetness 

impregnation was done for all samples for the ion exchange of zeolite supports. After the 

impregnation step, samples were dried at 90°C for 24h followed by calcination in an oven at 

550°C for 2h. This procedure was repeated for samples containing two impregnated metal 

components in which a second metal component was added. HC trap samples were washcoated 
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following the same procedure as for the NSR catalyst (Pt/Ba/Al2O3) with 5 wt-% boehmite 

binder material instead of 10 wt-%.  

 

3.2 Flow reactor 

A Synthetic Gas Bench (SGB) reactor was used in Papers I and II for the NOX storage and 

reduction activity tests and NO2 Temperature Programmed Desorption (TPD) measurements. 

Gas flow, gas concentrations, and vapor were regulated using Bronkhorst mass flow controllers 

and a Bronkhorst CEM system. A coated monolith was wrapped in quartz wool to avoid the 

by-pass of gases, and then it was placed inside a quartz tube, which was 750 mm with an inner 

diameter of 22 mm. Thereafter, the quartz tube was placed in a heating coil, which was covered 

in insulation. Two thermocouples were used; one measured the catalyst temperature, and the 

other measured the gas temperature in front of the catalyst and was used to regulate the 

temperature. An MKS Multigas 2030 FTIR spectrometer was used to measure gas 

concentrations after the catalyst, and all lines were covered in insulation and heated to 200°C 

to avoid vapor condensation in the system.   

Before any measurements in the flow reactor, freshly coated monoliths were pretreated and 

degreened to avoid the sintering of catalyst particles during measurements. The procedure and 

conditions for pretreatment and degreening are described in the experimental sections in Papers 

I and II.  

The samples were studied in lean/rich cycling conditions to measure NOX storage and 

reduction. The temperature in the cycles was either 300, 350, or 400°C, and the length of the 

cycles varied in the papers, 4 min lean/1 min rich or 8 min lean/2 min rich. The gas composition 

in lean conditions for both papers was 400 ppm NO/NO2, 5 vol-% CO2, 8 vol-% O2, and 5 vol-

% H2O with balance Ar. The gas composition for rich conditions was 400 ppm NO/NO2, 1 vol-

% H2/1000ppm C3H6, 5 vol-% CO2, and 5 vol-% H2O with balance Ar. More details on the 

activity tests are provided in Papers I and II. An overview of the experimental sequences of the 

flow reactor is shown in Table 1.    
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Table 1. An overview of the experimental sequences in the activity tests in the flow reactor. 5 

vol-% CO2 and 5 vol-% H2O were present in the gas mixture for all lean and rich phases. 

 Cycle segment 1 Cycle segment 2 Cycle segment 3 

300°C Lean: 400 ppm NO and 

8% O2  

Lean: 400 ppm NO and 

8% O2 

 

 Rich: 400 ppm NO and 

1% H2 

Rich: 400 ppm NO and 

1000 ppm C3H6  

 

350°C Lean: 400 ppm NO and 

8% O2 

Lean: 400 ppm NO2 and 

8% O2  

Lean: 400 ppm NO and 

8% O2 

 Rich: 400 ppm NO and 

1% H2  

Rich: 400 ppm NO2, 

and 1% H2  

Rich: 400 ppm NO and 

1000 ppm C3H6 

400°C Lean: 400 ppm NO and 

8% O2 

Lean: 400 ppm NO and 

8% O2 

 

 Rich: 400 ppm NO and 

1% H2 

Rich: 400 ppm NO and 

1000 ppm C3H6 

 

 

NO2 TPD experiments were conducted, where NO2 adsorption occurred in 500 ppm NO2 and 

5 vol-% H2O with balance Ar at 100°C for 60 min followed by flushing in 5 vol-% H2O and Ar 

for 10 min. Thereafter, the temperature was increased to 500°C, with a heating rate of 10°C/min. 

The same equipment as for Papers I and II was used in Papers III and IV for flow-reactor 

experiments. However, a Bronhorst CEM system for toluene was added for flow-reactor 

experiments in Papers II and IV.  

Temperature Programmed Desorption (TPD) experiments were performed in both Papers III 

and IV under similar conditions. At 80°C, samples were loaded with either toluene, propene, or 

propane, depending on the type of TPD performed. The sample was exposed to hydrocarbons 

for 60 min followed by a flush in Ar for 20 min. After flushing, the temperature was increased 

to 500°C in the presence of Ar with a heating rate of 20°/min. The steps were identical in the 

wet-TPD experiments, as mentioned above, but with the addition of 5 vol% H2O. The flow 

reactor experiments reported in both papers consisted of four different TPD measurements. 

Table 2 shows the different TPD experiments and their chronological sequencing for the papers. 

 

Table 2. An overview of the experimental sequences in the HC-TPD experiments that were 

performed. A pre-oxidation in 10 vol-% O2 at 500°C for 20 min was performed before and 

between TPD experiments.  

 1st TPD 2nd TPD 3rd TPD 4th TPD 

Paper III Dry Toluene Dry Propene Wet Toluene Wet Propene 

Paper IV Wet Toluene Wet Propene Wet Propane Wet HC mixture 
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3.3 Poisoning procedure 

Two different poisoning procedures were used: a gas-phase exposure to phosphorous, with 

results in Paper I; and wet impregnation of dissolved phosphorous and zinc salts on coated and 

degreened monoliths, with results in Paper II.   

The first method of poisoning, gas-phase exposure, was performed by evaporating diluted 

phosphoric acid. The coated and degreened monoliths were placed in a quartz tube with a setup 

similar to the one for flow reactor experiments, with the addition of a syringe pump that injected 

diluted phosphoric acid into the front of the heated quartz tube. Two different cases were studied 

for gas-phase poisoning: one in which the sample was exposed to 50 ppm phosphoric acid, 8 

vol-% O2 and 5 vol-% H2O with balance Ar in the gas flow for 34 h; and the other in which the 

sample was exposed to 100 ppm phosphoric acid, 8 vol-% O2 and 5 vol-% H2O with balance 

Ar in the gas flow for 34h.  

The second method of poisoning, wet impregnation, was performed by dipping the coated 

monolith and allowing capillary forces absorb the solution into the channels. Ammonium 

phosphate and zinc acetate salt were mixed in a pre-estimated amount of MilliQ water to prepare 

the solutions, and the amount of salt correlated to the weight percentage of the washcoat. 

Thereafter, the monoliths were dried at 90°C for 2h followed by calcination at 550°C for 2h.  

For samples containing both zinc and phosphorous, Zinc was impregnated first, then the sample 

was dried and calcined before impregnation with phosphorous. Six different poisoning 

conditions were used: 1 wt-% P; 1 wt-% Zn; 1 wt-% P and 1 wt-% Zn; 2 wt-% P; 2 wt-% Zn; 2 

wt-% P and 2 wt-% Zn. Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-

AES) was used to measure the amount of zinc and phosphorous impregnated on the washcoat 

of the catalysts, and the ICP-AES results are shown in Table 3. Measurements were made of 

crushed monoliths, and the concentrations were calculated for the washcoat by assuming a 

uniform washcoat. 

 

Table 3. Amount of Zn and P in weight percentage of washcoat estimated from crushed 

monoliths. Measurements collected with ICP-AES performed by ALS Scandinavia. Crushed 

monolith was used, and the concentrations were estimated for the washcoat assuming uniform 

washcoat distribution. 

Element 

\Sample 

1 wt-% P 1 wt-% Zn 1 wt-% P,  

1 wt-% Zn 

2 wt-% P 2 wt-% Zn 2 wt-% P,  

2 wt-% Zn 

Fresh 

wt-% P 1.2 - 1.2 2.4 - 2.4 - 

wt-% Zn - 1.0 0.9 - 1.6 1.6 - 

 

3.4 Characterization 

3.4.1 In-situ DRIFTS  

Diffusive Reflectance Infrared Fourier Transformed Spectroscopy (DRIFTS) is a method for 

studying surface species in-situ, for instance, during catalytic reactions. A VERTEX70 

spectrometer from Bruker, equipped with a liquid N2-cooled mercury cadmium telluride 
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detector, was used for the measurements. A high-temperature stainless steel reactor chamber 

by Harrick Scientific Products Inc and a diffusive reflectance accessory by Praying MantisTM 

were used. The DRIFTS technique was used in Paper III and IV.  

Powder scraped off the wash-coated monoliths was used for in-situ DRIFTS in Paper III. Prior 

to the scraping of the washcoat, the samples were pre-oxidized and loaded with toluene in the 

flow reactor followed by flushing and cooling to room temperature. The DRIFTS TPD 

experiment consisted of two heating ramps with an oxidation step in between. The first heating 

ramp consisted of the desorption of toluene, and the second consisted solely of peaks associated 

with the sample, therefore, the second spectra was subtracted from the first in order to see the 

shifts related to toluene. For further details on the in-situ DRIFTS experiments, see the 

experimental section of Paper III and IV. 

3.4.2 X-ray photoelectron spectroscopy (XPS) 

In Paper I, the surface species of samples exposed to phosphorous in the gas phase were 

measured using X-ray Photoelectron Spectroscopy (XPS), and the positions measured were the 

front, the middle, and the back. The instrument used was a Perkin Elmer 5000 ESCA system 

equipped with an EDS elemental mapping system. The X-ray source for the measurements was 

monochromatic Al Kα radiation at 1486.6 eV. The measurement was normalized to the C 1s 

peak at 284.6 eV to correct for the charging effect of the insulating samples [107]. The P 2p 

peaks were deconvoluted by fitting a Gaussian function under observed peaks and subtracting 

the baseline under the peaks. In Paper III, XPS was also used, these results are however not 

presented in this thesis. For more details regarding that see experimental section in Paper III. 

3.4.3 BET surface area  

The specific surface area and pore volume of the samples exposed to phosphorous in the gas 

phase in Paper I were measured using N2-physisorption isotherms at -195°C and were collected 

using a TriStar 3000 gas adsorption analyzer. The same methodology was used in Paper IV, 

however, these results are not presented in this thesis. For more information, see experimental 

section of Paper IV. Coated monoliths were divided into three sections, inlet, middle, and outlet, 

which were crushed and ground to a powder. Approximately 300 mg powder from each section 

was thermally dried at 90°C in N2 gas flow for 4h and used to measure the specific surface area 

and pore-volume.   

3.4.4 ICP-AES 

Inductive Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) was used in Paper I and  

II for elemental analysis and was performed by ALS Scandinavia AB. The coated monoliths of 

samples exposed to phosphorous in the gas phase were divided into three sections, inlet, middle, 

and outlet, and these sections were crushed and ground to powder. Coated monoliths exposed 

to zinc and phosphorous through wet impregnation were crushed and ground to powder in a 

similar manner, however, not divided into different sections. The reported wt-% is based on 

washcoat and was estimated assuming uniform washcoat thickness.  

3.4.5 STEM and ESEM-EDX mapping  

A cross-section overview of the location of different elements in the catalytic washcoat was 

acquired using ESEM in Paper I. The instrument used for imaging and X-ray analysis was a 
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Quanta200 ESEM FEG from FEI. The EDX analysis was performed in low vacuum with an 

acceleration voltage of 20 kV. An Oxford X-max 80 X-ray detector for energy dispersive X-

ray analysis, with INCA software for the evaluation of data, was used for elemental mapping 

to show the spatial distribution of the different elements. The sample, exposed to 50 ppm 

phosphorous in the gas phase, was measured at two different axial positions. The axial positions 

analyzed were 2 mm from the front of the catalyst and 2 mm from the back. 

Scanning transmission electron microscopy (STEM) was used in Paper II for the samples 

containing 2 wt.% of poisons. Crushed catalyst samples were placed on a carbon grid and the 

instrument used for EDX measurements were FEI Titan 80-300 TEM/STEM instrument 

operated at 300 kV from FEI. The STEM imaging was performed using High-Angle Annular 

Dark-Field (HAADF) detector. 

3.4.6 X-ray-diffraction (XRD) 

X-ray diffraction (XRD) was used in Papers II and IV to measure the crystallinity of the 

samples. The instrument used for the measurements was a Siemens D5000 diffractometer 

operated at 40kV and 40mA. The diffraction spectra in Paper II were collected in intervals of 

10-80° with a 2θ increase of 0.03°/s. The intervals in Paper IV were collected between 5-40° at 

the same rate as for Paper II. 
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4 Results and Discussion  

4.1 Poisoning of LNT with Phosphorous and Zinc 

Papers I and II examine the chemical poisoning of an LNT catalyst (Pt/Ba/Al2O3), which is 

used for removing NOx from diesel and lean burn gasoline exhausts. The poisons were, 

however, exposed to the catalyst in different ways. In Paper I, the P was introduced to the 

catalyst through evaporated phosphoric acid. In Paper II, the P and Zn were introduced through 

wet impregnation. Coated monoliths were measured in both papers before exposure to the 

poison, and afterwards to track the individual effects of the poisoning.   

After the coating procedure in Paper I, the NOX storage and reduction activity were measured 

for both samples before the gas-phase exposure to phosphorous. The time of exposure to 

phosphorous, for both samples, was 34 h, and the gas phase concentration was 5 vol-% H2O, 8 

vol-% O2 and 50 ppm or 100 ppm of phosphoric acid. Therefore, the samples were denoted “50 

ppm, 34h” and “100 ppm, 34h” in the figures. 

Before the wet impregnation of the coated and degreened catalysts in Paper II with P and Zn, 

we measured NOX storage and reduction activity and NO2 desorption behavior during TPD in 

a flow reactor. Six different aging cases were studied. They contained either 1 or 2 wt-% of 

each poisoning species to provide insight into the magnitude of individual poisons and to reveal 

interactions between them. The targeted weight percentage of each species impregnated was 

based on the washcoat amount on the coated monolith. The six cases studied were: 1% P, 2% 

P, 1% Zn, 2% Zn, (1%P and 1% Zn), and (2%P and 2% Zn). 

 

4.1.1 Effect of Zn and P on LNT capacity 

NOX storage and reduction were measured at 300 and 400°C in Paper I. Two different lean/rich 

cycle segments were studied for each temperature, and each cycle segment consisted of five 

lean/rich cycles. The reducing agent used in the rich phase differed for the cycle segments, 

either 1 vol-% H2 or 1000 ppm C3H6. The lean phase (400 ppm NO, 5 vol-% CO2, 8 vol-% O2, 

and 5% H2O) was the same for both segments. The rich phase (400 ppm NO, 5 vol-% CO2, 1 

vol-% H2/1000 ppm C3H6, and 5% H2O) composition strongly affected the products and bi-

products formed and the regeneration ability of the catalyst. This was due to the different 

reaction pathways associated with the reducing agent [17,18,34].  
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Figure 5 shows a comparison of sample “100 ppm, 34h” before and after exposure to 

phosphorous, with H2 as the reducing agent in the rich phase at 400°C.  A loss of NOX storage 

in the lean phase is showed by an increase in slip of both NO and NO2. The breakthrough of 

NOX occurred earlier in the poisoned sample than in the fresh one. There was higher formation 

of NH3 in the poisoned sample in the rich phase than in the fresh one. Immediately after the 

switch from lean to rich phase, some formation of N2O occurred as a bi-product, and as the 

formation of N2O decreased, the formation of NH3 began to dominate the rich phase. We can 

conclude from the comparison of sample “100 ppm, 34h” before and after exposure to 

phosphorous that exposure to phosphorous in the gas phase affected the NOX storage capacity 

of the catalyst, which is seen in the earlier breakthrough of NOX. Not only did the breakthrough 

occur earlier, but we also observed an increase in the slip of NO and NO2 over the remainder 

of the lean phase, which shows a decrease in NOX storage capacity. These results indicate that 

phosphorous affects access to the NOX storage component, BaO, which is in agreement Galisteo 

et al. [73] Interestingly, the formation of NH3 increased in the rich phase after exposure to 

phosphorous. De Abreu Goes et al. [108] observed similar behavior when comparing a fresh 

LNT catalyst with a field-aged one and an oven-aged catalyst at 800°C. Both the field-aged and 

the oven-aged catalysts exhibited an increase in the formation of NH3 in most cases.  It is 

possible that the increase in the formation of NH3 in the rich phase that was observed in our 

experiments was caused by some poisoning of the noble metal, which would change the 

selectivity between the formation of N2 and NH3. However, this may also be due to a reduced 

NOX storage caused by phosphorous affecting giving less barium nitrates that can react with 

the ammonia in an SCR reaction. 
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Figure 5. Measured outlet concentrations of the Pt/Ba/Al2O3 sample “100 ppm, 34h” before 

and after exposure to phosphorous (100 vol.-ppm H3PO4, 8 vol.-% O2, 5 vol.-% H2O at 200°C) 

at 400°C. Lean phase: 400 vol.-ppm NO, 5 vol.-% H2O, 5 vol.-% CO2, and 8 vol.-% O2. Rich 

phase: 400 vol.-ppm NO, 5 vol.-% H2O, 5 vol.-% CO2, and 1 vol.-% H2. Gas concentrations were 

measured using FTIR. 

 

Figure 6 shows one cycle from each cycle segment for both samples, “50 ppm, 34h” and “100 

ppm, 34h,” before and after phosphorus exposure, at both 300 and 400°C. A significant loss of 

NOX storage capacity was observed in all four lean/rich cycles and for both samples. The loss 

of NOX storage capacity appeared the highest for the sample with 1% H2 in the rich phase at 

300°C (Figure 6 A), and the lowest for the sample with 1000 ppm C3H6 in the rich phase at 

300°C (Figure 6 B). The reason for the minor effect observed for the propene sample is the poor 

reduction properties of C3H6 at 300°C, as shown by Olsson et al. [18]. This resulted in low NOX 

storage, and the poisoning was less visible. The similarities between results at 400°C (Figure 6 

C and D) indicate that the reduction properties of H2 and C3H6 in the rich phase at this higher 

temperature are comparable. We observed that the loss of NOX storage was approximately the 

same for both sample “50 ppm, 34h” and sample “100 ppm, 34h.” These results indicate that 

the concentration was not so critical for the degree of poisoning. This finding is in agreement 

with Shwan et al. [74], who have studied the effect of gas-phase poisoning of phosphorous on 

Fe-BEA and found that time appeared to be a more significant factor for the degradation of the 

catalyst than P concentration.  
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Figure 6. Measured outlet NOx before and after exposing Pt/Ba/Al2O3 to 50 or 100 vol.-ppm 

H3PO4, 8 vol.-% O2 and 5 vol.% H2O for 34 h. The lean phase (400 vol.-ppm NO, 5 vol.-% 

H2O, 5 vol.-% CO2 and 8 vol.-% O2) starts at time=0. The rich phase consists of 400 vol.-ppm 

NO, 5 vol.-% H2O, 5 vol.-% CO2 and H2 or C3H6, where A) 300°C with 1 vol.-% H2 in the rich 

phase, B) 300°C with 0.1 vol.-% C3H6 in the rich phase, C) 400°C with 1 vol.-% H2 in the rich 

phase, and D) 400°C with 0.1 vol.-% C3H6 in the rich phase. 

 

By assuming that all gas-phase nitrogen-containing molecules in the system during a lean/rich 

cycle were NO, NO2, N2, NH3, and N2O we could estimate the formation of N2 since the 

concentration of the remaining molecules were quantified using FTIR. Figure 7 shows the 

estimated N2 and the other measured components. In agreement with the results in Figure 6 A, 

we observed that the greatest increase in NOX slip after poisoning occurred at 300°C with 1% 

H2 as the reducing agent (Figure 7 A). We also observed that the formation of NH3 increased 

slightly after exposure to phosphorous, and the formation of N2 decreased significantly (Figure 

7 A). At 400°C with 1% H2 as the reducing agent (Figure 7 C), the same trends were observed 

as for the 300°C case (Figure 7 A), however, a smaller NOX slip and a smaller decrease in the 

formation of N2 was found. Figure 7 B and D show the results of C3H6 as the reducing agent, 

and it was found that the formation of N2 dominated compared to NH3 and N2O. A small amount 

of N2O was formed at 300°C (Figure 7 B), whereas we observed the formation of some NH3 at 

400°C (Figure 7 D).  

To summarize, the effect of phosphorous in the catalyst was observed in NOX storage during 

the lean phase, which leads to an increase in NH3 formation and a significant decrease in N2 

due to less stored NOX, which NH3 can react with. 

 

 

0 1 2 3 4
0

100

200

300

400

500

600

Time (min)

N
O

X
  (

p
p

m
)

300°C, H
2
 present in rich phase

 

 

100 ppm Before

100 ppm After

50 ppm Before

50 ppm After

A

0 1 2 3 4
0

100

200

300

400

500

600

Time (min)

N
O

X
  (

p
p

m
)

300°C, C
3
H

6
 present in rich phase

 

 

100 ppm Before

100 ppm After

50 ppm Before

50 ppm After

B

0 1 2 3 4
0

100

200

300

400

500

600

Time (min)

N
O

X
 (

p
p

m
)

400°C, H
2
 present in rich phase

 

 

100 ppm, Before

100 ppm, After

50 ppm, Before

50 ppm, After

C

0 1 2 3 4
0

100

200

300

400

500

600

Time (min)
N

O
X

 (
p

p
m

)

400°C, C
3
H

6
 present in rich phase

 

 

100 ppm Before

100 ppm After

50 ppm Before

50 ppm After

D



27 

 

  

  
Figure 7. Balance over outlet nitrogen atoms over a lean/rich cycle before and after exposing 

Pt/Ba/Al2O3 to 50 and 100 vol.-ppm phosphorous for 34 h, assuming that all nitrogen leaving 

the catalyst is either in the form of NOx, NH3, N2O, or N2. The lean phase (400 ppm NO, 5 vol.-

% CO2, 8 vol.-% O2 and 5 vol.-% H2O) has the same gas composition in all four graphs. A) 

300°C with 1 vol.-% H2, 5 vol.-% CO2, and 5 vol.-% H2O in the rich phase, B) 300°C with 0.1 

vol.-% C3H6, 5 vol.-% CO2, and 5 vol.-% H2O in the rich phase, C) 400°C with 1 vol.-% H2, 5 

vol.-% CO2, and 5 vol.-% H2O in the rich phase, D) 400°C with 0.1 vol.-% C3H6, 5 vol.-% CO2, 

and 5 vol.-% H2O in the rich phase 

 

The effect of P and Zn, individually and in combination were investigated through wet 

impregnation in Paper II. The advantage with wet impregnation is that it is easy to precisely 

control the amount of poison, which facilitate the comparison. However, with wet 

impregnation, the P and Zn were more evenly distributed over the entire washcoat, while for 

the gas-phase exposure in Paper I a distribution of P over the monoliths was received.  

The activity tests in the flow reactor in Paper II consisted of three different lean/rich cycle 

segments. Each segment consisted of five lean/rich cycles with a unique gas mixture 

combination. The lean/rich cycles were conducted at 350°C in a total flow of 1000 ml/min with 

Ar balance. The first cycle segment featured NO as the NOX source in the lean phase (400 ppm 

NO, 5% CO2, 8% O2, and 5% H2O) and H2 as the reducing agent in the rich phase (400 ppm 

NO, 5% CO2, 1% H2, and 5% H2O). The second cycle segment consisted of NO2 as the NOX 

source in the lean phase (400 ppm NO2, 5% CO2, 8% O2, and 5% H2O) and H2 as the reducing 

agent in the rich phase (400 ppm NO2, 5% CO2, 1% H2, and 5% H2O). The third cycle segment 

included NO as the NOX source in the lean phase (400 ppm NO, 5% CO2, 8% O2, and 5% H2O) 
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and C3H6 as the reducing agent in the rich phase (400 ppm NO2, 5% CO2, 1000 ppm C3H6, and 

5% H2O). 

Figure 8 shows the first cycle segment for samples containing 1wt-% of poisoning species. It 

can be seen in the figure that there was almost no deactivation of the NOX storage and reduction 

capacities of the catalyst with the impregnation of 1wt-% Zn (Figure 8 B). In contrast, the 

samples containing 1wt-% P (Figure 8 A and C) showed a significant loss of NOX storage 

capacity during the lean phase, where (1wt-% P + 1wt-% Zn) exhibited somewhat more 

deactivation than 1wt-% P. These results are in line with observations by Christou et al. [79] 

when they impregnated a TWC catalyst with P, Zn, and Ca. They found some deactivation 

associated with Zn and Ca, however, they found a significantly larger deactivation caused by 

phosphorous. Deactivation of the Pt/Ba/Al2O3 catalyst caused by phosphorous was also found 

by Galisteo et al. [78] when they impregnated the same model catalyst with (NH3)3PO4 

dissolved in water. They found an almost linear relationship between the P/Ba ratio and NOX 

storage capacity. There was a significant increase in NOX slip related to an increase in slip of 

NO2 for the samples impregnated with phosphorous (Figure A and C). In contrast, the slip of 

NO remained almost unchanged. Olsson et al. [36] have proposed a NOX storage mechanism 

in which NO is oxidized by O2 on the Pt sites to form NO2, after which NO2 is stored on barium 

as Ba(NO3)2. The increased slip of NO2 after impregnation with phosphorous could indicate 

that the barium sites were more affected by the presence of phosphorous than the Pt sites since 

NO oxidation capacity remained high. 

 

  

 

 

Figure 8. Lean/rich cycle at 350°C. Gas mixture lean phase: 400 ppm NO, 5% CO2, 8% O2, 

and 5% H2O. Gas mixture rich phase: 400 ppm NO, 5% CO2, 1% H2, and 5% H2O. A) Fresh 

and 1wt-% P, B) Fresh and 1wt-% Zn, and C) Fresh and (1wt-% P+1wt-% Zn). 
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Figure 9 shows a lean/rich cycle from the first cycle segment in which NO was the NOX source 

and H2 was the reducing agent with samples containing 2 wt-% of poisoning species. Compared 

to the results in Figure 8, Figure 9 shows greater deactivation for all three samples with a higher 

concentration of poisoning species. Figure 9 A and C shows a large slip of NOX for samples 

containing phosphorous, 2wt-% P and (2wt-% P +2wt-% Zn). This is mainly due to the increase 

in the slip of NO2. It can be seen when comparing Figure 9 A and C that the sample that only 

contained 2wt-% P appears slightly more deactivated than the sample with the combination 

(2wt-% P+2wt-% Zn). The breakthrough in these two samples occurred much earlier in the lean 

phase than in the fresh catalyst. The slip of NO was significantly larger after impregnation with 

2 wt-% phosphorous. However, as the lean phase proceeded, the poisoned samples approached 

saturation, and the excess slip of NO decreased in comparison with the fresh samples. Figure 9 

B shows greater slip of NOX for 2wt-% Zn than for the fresh catalyst. For the sample exposed 

to 2wt-% Zn, in contrast to the samples exposed to phosphorous (Figure 9 A and C), the 

increased slip of NO is larger than the increased slip of NO2, which is the opposite trend for 

phosphorous poisoned samples. This may indicate that poisoning by zinc interacts differently 

with the Pt/Ba/Al2O3 catalyst than phosphorous does. 

 

  

 

 

Figure 9. Lean/rich cycle at 350°C. Gas mixture lean phase: 400 ppm NO, 5% CO2, 8% O2, 

and 5% H2O. Gas mixture rich phase: 400 ppm NO, 5% CO2, 1% H2, and 5% H2O. A) Fresh 

and 2wt-% P, B) Fresh and 2wt-% Zn, and C) Fresh and (2wt-% P, 2wt-% Zn). 

 

Figure 10 shows the second cycle segment, with NO2 as the NOX source and H2 as the reducing 

agent for samples containing 2wt-% of poisoning species. A comparison of Figure 9 and Figure 

10 shows that there were no significant differences when NO2 instead of NO was used in the 

gas feed. This means that the oxidation of NOX species was not inhibited by phosphorous to the 
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same extent as the storage of NO2 on barium, which supports the previous observation. The 

formation of NH3 during the rich phase decreased in both the first and the second cycle 

segments and occurred earlier in the rich phase. NH3 is formed during the reduction of NOX 

with H2 as the reducing agent [17]. The concentration of NH3 formed in the rich phase is related 

to several factors: (i) the reaction with H2 and NOX from the gas feed, (ii) the reaction with H2 

and stored NOX on Al2O3 or BaO, (iii) the reaction of NH3 with stored NOX to form H2O and 

N2, which is seen in the SCR process [6,7].  Lietti et al. [17] have suggested that, when H2 is 

used as a reducing agent, the breakthrough of NH3 will occur when most of the stored NOX has 

been reduced by H2. Those authors showed that most N2 had been formed before the 

breakthrough of NH3. The breakthrough of NH3 for all samples in Figure 9 and Figure 10 

occurred earlier for the poisoned samples than for the fresh samples. This was likely related to 

less NOX storage during the lean phase. 

 

  

 

 

Figure 10. Lean/rich cycle at 350°C. Gas mixture lean phase: 400 ppm NO2, 5% CO2, 8% O2, 

and 5% H2O. Gas mixture rich phase: 400 ppm NO2, 5% CO2, 1% H2, and 5% H2O. A) Fresh 

and 2wt-% P, B) Fresh and 2wt-% Zn, and C) Fresh and (2wt-% P, 2wt-% Zn). 

 

Figure 11 shows the third cycle segment for the samples containing 2 wt-% of poisoning species 

in which NO was used as the NOX source and 1000 ppm C3H6 was used as the reducing agent. 

The deactivation during the lean phase is similar to what is shown in Figure 9 and Figure 10. 

However, an increase in NOX slip was found both for fresh and poisoned samples. This is 

related to the reducing properties of C3H6 at 350°C. The reducing capacities of C3H6 were 

significantly better at 400°C than at 300°C [18], which means that the samples were not fully 

reduced during the rich phase at 350°C. This resulted in fewer barium sites available for NOX 

storage during the lean phase. Figure 7 from the study of the gas-phase exposure of phosphorous 
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shows that the formation of NH3 is rather low compared to when H2 is used as the reducing 

agent. 

 

  

 

 

Figure 11. Lean/rich cycle at 350°C. Gas mixture lean phase: 400 ppm NO, 5% CO2, 8% O2, 

and 5% H2O. Gas mixture rich phase: 400 ppm NO, 5% CO2, 1000 ppm C3H6, and 5% H2O. 

A) Fresh and 2wt-% P, B) Fresh and 2wt-% Zn, and C) Fresh and (2wt-% P, 2wt-% Zn). 

 

To compare all six samples, all corresponding fresh samples were averaged and plotted together 

with the poisoned samples, as shown in Figure 14. A slight deactivation can be seen in the 

figure for samples that only contained Zn. The sample impregnated with 2wt-% Zn was more 

deactivated than the sample that only contained 1 wt-% Zn. However, the addition of P resulted 

in significantly more deactivation. It can be seen in the figure that the combination (1wt-

%P+1wt-% Zn) was more deactivated than the samples that only contained 1wt-% P in all three 

cycle segments. This behavior did not apply to samples that contained 2 wt-% P and (2wt-

%P+2wt-% Zn). In those samples, we observed the opposite trend from the samples that 

contained 1 wt-%, i.e. samples with the combination (2 wt-% P+2 wt-% Zn) appeared to be less 

deactivated than the samples with only 2 wt-% P. This trend was observed in all three cycle 

segments. This could indicate that zinc reacts with phosphorous to produce zinc phosphates, 

thereby freeing barium sites to participate in the NOX storage mechanism during the lean phase. 

This experiment was repeated with another batch of Pt/Ba/Al2O3 (data not presented here).  The 

trends for samples that contained both 1wt-% P and 2wt-% P were the same for the repeated 
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experiments. Another observation from these experiments is that increasing the poison level 

resulted in much greater poisoning.   

NO2-TPD was performed on samples in the flow reactor in Paper II, before and after the 

impregnation of P and Zn, in order to study the effect these species have on the storage of NO2 

and the desorption profiles of NOX on the Pt/BaAl2O3 catalyst. Before the loading step, samples 

were pretreated in 1% H2, 5% CO2, and 5% H2O at 400°C for 20 min. NO2 was loaded in 500 

ppm NO2 and 5% H2O at 100°C for 1h, which was followed by a short flush of the system with 

5 % H2O present. Thereafter, the temperature was increased from 100 to 500°C with a 

temperature ramp of 10°C/min.  

NO2 is favored at low temperatures, according to thermodynamic equilibrium, while NO 

dominates at higher temperatures, as can be seen in Figure 2. Lindholm et al. [23] have 

observed, when studying NO2-TPD on Pt/Ba/Al2O3, that the release of NOX in lower 

temperature regions is associated with storage on Al2O3, whereas the release of NOX in higher 

temperature regions is associated with storage on Ba. The results from samples impregnated 

with 1wt-% are shown in Figure 12, and the results from samples impregnated with 2wt-% are 

shown in Figure 13. In the low temperature region, associated with storage on Al2O3, all 

samples exhibited a similar desorption trend, and the impregnation of poisoning species had a 

low or negligible impact on the release of NOX in this region. We observed that, as the 

temperature reached 350°C, some poisoned samples started to deviate from the fresh catalyst; 

this can be seen in the samples in both Figures 12 and 13. The higher desorption temperature 

range is mainly associated with desorption from Ba. This would indicate that primarily Ba is 

affected by the poison and responsible for the increased NOX slip during the NSR capacity tests. 

The trend that was observed from the lean/rich cycles, that the combination (2wt-%P+2wt-

%Zn) stored more NOX than 2wt-% P, can be seen in the NO2-TPD measurements in Figure 
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13. It is also clear in the figures that samples impregnated with 2 wt-% Zn were less affected 

than samples impregnated with 2 wt-% P. 

 

  

 

 

Figure 12. NO2 TPD. Storage of NOX at 100°C with a gas mixture of 500 ppm NO2 and 5% 

H2O, followed by flushing with 5% H2O for 10 min, and, thereafter, a temperature ramp to 

500°C with 10°C/min in 5%H2O A) Fresh and 1wt-% P, B) Fresh and 1wt-% Zn, and C) Fresh 

and (1wt-% P, 1wt-% Zn). 

 

  

 

 

Figure 13. NO2 TPD. Storage of NOX at 100°C with a gas mixture of 500 ppm NO2 and 5% 

H2O, followed by flushing with 5% H2O for 10 min, and, thereafter, a temperature ramp to 

200 225 250 275 300 325 350 375 400 425 450 475 500
0

100

200

300

400

500

600

700

Temperature (°C)

N
O

, N
O

2 a
n

d
 N

O
X

 (
p

p
m

)

 

 

NO Fresh

NO
2
 Fresh

NO
X

 Fresh

NO, 1% P

NO
2
, 1% P

NO
X

, 1% P

A

200 225 250 275 300 325 350 375 400 425 450 475 500
0

100

200

300

400

500

600

700

Temperature (°C)

N
O

, N
O

2 a
n

d
 N

O
X

 (
p

p
m

)

 

 

NO Fresh

NO
2
 Fresh

NO
X

 Fresh

NO, 1% Zn

NO
2
, 1% Zn

NO
X

, 1% Zn

B

200 225 250 275 300 325 350 375 400 425 450 475 500
0

100

200

300

400

500

600

700

Temperauter (°C)

N
O

, N
O

2 a
n

d
 N

O
X

 (
p

p
m

)

 

 

NO Fresh

NO
2
 Fresh

NO
X
 Fresh

NO, 1% P, 1% Zn

NO
2
, 1% P, 1% Zn

NO
X
, 1% P, 1% Zn

C

200 225 250 275 300 325 350 375 400 425 450 475 500
0

100

200

300

400

500

600

700

Temperature (°C)

N
O

, N
O

2 a
n

d
 N

O
X

 (
p

p
m

)

 

 

NO Fresh

NO
2
 Fresh

NO
X
 Fresh

NO, 2% P

NO
2
, 2% P

NO
X
, 2% P

A

200 225 250 275 300 325 350 375 400 425 450 475 500
0

100

200

300

400

500

600

700

Temperature (°C)

N
O

, N
O

2 a
n

d
 N

O
X

 (
p

p
m

)

 

 

NO Fresh

NO
2
 Fresh

NO
X
 Fresh

NO, 2% Zn

NO
2
, 2% Zn

NO
X
, 2% Zn

B

200 225 250 275 300 325 350 375 400 425 450 475 500
0

100

200

300

400

500

600

700

Temperature (°C)

N
O

, N
O

2 a
n

d
 N

O
X

 (
p

p
m

)

 

 

NO Fresh

NO
2
 Fresh

NO
X
 Fresh

NO, 2% P, 2% Zn

NO
2
, 2% P, 2% Zn

NO
X
, 2% P, 2% Zn

C



34 

 

500°C in 5% H2O with 10°C/min A) Fresh and 2wt-% P, B) Fresh and 2wt-% Zn, and C) Fresh 

and (2wt-% P, 2wt-% Zn). 

 

Comparing the methods in Paper I and Paper II, we observed a clear poisoning effect of 

phosphorus for both cases. However, the NOX storage cycling for Paper I and Paper II were 

conducted at different temperatures and it is therefore not possible to compare the extent of the 

poisoning between the two studies. Another similarity is that for both cases the NO oxidation 

functionality was maintained, indicating that the noble metal was not/or only to a small degree 

poisoned with phosphorus and that the main poisoning is occurring on the storage component. 

From the NO2 TPD for the samples impregnated with P and Zn, we observed that storage onto 

Ba was radically reduced whereas the storage onto Al2O3 mostly remained unchanged. Hence, 

we can conclude that that both Zn and P disturb the storage properties of Ba rather than the 

Al2O3 or noble metal. 

 

 

 

  

 

 

Figure 14. Lean/rich cycles at 350°C. An average of all fresh samples and the six poisoned 

samples. Gas mixture lean phase: 400 ppm NOX, 5% CO2, 8% O2, and 5% H2O. Gas mixture 

rich phase: 400 ppm NOX, 5% CO2, reducing agent, and 5% H2O. A) 400 ppm NO and 1% 

H2, B) 400 ppm NO2 and 1% H2, and C) 400 ppm NO and 1000 ppm C3H6. 
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4.1.2 Effect of P on surface area 

It was observed that the phosphorous in field-aged catalysts deposited in an axial distribution 

[52,57,66]. Therefore, both samples in Paper I were divided into three sections, inlet, middle, 

and outlet. Each monolith section was crushed and ground to a powder. The BET surface area 

and pore volume for each section was compared to a freshly coated and degreened sample, 

which is shown in Table 4. Elemental analysis of each section using ICP-AES is also displayed 

in Table 4 for a comparison of P content and surface area. Results from BET surface area and 

pore volume indicate that both surface area and pore volume were the lowest at the inlet and 

the highest at the outlet. These results relate to the phosphorous content, which had the highest 

concentration at the inlet and the lowest at the outlet. Galisteo et al. [78] have studied wet 

impregnation of phosphorous on an LNT catalyst Pt/Ba/Al2O3, and they found that increased 

phosphorous content reduced the surface area. Indeed, the phosphorous content in our results 

correlate to a reduced BET surface area. An axial distribution of phosphorous, from inlet to 

outlet, is clear in the results in Table 4, which is in agreement with findings from the 

characterization of field-aged catalysts. 

 

Table 4. Specific BET surface area and pore volume of sample “50 ppm, 34h,” “100 ppm, 34h,” 

and a fresh sample. Results compared with phosphorus content from ICP-AES measurements. 

 P- Content, (wt-%) SBET(m2/(g washcoat))* VP (cm3/ (g washcoat))* 

Fresh - 134 0.46 

50 ppm, 34h, inlet 2.2   98 0.36 

50 ppm, 34h, middle 0.40 130 0.45 

50 ppm, 34h, outlet 0.11 134 0.45 

100 ppm, 34h, inlet 2.0  113 0.35 

100 ppm, 34h, middle 0.38 123 0.39 

100 ppm, 34h, outlet 0.07 132 0.39 

 

4.1.3 Distribution of P and Zn on the LNT catalyst 

In Paper I, EDX mapping and ESEM images from two different positions; 2mm from the front 

and 2 mm from the back of the monolith of the sample exposed to 50 ppm phosphorous for 34 

hours, were acquired and are shown in Figures 15-16. Four elements were mapped for the 

chosen positions using EDX (P, Ba, Si, and Al). Silicon, which is one of the main components 

of the ceramic monolith substrate and is shown as green in both figures, is visible in the figures 

2mm from the front and the back. Aluminium and barium, which make up most of the washcoat, 

are shown as grey and red in the figures. We observed that phosphorous, shown in yellow in 

the figures, was located more towards the surface of the washcoat in the image 2mm from the 

front (Figure 15). This was also observed by Bunting at al. [51] in their study of diesel oxidation 

catalysts. Interestingly, the results for the measurement 2 mm from the back (Figure 16) indicate 

that phosphorous are more dispersed into the washcoat and not located mainly towards the 

surface of the washcoat. The different patterns of accumulation could indicate that different 
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phosphorous species coexist in the washcoat. 

 

Figure 15. ESEM image (top row, left) and EDX elemental maps from the cross section 2 mm 

from the front of the Pt/Ba/Al203 sample exposed to 50 vol.-ppm H3PO4, 8vol.% O2, and 5 

vol.%H2O for 34 h. 

 

 

Figure 16. ESEM image (top row, left) and EDX elemental maps from the cross section 2 mm 

from the back of the Pt/Ba/Al203 sample exposed to 50 vol.-ppm H3PO4, 8vol.% O2, and 5 

vol.%H2O for 34 h. 
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In contrast to Paper I, Paper II used an impregnation method for poisoning, resulting in an even 

distribution of the poisons. All samples containing 2 wt.-% of poisoning species are 

characterized and mapped using STEM-EDX (see Figure 17). Images show areas where P, Zn, 

Ba, and Pt are present in the same region. For the sample containing 2 wt.-% P, it can be seen 

that both P and Ba coexist in the same region indicating that there might be an interaction 

between these two elements. In contrast to the sample with 2 wt.-% P, the sample with 2 wt.-% 

Zn did not indicate possible interactions between Zn and Ba. The sample containing both P and 

Zn at 2 wt.-% is shown in rows 3-5 in Figure 17, and also for this case the P and Ba appear to 

interact with each other in the same way as in the sample with only 2 wt.-% P in row 1. 

However, compared to when only Zn was present, here we can observe Zn located close to P, 

and thereby also to Ba. This may indicate that Zn and P either react with each other, forming 

for example zinc phosphates or that they form agglomerates. Both scenarios result in less P 

interacting with Ba, which provides more Ba available for NSR activity. This could further 

explain the results observed in Figure 14 where Zn reduced the aging effects caused by P on 

Pt/Ba/Al2O3.  
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Figure 17. STEM images and EDX maps of samples impregnated with 2wt.-% poison. First 

row contains images from the sample with 2 wt.-% P. Second row contain images from the 

sample with 2wt.-% Zn. Rows 3-5 contain images from the sample with 2 wt.-% P and 2 wt.-

% Zn. The white scale bar in the lower left corner of the STEM image in each row represents 

200 nm. 

 

For gas-phase exposure to phosphorous, as in Paper I, the distribution of phosphorous played a 

vital role. For real world application, the flow field of the exhaust gas inside of monolith 

channels determines how a foreign species, such as P, will be distributed over the washcoat. At 

the outlet of the samples in Paper I, the results indicated that P did diffuse into the washcoat. 

This could indicate that the wet impregnation in Paper II would be more comparable towards 

the rear end of a field-aged catalyst. However, the interaction between the elements in Paper II 

are more visible due to the approach, since the poisoning loading can be controlled in a more 

precise manner. 
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4.1.4 Phosphoric species formed after exposure 

In Paper I, the surface compositions of the sample exposed to 50 vol. ppm H3PO4, 8vol.% O2 

and 5 vol.% H2O for 34h were analysed using XPS. One channel was removed from the coated 

monolith, which was then measured at three different positions (inlet, middle, and outlet). 

Figure 18 A shows the overall spectrum for the measurements at inlet, middle, and outlet. The 

peaks of Al 2s and Ba 4p are both clear in the figure at the surface of all three measured 

positions. However, P 2s is significantly larger at the inlet than at the middle or outlet. This 

indicates a large presence of phosphorous species at the surface of the washcoat in the front of 

the catalyst. This result correlates well with the ICP results (Table 3) and with the results in 

Figures 15-16, which show a cross section over the washcoat at the front and at the end of the 

catalyst acquired using EXD mapping. Figure 18 B shows measurements with a higher 

resolution over P 2p. The positions of the peaks were corrected towards C 1s (284.8 eV) and 

normalized. The P 2s peak at the middle appears large due to the normalization, however, it 

was significantly lower than the peak at the inlet. We observed a shift in the center point of the 

P 2s peak for the inlet (135.3 eV) compared to the middle (134.5 eV). A deconvolution was 

done for both peaks in Figure 18 B and is shown in Figure 19. The phosphorous species 

considered for the deconvolution was P4O10 ranging between 135 and 135.5 eV [109], PO3
- 

ranging between 134 and 134, 5 eV [109] and PO4
3- ranging between 132.1 and 132.9 eV [109]. 

The results from the deconvolution indicate that the shift in Figure 18 B was due to a larger 

amount of P4O10 at the inlet of the catalyst, while the smaller phosphorous P 2s peak in Figure 

19 B was dominated by PO3
-. The formation of P4O10 and PO3

- was observed by Shwan et al. 

[75] when they studied gas-phase exposure to phosphoric acid on Fe-BEA. Andonova et al. 

[73] have also observed the formation of PO3
- on Cu-BEA, caused by exposure to phosphoric 

acid in a similar way.  

 

  
Figure 18. A) Normalized XPS spectra from the inlet, middle, and outlet sections of the 

Pt/Ba/Al2O3 sample exposed to 50 vol.-ppm H3PO4, 8vol.% O2, and 5 vol.%H2O for 34 h. B) 

Corresponding XPS spectra for the P 2p region from the inlet and middle sections of the sample.   
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Figure 19. Deconvolution of the P 2p XPS spectra from the inlet (A) and middle (B) sections 

of the Pt/Ba/Al2O3 sample exposed to 50 vol.-ppm H3PO4, 8vol.% O2, and 5 vol.% H2O for 34 

h. The considered phosphorous species are P4O10, PO3
- and PO4

3- . 

 

XPS was performed in Paper II to understand the interactions between Zn and P on the 

Pt/Ba/Al2O3 catalyst. Figures with these measurements are shown in Paper II (Figure 8, Paper 

II). It is clearly visible in Figure 14 that Zn helped reduce the aging effect caused by P on the 

catalyst for high poisoning levels, Zn is observable in the same region in the STEM-EDX 

images in Figure 17, however, zinc phosphate was not possible to prove using XPS. Thus it is 

not clear exactly how phosphorous and zinc interacts with the LNT catalyst, but the flow reactor 

experiments clearly shows a reduced poisoning effect when combining P and Zn, compared to 

individual poisoning. Furthermore, TPD characterization results indicate that phosphorous 

mainly disturbs the properties of Ba in the LNT catalyst, and Zn possesses the capacity to reduce 

this effect.  

 

4.1.5 Effect of Zn and P on crystallinity 

In Paper II, samples 2 wt.-% P, 2 wt.-% Zn, and (2wt.-% Zn,2wt.-% P) were compared to a 

fresh sample in order to evaluate if changes in crystallinity could be observed after the 

poisoning process. Powder from crushed monoliths was used for all samples, including the fresh 

sample. Figure 20 shows the XRD results for these samples. Three different denotations are 

used to mark the peaks in the figure. These denotations are “#,” which symbolizes cordierite, 

“Δ,” which symbolizes Al2O3, and “●,” which marks the Ba species. The positioning of the 

peaks associated with cordierite is the same for all samples in Figure 20 and the XRD spectra 

are normalized to the cordierite peak at 10° [110]. The support material, Al2O3, is rather 

amorphous, which resulted in a weak signal strength in XRD measurements. However, the peak 

visible at 54° can, nevertheless, be associated with the support material [111]. Lastly, two 

regions were marked for the Ba species. There are two twin peaks at 23 and 24°, and one peak 

at 33° in Figure 20. Different studies have associated these peaks with various Ba species, such 

as BaCO3, BaAl2O4, and Ba(NO3)2 [78,111]. It can be observed that the peak positioned at 33° 

in all samples did not undergo considerable change after exposure to poisoning species. For the 

peaks at 23 and 24° in the samples containing P, however, it was observed that the intensity of 

the peaks decreased, indicating a loss of crystallinity for a certain Ba species. These results 
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further our understanding of the Pt/Ba/Al2O3 LNT catalyst, not only did Ba take different forms 

on the catalyst but P did, in fact, target certain crystalline forms of Ba more than others.  

 

Figure 20. XRD patterns of samples 2% P, 2% Zn, 2% P + 2% Zn, and Fresh. “#” denotes 

cordierite, “𝛥” denotes Al2O3, and “+” denotes Ba species. 

 

4.2 Hydrocarbon Trap 

The topic of Papers III and IV was hydrocarbon trapping under cold-start conditions. Both 

papers explored the addition of metal ions to a zeolite in order to improve the trapping ability 

of the zeolite. One of the major goals for these studies was to increase the temperature of 

desorption for toluene, propane, and propene and maintain a high adsorption quantity. Both 

Lewis acidity and ion size are relevant for that purpose and play an important role [101]. How 

the cation interreacts with a specific zeolite is, therefore, highly relevant.   

The effect of promoting a zeolite beta with Fe, La, and Pd was studied and five samples were 

therefore prepared (Paper III). These samples were “Fe/BEA,” “La/BEA,” “Pd/BEA,” 

“Fe/Pd/BEA,” and “La/Pd/BEA” and were evaluated using toluene-TPD and propene-TPD 

experiments. These HC-trap formulations were characterized using TPO, XPS, STEM-EDX 

mapping, and in-situ DRIFTS.  

The trapping ability of La ion-exchanged zeolites was studied further in Paper IV. Five 

promoted samples were used, where both the zeolite types were varied and the effect of different 

La loading were compared. The samples were “2% La/BEA,” “6% La/BEA,” “9% La/BEA,” 

“2.5% La/ZSM-5,” and “H-ZSM-5 + 2% La/BEA,” which were compared to “H-BEA,” “H-

ZSM-5,” and “H-SSZ-13.” The HC-trapping ability of the samples was evaluated using toluene- 
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TPD, Propane-TPD, Propene-TPD, and a mixed TPD with all three different HC components. 

These samples were further characterized using XRD, in-situ DRIFTS, and BET.  

 

4.2.1 Effect of HC-trap formulation on toluene adsorption 

During the cold start of a vehicle, the aim is usually to reach light-off as quickly as possible. 

Therefore, the engine usually operates with a low air to fuel ratio. This results in unburned 

hydrocarbons in the exhaust. The most redundant HCs in the exhaust are ethene and methane, 

however, measured in number of carbon atoms, toluene is the major component [83]. For this 

reason, HC traps are often evaluated using toluene-TPD.  

Shown in Figures 21 and 22 are the toluene and ethene concentrations during a dry-toluene 

TPD (Paper III). Both Lewis and Brønsted acid sites are available during adsorption in a dry 

atmosphere. It can be seen in Figure 21 A and B that all samples have a major desorption peak 

ranging from 100 to 180°C. This peak location is attributed to the storage of toluene on zeolite 

beta [95]. The adsorption capacity for toluene was increased in samples containing Pd, foremost 

Pd/BEA. Like the Pd-containing samples, the La/BEA sample had an increase in toluene 

adsorption capacity. It has been observed by Park et al. [91] as they mapped toluene adsorption 

on different ion-exchanged zeolites, that some ion-exchanged zeolites perform better than the 

“H” version. Figure 22 shows the desorption of ethene for the dry-toluene TPD. It can be 

concluded that toluene adsorbed onto zeolite beta may undergo cracking. Desorption of ethene 

ranged from 200 to 300°C, depending on the sample, with a larger degree of ethene desorption 

in sample BEA than in the other ones (Figure 22 B). It is known that the Brønsted acid sites 

play an important role in the industrial cracking of hydrocarbons in refinery operations [112]. 

This may explain why we observed a larger degree of cracking for H-BEA.  

 

  
Figure 21. Dry-toluene-TPD experiments where toluene desorption is plotted against the 

corresponding desorption temperature for: A) BEA, Fe/BEA, La/BEA, and Pd/BEA; and B) 

Pd/BEA, Pd/Fe/BEA, and Pd/La/BEA. 
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Figure 22. Dry-toluene-TPD experiments where ethene desorption is plotted against 

the corresponding temperature for: A) BEA, Fe/BEA, La/BEA, and Pd/BEA; and B) 

Pd/BEA, Pd/Fe/BEA, and Pd/La/BEA. 

The adsorption of hydrocarbons can change considerably in wet conditions. When Burke et al. 

[106] studied hydrocarbon traps, they observed a significant loss of toluene adsorption capacity 

on zeolite beta in wet conditions. Wet-toluene TPD results are shown for the samples in Figure 

23, and no significant difference in toluene desorption can be seen compared to Figure 21. 

However, it was observed in that the cracking of toluene into ethene was considerably reduced 

under wet conditions (Paper III). Moreover, the high temperature desorption of toluene 

vanished in the presence of water, and this could relate to water inhibition of the Brønsted acid 

sites. However, the main desorption peak, located at 100 to 180°C, may be more associated 

with Lewis acid sites, and this desorption peak is similar for dry and wet conditions and explains 

the similarities between Figures 21 and 23 [90,100].  

 

  

Figure 23. Wet-toluene-TPD experiments where toluene desorption is plotted against 

the corresponding temperature for: A) BEA, Fe/BEA, La/BEA, and Pd/BEA; and B) 

Pd/BEA, Pd/Fe/BEA, and Pd/La/BEA. 

 

100 150 200 250 300 350 400 450 500

0

200

400

600

800

1000

1200

1400
C

o
n

c
. 
o

f 
E

th
y
le

n
e
 (

p
p

m
)

Temperature (°C)

 BEA

 FeBEA

 LaBEA

 PdBEA

Dry Toluene TPDA
235°C

100 150 200 250 300 350 400 450 500

0

200

400

600

800

1000

1200

1400

270°C

C
o

n
c

. 
o

f 
E

th
y

le
n

e
 (

p
p

m
)

Temperature (°C)

 PdBEA

 PdFeBEA

 PdLaBEA

Dry Toluene TPDB

235°C

100 150 200 250 300 350 400 450 500

0

100

200

300

400

500

600

700

C
o

n
c
. 
o

f 
T

o
lu

e
n

e
 (

p
p

m
)

Temperature (°C)

 BEA

 FeBEA

 LaBEA

 PdBEA

Wet Toluene TPDA 145°C

100 150 200 250 300 350 400 450 500

0

100

200

300

400

500

600

700

C
o

n
c
. 
o

f 
T

o
lu

e
n

e
 (

p
p

m
)

Temperature (°C)

 PdBEA

 PdFeBEA

 PdLaBEA

Wet Toluene TPDB 145°C



44 

 

La-containing samples in Paper III exhibited a delayed temperature of desorption for toluene, 

which is very beneficial (see Figure 23). This provided motivation for Paper IV, where zeolites 

doped with La were studied further. A wet-toluene TPD experiment was performed on zeolites 

doped with La in various combinations, as shown in Figure 24. Comparing the results from the 

wet toluene- TPD experiment in Paper III, shown in Figure 23, with the wet-toluene TPD 

experiment from Paper IV in Figure 24, we can see that the temperature of desorption for 

toluene increases with lower La contents. Figure 24 A shows that a lower content of La 

improves HC-trapping ability, while the benefits of La decrease with higher La concentrations 

in zeolite beta. The samples with SSZ-13 and ZSM-5 as the support material instead of zeolite 

beta are shown in Figure 24 B. Zeolite SSZ-13 did not show any toluene desorption, which may 

be explained by the small pore diameter of the zeolite, hindering the toluene adsorption. There 

seemed to be a reduction of adsorption capacity in samples with zeolite ZSM-5 compared to 

zeolite beta, which has a larger pore diameter than zeolite ZSM-5, but ZSM-5 has a higher 

temperature of desorption, which is clearly beneficial. It has been shown by Park et al. [91] that 

toluene adsorption capacity increases with the zeolite ring and channel size, which explains the 

larger capacity found for zeolite beta than for ZSM-5. What can be observed for the sample (H-

ZSM-5 + 2% La-BEA), is that the temperature of desorption more resembles zeolite beta but 

with an adsorption capacity that is drastically lower. Addition of La to zeolite ZSM-5, sample 

2.5% La-ZSM-5, indicated a lower storage capacity than H-ZSM-5 in Figure 24, however, the 

temperature of desorption appears to be slightly increased compared to H-ZSM-5.   

  

Figure 24. Wet-toluene TPD experiments where toluene desorption is plotted against the 

corresponding desorption temperature for: A) H-BEA, 2% La-BEA, 6% La-BEA, and 9% La-

BEA; and B) SSZ-13, ZSM-5, 2% La-BEA, and ZSM-5 + 2% La-BEA 
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of La provided benefits at low concentrations, but at higher loading, the benefits were reduced, 

both in terms of storage capacity and temperature of desorption.  

 

4.2.2 Effect of HC-trap formulation on propane and propene adsorption  

Toluene is, as mentioned above, the most common hydrocarbon in gasoline exhaust during a 

cold start, counting carbon atoms. However, the dry-toluene TPD results in Figure 22 show that 

toluene can undergo cracking when adsorbed to a zeolite, especially with a higher availability 

of Brønsted acid sites [112]. The most redundant hydrocarbon in gasoline exhaust during a cold 

start are ethene and methane [83]. For this reason, it is relevant to study the adsorption capacities 

of smaller alkanes and alkenes, such as propane and propene.  

Dry-propene TPD experiments were performed on all samples in Paper III, and the results are 

shown in Figure 25. Even wet-propene TPD experiments were performed for this paper, but the 

results are not shown due to low levels of adsorption. Figure 25 A shows the desorption of 

propene for samples BEA, Fe/BEA, La/BEA, and Pd/BEA, and Figure 25 B shows samples 

Pd/BEA, Pd/Fe/BEA, and Pd/La/BEA. The temperature of desorption for propene for all 

samples was around 250°C. Pd reduced the total amount of propene desorbed from the zeolite 

in the dry-toluene TPD experiments, in contrast to the results shown in Figure 21 for toluene. 

A comparison of the propene desorption in Figure 25 with the ethene desorption in Figure 22 

shows that these occur in the same temperature region. This indicates that TPD experiments 

with small alkenes have high comparability.  

 

  
Figure 25. Dry-propene-TPD experiments where the concentration of propene is plotted 

against the corresponding temperature during the temperature ramp. The samples were pre-

oxidized at 400°C. 

Both propene and propane TPD experiments were performed on the samples in the study in 

Paper IV. Both TPD experiments were performed in the presence of 5% H2O in the gas feed. 

The reason for performing wet TPD experiments is that they more resemble the real world 

application where vapor is always found in exhaust. Figure 26 shows the results for the propene 

TPD for all eight samples in the study, and Figure 27 shows the propane TPD results. A 
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desorption of both propene and propane was low, and the center of the desorption peaks was 

located from 150 to 180°C. This is in agreement with the study by Yoda et al. [113] who studied 

alkanes and alkenes activation energies and the heat of adsorption onto different zeolites and 

concluded that the C=C bond of alkenes interacts primarily with Brønsted acid sites. Azambre 

et al. [93] have studied HC trapping in both wet and dry conditions, and they observed strong 

water inhibitions associated with a low Si/Al ratio (i.e. large amount of Brønsted acid sites) in 

wet conditions but low water inhibitions with a high Si/Al ratio (i.e. low amount of Brønsted 

acid sites). Both studies align and help us understand why the adsorption of propene can be 

expected to be low in the presence of water.  

The samples based on zeolite ZSM-5 and SSZ-13 shown in panel B in Figures 26 and 27 show 

less water inhibition than the samples containing zeolite beta, but it should be noted that water 

inhibition is significant for all samples. Samples based on zeolite ZSM-5 in the propene TPD 

experiment show a larger storage capacity of propene than the sample containing SSZ-13. 

However, the sample with SSZ-13 has a significantly higher temperature of desorption for 

propene in the figure, which may be associated with the smaller ring size of SSZ-13 compared 

to ZSM-5. In Figure 27 panel B shows an interesting feature of the wet-propane TPD 

experiments. The sample with SSZ-13 desorbed mainly propane. However, the samples 

containing ZSM-5 and zeolite beta released the adsorbed propane as propene. Sharma et al. [82] 

studied HC-trapping on zeolite beta and observed  that propane can undergo reactions when 

adsorbed. This possibility aligns well with the reactions observed in Paper IV. 

 

  

Figure 26. Wet-propene TPD experiments where propene and propane desorption are plotted 

against the corresponding desorption temperature for: A) H-BEA, 2% La-BEA, 6% La-BEA, 

and 9% La-BEA; and B) SSZ-13, ZSM-5, 2% La-BEA, and ZSM-5 + 2% La-BEA 
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Figure 27. Wet-propane TPD experiments where propene and propane desorption is plotted 

against the corresponding desorption temperature for: A) H-BEA, 2% La-BEA, 6% La-BEA, 

and 9% La-BEA; and B) SSZ-13, ZSM-5, 2% La-BEA, and ZSM-5 + 2.5% La-BEA. 

 

In summary, Papers III and IV show that water inhibition affects smaller hydrocarbons to a 

large extent and remains an important issue for HC traps, even in the future. Zeolite SSZ-13 

has a lower adsorption capacity than zeolite ZSM-5 for propene, however, it provides a higher 

temperature of desorption than zeolite ZSM-5. Interestingly, SSZ-13 store larger amount of 

propane, compared to the other zeolites, however the amount was still low.   

 

4.2.3 Interaction between hydrocarbons during HC adsorption 

Mixed HC-TPD experiments were performed in Paper IV. Toluene, propene, and propane were 

all present in the loading step of the TPD, together with 5% H2O. Shown in Figure 28 are the 

results from these mixed HC-TPD experiments. Panel A shows the toluene desorption, and 

panel C shows the propene and propane desorption for samples H-BEA, 2% La-BEA, 6% La-

BEA, and 9% La-BEA. Panels B and D show the same hydrocarbons for H-ZSM-5, 2.5% La-

ZSM-5, H-SSZ-13, and (H-ZSM-5 + 2% La-ZSM-5). What can be observed from panel A and 

B in Figure 28 is that the desorption quantities and patterns of toluene are preserved compared 

to the wet-toluene TPD results shown in Figure 24. These findings align with Azambre et al. 

[93] in their studies of mixed HC-TPD experiments. Their HC trap was exposed to propene, 

toluene, and decane, and over time, the larger hydrocarbons replaced the smaller ones inside 

the zeolite pores. Considering that toluene is significantly larger than both propene and propane, 

this could be expected to occur for both zeolite beta and ZSM-5.  

The patterns of desorption in panels C and D in Figure 28 changed during the mixed HC-TPD 

experiments. This is especially true for the samples shown in panel D, where the desorption of 

propane and propene occurs at very different temperatures for samples containing zeolite-ZSM-

5. These samples all have desorption peaks for propene at lower temperature followed by a 

desorption peak in a higher temperature range. The similarities between Figure 26 B and Figure 

27 B with panel D in Figure 28 for sample SSZ-13 indicate that this sample was unaffected by 

the mixture of hydrocarbons. This could indicate that the presence of toluene primarily 
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contributes to this change of behavior in zeolite ZSM-5. Panel D shows that the temperature of 

desorption for both propene and propane in zeolite ZSM-5 is dependent on the mixture and 

sample composition. The temperature of desorption for propane was higher than the 

temperature for propene in all samples. A possible explanation for this behavior could be the 

Czaplewski effect [99]. This effect is based on the observations by Czaplewski et al. [99], who 

did HC-TPD experiments for propane and toluene alone and in a mixture. Those authors found 

that, in a mixture, propane was released at the same time as toluene, which desorbs at higher 

temperatures than propane alone. The reason for this was suggested to be attributed to a 

blocking effect caused by toluene, due to its size. Considering the propene TPD and propane 

TPD results alone, then, the blocking effect is not enough to explain the increase in both propane 

and propene. A hypothetical explanation for this phenomenon is that toluene introduces new 

temporary storage sites for propane inside the zeolite. Since the temperature of desorption and 

the adsorption capacity do not change as much for propene as for propane, there could possibly 

be intermolecular interaction between propane and toluene, which are both more hydrophobic 

than propene.  

  

  

Figure 28. Combined HC-TPD experiments where Toluene (A and B), propene and propane 

(C and D) desorption is plotted against the corresponding desorption temperature for: A and C) 

H-BEA, 2% La-BEA, 6% La-BEA, and 9% La-BEA; and B and D) SSZ-13, ZSM-5, 2% La-

BEA, and ZSM-5 + 2% La-BEA. 
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4.2.4 HC-storage sites introduced by Fe, La, and Pd 

Adsorbed toluene was analysed in Paper III using in-situ DRIFTS. Washcoated samples were 

pre-oxidized and loaded identically to the dry-toluene TPD experiment (Figure 21) in a 

synthetic gas bench reactor. After the loading of toluene, samples were cooled to room 

temperature and removed from the reactor. Powder was scraped from these loaded samples and 

used for DRIFTS analysis. Experiments in DRIFTS were conducted in two steps. Firstly, a TPD 

was performed on toluene-loaded powder. Thereafter, the powder was oxidized at 400°C, then 

cooled to 80°C for a second TPD. The second TPD experiment was then subtracted from the 

first to eliminate peaks only associated with the sample. Results from these are shown in Figure 

29, where spectra are taken from 80, 150, 250, and 350 °C.  

Panels A, C, E and G show the wavenumbers in the region 4000-2000cm-1. Five peaks are 

directly associated with toluene, 3088, 3063, 3030, 2920, and 2866 cm-1. The first three peaks 

are associated with the C-H stretching vibrations of the aromatic ring of toluene, and the last 

two are assigned to asymmetric and symmetric C-H stretching vibrations of the methyl group, 

respectively [114,115]. See Paper III for the assignment of the other peaks visible in panels A, 

C, E and G. These five peaks are negative in their direction and this is due to that it is desorption 

that are occurring. Some toluene was desorbed from the surface of samples Pd/La/BEA and 

Pd/Fe/BEA already at 80°C. At 150°C, all samples exhibit these five negative peaks, which are 

associated with the vibrations of the toluene molecule. This is reasonable given that all samples 

had their largest desorption peak in this temperature region in the toluene-TPD experiment in 

Figure 21. 

Three peaks are associated with toluene in panels B, D, F, and H, with wavenumbers in the 

region 2000-1000cm-1. These three peaks are 1602, 1494, and 1294cm-1 and the two first peaks 

are assigned to in-plane skeleton vibrations of the phenyl ring, and the last peak is assigned to 

symmetric vibrations of C-C [116–118]. Similar to the high wavenumber region, these peaks 

start to be visible at 80°C in the Pd/La/BEA and Pd/Fe/BEA samples. As the temperature 

reaches 150°C, these negative peaks become visible in all the samples. Two peaks are seen in 

the region around 1575 cm-1 for all samples in Figure 21, except Fe/BEA and BEA. These two 

peaks have their strongest magnitude around 250°C, which is in the same region the desorption 

of ethene was observed for the dry-toluene TPD experiment (Figure 22). A possible explanation 

for these peaks could be that they are temporary storage sites during the cracking of toluene 

into smaller hydrocarbons. Another possible explanation for these peaks could be that they 

provide an additional storage site for toluene that activates at higher temperatures. Liu et al. 

studied Ag-ZSM-5 [89] and observed that the addition of Ag+ to zeolite ZSM-5 provided new 

adsorption peaks for toluene. These peaks were located in this region and were assigned to 

phenyl-Ag+. Therefore, it is likely that similar behavior could occur after the addition of Pd and 

La to zeolite beta.  

Similar to these results in Paper III, as in-situ DRIFTS was performed in Paper IV, the dual 

peaks around wavenumber 1575cm-1 could be observed clearly for samples doped with La. 

Doping of a zeolite would supposedly provide a given zeolite with new potential storage sites. 
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Therefore, such peaks would be expected to appear whether or not the cation improves the 

zeolite ability to trap toluene.  
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Figure 29. DRIFTS spectra during dry-toluene TPD experiments. A stepwise measurement 

from 80-350°C with only argon present in the gas feed. Panels A, C, E, and G show the 

wavenumber region 4000-2000 cm-1. Panels B, D, F, and H show the wavenumber region 2000-

1000 cm-1. 

 

4.2.5 Impact of crystallinity on zeolite beta with impregnation of La 

Paper IV shows that the addition of lower amounts of La onto zeolite beta improved the zeolite 

(Figure 24 A). However, as the concentration of La increased, the positive effects were lost. All 

samples were then measured with XRD to further understand the loss of HC-storage capacity.  

The XRD spectra for H-BEA, 2% La-BEA, 6% La-BEA, and 9% La-BEA are shown in Figure 

30 A and B. The intensity of the samples with a high La loading was reduced, in contrast to H-

BEA. A shift towards a higher 2θ was found for the samples with a higher La loading. No clear 

shift was found for sample 2% La-BEA. A shift toward a higher 2θ, or contra reflection angles, 

indicates that the shell size of the zeolite structure has decreased [119]. 2% La-BEA loaded 

with toluene was measured with XRD to further examine the effect of La on crystallinity. The 

results are shown in Figure 30 C. In contrast to the high La loadings, the loading of toluene 

onto the zeolite shifted the XRD spectra to a lower 2θ. This indicates that toluene expands the 

shell size of the zeolite. Therefore, the addition of La to a zeolite framework may help stabilize 

and preserve the crystallinity of the framework during HC trapping. 
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Figure 30. XRD patterns from H-BEA, 2% La-BEA, 6% La-BEA, 9% La-BEA, and 2% La-

BEA loaded with toluene. In panel A) the range 5-20 2θ, in panel B) the range 20-40 2θ, and in 

panel C) the 2% La-BEA and toluene loaded 2% La-BEA are plotted in the range 20-25 2θ. 
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5 Conclusions  

This thesis dealt with exhaust-gas abatement. Papers I and II examined the aging of an LNT 

catalyst, mainly the effect of P and Zn on the model catalyst Pt/Ba/Al2O3. The relevance of P 

and Zn derives from the oil lubricants (ZPPD) used to extend the lifespan of engines in vehicles. 

Papers III and IV examined hydrocarbon trapping during the cold start of gasoline engines. A 

large part of pollutants is released during a cold start since the catalyst has not reached light-

off. For this reason, the topic of hydrocarbon trapping is relevant for the development of future 

exhaust-gas abatement. 

P was introduced in Papers I and II either through gas-phase exposure or wet impregnation, and 

Zn was introduced only through wet impregnation. P was mainly located on the surface of the 

washcoat and in high concentrations at the inlet of the monolith in the gas-phase exposure. 

However, P was present in a smaller amount in the outlet than in the inlet, but the results 

indicated that it was more diffused into the washcoat of the LNT catalyst. Results from XPS 

showed a shift in the oxidation state of P in a comparison of the inlet and outlet of the 

washcoated monolith structure. At the inlet of the coated monolith, phosphorous was mainly 

present in the form of P4O10, however, in the middle, the dominating phosphorous species was 

PO3
-. This indicate that different poisoning effects can be present simultaneously. Results from 

both poisoning methods indicate that P mainly affects the Ba. NSR experiments indicate that 

during lean phase, the Pt maintained its catalytic properties in the presence of P. Moreover, NO2 

TPD indicated that the storage onto Al2O3 was unaffected by P and Zn whilst storage onto Ba 

was significantly decreased.  

The effect of individual and combined poisoning of P and Zn was studied, since both of them 

are main components in ZDDP, a common oil lubricant for vehicles. This was done by wet 

impregnation technique, which has the advantage of that the poison amount can be precisely 

steered. However, the P and Zn will be well distributed over the whole wash-coat, which is not 

the case for gas phase poisoning. A significant proportion of the deactivation of the catalyst in 

the gas-phase exposure might be from blockage as well as from the poisoning of the active sites. 

This is due to a high concentrations of P at the inlet-surface of the washcoat. There are large 

similarities between the methods of poisoning, such as the breakthrough of NOX during lean 

phase, which occurs earlier and with a larger magnitude for both cases. Moreover, that the Pt 

sites seems not or only to a minor extent be deactivated.  



54 

 

In Paper II, it was found that Zn by itself reduced the NSR capacities of the Pt/Ba/Al2O3 catalyst, 

although to a much smaller extent compared to P, and only for higher Zn loadings (2 wt%). 

Interestingly, combined with P, Zn could reduce the larger deactivation caused by P on the 

catalyst, for the case with high poisoning loading. The reason for this may stem from a possible 

interaction between the two species, e.g. the formation of zinc phosphates which could reduce 

the poisoning of the barium.  

Zeolites were doped with different cations and metals in the studies of HC-trapp material. In 

Paper III, Pd was combined with Fe and La onto zeolite beta to study possibilities for the 

improvement of HC trapping. It was found that Pd considerably increased the adsorption 

capacity of toluene for zeolite beta. The addition of La provided an increase in the temperature 

of desorption for zeolite beta and a slight increase in adsorption capacity, whereas Fe did not 

provide much of an altered behavior compared to pure zeolite beta. The positive effects caused 

by Pd and La were verified with DRIFTS experiments, which indicated that the addition of 

these metals provided zeolite beta with new potential storage sites for hydrocarbons. Paper IV 

examined the addition of La in different concentrations onto zeolite beta, and it was added to 

zeolite ZSM-5 for comparison. It was found that there is an optimal amount of La in the zeolite; 

at 2 wt-% La had positive effects on zeolite beta in terms of the temperature of desorption and 

the storage capacity for toluene. These effects were lost at 6 and 9 wt-% of La onto zeolite beta. 

Results from XRD indicated that the impregnation of zeolite beta with La at high loading (6 

and 9 wt %) decreased the crystallinity of the zeolite structure and reduced the cell volume and 

this could explain the negative effect of increasing the La loading to much. Moreover, zeolite 

ZSM-5 had a lower storage capacity for toluene than zeolite beta, however, the temperature of 

desorption increased, which may be related to the ring size of the zeolite. The addition of La to 

zeolite ZSM-5 indicated some improvement of the temperature of desorption of toluene but did 

slightly reduce the total adsorption capacity. This behavior resembles what was observed for 

addition of La to zeolite beta in regards to the increased temperature of desorption.  

 An interesting dynamic was observed between toluene and propane in zeolite ZSM-5 in mixed 

HC adsorption experiments. Comparing TPD experiments when propene, propane, and toluene 

are alone and together indicated an increase in HC storage capacity. In a mixed TPD 

experiment, the propene remained almost the same. However, the propane storage capacity 

increased as did the temperature of desorption. Possible reasons for this could be that toluene 

reduces the mass-transport of propane in zeolite ZSM-5. However, it is also possible that 

propane interacts with toluene and is maintained longer in the system for that reason.  
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6 Future Work  

There are several possibilities for further studies of the aging of an LNT catalyst in terms of 

phosphorous and zinc poisoning. It would be interesting to further study why phosphorous is 

present in different forms over the washcoat of the catalyst when introduced through the gas-

phase. Also, the interaction observed between Zn and P in Paper II would be interesting to 

further examine. Moreover, to study if there are possibilities to take advantage of the interaction 

between these elements in order to reduce the deactivation of P on LNT catalysts. Since these 

foreign substances are usually introduced to the system in the gas-phase in the real application, 

it would be interesting to map the effects of the different regions of P in the washcoat. Would 

Zn have an impact similar to wet impregnation if it was introduced in the gas-phase? These are 

all interesting possibilities to study on the topic of the zinc and phosphorous poisoning of LNT 

catalysts.  

There are several possibilities for further studies of hydrocarbon trapping during cold In this 

work it was found that the crystallinity was a key component for incorporation of La into zeolite 

beta. Therefore, this might also be the limiting factor for other cations in HC trapping purposes. 

It would therefore be interesting to study the correlation between crystallinity, through XRD 

measurements, and HC storage capacity as well as the temperature of desorption for different 

cations with different cation loadings. Furthermore, since there are clear interactions between 

different HC species during the adsorption, such interactions could be used for further 

improvements of the cold start. Water inhibition was clearly one of the greater issues observed 

in the studies of hydrocarbon trapping for smaller molecules. The data in Paper III indicated 

that water hinders most hydrocarbons from adsorbing, except larger and more hydrophobic HC 

species. Finding ways to prevent water inhibition would greatly benefit this field. 
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