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Abstract
How long does it take for an initially advantageous mutant to establish itself in a
resident population, and what does the population composition look like then? We
approach these questions in the framework of the so called Bare Bones evolution
model (Klebaner et al. in J Biol Dyn 5(2):147–162, 2011. https://doi.org/10.1080/
17513758.2010.506041) that provides a simplified approach to the adaptive popula-
tion dynamics of binary splitting cells. As the mutant population grows, cell division
becomes less probable, and it may in fact turn less likely than that of residents. Our
analysis rests on the assumption of the process starting from resident populations,
with sizes proportional to a large carrying capacity K . Actually, we assume carrying
capacities to be a1K and a2K for the resident and the mutant populations, respec-
tively, and study the dynamics for K → ∞. We find conditions for the mutant to be
successful in establishing itself alongside the resident. The time it takes turns out to be
proportional to log K . We introduce the time of establishment through the asymptotic
behaviour of the stochastic nonlinear dynamics describing the evolution, and show
that it is indeed 1

ρ
log K , where ρ is twice the probability of successful division of

the mutant at its appearance. Looking at the composition of the population, at times
1
ρ
log K + n, n ∈ Z+, we find that the densities (i.e. sizes relative to carrying capaci-

ties) of both populations follow closely the corresponding two dimensional nonlinear
deterministic dynamics that starts at a random point. We characterise this random ini-
tial condition in terms of the scaling limit of the corresponding dynamics, and the limit
of the properly scaled initial binary splitting process of the mutant. The deterministic
approximation with random initial condition is in fact valid asymptotically at all times
1
ρ
log K + n with n ∈ Z.
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1 Introduction

There has been much work in stochastic adaptive dynamics and evolutionary branch-
ing, see Dieckmann and Law (1996), Metz et al. (1996), Champagnat et al. (2002),
Champagnat and Méléard (2011) and Sagitov et al. (2013), to mention just a few.
Here we confine ourselves to a simple mathematical model for evolution, where an
established resident population is invaded by a mutant. From that moment on, the two
populations compete for resources. At the moment of invasion the resident, wild-type,
population is assumed to have the size near its carrying capacity a1K . Here K should
be thought of as large, and a1 > 0 is fixed. The size of themutant population is initially
negligible as compared to K , since it starts from one individual. It has a reproductive
advantage over the resident, but as its progeny grows this advantage diminishes.

We want to answer the question of how long it takes for a mutant to become
established, i.e. to grow to a size comparable to the host population. And what is the
population composition then? Already the simplified model of two competing popu-
lations we consider, will require new mathematical techniques and lead to insightful
results. We show that the deterministic approximation with a random initial condition
is valid for times [ 1

ρ
log K ]+n with any fixed n ∈ Z and a large K . However, unlike in

the classical case on deterministic approximation (Kurtz 1970; Barbour 1980), some
stochasticity remains and enters as a random initial condition.

1.1 The Bare Bones evolutionary model

This simple but basic model of species reproducing under interaction with their envi-
ronment was introduced in Klebaner et al. (2011). It builds upon asexual binary
splitting and evolves in discrete time. Thus, each individual either gets two children
in the next generation or none. However, interaction with environment and popula-
tion size is allowed—in contrast to classical stochastic approaches—but drastically
condensed. Following the idea of Malthus, populations reach sizes proportional to
available resources, and we assume that the the habitat is characterised by a carrying
capacity, K > 0, thought of as large. Given the population size, individuals repro-
duce independently. Initially only the resident, wild-type, population is present and,
at population size z, the individual probability of successful splitting is taken to be
a1K/(a1K + z). Here a1 is a constant, which determines the population size at its
macroscopic (quasi-)equilibrium: when z = a1K , the probability of splitting is 1/2.
On the average, thus, a population of this size produces one child per individual. As
a result, the population size fluctuates around this (quasi-)steady state for what is
presumably a very long time, cf. Jagers and Klebaner (2011).

In that stage, the population will experience its first mutation giving rise to a new
population. The new, mutant population starts from a single individual, its ancestor.
The basis of adaptive dynamics can then be said to be furnished by the branching
mechanism, which forces the new population to either die out or else embark on
exponential growth, in which case the old resident dies out, or the two populations
will coexist for a time span that turns out to be exponential in the carrying capacity.
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On the establishment of a mutant 1735

Mathematically, this dynamics can be described as follows. The branching process
starts from a pair of positive integers Z(0) = (

Z1(0), Z2(0)
)
, the first component

denoting the size of the resident and the second that of the mutant population, at time
0, when the mutation appears. We assume that the established original population is at
equilibrium at the moment of invasion n = 0, Z1(0) = [a1K ], and Z2(0) = 1. Each
population develops by binary splitting with probabilities dependent on the numbers
of cells, with transitions from generation n to n + 1 described by the recursion

Z(n + 1) =
(
Z1(n + 1), Z2(n + 1)

)
=
⎛

⎝
Z1(n)∑

k=1

ξ1(n, k),
Z2(n)∑

k=1

ξ2(n, k)

⎞

⎠ . (1)

The random variables ξi (n, k) ∈ {0, 2} are independent, given the preceding, and only
depend upon the last generation Z(n), with probabilities

P

(
ξ1(n, k) = 2|Z(n)

)
= a1K

a1K + Z1(n) + γ Z2(n)
,

P

(
ξ2(n, k) = 2|Z(n)

)
= a2K

a2K + γ Z1(n) + Z2(n)
,

(2)

where a2 > 0 is the parameter, which controls the mutant equilibrium population size,
and γ is the interaction coefficient, assumed to satisfy 0 < γ < 1. The biological
meaning of γ is that cells of one type encroach less upon the reproduction of the other
cell type than do cells of the same type. That γ is the same in both probabilities means
that influence is symmetric between the cell types.

In the absence ofmutants, the establishedpopulation thus has a critical reproduction,
whereas themutant population starts supercritically, provided a2 > γ a1, as is assumed
throughout the paper, see (C) below.

1.2 Stochastic nonlinear dynamics for the evolution of the density

Important insights into the behaviour of populations with state dependent reproduction
and large carrying capacity is provided by their density process (Klebaner 1984, 1993).
It allows representation of the process as having stochastic nonlinear dynamics, which
can be separated into a deterministic part and a random perturbation. This is useful
not only for the mathematical analysis but also for the biological interpretation.

The density process is the population sizes relative to K

X(n) = (
X1(n), X2(n)

) := (
Z1(n)/K , Z2(n)/K

)
.

Note that the splitting probabilities (and hence the offspring distributions) in (2) are
in fact functions of the density; denoting the density state by x = (x1, x2) we see that

P (ξ1(n, k) = 2|X(n) = x) = a1
a1 + x1 + γ x2

,
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1736 J. Baker et al.

P (ξ2(n, k) = 2|X(n) = x) = a2
a2 + γ x1 + x2

.

Accordingly, the offspring meanm(x) = (
m1(x),m2(x)

)
at x is also a function of

the density

m1(x) = E
(
ξ1(n, k)|X(n) = x

) = 2a1
a1 + x1 + γ x2

,

m2(x) = E
(
ξ2(n, k)|X(n) = x

) = 2a2
a2 + γ x1 + x2

.

The underlying deterministic dynamics

x(n + 1) = f
(
x(n)

)
, (3)

is determined by the function f(x) = (
f1(x), f2(x)

)
,

f1(x) = x1m1(x) = 2x1a1
a1 + x1 + γ x2

,

f2(x) = x2m2(x) = 2x2a2
a2 + γ x1 + x2

.

(4)

This can be easily seen from (1) by writing the density process as

X1(n + 1) = X1(n)m1
(
X(n)

) + 1

K

K X1(n)∑

j=1

(
ξ1(n, j) − m1

(
X(n)

))

X2(n + 1) = X2(n)m2
(
X(n)

) + 1

K

K X2(n)∑

j=1

(
ξ2(n, j) − m2

(
X(n)

))
.

(5)

The first term on the r.h.s. of (5) gives the deterministic dynamics (3), and the second
term acts as the random perturbation,

X(n + 1) = f
(
X(n)

) + 1√
K

η(n + 1,Xn), (6)

with

ηi (n + 1, x) = 1√
K

Kxi∑

j=1

(
ξi (n, j) − mi (x)

)
, i = 1, 2.

These random variables have zero mean and variance 4xi pi (x)
(
1 − pi (x)

)
, where

pi (x) are the splitting probabilities. Therefore the random noise term in (6) is of order
1/

√
K and the density process can indeed be viewed as generated by a nonlinear

dynamical system, perturbed by a small random disturbance.
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On the establishment of a mutant 1737

Note that in the view of the above discussion, the trajectory of the deterministic
system (3) depends on K through the initial condition xK (0) = ( [a1K ]

K , 1
K

)
. Similarly,

the process generated by the stochastic dynamics (6), depends on K throughXK (0) =( [a1K ]
K , 1

K

)
and the noise term. Whenever appropriate, we will leave this dependence

implicit, omitting it from the notation.

1.3 Deterministic dynamics

If we neglect the small random noise in (6), we obtain the deterministic dynamics (3).
Fixed points (solutions to f(x) = x) play an important role in the behaviour of such
systems. The trajectories are repelled from the unstable fixed points and attracted to
the stable ones. Our system, generated by the function f(·) in (4), has four fixed points,

xex = (0, 0) (total extinction equilibrium)
xre = (a1, 0) (resident equilibrium in absence of mutant)
xmu = (0, a2) (mutant equilibrium in absence of resident)

xco =
(
a1−γ a2
1−γ 2 ,

a2−γ a1
1−γ 2

)
(coexistence equilibrium)

(7)

Since we are concerned with both populations, the relevant case is when both
coordinates of xco are nonnegative. This is true if the following co-existence condition
holds

a1 − γ a2 > 0, a2 − γ a1 > 0. (C)

It is easy to see by examining the Jacobian matrix ∇f(x), see (22) below, that the
point xco is stable, and xex unstable. The points xre and xmu are saddle points, that is,
stable in one direction and unstable in another. In our theory the point xre = (a1, 0)
plays a special role due to proximity of the initial condition

( [a1K ]
K , 1

K

)
. In the absence

of a mutant, a1 is the stable equilibrium for the resident population, and 0 is unstable
for the mutant population.

1.4 The large capacity limit of the stochastic dynamics

A rigorous treatment for neglecting small noise is given by the classical results in
perturbation theory of dynamical systems, see e.g. Kurtz (1970), Barbour (1980),
Freidlin andWentzell (1984) and Kifer (1988). They assert that as the noise converges
to zero, that is, when K → ∞, the trajectory XK (n) of the stochastic system (6)
converges on any bounded time interval to that of the deterministic dynamics (3),
started from the initial condition x(0) = limK→∞ XK (0). Namely, for an arbitrary
but fixed integer N ,

max
n≤N

∣
∣XK (n) − x(n)

∣
∣ P−−−−→

K→∞ 0. (8)
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1738 J. Baker et al.

In our setup, the initial condition turns out to be the fixed point xre,

x(0) = lim
K→∞XK (0) = lim

K→∞
( [a1K ]

K , 1
K

) = (a1, 0) = xre.

Therefore the corresponding limit trajectory is constant, x(n) = xre for all n =
1, 2, . . . Consequently, the limit (8) fails to provide any information on the transition
to a new coexistence equilibrium. We shall see that if such a transition occurs, it
becomes visible much later, at a time increasing with K , in fact, of order log K .

Recently, limit theorems, capable of capturing this transition, were obtained in
Barbour et al. (2015, 2016), Chigansky et al. (2018) and Baker et al. (2018). They
involve a time shift which grows logarithmically in K . InBarbour et al. (2015) this shift
is random and the processXK (n) is approximated by the trajectory of the deterministic
system (3)with a randomshift.Wehave learnt froma referee that a precursor to random
shift theory in Barbour et al. (2015) in the context of epidemic models can be found in
Metz (1978), where precise conjectures were stated and later proved in an unpublished
manuscript for the simple SIR epidemic model, (Altmann 1993; Mollison 1995).

In Barbour et al. (2016), Chigansky et al. (2018) and Baker et al. (2018), the shift
is deterministic, and XK (n) converges to a trajectory of (3), started from a random
initial condition. While the two approaches, the random shift and the random initial
condition, are related, they are not equivalent. The main building block in the random
initial condition theory is a certain scaling limit of the deterministic flow, which does
not appear in the random shift theory. Existence of this limit was so far established
only in the one dimensional case.

This work is the first such result in two dimensions. Having established it, we can
complement the “random shift” picture in Barbour et al. (2015) with that of “random
initial condition” for the Bare Bones model. Recently heuristics for similar random
initial conditions for selective sweeps in large populations in one dimension were
given in Martin and Lambert (2015). Other stochastic approaches involving carrying
capacity can be found in Lambert (2005, 2006).

2 Main results

In what follows we consider the stochastic process XK (n) generated by (6) or, equiv-
alently, by (1). As mentioned in Introduction, the resident population initially has
a critical reproduction, and is at equilibrium, when a single mutant appears, so that
XK (0) = ( [a1K ]

K , 1
K

) ≈ xre = (a1, 0). Even though the probability of amutant present
at any time n is positive, P(XK

2 (n) > 0) > 0, we do not say that it established itself
until its numbers are proportional to its carrying capacity, in other words proportional
to K . This can be formalized as

lim inf
K→∞ XK

2 (n) > 0.

For example, as we have seen above XK (n) → xre = (a1, 0) for any fixed n as
K → ∞. This conveys that the mutant is not established by any fixed time n. We
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On the establishment of a mutant 1739

show however, that it may establish itself at a time, which grows logarithmically with
K . More precisely, we prove that at time [b log K ] with a certain constant b,

lim inf
K→∞ XK

2

([b log K ]) > 0,

(
and lim sup

K→∞
XK
2

([b log K ]) < ∞
)

, (9)

whereas for 0 < r < b,

lim
K→∞XK ([r log K ]) → xre, (10)

and, therefore, XK
2

([r log K ]) P−−−−→
K→∞ 0, in particular.

The logarithmic order of time of the mutant’s establishment can be roughly
explained as follows. As the process starts near xre = (a1, 0), the state dependent
splitting probabilities can be approximated, at least initially, by their values at xre,
giving probabilities of division 1/2 and a2/(a2 + γ a1) for the resident and the mutant
populations respectively. Note that due to coexistence condition (C), the mutant pro-
cess is supercritical with mean

ρ = 2a2
a2 + γ a1

> 1.

Hence it grows at the rate ρn , and it takes time

b log K + O(1), with b := 1

log ρ

for it to grow to the size proportional to K , as K → ∞. In fact, this heuristics is
correct, and made precise in the following result, which implies both (9) and (10). We
denote the fractional part of x ∈ R+ by {x}.
Theorem 1 There exist a non-degenerate scalar random variable W ≥ 0 and a func-
tion H(x), whose entries are positive on the open half-plane R × R+, such that

XK ([b log K ]) − H
(

ρ−{logρ K }
(
0
W

))
P−−−−→

K→∞ 0. (11)

In particular, along the subsequence of exact powers K j = ρ j , j ∈ N,

XK j
(
b log K j

) P−−−→
j→∞ H

((
0
W

))
.

Let us now detail about the random variable W and the function H(·) appearing in
this theorem. The approximate mutant process, mentioned in the heuristic explanation
above, has the same splitting probability as the mutant component of Z(n) at xre.
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Fig. 1 Numerical approximation of the function H(x)

More precisely, it is a supercritical Galton-Watson binary splitting, started with a
single ancestor, Y (0) = Z2(0) = 1, and for n ≥ 1 defined iteratively by

Y (n + 1) =
Y (n)∑

j=1

ζ(n, j), (12)

where the offsprings ζ(n, j) ∈ {0, 2} are i.i.d. random variables with the constant
splitting probability P

(
ζ(n, j) = 2

) = ρ/2.
It is well known that W (n) = ρ−nY (n) is a non-negative martingale. As such it

converges almost surely to a limit,

W = lim
n→∞ W (n),

which is the random variable appearing in (11).
The function H(·) in Theorem 1 is the limit of the n-fold iterated map fn(·) along

the unstable manifold of the dynamics in (3).

Theorem 2 Under the basic assumptions stated, the limit

H(x) = lim
n→∞ fn(xre + x/ρn), x ∈ R × R+ (13)

exists, and the convergence is uniform on compacts.

Remark 1 (1) It is easy to see that H(·) solves the Abel functional equation H(x) =
f(H(x/ρ)), subject to H(0) = xre. While much is known of such equations in one
dimension, in higher dimensions the theory is more involved.
(2) Numerical calculations indicate that H(x) is constant with respect to the resident
population component x1, see Fig. 1. This is consistent with the criticality of that
population at the density a1: the global stability of the monomorphic dynamics makes
those perturbations shrink to 0 when f is iterated.
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The next result describes the density process after establishment of the mutant,
at times [b log K ] + n, n = 1, 2, . . . ; it shows that the population composition is
governed by the deterministic nonlinear dynamics fn started at the random point, as
illustrated on Fig. 2. Furthermore, it equally holds when n is a negative integer. Denote
the random vector appearing in Theorem 1 by

χ(K ) = H
(

ρ−{logρ K }
(
0
W

))
.

Corollary 1 For any n ∈ Z,

XK ([b log K ] + n) − fn(χ(K ))
P−−−−→

K→∞ 0.

The next corollary to Theorem 1 answers the question what is the probability of
the successful establishment of the mutant? Since the argument is short we present it
here. It is known that P(W = 0) is exactly the extinction probability of the Galton-
Watson process Y (n). It is easily calculated to be 2/ρ − 1. But on the event {W = 0},
H
(
(0,W )

) = H((0, 0)) = xre. Since on the complimentary event W > 0, and
H2((0, w)) > 0 for w > 0, we have the following corollary of (11).

Corollary 2 With probability 2(1 − ρ−1) the mutant establishes itself alongside the
large original population.
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3 Proofs

3.1 A preview

The proof is inspired by the observation that supercritical populations, which start
from a small number of individuals and develop on a habitat with a large but bounded
capacity, grow initially as the Galton-Watson supercritical branching and then follow
closely a deterministic curve, determined by the underlying nonlinear dynamics. This
heuristics dates back at least to 50’s, e.g., Kendall (1956) and Whittle (1955), and the
already mentioned (Metz 1978). A rigorous proof for epidemics is given in Mollison
(1995), and in a wider context the rigorous implementations are relatively recent, see
Barbour et al. (2015, 2016) and Chigansky et al. (2018).

Let us briefly sketch the ideas. The main ingredient is the Galton-Watson branching
processY(n), whose components mimic the behaviour of those ofZ(n) at the moment
of mutant’s appearance, that is, around the equilibrium point xre. Thus its first, resident
componentY1(n) is critical and starts at [a1K ] and its second,mutant componentY2(n)

is supercritical with the offspring mean ρ, and it starts from a single individual. The
two processes Z(n) and Y(n) are constructed on the same probability space and are
coupled in such a way, that they remain close at least until time nc = [logρ Kc] with
some fixed constant c ∈ (1/2, 1).

Following the above heuristics the density X(n) = Z(n)/K =: Z(n) is approx-
imated by gluing the linearized stochastic process with the deterministic nonlinear
dynamics,

Z̃(n) =
{
Y(n) n ≤ nc
fn−nc

(
Y(nc)

)
n > nc

where Y(n) := Y(n)/K is the density of the Galton-Watson branching. The assertion
(11) of Theorem 1 follows if we show that

1. the process Z̃(n) does indeed approximate the target density Z(n) at time n =
[logρ K ] = [ 1

log ρ
log K

] = n1,

Z(n1) − Z̃(n1)
P−−−−→

K→∞ 0, (14)

2. and the approximation Z̃(n) behaves asymptotically as claimed in Theorem 1,

Z̃(n1) − H
(

ρ−{logρ K }
(
0
W

))
P−−−−→

K→∞ 0. (15)

Themain technical difficulty in proving (14) is to control the differenceZ(n)−Z̃(n)

on the time interval [0, n1], which itself grows with K . It turns out that the usual
technique, based on straightforward linearization of the dynamics, does not provide
bounds sharp enough in this case. Instead we construct a suitable coupling in Sect. 3.3,
which involves several additional auxiliary Galton-Watson processes.
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The key to the limiting expression in (15) is the representation

fn1−nc
(
Y(nc)

)

= fn1−nc
(
xre + ρ−{logρ K }ρ−(n1−nc)ρ−nc

(
Y(nc) − Kxre

))
.

(16)

It shows that the convergence in Theorem 1 follows once we prove the limit of Theo-
rem 2 and check that

ρ−nc
(
Y(nc) − Kxre

) P−−−−→
K→∞ (0,W ). (17)

The random variableW is the martingale limit of the supercritical branching Y2(n),
cf. (12). Themost challenging element of the proof of this part is convergence (13), see
Sect. 3.2 below. Previously, it has been proved in Chigansky et al. (2018) in dimension
one, and analysis in higher dimensions, in our case two, requires a completely different
approach. When convergence (11) is proved, the assertion of Corollary 1 follows by
continuity of f(·).

The limit in equation (10) can be proved in a similar way: note that in this case, cf.
(16)

fnr−nc
(
Y(nc)

)

= fnr−nc
(
xre + ρ−{logρ K }ρ−(nr−nc)ρ−(n1−nr )ρ−nc

(
Y(nc) − Kxre

))
,

where, in view of (17),

ρ−(n1−nr )ρ−nc
(
Y(nc) − Kxre

) P−−−−→
K→∞ 0.

We omit the proof of this part, which closely follows that of Theorem 1 with obvious
adjustments.

3.2 The limit H(x)

In this section we construct limit (13), by means of a convergent telescopic series.

3.2.1 An auxiliary recursion in dimension one

Let us start with an auxiliary one dimensional quadratic recursion

xm,n = ρxm−1,n
(
1 + Cxm−1,n

)
, m = 1, . . . , n (18)

subject to initial condition x0,n = x/ρn with x > 0, where C ≥ 0 and ρ > 1
are constant coefficients. In what follows we will need the following estimate on its
solution.
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1744 J. Baker et al.

Lemma 1 There exists a finite function ψ : R+ 
→ R+, such that

xm,n ≤ ψ(x)ρm−n, m = 1, . . . , n. (19)

Proof Let us first note that no generality will be lost if C = 1 is assumed. Indeed, if
(18) is multiplied by C , the recursion

x̃m,n = p(̃xm−1,n), m = 1, . . . , n

with p(x) = ρx(1+ x) is obtained for the rescaled sequence x̃m,n = Cxm,n . Hence if
(19) holds for x̃m,n with some ψ̃(x), then it holds for xm,n with ψ(x) := C−1ψ̃(Cx).
From here on we set C = 1.

Since xm,n ≥ ρxm−1,n, proving the desired bound amounts to showing

sup
n

xn,n < ∞, ∀x ≥ 0. (20)

To this end, consider the Schröder functional equation

φ( f (x)) = sφ(x), x ∈ [0,∞) (21)

where s =: 1/ρ ∈ (0, 1) and f (x) =
√

1
4 + sx − 1

2 is the inverse of the parabola p(·)
on R+. The function f (x) satisfies the following conditions

1. f is continuous and strictly increasing on [0,∞)

2. f (0) = 0 and 0 < f (x) < x for 0 < x < ∞
3. f (x)/x → s as x → 0+
4. f (x) is concave (and therefore f (x)/x is decreasing on R+)
5. for all δ > 0

∫ δ

0

| f (x) − sx |
x2

dx < ∞.

Under these conditions (Seneta 1969) shows that the limit

φ(x) := lim
n

f n(x)

sn
, x ∈ [0,∞)

exists, solves (21) and satisfies the following properties

(a) 0 < φ(x) < ∞ on (0,∞) (nontrivial limit), φ(0+) = 0
(b) φ(x)/x is monotone on (0,∞)

(c) φ′(0+) = 1
(d) φ(x) is invertible1

1 See the remark in the paragraph following (3.1) in Seneta (1969).
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Changing the variable in (21) to y = f (x), we get

φ(y) = sφ(p(y)), y ∈ R+,

and, inverting, we obtain the conjugacy

p(y) = φ−1(ρφ(y)
)
.

Hence

xn,n = pn(x/ρn) = φ−1(ρnφ(x/ρn)
) −−−→

n→∞ φ−1(xφ′(0+)
) = φ−1(x).

In particular, (20) and, therefore also (19), hold. �

3.2.2 Properties of f(·)

Let us summarize some relevant properties of the function f(·), which governs the
deterministic dynamics in (3). Since f1(x) − x1 and f2(x) − x2 change signs across
the lines x1+γ x2 = a1 and γ x1+ x2 = a2 respectively, as shown at the phase portrait
(Fig. 3), the coexistence equilibrium xco is globally stable. The local behaviour around
the unstable fixed point xre = (a1, 0) is determined the Jacobian of f(·) at xre,

A := Df(xre) =
( 1

2 − γ
2

0 ρ

)
, where ρ = m2(xre) = 2a2

a2 + γ a1
. (22)

To study perturbations around xre it will be convenient to consider the translation

g(x) := f(xre + x) − xre, (23)

with g(0) = 0 and Jacobian D g(0) = A. In particular, existence of the limit (13)
follows from that of limn→∞ gn(x).

Note that for x1 ∈ [xco1 ,∞) and x2 ∈ [0, xco2 ], formulas (4) for the entries of the
function f(·) and the configuration of the fixed points (7) imply

f1(x) = 2x1a1
a1 + x1 + γ x2

≥ 2xco1 a1
a1 + xco1 + γ xco2

= xco1

and

f2(x) = 2x2a2
a2 + γ x1 + x2

≤ 2xco2 a2
a2 + γ xco1 + xco2

= xco2 .

Hence the subset Ẽ := [xco1 ,∞) × [0, xco2 ] ⊂ R
2+ is forward invariant under f(·),

namely, f(Ẽ) ⊆ Ẽ . Then by (23) the subset

E = [
xco1 − a1,∞

) × [
0, xco2

] ⊂ R × R+

is forward invariant under g(·).
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Fig. 3 The phase-portrait of the deterministic system (3); the trajectory from a small vicinity of the resident
equilibrium xre to the coexistence equilibrium xco is depicted in red (colour figure online)

In what follows, ‖ · ‖ stands for the 
∞ norm for vectors and the corresponding
operator norm for matrices. In particular, the matrix A defined in (22) satisfies ‖A‖ =
ρ > 1. The linear subspace E0 = {x ∈ R

2 : x2 = 0} is invariant under A and

sup
x∈E0

‖Ax‖
‖x‖ = 1

2
. (24)

Below C , C1, etc. stand for constants, which depend only on a1, a2 and γ and whose
values may change from line to line.

The first coordinate of g(·) can be written as

g1(x) = 2a1(a1 + x1)

2a1 + x1 + γ x2
− a1 = a1x1

2a1 + x1 + γ x2
− a1γ x2

2a1 + x1 + γ x2

= 1

2
x1

(
1 − x1 + γ x2

2a1 + x1 + γ x2

)
− γ

2
x2

(
1 − x1 + γ x2

2a1 + x1 + γ x2

)
,

and, similarly,

g2(x) = ρx2

(
1 − x2 + γ x1

a2 + γ a1 + x2 + γ x1

)
.
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Hence g(x) has the form

g(x) = (
I − B(x)

)
Ax (25)

where matrix B(x) satisfies the bound

‖B(x)‖ ≤ C‖x‖, x ∈ E (26)

with a constant C . Similar calculation also shows that for x, y ∈ E

g(x) − g(y) = (
A + F(x, y)

)
(x − y) (27)

where matrix F(x, y) satisfies

‖F(x, y)‖ ≤ C
(‖x‖ ∨ ‖y‖). (28)

These formulas and the bound from Lemma 1 give the following growth estimate.

Lemma 2 For any x ∈ R × R+ and all n large enough,

∥∥gm(x/ρn)
∥∥ ≤ ψ(‖x‖)ρm−n, m = 1, . . . , n (29)

with a finite function ψ(r), r ≥ 0.

Proof For any x ∈ R×R+ and all n large enough x/ρn ∈ E and, since E is invariant,
gm(x/ρn) ∈ E for all m. Hence by (25), the sequence xm,n = gm(x/ρn) satisfies

‖xm+1,n‖ = ‖g(xm,n
)‖ = ∥∥(I − B(xm,n)

)
Axm,n

∥∥

≤ ‖I − B(xm,n)‖‖A‖‖xm,n‖ ≤ ρ‖xm,n‖(1 + C‖xm,n‖).

By induction ‖xm,n‖ ≤ xm,n , where xm,n solves (18) subject to x0,n = ‖x‖/ρn , and
the claim follows from Lemma 1. �

3.2.3 Proof of Theorem 2

We will argue that the increments of gn(x/ρn) are absolutely summable, uniformly
over compacts in R × R+. Let n be large enough so that x/ρn ∈ E and therefore, by
invariance, gm(x/ρn) ∈ E for all m ≥ 1. Consider the array

gm(x/ρn+1) − gm−1(x/ρn), m = 1, . . . , n.

For m = 1, due to (25),

g(x/ρn+1) − x/ρn = Ax/ρn+1 − x/ρn − B(x/ρn+1)Ax/ρn+1

= ρ−n(A/ρ − I
)
x + ρ−2nvn =: ρ−nu + ρ−2nvn,
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where u ∈ E0 and, in view of (26), vn is a sequence of vectors, whose norm is bounded
uniformly in n. Both vectors u and vn depend continuously on x, which is omitted
from the notations. For m ≥ 1, (27) implies

gm+1(x/ρn+1) − gm(x/ρn) = g ◦ gm(x/ρn+1) − g ◦ gm−1(x/ρn)

=
(
A + F

(
gm(x/ρn+1), gm−1(x/ρn)

))(
gm(x/ρn+1) − gm−1(x/ρn)

)

and, letting Fm,n := F
(
gm(x/ρn+1), gm−1(x/ρn)

)
, we get

gn+1(x/ρn+1) − gn(x/ρn) =
{

n∏

m=1

(
A + Fm,n

)} (
ρ−nu + ρ−2nvn

)
. (30)

Since ‖A‖ = ρ, by virtue of (29) and (28)
∥
∥∥∥∥

{
n∏

m=1

(
A + Fm,n

)
}

ρ−2nvn

∥
∥∥∥∥

≤ ρ−2n‖vn‖
n∏

m=1

(∥∥A
∥∥ + ∥∥Fm,n

∥∥
)

≤ ρ−2nC1

n∏

m=1

(
ρ + C

(‖gm(x/ρn+1)‖ ∨ ‖gm−1(x/ρn)‖)
)

≤ ρ−2nC1

n∏

m=1

(
ρ + C2ρ

m−n) = ρ−nC1

n∏

m=1

(
1 + C2ρ

m−n−1) ≤ C3ρ
−n,

(31)

where constants C j ’s depend continuously on ‖x‖.
Let us now bound the remaining term in (30). To this end, observe that

n∏

m=1

(
A + Fm,n

)
=

n∏

m=2

(
A + Fm,n

)
F1,n

+
n∏

m=3

(
A + Fm,n

)
F2,n A

+
n∏

m=4

(
A + Fm,n

)
F3,n A

2 + · · ·

+
(
A + Fn,n

)
Fn−1,n A

n−2 + Fn,n A
n−1 + An .

Since u ∈ E0 and E0 is invariant under A, we have ‖Aku‖ ≤ (1/2)k‖u‖ due to (24).
Therefore for all k = 0, . . . , n − 2

∥∥∥
n∏

m=k+2

(
A + Fm,n

)
Fk+1,n A

ku
∥∥∥

≤ (1/2)k‖u‖
∥
∥∥

n∏

m=k+2

(
A + Fm,n

)
Fk+1,n

∥
∥∥
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≤ C1(1/2)
k‖Fk+1,n‖

n∏

m=k+2

(
‖A‖ + ‖Fm,n‖

)

≤ C2(1/2)
k‖x‖ρk−n

n∏

m=k+2

(
ρ + C‖x‖ρm−n

)

≤ C3(1/2)
k

n∏

m=k+2

(
1 + C4ρ

m−n
)

≤ C3(1/2)
k exp

(

C4

n∑

m=k+2

ρm−n

)

≤ C5(1/2)
k,

where all C j ’s depend continuously on x. Consequently
∥
∥∥∥∥

{
n∏

m=1

(
A + Fm,n

)
}

ρ−nu

∥
∥∥∥∥

≤ C6ρ
−n .

Plugging this and (31) into (30) yields
∥∥gn+1(x/ρn+1) − gn(x/ρn)

∥∥ ≤ C7ρ
−n,

whereC7 depends continuously onx. This implies that gn(x/ρn) converges as n → ∞,
uniformly on compacts. Existence of the limit H(x) in (13) now follows from (23),
and Theorem 2 is proved. �

3.3 Themain approximation

In this section we construct the random variable W and prove convergence (11). To
this end, letU (n, j) and V (n, j) be i.i.d. random variables distributed uniformly over
the unit interval [0, 1] and define ξ1(n, j) and ξ2(n, j) in (1) as

ξ1(n, j) = 2 · 1
{
U (n, j) ≤ a1K

a1K + Z1(n) + γ Z2(n)

}
,

ξ2(n, j) = 2 · 1
{
V (n, j) ≤ a2K

a2K + γ Z1(n) + Z2(n)

}
.

(32)

Define Galton–Watson branching process Y(n) with components

Y1(n + 1) =
Y1(n)∑

j=1

2 · 1
{
U (n, j) ≤ 1

2

}
,

Y2(n + 1) =
Y2(n)∑

j=1

2 · 1
{
V (n, j) ≤ 1

2
ρ

}
,
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subject to Y1(0) = [a1K ] and Y2(0) = 1, and the corresponding density process
Y(n) = Y(n)/K . Note that Y2(n) coincides in distribution with the process defined
in (12) and

ρ−nY2(n)
P−−−→

n→∞ W . (33)

Finally, for a fixed constant c ∈ ( 12 , 1] define

nc(K ) := [
logρ Kc] =

[
c

log ρ
log K

]
.

In particular, n1(K ) = [b log K ] = [
logρ K

]
, cf. Theorem 1.

As explained in Sect. 3.1, the limit (11) follows from (14) and (15).

3.3.1 Proof of (15)

Since EY1(n) = [a1K ] and Var
(
Y1(n)

) ≤ na1K we have

E
(
Y1(nc) − a1K

)2 ≤ a1K logρ Kc (34)

and hence for any c ∈ ( 12 , 1),

ρ−nc
(
Y1(nc) − a1K

) P−−−−→
K→∞ 0. (35)

This along with (33) implies (17), and in view of representation (16), the limit in (15)
follows by the continuous mapping theorem and the uniform convergence in (13). �

3.3.2 Proof of (14)

Since

∥∥Z(n1) − Z̃(n1)
∥∥ ≤ ∥∥Z(n1) − fn1−nc(Z(nc))

∥∥ + ∥∥fn1−nc (Z(nc)) − fn1−nc (Y(nc))
∥∥

it suffices to prove that

∥∥Z(n1) − fn1−nc
(
Z(nc)

)∥∥ P−−−−→
K→∞ 0 (36)

and

∥∥fn1−nc
(
Z(nc)

) − fn1−nc
(
Y(nc)

)∥∥ P−−−−→
K→∞ 0. (37)
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Let us first prove (36). Recall that the density process X(n) = Z(n) solves (6),

Z(n) = f
(
Z(n − 1)

) + 1√
K

η(n),

and hence the difference δ(n) := Z(n) − fn−nc(Z(nc)) satisfies

δ(n) = f
(
Z(n − 1)

) − f
(
Z(n − 1) − δ(n − 1)

) + 1√
K

η(n), n > nc

subject to δ(nc) = 0. A direct calculation shows that the Jacobian of f(·) is bounded

ρ̃ := sup
x∈R2+

‖D f(x)‖∞ ∈ (ρ, 2],

Hence f(·) is ρ̃-Lipschitz on R
2+ with respect to 
∞ norm and

‖δ(n)‖ ≤ ρ̃ ‖δ(n − 1)‖ + 1√
K

‖η(n)‖.

Let β := logρ ρ̃ > 1, then

E‖δ(n1)‖ ≤ 1√
K

n1∑

j=nc

ρ̃ n1− j
E‖η( j)‖

≤ 1√
K

(n1 − nc)ρ̃
n1−nc sup

j≤n1
E‖η( j)‖

≤ CK (1−c)β− 1
2 logρ K 1−c → 0,

where convergence holds if c is chosen close enough to 1. This proves (36).
To check (37), write

∥∥∥fn1−nc
(
Z(nc)

) − fn1−nc
(
Y(nc)

)∥∥∥

=
∥∥∥fn1−nc

(
xre + ρ−{logρ K }ρ−(n1−nc)ρ−nc (Z(nc) − Kxre)

)

− fn1−nc
(
xre + ρ−{logρ K }ρ−(n1−nc)ρ−nc (Y(nc) − Kxre)

)∥∥∥.

Since, by (33) and (35), the sequence ρ−nc (Y(nc) − Kxre) converges to (0,W ) in
probability and, by Theorem 2, the sequence fn(xre + x/ρn) converges uniformly on
compacts to H(x), it suffices to show that

ρ−nc‖Z(nc) − Y(nc)‖ P−−−−→
K→∞ 0,
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that is,

K−c
∣
∣Z j (nc) − Y j (nc)

∣
∣ → 0, j = 1, 2, (38)

where c ∈ ( 12 , 1) has been already fixed in the previous calculations. We prove (38)
for j = 2, omitting the similar proof for the case j = 1.

To this end, choose arbitrary constants

α1
, α1u, α2 ∈ (c, 1) ⊂ ( 12 , 1),

and, using the same random variablesU (n, j) and V (n, j) as in (32), define two addi-
tional auxiliary Galton–Watson branching processes L(n) and U(n) with the entries

L1(n) =
L1(n−1)∑

j=1

2 · 1
{
U (n, j) ≤ 1

2
r−
K

}
, L1(0) = [a1K ],

U1(n) =
U1(n−1)∑

j=1

2 · 1
{
U (n, j) ≤ 1

2
r+
K

}
, U1(0) = [a1K ],

where

r−
K := 2a1

a1 + a1(1 + K α1u−1) + γ K α2−1 < 1 and

r+
K := 2a1

a1 + a1(1 − K α1
−1)
> 1,

and

L2(n) =
L2(n−1)∑

j=1

2 · 1
{
V (n, j) ≤ 1

2
ρ−
K

}
, L2(0) = 1,

U2(n) =
U2(n−1)∑

j=1

2 · 1
{
V (n, j) ≤ 1

2
ρ+
K

}
, U2(0) = 1,

where

ρ−
K = 2a2

a2 + γ a1(1 + K α1u−1) + K α2−1 < ρ and

ρ+
K = 2a2

a2 + γ a1(1 − K α1
−1)
> ρ.
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Define the exit times

τ 1
 = min
{
n : Z1(n) ≤ a1(K − K α1
 )

}
,

τ 1u = min
{
n : Z1(n) ≥ a1(K + K α1u )

}
,

τ 2 = min
{
n : Z2(n) ≥ K α2

}
.

(39)

The random variable τ = τ 1
 ∧ τ 1u ∧ τ 2 is a coupling time for the above processes,
in the sense that

P
(
L2(n) ≤ Y2(n) ≤ U2(n)

) = 1,

and

{τ ≥ n} ⊆ {
L2(n) ≤ Z2(n) ≤ U2(n)

}
.

Hence
∣∣Z2(n) − Y2(n)

∣∣ ≤ (
U2(n) − L2(n)

)
1{τ≥n} + ∣∣Z2(n) − Y2(n)

∣∣1{τ<n}.

Convergence (38) for j = 2 holds, if we show that

K−c(U2(nc) − L2(nc)
) P−−−→

n→∞ 0, (40)

and

P(τ < nc) −−−−→
K→∞ 0, (41)

since
{
K−c

∣
∣Z2(n) − Y2(n)

∣
∣1{τ<n} ≥ ε

} ⊆ {τ < n} for any ε > 0.
The limit in (40) holds, since

K−c
E
(
U2(nc) − L2(nc)

) ≤ (
ρ+
K /ρ

)nc − (
ρ−
K /ρ

)nc ≤ ρ+
K − ρ−

K

ρ

(
ρ+
K /ρ

)ncnc

≤ C
∣∣∣K α1
−1 + K α1u−1 + K α2−1

∣∣∣
(
1 + O(K α1
−1)

)logρ Kc

logρ Kc −−−−→
K→∞ 0.

It is left to prove (41). Since

P(τ < nc) ≤ P

(
τ 1
 < nc

)
+ P

(
τ 1u < nc

)
+ P

(
τ 2 < nc

)
,

it suffices to check that each of the exit times, c.f. (39),

τ 1
(α) = min
{
n : Z1(n) ≤ a1(K − K α)

}
,

τ 1u(α) = min
{
n : Z1(n) ≥ a1(K + K α)

}
,

τ 2(α) = min
{
n : Z2(n) ≥ K α

}
,
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satisfy

P
(
τ 1
(α) ≤ nc

) −−−−→
K→∞ 0, (42a)

P
(
τ 1u(α) ≤ nc

) −−−−→
K→∞ 0, (42b)

P
(
τ 2(α) ≤ nc

) −−−−→
K→∞ 0, (42c)

for any α ∈ (c, 1). To this end, we can reuse the auxiliary processes L(n) and U(n),
defined above, with appropriately chosen parameters α1
, α1u and α2. Define exit
times

σ 2 = min{n : U2(n) ≥ K α2},
σ 1u = min{n : U1(n) ≥ a1(K + K α1u )},
σ 1
 = min{n : L1(n) ≤ a1(K − K α1
 )}.

To prove (42c), we can choose α1
 = α1u = α2 = α. By construction,

{
τ 2(α) < nc

}
⊆
{
σ 2 < nc

}
,

and therefore

P

(
τ 2(α) < nc

)
≤ P

(
σ 2 < nc

)
= P

(
max
n≤nc

U2(n) ≥ K α2

)

= P

(
(
ρ+
K

)−nc max
n≤nc

U2(n) ≥ (
ρ+
K

)−nc K α2

)

≤ P

(
max
n≤nc

(
ρ+
K

)−n
U2(n) ≥ (

ρ+
K

)−nc K α2

)

†≤ (
ρ+
K

)nc K−α2 ≤ CKc−α2 −−−−→
K→∞ 0,

where † holds by Doob’s inequality (Shiryaev 1996, Theorem VII.3.3, p. 493, eq.
(11)), applied to the martingale (ρ+

K )−nU2(n).
To prove (42b), let us choose c < α1u = α2 < α1
 = α. By construction,

{
τ 1u(α) < nc

}
⊆
{
σ 1u < nc

}
,

and since the process [a1K ] − L1(n) is a submartingale,

P

(
τ 1
(α) < nc

)
≤ P

(
σ 1
 < nc

)
= P

(
min
n≤nc

L1(n) ≤ a1(K − K α1
 )

)

= P

(
max
n≤nc

([a1K ] − L1(n)
) ≥ a1K

α1
 − 1

)
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†≤ CK−α1
E
∣∣[a1K ] − L1(nc)

∣∣

‡≤ CK−α1

∣∣[a1K ] − EL1(nc)

∣∣ + CK−α1


√
Var

(
L1(nc)

)
,

where † is another variant of Doob’s inequality (Shiryaev 1996, Theorem VII.3.1, p.
492, eq. (1)) and ‡ holds by the Jensen inequality. The first term satisfies

K−α1

∣∣[a1K ] − EL1(nc)

∣∣ = K−α1
 [a1K ]∣∣1 − (
r−
K

)nc ∣∣

≤ C1K
1−α1


∣∣
∣1 −

(
1 − K α1u−1 − γ

a1
K α2−1

)nc ∣∣
∣

≤ C2K
1−α1


(
K α1u−1 + K α2−1)nc

≤ C3
(
K α1u−α1
 + K α2−α1


)
logρ K −−−−→

K→∞ 0,

where the convergence holds by the choice α1u = α2 < α1
. The second term satisfies

K−α1

√
Var(L1(nc)) ≤ K−α1


√
a1Knc(r

−
K )nc ≤ CK

1
2−α1
 logρ K −−−−→

K→∞ 0.

Finally, to prove (42a), let us choose c < α2 = α1
 < α1u = α, then

P
(
τ 1u(α) < nc

) ≤ P

(
σ 1u < nc

)
= P

(
max
n≤nc

U1(n) ≥ a1
(
K + K α1u

)
)

≤ P

(
max
n≤nc

( (
r+
K

)−n
U1(n) − [a1K ]) ≥ [a1K ]

((
r+
K

)−nc − 1
)

+ a1
(
r+
K

)−nc K α1u

)

†≤ C1K
−α1uE

∣∣ (r+
K

)−nc U1(nc) − [a1K ]∣∣ ≤ C2K
−α1u

√
Var(U1(nc))

≤ C3K
−α1u

√
a1Knc

(
r+
K

)2nc ≤ C4K
1
2−α1u logρ Kc −−−−→

K→∞ 0,

where † holds since α1u > α1
 and we used Doob’s inequality as before. This verifies
(41) and, in turn, (38) for j = 2. The proof for j = 1 is done similarly and (37)
follows. This completes the proof of (14). �
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