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Abstract
High throughput, resilience, and low latency requirements drive the development

of 5G-enabled content delivery networks (CDNs) which combine core data centers

(cDCs) with edge data centers (eDCs) that cache the most popular content closer

to the end users for traffic load and latency reduction. Deployed over the exist-

ing optical network infrastructure, CDNs are vulnerable to link cut attacks aimed

at disrupting the overlay services. Planning a CDN to balance the stringent service

requirements and increase resilience to attacks in a cost-efficient way entails solving

the content placement problem (CPP) across the cDCs and eDCs. This article pro-

poses a framework for finding Pareto-optimal solutions with minimal user-to-content

distance and maximal robustness to targeted link cuts, under a defined budget. We

formulate two optimization problems as integer linear programming (ILP) models.

The first, denoted as K-best CPP with minimal distance (K-CPP-minD), identifies

the eDC/cDC placement solutions with minimal user-to-content distance. The sec-

ond performs critical link set detection to evaluate the resilience of the K-CPP-minD

solutions to targeted fiber cuts. Extensive simulations verify that the eDC/cDC

selection obtained by our models improves network resilience to link cut attacks

without adversely affecting the user-to-content distances or the core network traffic

mitigation benefits.
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content caching, content delivery network, content placement, critical link set

detection, link cut, malicious attacks, network resilience, optical network

1 INTRODUCTION

Emerging applications have been pushing the limits of throughput and latency that current network deployments can offer. For

instance, 4K and/or 360◦ video streaming, augmented and virtual reality (AR/VR), or remote machinery control applications

require high throughput, low latency, and high reliability to provide satisfying user experience. Content delivery network (CDNs)

are used to improve latency and robustness [17], and alleviate the traffic in core networks [14], by replicating content across

large-scale data centers (DCs) at geographically disjoint locations. However, the original CDN architecture cannot offer as low

latency levels as some of the emerging applications require. To support these stringent requirements in a scalable manner, the

fifth generation of networks (5G) networking paradigm introduces small DCs at the network edge, where the most popular

content is cached closer to the end users [24, 30].

The implementation of the models from this work are available at https://github.com/carlosnatalino/networks-5g-cdn
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The introduction of edge computing has the potential to help satisfy the stringent 5G performance requirements, but poses

new challenges to the infrastructure providers. For instance, the smaller scale of edge data centers (eDCs) leads to higher costs

per unit of storage due to inefficiencies that arise from cooling and/or lower degree of resource sharing [2, 28]. Therefore, CDNs

use a hierarchical, two-tier approach to cost-efficiently cope with the application requirements. At the upper tier, large-scale,

that is, core data centers (cDCs) provide higher capacity at a lower cost per unit of storage, but users that connect to them

utilize a relatively greater amount of core network resources at a higher delay. At the lower tier, small-scale, that is, eDCs serve

the traffic requests locally, thus alleviating the traffic load in the core network and lowering the latency, but their use requires

careful content management to achieve acceptable costs.

Optical network infrastructure is a critical enabler of CDN connectivity and is crucial to support 5G requirements at the

access segment as well [27]. Conversely, inherent vulnerabilities of the optical network infrastructure can be exploited to deliber-

ately disrupt the overlay CDN services. Attack methods which exploit optical infrastructure vulnerabilities include, for example,

insertion of harmful optical signals [26] or malicious cuts of critical fiber links [20]. The effects of such malicious attacks can

range from performance degradation (in terms of, e.g., throughput and latency), over cascaded congestion in the remaining net-

work segments that take over the affected traffic, to complete disconnection of a significant portion of the network affecting

hundreds of gigabits per second in the core, and substantial damage in the access segment [31].

By replicating the content at geographically distributed locations, CDNs intrinsically increase network resiliency to failures.

However, targeted malicious attacks substantially differ from failures [21] because they aim at maximizing the disruption by

disabling critical network components. Targeted link cut attacks that sever the most critical links are an example attack technique

that is relatively easy to implement and can cause major disruption. Ignoring the threat and the effects of such attacks can lead

to insufficient CDN robustness despite a high number of replicas, as shown in [17]. With the introduction of edge computing,

eDCs should also be leveraged to improve the network robustness to attacks. A small portion of the most popular contents hosted

at an eDC could serve a significant portion of local requests in the event of a malicious attack targeting the core network. For

instance, by hosting 1% of the most popular content, an eDC could serve around 50% of the local requests for content [2, 3]. Due

to the higher cost per storage unit compared to cDCs, eDCs should be carefully used to achieve the benefits that justify their

higher cost. Therefore, optimizing latency and robustness while combining the use of cDCs and eDCs under cost constraints

becomes very challenging.

This article proposes a framework for content placement in 5G-enabled CDNs to improve their robustness against targeted

link cuts with a minimal impact on latency. In 5G-enabled CDNs, content can be reached from any cDC, which always host

replicas of all contents, or from an eDC, which are sparsely deployed and host a limited amount of content replicas. Considering

this scenario, two optimization problems are formulated as compact integer linear programming (ILP) models, which enable

assessment of the trade-offs between the user-to-content distance and robustness to targeted link cuts by finding Pareto-optimal

solutions. We first formulate the K-best content placement problem with minimal distance (K-CPP-minD), aimed at identifying

the K-best content placement solutions, that is, locations and types of cDC/eDC nodes that minimize the average user-to-content

distance in the network under a defined budget. Robustness of the solutions to the K-CPP-minD problem is then evaluated by

the newly proposed Critical Link Set Detection (CLSD) model. CLSD finds the set of links which, if removed from the network,

result in the strongest disruption, that is, disconnect the highest number of users from the content. The K-CPP-minD solution

resilience to the disruption caused by cutting the p critical links identified by CLSD is evaluated in terms of the average content

accessibility (ACA) [17], while 𝜇-ACA [18] measures the mean ACA over a set of attack scenarios obtained by cutting 2 to ∣p∣
links from the CLSD set.

By combining the two models, the proposed framework provides an exact method that identifies Pareto-optimal solutions

in terms of average user-to-content distance and resilience to targeted link cuts. Note that the content placement problem (CPP)

in a CDNs is NP-hard [4] even to find the optimal (the first best) solution. Therefore, the problem solved by our framework is

strongly NP-hard as we aim to identify not only the optimal solution but also the K best solutions in the K-CPP-minD problem.

This means that, in practice, there is no polynomial time algorithm able to find all Pareto-optimal solutions even for small sized

problem instances. Nevertheless, the computational results will show that the proposed ILP models can be efficiently solved so

that some of the Pareto-optimal solutions, the ones with smaller user-to-content distance, can be computed in reasonable time

for two real-world network topologies. Extensive simulations using different eDC cost configurations verify that our approach

improves network robustness without significant penalties in terms of user-to-content distance. Moreover, besides the expected

user-to-content distance benefit, the introduction of eDCs reduces the traffic carried by the core network by up to 15% while

maintaining or improving the CDN robustness.

The remainder of the article is organized as follows. Section 2 presents an overview of the related work. The formal

problem statement and the ILP models for the K-CPP-minD and CLSD problems are described in Section 3. Section 4

presents the simulation scenario and discusses the results. Finally, Section 5 concludes the article and presents some remaining

challenges.
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2 RELATED WORK

The CPP problem in CDNs has been extensively studied in the literature, with an encompassing overview given in [22]. The

authors in [12] propose an optimization model for energy saving by taking into account the energy consumption of the various

network segments traversed by the content. The study investigates the impact of content placement on energy consumption,

and shows that the energy and the amount of generated traffic can be influenced by the tailored placement of content. In

[13], the authors solve CPP jointly with allocating network resources to connections for delivering the content to users and for

DC-to-DC synchronization. Results show that the inter-DC traffic can significantly impact the network load, and should be

considered during content placement. The work in [30] studies the CPP variant with enabled caching at different locations in

the network. The evaluation of the content access delay and the traffic load for different content caching portions and locations

shows significant potential benefits of caching the content closer to the user. However, the obtained gains vary for different

locations and percentage of caching. The authors in [2] study the energy-efficient CPP in metro area networks. Their strategies

rely on powering cache nodes at different locations on and off to reduce energy consumption. Results show that caching at

different network locations can be effective in saving energy, and that when traffic load is high, it is advisable to place the

content closer to the users.

Resilience of CDNs to single-link and/or node failures is addressed in [9] by placing content replicas and assigning

network resources to working and backup connections that serve user-to-DC and DC-to-DC traffic under the link- and/or

DC-disjointedness constraint. CDN resilience to natural disasters is studied in [5]. ILP-based and heuristic solutions for the

disaster-aware integrated CPP and connection routing is proposed in [11], where disaster zones are modeled as shared risk group

(SRG). The dynamic variant of CPP is addressed in [8], where content location is defined by the experienced disaster events

and the current user demand. Simulation results are obtained by assigning failure probabilities to different devices inside SRGs.

The works that consider disaster-aware CPP leverage on the known correlation between network segments and devices to assess

the likelihood of being disrupted by a disaster. However, malicious attacks are driven by the importance of a particular network

element for proper network functioning rather than their geographical location. Therefore, this work assesses the robustness of

the network considering the worst-case attack scenarios, identified by the CLSD model.

Resilience of CDNs deployed over various physical network topologies to targeted link cuts is studied in [17]. The ACA

measure proposed therein captures network connectivity under anycast communication (suitable for CDNs) in the presence of

such attacks. Results show that content placement plays an important role in CDN robustness to attacks. In [18], the ACA mea-

sure is extended by the 𝜇-ACA measure, which gauges the mean robustness of a given topology and placement solution over a

number of different attack scenarios. An infrastructure upgrade framework proposed therein sparsely adds links or content repli-

cas so as to maximize the robustness, measured by 𝜇-ACA. Link betweenness is used in both works as the criterion that guides

the attack logic, but this method may lead to nonoptimal attack selection. Therefore, in this work, we formulate a CLSD model

for optimal selection of links whose cutting results with maximum disruption. The problem of identifying critical elements in

the network infrastructure has been the subject of several studies in the literature. Majority of works address the critical node

detection problem, defined as the identification of a node set that minimizes a given connectivity metric if removed from the

topology [1, 6, 23, 29]. More recently, critical link detection counterpart has also been addressed in different contexts, refer-

ring to the minimization of pairwise connectivity of communication networks [7], the minimization of the spread of infections

over a population [15] and the influence propagation in social networks [10]. In this work, we formulate the CLSD problem tai-

lored to 5G-enabled CDN which can host content in cDCs and eDC. A preliminary version of this study was presented in [16],

where we investigated the trade-offs between user-to-content distance and robustness in traditional CDNs with cDCs only. In

this article, we extend our previous work by considering 5G-enabled CDNs, where cDCs and eDCs can be simultaneously used

to provide lower latency and improve robustness.

3 ATTACK-RESILIENT CONTENT PLACEMENT FRAMEWORK

In this work, we consider a 5G-enabled CDN where each node in the network serves a metropolitan area, depicted in Figure 1.

In this context, one of the two DC types can be colocated with any network node: cDCs and eDCs. cDCs host a replica of each

content available in the CDN. Nodes colocated with a cDC handle traffic requests from the local users connected to that node,

and can also serve requests from any other node in the network. eDCs host replicas of only a portion of available contents, so

nodes colocated with an eDC handle only the traffic from their own local users connected through the access segment. Requests

for content that is not replicated in the local eDC are forwarded to the closest cDC, contributing to core network traffic. Similarly,

nodes that are not colocated with any DCs forward their requests to the closest cDC [2].

The deployment of each DC type depends on its particular properties. The cDCs are meant to handle a substantially higher

number of demands than the eDCs. Due to the higher scale and efficiency of cDCs their cost per unit of processing/storage
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(A) (B) (C)

FIGURE 1 Network architecture considered in this article. Ordinary core nodes always forward their requests to the closest cDC node. Nodes hosting core

data centers (cDCs) handle the traffic from their own users and from any other node. Nodes hosting edge data centers (eDCs) handle only (a part of) the

traffic from their own users [Color figure can be viewed at wileyonlinelibrary.com]

tends to be lower than that of eDCs. The price difference is mainly attributed to higher energy efficiency of cDCs [2, 28] and

lower operational costs. Therefore, it is expected that the cost of hosting a content replica in an eDC is substantially higher than

hosting the same replica in a cDC. However, many works in the literature showed that a high percentage of traffic requests can

be served by eDCs that only host a small percentage of the content [2, 3]. In this way, the eDC cost overhead can be offset by

caching only a small percentage of the most popular content.

The use of eDCs also provides some unique benefits. For instance, eDC deployment can substantially reduce the commu-

nication latency (spawned by the distance and the switching devices traversed between the user and the content replica). This

particular latency reduction obtained by eDCs is an important enabler of some 5G use cases. Moreover, eDCs offload the traf-

fic from the core network, potentially reducing the total traffic carried, and allowing for a longer lifetime of currently deployed

core networks [14]. The use of eDCs is also beneficial in terms of resilience. Since a part of the traffic requests from local users

at nodes that host eDCs is handled locally, these demands are immune to malicious cuts of core network links and, therefore,

the use of eDCs improves the robustness of the CDN to such attacks.

In the following, we provide a formal problem statement, as well as the formulation for the content replica placement and

CLSD problems.

3.1 Problem statement
When deciding on the content placement in a CDN, our goal is to decide which network nodes to host cDCs/eDCs and how

to locate the content replicas across the DC nodes, under a given cost budget B. For the sake of simplicity and generality, in

this work we consider unitary cost, normalized to the cost of selecting a cDC to host a replica of all contents in the network.

We assume that each cDC costs 1 unit, while deploying an eDC may cost a fraction of a unit depending on how much of the

content is hosted. Moreover, we consider that the cost of cDCs is the same regardless of their location. These assumptions can

be easily modified in the model. The goal is to compute the content placement solutions that both (a) minimize the average

user-to-content distance (which in turn minimizes the CDN latency) and (b) maximize the 𝜇-ACA metric to maximize the CDN

robustness to multiple link cut attacks.

The network topology is modeled by an undirected graph G = (V , E) with a set of nodes V and a set of links E. The set of

undirected links E is defined by its end nodes (i, j), where i< j. Any node i∈V can be selected to be colocated with a cDC,

which hosts a replica of all contents, or an eDC, which hosts a replica of a portion of the contents. In this way, each user request

is served either by the local eDC if the requested content is replicated at this eDC, or by the closest cDC otherwise.

Possible DC configurations associated to each node are modeled with set s = 0, 1, …, S. Configuration s = 0 denotes a node

that is not colocated with any of the two DC types, as shown in Figure 1A. Configuration s = S denotes a node that is colocated

with a cDC, as shown in Figure 1B. Configurations s = 1, …, S− 1 denote a node that is colocated with an eDC, as shown in

Figure 1C, where values s = 1, …, S− 1 refer to different percentages of the most popular content replicated at the eDC. To

specify each configuration, the CDN operator needs to characterize the popularity of content (i.e., the percentage of requests

for a particular content).

Let us assume that the content popularity is given by a distribution function (commonly used distribution is Zipf distribution

where the popularity of the jth most popular item is proportional to 1/j) [3]. Then, each configuration s is characterized by: (a)

a hit ratio hs which represents the percentage of local user requests for the content locally replicated in the eDC and (b) a cost

csi of using configuration s on the DC colocated with node i∈V . Consequently, for configuration s = 0 and a given node i, we

http://wileyonlinelibrary.com
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FIGURE 2 The sequence of steps used to obtain the Pareto-optimal solutions for the K-best content placement problem with minimal distance

(K-CPP-minD) and critical link set detection (CLSD)

have h0 = 0 and c0i = 0; for configuration s = S and a given node i, we have hS = 1 (since all local users are served by the

cDC), and cSi = 1 (considering that the cost is normalized). Since higher hit ratios impose higher costs (due to higher storage,

processing, and bandwidth requirements), we assume that the different configurations are defined such that hs < hs+ 1 for all s
and csi < cs+ 1, i for all s and i.

In general, the best content placement is not unique since the optimization problem is multiobjective. Here, we adopt the

approach depicted in Figure 2 to compute the Pareto-optimal solutions. Our approach comprises two sequentially solved prob-

lems. In the first problem, the objective is to compute the k-best content placement solutions in terms of average user-to-content

distance (described in Section 3.2). In the second problem, the objective is to compute the worst-case attack scenarios which

minimize the 𝜇-ACA value of each of the previous k-best content placement solutions (described in Section 3.3). Finally, by

combining the solutions of both problems, it is possible to extract the Pareto-optimal solutions.

3.2 K-CPP-minD in edge/core CDNs
The K-CPP-minD aims at computing the K-best content placement solutions in terms of the average user-to-content distance.

These solutions are computed by solving a sequence of K ILP instances where: (a) the first model computes the best solution,

(b) the second model computes the best solution excluding the previous one, (c) the third solution computes the best solution

excluding the two previous ones, and so on. So, the kth best solution (where 1≤ k≤K) is computed by solving the following

ILP formulation which assumes that all previous solutions from 1 to k− 1 were already been computed. In addition to the

parameters introduced in Section 3.1, we also denote the shortest distance between any node pair i, j∈V in graph G by 𝛿ij. The

ILP formulation uses the following binary decision variables:

ysi defines whether or not node i∈V is colocated with a cDC or an eDC; it is equal to 1 if node i∈V is configured

with s = 0, …, S; and to 0 otherwise;

tsij defines which cDC j∈V serves requests from node i∈V; it is equal to 1 if the cDC at node j∈V serves the user

requests from node i∈V , and node i is configured with s = 0, …, S; and to 0 otherwise.

In order to exclude a given CPP solution from the set of feasible solutions of an ILP formulation, we only need to know the

values of the variables ysi of the solution. So, when computing the kth best solution, we denote the solution value of variable ysi
of the 𝜋th solution, with 𝜋 = 1, …, k− 1, as the binary parameter 𝛼si𝜋 . For a graph G and a budget B, the kth CPP solution is

the optimal solution of the following K-CPP-minD(G, B) formulation (and m is the corresponding optimal value of the average

user-to-content distance):

K-CPP-minD(G,B)

Minimize m =

[ ∑
s=0…S

∑
i∈V

∑
j∈V

𝛿𝑖𝑗(1 − hs)t𝑠𝑖𝑗

]
∕ ∣ V ∣ (1)

Subject to ∶

∑
s=0…S

∑
i∈V

c𝑠𝑖y𝑠𝑖 ≤ B (2)

∑
i∈V

y𝑆𝑖 ≥ 2 (3)

∑
s=0…S

y𝑠𝑖 = 1, i ∈ V (4)

∑
s=0…S

t𝑠𝑖𝑗 ≤ y𝑆𝑗 , i ∈ V , j ∈ V (5)

t𝑠𝑖𝑗 ≤ y𝑠𝑖, i ∈ V , j ∈ V , s = 0,… , S (6)



NATALINO ET AL. 397

∑
s=0…S

∑
j∈V

t𝑠𝑖𝑗 = 1, i ∈ V (7)

∑
s=0…S

∑
i∈V

𝛼𝑠𝑖𝜋y𝑠𝑖 ≤
∑

s=0…S

∑
i∈V

𝛼𝑠𝑖𝜋 − 1, 𝜋 = 1,… , k − 1 (8)

y𝑠𝑖 ∈ {0, 1}, i ∈ V , s = 0,… , S (9)

t𝑠𝑖𝑗 ∈ {0, 1}, i ∈ V , j ∈ V , s = 0,… , S (10)

The objective function (1) computes the average user-to-content distance. For eDCs, it only considers the portion of traffic

that is not served locally, and therefore is forwarded to the closest cDC. In this way, the user-to-content distance only accounts

for the traffic that is not served locally by either a cDC or an eDC.

Constraint (2) guarantees that the content placement solution cost is within the given budget B. Constraint (3) guarantees

that at least two cDCs are considered in the solution (to avoid having a single point of failure). Constraints (4) guarantee that

each node i∈V is used with one and only one of the possible configurations s = 0, …, S. Constraints (5) guarantee that node

j∈V serving the requests from node i∈V is a cDC node. Constraints (6) guarantee that the configuration index s of variable tsij

is consistent with the configuration used in node i. Constraints (7), together with constraints (5), guarantee that one and only one

cDC node is selected to serve the requests from node i∈V . Constraints (8) guarantee that none of the previous CPP solutions

will be considered as a solution for the current problem. Note that when using this formulation to compute the first best solution

(i.e., for k = 1), constraints (8) are an empty set. Finally, constraints (9) and (10) are the variable domain constraints.

3.3 CLSD in edge/core CDNs
In this work, we consider the case where malicious attacks can be launched against the CDN with the objective of disrupting

services by disconnecting users from the content. To evaluate the CDN robustness to targeted link cut attacks, we define a range

of scenarios that are of interest in the evaluation. This range is defined by a minimum and a maximum number of link cuts

that we are interested in analyzing, denoted by pmin and pmax, respectively. For a given content placement solution obtained by

solving K-CPP-minD and a number of link cuts p : pmin ≤ p≤ pmax, it is necessary to identify the set of p links whose severing

maximizes CDN disruption. This problem is commonly referred to as the CLSD problem. We use ACA to gauge the level of

disruption upon cutting the p critical links identified by CLSD. Once the CLSD problem is solved for all p = pmin· · ·pmax, the

overall CDN resilience is quantified in terms of the mean content accessibility (𝜇-ACA) [18].

The CLSD model requires some specific inputs, in addition to those described in Section 3.1. We denote the set of nodes

adjacent to node i by Vi. Vij is then defined as the set of nodes adjacent to the node with the lower degree between i and j (i.e.,

set Vij is equal to Vi if ∣Vi ∣ ≤ ∣Vj∣, and Vj otherwise). Recall that a K-CPP-minD solution is defined by the value of the ysi

variables, as described in Section 3.2. Based on the variable y values, it is also possible to derive the hit ratio of the configuration

used in node i, denoted here as hi ∈H. Moreover, it is also possible to derive the set D = {i∈V : ySi = 1} which denotes the

set of nodes colocated with cDCs. Based on the set D, let us denote by F the set of ordered node pairs (i, j) such that i∈V ⧵D
(i.e., node i does not host a cDC) and j∈D (i.e., node j hosts a cDC). Using the described notation, the ILP formulation of the

CLSD problem uses the following binary variables:

xij defines whether a link is critical or not; it is equal to 1 if link (i, j)∈E is selected as a critical link; and to 0 otherwise;

uij defines whether two nodes are connected or not after the removal of critical links; it is equal to 1 if nodes i and j,
where i< j, are still connected when the critical link set is removed from G; and to 0 otherwise;

vi defines whether a node is still connected or not to a cDC after the removal of critical links; it is equal to 1 if node

i∈V ⧵D is still connected to at least one node in D when the critical link set is removed from G; and to 0 otherwise.

For a graph G, a number of links p and a CDN configuration defined by the set D and the hit ratio values hi of each node

i∈V given as inputs, the CLSD problem (G, p, D, hi) is defined by the following ILP model:

CLSD(G, p,D,H)

Minimize ACAp =
∑
i∈V

hi +
∑

i∈V⧵D
(1 − hi)vi (11)
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Subject to ∶

∑
(i,j)∈E

x𝑖𝑗 = p (12)

u𝑖𝑗 ≥ 1 − x𝑖𝑗 , (i, j) ∈ E (13)

u𝑖𝑗 ≥ u𝑖𝑧 + u𝑧𝑗 − 1, i = 1,… , (n − 1), j = (i + 1),… , n, z ∈ V𝑖𝑗 (14)

u𝑖𝑗 ≤ vi, (i, j) ∈ F (15)

x𝑖𝑗 ∈ {0, 1}, (i, j) ∈ E (16)

u𝑖𝑗 ∈ {0, 1}, i = 1,… , (n − 1), j = (i + 1),… , n (17)

vi ∈ {0, 1}, i ∈ V ⧵ D (18)

The objective function (11) computes the portion of nodes that are still connected to a cDC after the removal of p links, in

addition to the portion of traffic that is locally served by cDCs or eDCs. Constraint (12) guarantees that the set of critical links

contains exactly p links. Constraints (13) guarantee that the end nodes i and j of a link (i, j)∈E are connected if the link is not

included in the critical link set (i.e., if xij = 0). Constraints (14) guarantee that any two nodes i, j∈V : i< j, are connected if

there is one node z∈Vij that can communicate with both i and j. Note that, in general, we can define one constraint (14) for each

node z≠ i, j. We minimize the number of constraints (14) by considering only nodes z adjacent to either i or j (the one with the

lower degree) as defined by Vij. For each node pair (i, j)∈F, constraints (15) set the value of variable vi to 1 if node i, which is

not a cDC node, is connected to at least one node j which is a cDC node. Finally, constraints (16)-(18) are the variable domain

constraints.

The robustness of each of the K content placement solutions over multiple link cut attack scenarios is evaluated by calculating

the corresponding 𝜇-ACA. 𝜇-ACA of a content placement solution b is given by:

𝜇-ACAb = 1

pmax − pmin + 1

pmax∑
p=pmin

ACAp, (19)

where ACAp is the objective value of the optimal solution of the CLSD (G, p, D, H). The 𝜇-ACA value averages the ACAp
values over all worst-case attack scenarios for all values of p ranging from pmin to pmax.

After this evaluation, each of the K content placement solutions is characterized by its average user-to-content distance and

𝜇-ACA value. This enables us to compute the Pareto-optimal solutions (according to Figure 2), where the set of dominated

solutions is eliminated. A solution is considered as dominated if its m and 𝜇-ACA values are both worse (or one is worse while

the other is equal) than the values of at least one other solution. The remaining solutions are Pareto-optimal and represent

different trade-offs between the average user-to-content distance and the resilience to link cut attacks.

4 COMPUTATIONAL RESULTS

This section presents the computational results obtained by applying the proposed models to real-world network topologies. We

first describe the setup used to solve the models and compute the evaluation metrics, followed by an investigative analysis and

discussion of the obtained results.

4.1 Setup
The results presented in this section were obtained by a custom-built Java-based tool, which writes the optimization program-

ming language (OPL) and data files respective to the problem, and solves the problem by calling the CPLEX 12.6.3 library. All

computational results were obtained on a workstation running Red Hat Enterprise Linux (RHEL) with an 8-cores 16-threads

Intel Xeon processor clocked at 3 GHz and 64 GB of RAM. Each problem instance was solved optimally by CPLEX, that is,

no gap was allowed, using a maximum of four parallel threads and default values for the rest of the CPLEX settings. Two pub-

licly available core network topologies were used to obtain the results1: the Germany50 topology [19] with 50 nodes, 88 links,

average nodal degree of 3.52, and average link length of 100 km; and the Coronet Conus topology [25] with 75 nodes, 99 links,

average nodal degree of 2.64, and average link length of 329 km. The link lengths were computed using the Euclidean distance

between the adjacent nodes, and considering the curvature of the Earth surface.2

1Graphical representations of the topologies are omitted for the sake of space, and can be found in our previous work [16].
2The page http://www.movable-type.co.uk/scripts/latlong.html describes the appropriate method to compute the distance.

http://www.movable-type.co.uk/scripts/latlong.html
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TABLE 1 The considered DC node configurations, that is, core data centers (cDCs), and edge data centers (eDCs) of types 1 and 2

CDN DC type Content hosted (%) Hit ratio (h) Normalized cost

cDC 100 1 1

eDC_1 1 0.5 0.1, 0.2

eDC_2 10 0.8 0.2, 0.4

(A) (B)

(C) (D)

FIGURE 3 Number of nodes selected to colocate core data centers (cDCs), and edge data centers (eDCs) of type 1 and of type 2. The maxR is shown for

pmax = 12 [Color figure can be viewed at wileyonlinelibrary.com]

For a given topology and values of K, B, c, pmin, and pmax, the tool solves the K-CPP-minD (described in Section 3.2) and

stores, for each solution, the set of node configurations D, the average shortest-path user-to-content distance, and the set of hit

ratios of each node in H. Then, for each K-CPP-minD solution, the tool solves the CLSD(G, p, D, H) model for each value of

p = pmin, …, pmax, and computes the value of 𝜇-ACA (described in Section 3.3).

The use of eDCs is modeled by a set of possible configurations representing different percentages of the most popular content

replicated at the eDCs. We assume that CDN users are attached to all nodes in the network and the aggregate user request rate is

similar for all nodes. We consider the content popularity given by a Zipf distribution (i.e., the popularity of the ith most popular

item is proportional to 1/i) [2, 3]. Table 1 summarizes the considered configuration. Each cDC hosts all contents available in

the CDN, and costs 1 unit (cSi = 1, with S = 3). To avoid the problem of having a single point of failure, we consider that at

least two cDCs are placed in the network. The eDC of type 1 replicates 1% of the content, but serves 50% of all the requests of

contents from that node. The eDC of type 2 replicates 10% of the content, which serves 80% of all the requests of contents from

that node. For each eDC type, we consider two different cost values, resulting with a total of 3 different cost configurations, that

is, (c1i = 0.1, c2i = 0.2); (c1i = 0.1, c2i = 0.4); and (c1i = 0.2, c2i = 0.4). This range of configurations allows us to also analyze

the trade-offs in terms of cost.

For both considered topologies, we solve the K-CPP-minD problem for three different budget values, that is, B = 4, 5 and

6, and compute the K = 2000 best solutions. In all cases, 𝜇-ACA is computed considering pmin = 2 (pmin = 1 is not applicable

as all topologies are 2-connected), while pmax values of 6, 9 and 12 are considered in order to assess a wide range of disruption

scenarios.

http://wileyonlinelibrary.com
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(A) (B) (C)

(D) (E) (F)

FIGURE 4 Content placement solutions with different DC types (cDCs and eDCs of type 1 and of type 2) for c = (0.1, 0.2), critical links (red dotted lines)

and disconnected (red larger) nodes of the first solution (minD) and maximum robustness solution (maxR). All solutions are shown for p = 12. The maxR is

shown for pmax = 12. Δ represents the average user-to-content distance, while A represents the number of disconnected nodes [Color figure can be viewed at

wileyonlinelibrary.com]

Among all solutions for each particular configuration, we compute the Pareto-optimal solutions, that is, the solutions that

represent the different trade-offs between the average user-to-content distance and the attack resilience in terms of 𝜇-ACA.

Moreover, for each configuration, we record the solution with minimum distance (denoted as minD), which is always the first

K-CPP-minD solution, and the solution with maximum robustness (denoted as maxR), which yields the highest 𝜇-ACA among

all K-CPP-minD solutions.

In addition to the average user-to-content distance and robustness evaluation, we also evaluate the traffic carried by the core

network in each scenario. In this case, we are particularly interested in the amount of network resources necessary to serve the

total CDN traffic in the core network. We generalize this concept by computing the outgoing traffic from each node, and the

number of links that this traffic traverses. All traffic flowing out of a node always connects to the closest cDC. The amount of

traffic that flows out of each node is computed as follows. A node that hosts a cDC will not have any outgoing traffic; a node

that hosts an eDC of type 1 will have 50% of its traffic served locally and 50% served by the closest cDC; an eDC of type 2 will

serve 80% of its traffic and 20% will be served by the closest cDC. Finally, we summarize the number of links traversed by each

flow, weighted by the percentage of the node traffic carried by the flow. To provide a more general analysis, we normalize the

total traffic carried by the traffic in a cDC-only network (no eDCs are available).

http://wileyonlinelibrary.com
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(A) (B) (C)

(D) (E) (F)

FIGURE 5 Average shortest user-to-content distance vs 𝜇-ACA of the Pareto-optimal solutions for different eDC cost configurations (c). Line styles identify

the maximum number of critical links (pmax) while markers identify the budget (B) [Color figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 6 Traffic carried by the core network when using the minimum distance solution (minD) and the maximum robustness solution (maxR) computed

for pmax = 12, normalized by the traffic obtained when only cDCs are used, for different eDC cost configurations (c) [Color figure can be viewed at

wileyonlinelibrary.com]

4.2 Performance assessment
Figure 3 presents the number of nodes selected as cDCs and eDCs for different values of budget B and eDC cost configurations

in the two topologies. When the cost of eDCs is the highest (i.e., 0.2 and 0.4), eDCs are not selected in any scenario. This

shows that, at the highest cost considered, eDCs are too expensive, and present no benefits in terms of user-to-content distance

or robustness. When eDC costs are lower, for Germany50 network (Figures 3A,B), the more robust solution trades eDCs of

type 2 for eDCs of type 1, compared to the minD solution. This shows a general trend in the solutions, where eDCs of type 1

are used more often than eDCs of type 2 due to the lower cost (allowing their deployment at a larger number of nodes for the

same budget), but fairly high hit ratio. For the Coronet Conus topology (Figure 3C,D), eDCs are not used in solutions with the

lowest budget (B = 4), and in other cases, the number of nodes of each DC type does not change. In general, this shows that

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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(A) (B)

FIGURE 7 Average CPLEX runtime to solve the K-CPP-minD problem for different budgets (B) as a function of the previous k-best replica placement

solutions [Color figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 8 Average CPLEX runtime to solve the K-CPP-minD problem for different budgets (B) as a function of the previous k-best replica placement

solutions [Color figure can be viewed at wileyonlinelibrary.com]

the placement of DC nodes makes the biggest difference for robustness, and adjusting the proportion of the different DCs helps

improving robustness in some cases.

Figure 4 shows the solution for Germany50 topology with two representative cases for B = 4, 5, and 6, when the cost of

eDCs is set to the lowest considered value, that is, (0.1, 0.2). The solutions shown in the top row are the ones with the minimal

user-to-content distance (minD), that is, the first solution of the K-CPP-minD. The solutions in the bottom row are the ones

with the highest resilience to link cut attacks (maxR). Note that, for each budget, the maxR solution is found at a different k. As

expected from Figure 3A,B, the number of nodes hosting each DC type changes only when B = 5. In other cases, the difference

between minD and maxR solutions is observed in the placement of the nodes. To obtain higher robustness, the main changes

in DC positioning are observed for eDCs of type 1, which are placed in regions impacted by the link cuts to support nodes

disconnected from the cDCs. Moreover, with the increase in budget from B = 5 to B = 6, the higher budget is entirely invested

in eDCs, showing that their use in CDNs is beneficial both in terms of user-to-content distance and resilience.

Figure 5 shows the Pareto-optimal solutions for all test cases of the Germany50 and Coronet Conus topologies under different

cost configurations (c) and budgets (B). As expected, the 𝜇-ACA values decrease with the increase of pmax, due to the larger

disruption caused by a higher pmax. Moreover, in almost all cases, a significant improvement in 𝜇-ACA can be achieved at the

expense of a small increase in the average user-to-content distance. For instance, in Figure 5A, for B = 6, there is a substantial

improvement in 𝜇-ACA when the average user-to-content distance increases by only a few meters. In the Coronet Conus network

with B = 4, when eDCs have the highest cost, that is, c = (0.2, 0.4), more points in the Pareto-optimal solutions are observable.

Recall that, as shown in Figure 3, in these cases only cDCs are selected, and average user-to-content distance is higher than for

the cases where eDCs are selected.

Figure 6 shows the normalized CDN traffic carried by the core network for the two topologies. In this case, a value lower

than one means that the amount of traffic entering the core reduces, thus alleviating the core network for other types of traffic, or

delaying the end of life of the technology used. In general, we can observe that when only cDCs are available, the solutions with

the highest 𝜇-ACA (maxR) usually result with more traffic flowing through the network (except for the Germany50 topology

with B = 4). On the contrary, when eDCs are available, solutions with the highest robustness (maxR) also reduce the amount of

traffic flow (again, except the particular case of Germany50 topology with B = 4). These trends show that the use of eDCs does

not only help improve network resilience to targeted fiber cuts, but also alleviates the traffic overhead in the core network. The

Germany50 topology benefits the most with budgets equal to 4 or 6, as shown in Figure 6A. The Germany50 maxR solution

under B = 6, reduces the traffic flowing through the core network by up to 10% compared to the cDC-only minD case, and up

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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to 15% compared to the cDC-only maxR case. For the Coronet Conus topology with B = 5, the traffic can be reduced by more

than 10%, also observed for configurations with the highest robustness.

The average running times to solve the K-CPP-minD and CLSD ILPs for the Germany50 topology are shown in Figures 7A

and 8A. Figure 7A shows how the running time for the K-CPP-minD problem increases with the number of previous solutions

(k). This behavior is expected since the higher is k, the more constraints need to be added to the model (as defined in (8)).

Moreover, the budget also impacts the runtime for higher values of k, since the number of nodes that are selected to host replicas

are higher. For the CLSD problem, Figure 8A shows that the average runtime is below 3 seconds which indicates compactness

of the formulation.

The higher number of nodes and links in Coronet Conus topology than in Germany50 reflects on the runtimes presented in

Figures 7B and 8B. In general terms, the runtime for Coronet Conus is around twice higher than for Germany50. However, the

runtimes for Coronet Conus present some different trends. In Figure 7, while the K-CPP-minD highest runtime for Germany50

is observed with B = 5, for Coronet Conus the trends is descending with the budget, with B = 4 taking the longest, and B = 6

taking the shortest time, on average. In Figure 8, while the CLSD runtime increases with p for Germany50, this trend cannot

be observed for Coronet Conus, where higher p often presents lower average runtime.

5 CONCLUSIONS

This article addressed the challenge of robust placement of content in 5G-enabled CDNs that can replicate content at cDC and

eDCs. The problem was formulated as two optimization models that minimize the average user-to-content distance and maxi-

mize the robustness in a coordinated way. The proposed framework leveraged these two models to identify the Pareto-optimal

solutions, showing the trade-offs between the two different objectives, while respecting a defined budget.

Simulation results obtained by applying the proposed framework on two real-world network topologies showed that the net-

work resilience to targeted link cuts can be significantly improved at the expense of a small increase in the average user-to-content

distance. Moreover, the assessment of the traffic traversing the core network showed that eDCs also reduce the load in the core

network, potentially providing several benefits. In all cases, the runtime needed to solve the models to their optimality remained

very low even for the medium-high size topologies considered.

For future work, studying an integrated optimization model that can jointly minimize user-to-content distance and maximize

robustness would be interesting. Moreover, assessing the impact of attacks to the metro/access optical networks in metropoli-

tan areas would provide a fine-grained assessment of the impact of targeted attacks in users. Analyzing the robustness of

wireless/wired fronthaul/backhaul networks considering edge computing is another interesting problem to be addressed in the

future.
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