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Abstract
We perform an experimental and numerical study of dielectric loss in superconducting
microwave resonators at low temperature. Dielectric loss, due to two-level systems, is a limiting
factor in several applications, e.g. superconducting qubits, Josephson parametric amplifiers,
microwave kinetic-inductance detectors, and superconducting single-photon detectors. Our
devices are made of disordered NbN, which, due to magnetic-field penetration, necessitates 3D
finite-element simulation of the Maxwell–London equations at microwave frequencies to
accurately model the current density and electric field distribution. From the field distribution,
we compute the geometric filling factors of the lossy regions in our resonator structures and fit
the experimental data to determine the intrinsic loss tangents of its interfaces and dielectrics. We
put emphasis on the loss caused by a spin-on-glass resist such as hydrogen silsesquioxane
(HSQ), used for ultrahigh lithographic resolution relevant to the fabrication of nanowires. We
find that, when used, HSQ is the dominant source of loss, with a loss tangent
of d = ´ -8 10i

HSQ
3 .

Keywords: disordered superconductor, two level systems, filling factor, participation ratio,
microwave resonators, hydrogen silsesquioxane, 3D FEM simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

Several modern circuits rely on superconducting devices with
high microwave characteristic impedance and low dissipation.
High impedance is usually implemented using the kinetic
inductance of a chain of Josephson junctions [1–3] or with
sub-micron-width wires made of a disordered superconductor
such as NbN [4], NbTiN [5], or granular Al [6–8]. Despite
being less studied, nanowires have some advantages over
junction chains—high critical current, magnetic-field toler-
ance [5], strong coupling to zero-point fluctuations of the
electric field [9, 10], less stringent constraints on device
geometry, and absence of parasitic modes.

Applications of high-impedance devices include qubit
architectures such as the fluxonium [3, 8], which depends on a
superinductor (a low-loss inductor with reactive characteristic
wave impedance exceeding the resistance quantum,

> ~ WZ R 6.5 kc Q [1, 2, 4]) and travelling-wave microwave
parametric amplifiers [11–17], relying on the kinetic induc-
tance nonlinearity. Superconducting disordered nanowires are
also interesting for newer types of microwave kinetic-induc-
tance photon detectors [18, 19] and radio-frequency-readout
of superconducting single-photon detectors [19, 20].

Dielectric loss and noise associated with two-level systems
(TLS) residing in surfaces and interfaces are longstanding
problems in superconducting circuits [21]. Specifically, TLS
limit the quantum coherence times and lead to parameter
fluctuations of superconducting qubits [22–25]. The participa-
tion ratios of the losses of the constituent dielectrics can be
estimated through electro-magnetic simulation. Traditionally,
the air-facing surfaces are found to be relatively insignificant,

Superconductor Science and Technology

Supercond. Sci. Technol. 33 (2020) 025013 (8pp) https://doi.org/10.1088/1361-6668/ab6179

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

0953-2048/20/025013+08$33.00 © 2020 The Author(s). Published by IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0002-3864-0658
https://orcid.org/0000-0002-3864-0658
https://orcid.org/0000-0001-6041-3139
https://orcid.org/0000-0001-6041-3139
mailto:david.niepce@chalmers.se
https://doi.org/10.1088/1361-6668/ab6179
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6668/ab6179&domain=pdf&date_stamp=2020-01-08
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6668/ab6179&domain=pdf&date_stamp=2020-01-08
http://creativecommons.org/licenses/by/3.0


instead, the majority of the loss originates from the substrate-
metal and substrate-air interfaces [26–30]. Moreover, for
nanowires, the small dimensions exacerbate the TLS contrib-
ution to the loss, since the electric field becomes concentrated
near the conductor edges. This concentration leads to an
increase in the geometric filling factor (F) of the lossy dielectric
layers compared to that of the loss-less vacuum. Therefore, it
has been demonstrated that TLS remain the dominant loss
mechanism even in disordered superconductors with high
kinetic inductance, as long as the films are made moderately
thin and not excessively disordered [4].

Across nanowire technologies it becomes necessary to
use a spin-on-glass resist to define the sub-micron dimen-
sions. The most prevalent spin-on-glass resist is hydrogen
silsesquioxane, HSQ. While HSQ offers unmatched resolu-
tion (10 nm [31]), its structure after development resembles
porous amorphous silicon oxide [32, 33], which is a well-
known host of TLS [34]. HSQ is hard to remove after e-beam
exposure, and it is therefore often left on top of the finished
devices [4].

Therefore, when attempting to understand and improve
nanowire device performance, we have a rich landscape of
small dimensions, disordered superconductors, and spin-on-
glass dielectrics, all three of which are quite different from the
more commonly used (and consequently well understood)
wide ( m>10 m) Al or Nb features fabricated with conven-
tional, removable resists.

In this paper, we explore the geometrical scaling, toward
nanowire dimensions, of dielectric losses in microwave
resonators. We make nominally identical devices with and
without spin-on-glass top dielectric and clearly find that in all
cases the HSQ makes microwave losses worse. Then, to

quantify the loss contributions, we simulate the filling factors
and find that due to the ratio of the device dimensions to the
London penetration depth, disordered superconductors of
small dimensions are not amenable to electrostatic simula-
tions that are traditionally used. To accurately capture the
physics, we instead perform 3D finite-element simulations of
the current density and electric and magnetic fields at
microwave frequencies, from which we extract the various
filling factors. This reveals that, while the metal-air (MA)
interface indeed has a small filling factor, the loss of the HSQ
top dielectric is large enough to represent the largest com-
bined loss, in agreement with measurements.

Combining measurements of the loss and numerical
simulation of the filling factors of the different interfaces, we
determine the value of the loss tangent of HSQ:
d = ´ -8 10i

HSQ
3 , i.e. four times that of SiOx [27, 29, 35],

which would have been the assumption due to the similarities
between spin-on-glass resists and silicon oxide.

2. Experimental methods, results

In order to study the geometric scaling of dielectric losses, we
fabricated NbN coplanar waveguide resonators, with and
without HSQ dielectric on top of the centre conductor. These
devices span a range of widths of the centre conductor and of
the gap between centre conductor and ground planes. The gap
width ranges from =g 500 nmcpw to m5 m, with the ratio of
the gap to the centre conductor kept fixed. Figure 1(a) shows
a micrograph of a typical device, and figure 1(b) shows a
sketch of the cross section of the resonators.

Figure 1. (a) False-coloured optical micrograph of the four resonators used in this work. The resonators are coupled to microwave feed lines
(red overlay); the exposed Si substrate, where the NbN has been etched away, is in black. Additionally, HSQ covers the central conductor of
the top resonators (cyan overlay). (b) Schematic of the cross-section of the resonators. (c) S21 magnitude response of a typical resonator in the
single-photon regime (red points). The black line is a fit to determine the resonance parameters.
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The samples are fabricated on a high-resistivity
(r W 10 k cm) (100) intrinsic silicon substrate. The sub-
strate is dipped for 30 s in a 2% hydrofluoric acid (HF) bath to
remove the silicon surface oxide. Within 5 min, the wafer is
loaded into a UHV sputtering chamber, where a NbN thin-
film of thickness 15 nm is deposited by reactive DC magne-
tron sputtering from a 99.99% pure Nb target in a 6:1 Ar:N2

atmosphere at m12.7 bar. Next, a 500 nm thick layer of
PMMA A6 resist is spin-coated and then exposed by electron-
beam lithography (EBL) to define the microwave circuitry
and resonators. The pattern is developed for 60 s in MIBK:
IPA (1:1) and transferred to the film by reactive ion etching in
a 50:4 Ar:Cl2 plasma at 50 W and 10 mTorr. In a subsequent
EBL step, a 30 nm layer of HSQ is first spun and then
exposed on the centre conductor of half of the microwave
resonators such that, after development in a 2.45% TMAH
solution, each sample has two copies of each design: one
covered with HSQ and one without HSQ.

The samples are wire bonded in a connectorised copper
sample box that is mounted onto the mixing chamber of a
Bluefors LD250 dilution refrigerator. The inbound micro-
wave signal is attenuated at each temperature stage by a total
of 60 dB before reaching the device under test. Accounting
for cable losses and sample-box insertion loss, the total
attenuation of the signal reaching the sample is 70 dB. To
avoid any parasitic reflections and noise leakage from
amplifiers, the transmitted signal is fed through two micro-
wave circulators (Raditek RADI-4.0-8.0-Cryo-4-77K-1WR)
and a 4–8 GHz band pass filter. Finally, the signal is amplified
by a LNF LNC4_8A HEMT cryogenic amplifier (45 dB gain)
installed on the 2.8 K stage. Additional amplification is per-
formed at room temperature (Pasternack PE-1522 gain-block
amplifiers). This measurement environment has been shown
to support measurements of resonators with quality factors of
several millions [36] and therefore provides an ideal test
bench for characterising loss in superconducting microwave
resonators.

We study the microwave properties of each of these
resonators by measuring the forward transmission (S21)
response using a Keysight N5249A vector network analyser.
When probed with an applied power Papp, the average energy
stored in a resonator of characteristic impedance Zc
and resonant frequency fr is given by á ñ =Eint

pá ñ =hf n Z Q P Z Q fr l app c c r0
2 2 , where á ñn is the average

number of photons in the resonator, h is Planck’s constant,
= WZ 500 , and Qc and Ql are the coupling and loaded quality

factors, respectively. Figure 1(c) shows a typical S21 magni-
tude response measured at 10 mK and has average photon
population á ñ =n 1. The resonator parameters are extracted by
fitting the data with an open-source traceable fit routine [37].

In order to reliably determine the TLS loss contribution,
we measure the resonant frequency of each resonator against
temperature between 10 mK and 1 K [38, 39] using a Pound
frequency-locked loop (P-FLL). We measured resonator pairs
on the same chip, of the same length and gap widths, with/
without HSQ on top of the centre conductor. The data is
shown in figure 2, while the cryogenic microwave setup with

the VNA and P-FLL schematics are explained in detail in [4].
This method only probes TLS effects and has the benefit of
being sensitive to a wide frequency distribution of TLS.
Consequently, the intrinsic loss tangent is robust against
spectrally unstable TLS that produce time variations in the
quality factor [40]. This allows us to independently determine
the intrinsic loss tangent (times the filling factor) dF i

TLS TLS.
The fitted values are presented in table 1.

3. Modelling of TLS loss

Figure 2 shows that in our devices, the losses are dominated
by TLS, even for thin-film nanowires with widths down to
40 nm. In order to accurately account for the individual
contributions of all TLS-containing regions of the circuit, we
split the dielectric loss into a linear combination of loss tan-
gents each associated with a corresponding filling factor
[26–29, 41]

åd d= =
Q

F F
1

, 1i

k
k k

i

TLS
TLS TLS ( )

where dk
i is the intrinsic loss tangent of region k. Additionally,

the filling factor of a given TLS host region k, of volume Vk

and relative permittivity ek, is given by

ò

ò

e

e
= =F

U

U

E r dr

E r dr
, 2k

k

total

V k

V

2

2
k

( )

( )
( )

  

  

where Uk and Utotal are the electric energy stored in region k
and the total electric energy, respectively, E


is the electric

field, and ε is the effective permittivity of the entire volume V.
Several previous works have studied the loss participa-

tion of the different interfaces. O’Connell et al [35] perform
low-temperature, low-power microwave measurements,
report the intrinsic loss tangent of dielectrics, and interpret
their results using a TLS defect model.

Wenner et al [26] numerically calculate the participation
ratios of TLS losses in CPW and microstrip resonators, and
find that the losses, at a level of d ~ ´ -5 10 6, predominantly
arise due to the substrate-metal (SM) and substrate-air (SA)
interfaces, with only a 1% contribution from the MA
interface.

Wang et al [27] conduct an experimental and numerical
study of losses in Al transmon qubits and attribute the
dominant loss to surface dielectrics, consistent with the TLS
loss model. In a literature study of transmons made with the
standard lift-off process, they find a seemingly universal value

d ~ ´ -tan 2.6 10 3. We note that the spread between data
points pertaining to different devices is within the range of
temporal variation, due to spectrally unstable TLS, recently
reported in both qubit T1 [25] and resonator Q [40].

Dial et al [28] experimentally study 3D transmon qubits,
with results consistent with the SM and SA interfaces being
the dominant contributors to loss.

Calusine et al [29, 30] trench the substrate of TiN reso-
nators, achieving a mean low-power quality factor of

3

Supercond. Sci. Technol. 33 (2020) 025013 D Niepce et al



´3 106, and demonstrate agreement with a finite-element
electrostatic simulation of dielectric loss.

4. Filling factor simulations

In order to analyse dielectric and interfacial losses in our
devices, and in particular to identify those from the HSQ top
dielectric, we perform electro-magnetic simulations (with and
without the HSQ layer) in Comsol Multiphysics for a wide

Table 1. Resonator parameters. dF i
TLS TLS is obtained from fits of the

data in figure 2.

gcpw Zc

fr
(no HSQ)

fr
(with HSQ)

dF i
TLS TLS

(no HSQ)
dF i

TLS TLS

(with HSQ)
(μm) (Ω) (MHz) (MHz) (́ -10 5) (́ -10 5)

5 207 4027 4026 1.36 1.66
2 312 3625 3635 1.60 1.87
1 441 4572 4626 1.98 2.50
0.5 632 4864 4962 2.74 3.92

Figure 3. Simulated normalised current density inside the super-
conductors, extracted along a line half-way inside it (half the
thickness), for all simulated values gcpw in the 500 nm to m5 m
range.

Figure 4. Magnitude and field lines of the simulated electric (a) and
magnetic fields (b) for a cross section of the resonators with HSQ
covering the central conductor. The permittivity in equation (5), with
w p =2 5 GHz, is given as an input to the Comsol Multiphysics
simulation tool.

Figure 2. Frequency shiftDf as a function of the normalised frequency fr of the measured resonators without HSQ (a) and with HSQ covering
the central conductor (b). The data is obtained by applying = -P 110app dBm and tracking the changes in resonant frequency against
temperature between 10 mK and 1 K using the P-FLL. It is plotted against the natural energy scale of the TLS (hf k Tr B ). The downturn in
frequency occurring below =hf k T 0.1r B corresponds to the temperature-dependent kinetic inductance contribution and is not TLS-related. For
clarity, the curves have been offset by15 kHz. The solid lines are fits to dD = + -f T F T T g T f g T fln , ,i

r rTLS TLS 0 0( ) ( ( ) [ ( ) ( )]) [38, 39], where
D = -f T f T f T f T T,r r r0 0 0( ) [ ( ) ( )] ( ) is a reference temperature, p= Y +g T f hf ik T, Re 2 B

1
2( )( )( ) , and Ψ is the complex digamma

function.
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range of resonator geometries. A sketch of the cross-section of
the simulated structures is shown in figure 1(b). The simulation
parameters for the constituent materials are as follows: the SA
interface is modelled as a 5 nm thick layer of SiO2 [42] with
relative permittivity e =SiO 4.2r 2( ) . The MA interface consists

of a 5 nm thick layer of Nb O2 5 [43] with relative permittivity
e =Nb O 33r 2 5( ) [44, 45]. The SM interface is modelled by a
2 nm thick layer inside the substrate (e e= =SM Si 11.7r r( ) ( ) )
[29]. Finally, the HSQ region has a thickness of 30 nm and
relative permittivity e =HSQ 3r ( ) [33]. Because Nb O2 5

requires several days to achieve any meaningful thickness [43],
it is assumed that no Nb O2 5 is present underneath the HSQ.
Therefore, on the samples without HSQ, Nb O2 5 resides on both
the central conductor and ground planes, whereas on the samples
with HSQ, Nb O2 5 is present only on the ground planes.

The superconductor part of the structure requires extra
care to simulate accurately: strongly disordered super-
conductors, like NbN, have an extremely small electron mean
free path l (on the order of 0.5 nm and smaller [46]) and are
therefore in the local dirty limit [47]. In this limit, several
quantities become dependent on the mean free path and need
to be adjusted from their BCS values [48, 49]. Most impor-
tantly for this study, the magnetic penetration depth in dis-
ordered superconductors and at zero temperature becomes

l l
x

pm s
= =

D


l
0 0 , 3dirty L

n

0

0 0
( ) ( ) ( )

wherel 0L ( ) is the London penetration depth at x=T 0 K, 0 is
the BCS coherence length, ÿ is the reduced Planck constant,
m0 is the vacuum permeability,D0 is the superconducting gap
at zero temperature, and sn is the normal-state conductivity.
Additionally, the temperature dependence of the penetration
depth is given by

l
l

=
D
D

D
-T T T

k T0
tanh

2
. 4

dirty

dirty B0

1 3⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )
( )

( ) ( ) ( )

By measuring the resistance versus temperature of
our NbN thin films, we find =T 7.20 Kc and s =n

´ -1.32 10 S m5 1 (measured at the onset of the super-
conducting transition). Using D = k T2.08 B c0 [50], we obtain
l m= 987 nm 1 mdirty  , which is comparable to the lateral
dimension of our resonators.

Consequently, it is not sufficient to approximate the
current density in our NbN devices as a surface density, since
magnetic fields significantly penetrate the superconductor.

Figure 5. Simulated filling factors F as a function of the co-planar waveguide gap gcpw for resonators without HSQ (a) and with HSQ
covering the central conductor (b). The dashed lines represent the incorrect F obtained with electrostatic simulations.

Figure 6. Total TLS loss dF i
TLS TLS versus gap width gcpw of the co-

planar waveguide for all four measured resonators. The dF i
TLS TLS

values are determined from fits of the Df T( ) data in figure 2—see
table 1. The error bars represent two standard deviations of
uncertainty (95% confidence interval). The dashed lines are fits to
equation (1) using the simulated filling factors FTLS shown in
figure 5.

Table 2. Fitted loss tangents of the different lossy regions. The
values are obtained from fits to equation (1) using the simulated
filling factors.

Region Symbol Value

HSQ di
HSQ ´ -8.0 10 3

Substrate-metal interface di
SM ´ -1.3 10 3

Niobium oxide di
Nb O2 5

´ -4.7 10 2

Silicon oxide di
SiO2

´ -2.1 10 3
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This is in contrast to resonators made of a conventional
superconductor such as aluminium (l 0 30 nmL ( )  [51]) or
niobium (100 nm [52]). In a similar way, it is insufficient to
assume a uniform current distribution in the superconductor
when the resonator dimensions are larger than l TL ( ).

Therefore, a static solution of Maxwell’s equations is
insufficient here, in particular for the wider geometries.
Instead we need to solve the Maxwell–London equations, at
the relevant frequency of the alternating current, in order to
accurately simulate the densities of the current and electro-
magnetic fields. We achieve this in a 3D finite-element
simulator by considering the superconductor as an environ-
ment with a complex permittivity [53, 54]

e w e
w m l

s w
w

= - -T
T

j
T

,
1 ,

, 5r
dirty

0 2
0

2
1( )

( )
( ) ( )

where s w T,1( ) is the real part of the Mattis–Bardeen
conductivity.

The meshing of the simulated structure has to be care-
fully optimised due the vast difference of length scales within
the resonator structure (widths, thicknesses, and also the
wavelength). The simulation mesh is manually defined using
Comsol’s swept mesh functionality and consists of rectan-
gular elements. Rectangular elements are preferred over the
more standard tetrahedral elements to avoid poor meshing
quality inherent to high-aspect ratio tetrahedrons. The edge
length of each element is varied from 3 nm to 100 nm, with
smaller elements close to the regions of interest (super-
conducting thin-film and dielectric layers). Due to memory
constraints, however, the edge length alongside the wave
propagation direction is kept constant to 100 nm and only a
short section of co-planar waveguide is simulated
( m=l 4 mcpw ). A relative tolerance of ´ -1 10 5 was found as
a good compromise between the accuracy of the converged
solution and the duration of the simulation.

Figures 3 and 4 show the simulated current density and
electric and magnetic fields, respectively, for a cross section
of a resonator with =g 500 nmcpw . From the electric fields,
we calculate the filling factor of each region using
equation (2) and present the result in figure 5. Additionally,
figure 5 shows filling factors calculated by means of

electrostatic simulation to highlight the significant deviation
from the Maxwell–London simulation results for l>wcpw L.

Using these simulated filling factors, we can fit
equation (1) to the experimental results in table 1—see
figure 6—and in this way determine the intrinsic loss tangent
of each lossy region. These results are summarised in table 2.

5. Discussion

Our results are consistent with values found by other groups
in similar types of devices [27, 29, 35, 44]. However, we
emphasise that the fabrication of our devices was not focused
on minimising the influence of TLS.

We find the intrinsic loss tangent for HSQ to be
d = ´ -8.0 10i

HSQ
3 . Paired with the relatively large filling

factor of the HSQ region, this makes HSQ the dominant
contribution to the loss for all dimensions, as highlighted in
figure 7; and for a given dimension, dF i

TLS TLS is system-
atically higher for the sample covered with HSQ, as shown in
figure 6. These results confirms that the porous amorphous
silicon oxide structure of developed HSQ [32, 33] is a major
source of dielectric loss, and therefore, a process that allows
for the removal of the HSQ mask would lead to significant
improvements in device performance.

6. Conclusion

In conclusion, we fabricated and measured co-planar wave-
guide resonators with dimensions ranging from m=g 5 mcpw

down to 500 nm in order to study the geometric dependence
of TLS loss. Using 3D finite-element electro-magnetic
simulations we calculated the relative contributions of the
different sources of TLS loss. Such simulations provide a
valuable tool to predict the performance of superconducting
resonators and other superconducting quantum devices.

Additionally, by comparing resonators with the central
conductor covered by HSQ and resonators without HSQ, we
were able to extract the intrinsic loss tangent of this di-
electric: d = ´ -8.0 10i

HSQ
3 .

Figure 7. Contribution of each individual lossy region for resonators without HSQ (a) and with HSQ (b) covering the central conductor.
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