
THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY

Automated Derivation of
Random Generators for
Algebraic Data Types

AGUSTÍN MISTA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/289286688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Automated Derivation of Random Generators for Algebraic Data Types
AGUSTÍN MISTA

© 2020 Agustín Mista

Technical Report 208L
ISSN 1652-876X
Department of Computer Science and Engineering
Research group: Information Security

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Printed at Chalmers
Göteborg, Sweden 2020

ABSTRACT

Many testing techniques such as generational fuzzing or random
property-based testing require the existence of some sort of random gen-
eration process for the values used as test inputs. Implementing such
generators is usually a task left to end-users, who do their best to come
up with somewhat sensible implementations after several iterations of
trial and error. This necessary effort is of no surprise, implementing good
random data generators is a hard task. It requires deep knowledge about
both the domain of the data being generated, as well as the behavior of
the stochastic process generating such data. In addition, when the data
we want to generate has a large number of possible variations, this pro-
cess is not only intricate, but also very cumbersome.

To mitigate this issues, this thesis explores different ideas for automat-
ically deriving random generators based on existing static information.
In this light, we design and implement different derivation algorithms in
Haskell for obtaining random generators of values encoded using Alge-
braic Data Types (ADTs). Although there exists other tools designed di-
rectly or indirectly for this very purpose, they are not without disadvan-
tages. In particular, we aim to tackle the lack of flexibility and static guar-
antees in the distribution induced by derived generators. We show how
automatically derived generators for ADTs can be framed using a simple
yet powerful stochastic model. This models can be used to obtain analyt-
ical guarantees about the distribution of values produced by the derived
generators. This, in consequence, can be used to optimize the stochastic
generation parameters of the derived generators towards target distribu-
tions set by the user, providing more flexible derivation mechanisms.

ACKNOWLEDGMENTS

There are many who deserve acknowledgment for their contributions
to this thesis. First and foremost, to Alejandro Russo, not only for helping
me on every step of this journey, but also for making it equally fun and
challenging. To the fika crew, for making the slow days run faster. Thanks
for making working at Chalmers great fun. I also want to thank Leonidas
Lampropoulos, for likely being among the few willing to take time to
read this thesis and to come and discuss about it with me. Saving the
best for the last, my lovely partner, Carla, deserves special recognition.
You gave me nothing but love and support ever since we met, and this
whole adventure would not have been the same without you.

CONTENTS

0 Introduction . 1

1 QuickFuzz Testing For Fun And Profit 15

2 Branching Processes for QuickCheck Generators . . 49

3 Generating Random Structurally Rich Algebraic
Data Type Values . 91

4 Deriving Compositional Random Generators 109

VII

Chapter 0

Introduction

Software systems are, for the most part, tested much more poorly than
we like to admit. This is often not due to laziness (except when it is),
neither to lack of investment (except when it is). Testing software effec-
tively is extremely difficult. Even the most formal and theoretically robust
techniques are sometimes seen as a futile countermeasures against the
unquantifiable number of things that can go wrong in our ever-growing
systems. How should we test them then? As expected, this thesis does
not provide anything closer to an answer for this question. Instead, it fo-
cuses particularly on an appealing idea: testing software against unex-
pected inputs using randomly generated data.

1 Fuzzing

Fuzzing [32] is a technique used in penetration testing [1] that involves
providing unexpected inputs to a system under test, and a program that
performs fuzzing to test a program is usually known as a fuzzer. The in-
tuition behind a fuzzer is rather simple: it picks an input from some in-
puts repository, feeds it to the system under test, and monitors it for dif-
ferent kinds of exceptions, e.g., crashes, memory leaks and failed code
assertions. This process is repeated in a loop until something bad hap-
pens in the target system. Then, any anomaly detected in the expected
behavior of the system under test is reported along with the input pro-
ducing it. Figure 1 displays a simplified representation of this approach.

System
Under Test

FuzzerInputs
Source

Bug
Report

Figure 1: Simplified representation of a fuzzing environment.

2 1. FUZZING

As expected, the previous description is extremely oversimplified.
Fuzzers typically use many different approaches to boost the chances
of finding different kinds of vulnerabilities with remarkable success
[5,8,9,12,14–17,23,26,28,29]. Notably, the unexpected inputs used by this
technique can be of a very varied nature, covering the full spectrum be-
tween completely valid values to completely random noise ones. More-
over, the origin of these inputs denotes an important distinction used to
classify different kinds of fuzzing models [25]:

– Mutational Fuzzers: they use an existing set of (usually valid) inputs
that are combined in different ways through randomization. In prac-
tice, they usually rely on an external set of input files provided by
the user, known as a corpus. A mutational fuzzer takes one or more
files from this corpus and produces a mutated version that is as a test
case for the system under test.
While this approach has shown to be quite powerful for finding bugs,
its inherent disadvantage is that the user has to collect and maintain
a carefully curated corpus manually for each kind of input that wants
to test, e.g., for each input file format.

– Generational Fuzzers: they generate inputs from scratch using an
specification or model for the different kinds of inputs they are used
for. In general, generational fuzzers avoid the problem of having to
maintain an external corpus of inputs. However, users must then de-
velop and maintain models of the input types they want to generate.
As expected, creating such models requires a deep domain knowl-
edge, which can be tedious and expensive to achieve.

In this work, we focus particularly on the generational model. Our
aim is to develop automated techniques for random generation of unex-
pected inputs based on statically available information. This information
can be extracted either directly from system under test or from external
sources. In particular, Paper 1 is focused on automatically leveraging on
existing file-format manipulating libraries to derive random input gen-
erators used for fuzzing massively used programs.

Fuzzers are seen in practice as black-box tools acting over complete
programs. In consequence, they are often applied to finished systems to
find vulnerabilities that might have not been discovered during the early
development stages. However, testing smaller pieces of our systems us-
ing randomly generated inputs during development is also a popular
technique. As opposed to unit testing, where programmers are forced to
write and maintain a set of individual test inputs (unit tests), this tech-
nique lets us test each part of our system using randomly generated in-
puts. The next section introduces an attractive variant of this idea.

CHAPTER 0. INTRODUCTION 3

2 QuickCheck
Instead of just feeding our software with random inputs and waiting for
unexpected behavior, it is also possible to test our programs using ran-
domly generated inputs in a more controlled way. The idea behind this
is to verify our code against some sort of specification. This specification
can be defined, for instance, as a set of properties that our code must
fulfill for every possible input. Then, these properties can be validated
using a large number of randomly generated inputs. This technique is
known as Random Property-Based Testing (RPBT).

In the Haskell realm, QuickCheck [10] is the de facto tool of this sort.
Originally conceived by Koen Claessen and John Hughes twenty years
ago, this tool counts with many success stories, and inspired the ideas
behind it to be replicated in other programming languages and systems
with remarkable success [2–4, 7, 19–21, 24, 24, 30].

Essentially, using this tool can be seen as composed of two main parts:
testing properties and random generators. This thesis focuses strictly on the
latter, as automating the process of deriving testing specifications can be
seen as a field in its own right [6, 11]. Nonetheless, the following subsec-
tions briefly introduce the reader to both for the sake of completeness.

2.1 Testing Properties

One of the attractive aspects of QuickCheck is its simplicity. To illustrate
this, suppose we write a Haskell function reverse :: [Int] → [Int] for
reversing lists of integers. While specifying the expected behavior of this
function, we might want to assert that our implementation is its own
inverse , i.e., reversing a list twice always yields the original value.1 This
desired property of our function can be written in QuickCheck simply
as a Haskell predicate parameterized over its input, which we can think
as being universally quantified:

prop_reverse_ok :: [Int]→ Bool
prop_reverse_ok xs =

reverse (reverse xs) ≡ xs

Then, verifying that our function holds this property becomes simply
running QuickCheck over it:

ghci> quickCheck prop_reverse_ok
++++ OK, passed 100 tests

What happens under the hood is that QuickCheck will instantiate
every input of our property using a large number of randomly generated
values (lists of integers in our example above), asserting that it holds
(returns True) for all of them.

1In mathematical jargon, we could say that reverse must be involutive.

4 2. QUICKCHECK

Shall any of our properties not hold for some input, QuickCheck
will try to find a minimal counterexample for us to further analyze. For
instance, reversing any list once will not return the original input:

prop_reverse_bad :: [Int]→ Bool
prop_reverse_bad xs =

reverse xs ≡ xs

This property can be easily refuted using QuickCheck as before:

ghci> quickCheck prop_reverse_bad

*** Failed! Falsifiable (after 3 tests and 1 shrink):
[0,1]

And after a handful random tests, we obtain a minimal counterexam-
ple ([0,1]) which falsifies prop_reverse_bad when used as an input.

This way, running a large number of random tests gives us statistical
confidence about the correctness of our code against its specification.

2.2 Random Generators

One of the reasons behind the simplicity of the previous examples is
that the random generation of test cases is transparently handled for us
by QuickCheck. This is achieved by using Haskell type classes [34]. In
particular, QuickCheck defines the Arbitrary type class for the types that
can be randomly generated:

class Arbitrary a where
arbitrary :: Gen a
shrink :: a → [a]

The interface of this type class encodes two basic primitives. In first
place, arbitrary specifies a monadic random generator of values of type a .
Such generators are defined in terms of the Gen monad which provides
random generation primitives. Moreover, shrink :: a → [a] specifies how
a given counterexample (of type a) can be reduced in different smaller
ones. This function is used while reporting minimal counterexample
after a bug is found.

QuickCheck comes equipped with Arbitrary instances for most basic
data types in the Haskell prelude. In particular, our previous testing
examples simply use the default Arbitrary instances for integers and lists.
In this light, it is quite easy to test properties defined in terms of basic
data types using QuickCheck. However, things get more complex when
we start defining our own custom data types.

Algebraic Data Types Haskell has a powerful type system that can be ex-
tended with custom data types defined by the user. For instance, sup-
pose we want to represent simple HTML pages as Haskell values. For
this purpose, we can define the following custom algebraic data type:

CHAPTER 0. INTRODUCTION 5

data Html =
Text String
| Sing String
| Tag String Html
| Html :+: Html

This type allows to build pages via four possible constructions: Text
represents plain text values, Sing and Tag represent singular and paired
HTML tags, respectively, and (:+:) concatenates two HTML pages one
after another. These four constructions are known as data constructors
(or constructors for short) and are used to distinguish which variant
of the ADT we are constructing. Each data constructor is defined as a
product of zero or more types known as fields. For instance, Text has a
field of type String , whereas the infix constructor (:+:) has two recursive
fields of type Html . In general, we will say that a data constructor with
no recursive fields is terminal, and non-terminal or recursive otherwise.
Then, the example page:

<html>hello<hr>bye</html>

can be encoded using our freshly defined Html data type as:

Tag "html" (Text "hello" :+: Sing "hr" :+: Text "bye")

Later, suppose we implement two functions over Html values for
simplifying and measuring the size of an HTML page:

simplify :: Html → Html
size :: Html → Int

The concrete implementation of these functions is not relevant here.
What is important, though, is that with this functions in place, we might
be interested in asserting that simplifying an HTML page never returns
a bigger one. This can be encoded with the following QuickCheck prop-
erty:

prop_simplify :: Html → Bool
prop_simplify html =

size (simplify html) 6 size html

However, testing this property using random inputs is not possible
yet. The reason behind this is simple: QuickCheck does not know how
to generate random Htmls to instantiate this property’s input parame-
ter. To solve this issue, we can provide a user defined Arbitrary instance
for Html as shown in Figure 2 (avoiding for simplicity the definition of
shrink). To generate a random Html value, this generator picks a random
Html data constructor with uniform probability and proceeds to “fill”

6 3. AUTOMATED DERIVATION OF GENERATORS

instance Arbitrary Html where
arbitrary = oneof

[Text 〈$〉 arbitrary
,Sing 〈$〉 arbitrary
,Tag 〈$〉 arbitrary 〈?〉 arbitrary
, (:+:) 〈$〉 arbitrary 〈?〉 arbitrary]

Figure 2: Naive random generator of Html values.

its fields recursively. This definition implements the simplest generation
procedure for Html that is theoretically capable of generating any possi-
ble Html value.

After providing this concrete Arbitrary instance, QuickCheck can
now proceed to test properties involving Html values.

3 Automated Derivation of Generators
The random generator defined above can be written quite mechanically,
so it is of no surprise that automated derivation mechanisms [13, 27]
have emerged to relieve the programmer of the burden of this task—
something specially valuable for large data types! Most of these tools use
Template Haskell [31], the Haskell meta-programming framework, as a
way of introspecting the user code and synthesizing new code upon it.

However, a suitable mechanism for deriving random generators can-
not be as simple as just producing code like the one shown in Figure 2.
Sadly, this naive generator is ridden with flaws.

In practice, QuickCheck users are often aware of some of them, and
an attentive reader might have already recognized some by just inspect-
ing the definition above carefully. Concretely, to implement a suitable
random generator we need to consider (at least) the following challenges:

Unbounded recursion: Every time a recursive subterm is needed, the gen-
erator shown in Figure 2 simply calls itself recursively. This is a common
mistake that can lead to infinite generation loops due to recursive calls
producing (on average) one or more subsequent recursive calls. This
problem can be more or less severe depending mostly on the shape of the
data type our generator produces values of, being a practical limitation
nonetheless. Fortunately, QuickCheck already provides mechanisms to
overcome this issue—this is addressed by all four papers presented in
this thesis.

Generation parameters: The generator from Figure 2 simply picks the next
random constructor in a uniform basis. This is the simplest approach
we can mechanically follow. However, this is hardly the best choice in
practice. In particular, generating values of any data type with more ter-

CHAPTER 0. INTRODUCTION 7

minal than recursive data constructors using uniform choices will be bi-
ased towards generating very small values. QuickCheck provides mech-
anisms for adjusting the generation probability of each random choice it
performs. However, doing so carries a second problem: it becomes quite
tricky to assign these probabilities without knowing how they will affect
the overall distribution of generated values—something that can be seen
as a science to its own. Both problems are addressed in detail in Paper 2.

Abstraction level: The generation process encoded in the generator shown
in Figure 2 constructs values using the smallest possible level of granu-
larity: one data constructor at a time. In practice, this technique is often
too weak to generate (with a non-negligible probability) values contain-
ing the complex patterns of values that could be required in order to test
the corner cases of our code, leaving the door open for subtle bugs that
might be never get triggered during the testing phase.

In the other hand, the implementation of our code under test could
rely on internal invariants that are necessary to make it work properly—
think for instance the case of the implementation of data structures like
balanced trees, where its abstract interface must preserve the internal
invariants used by their implementation. Testing this kind of software
becomes much more complicated using the approach described above, as
constructing random values at the abstraction level of data constructors
will be very unlike to generate values satisfying such invariants—this
issue is addressed in details in Paper 3 and Paper 4.

Clearly, all these issues and challenges need to be carefully consid-
ered in order for our generators to be effective at generating useful val-
ues for penetration or random property-based testing. It is the purpose
of this thesis to tackle them in the most automated way possible.

4 Contributions
In this section, I give a more detailed overview of the thesis, which is
based on four papers, published individually in the proceedings of peer-
reviewed international conferences, symposiums and workshops—see
Figure 3 for a simplified roadmap of this work.

4.1 Paper 1: QuickFuzz Testing For Fun And Profit

This paper explores the ideas behind the development of QuickFuzz, a
generational fuzzer using Haskell data types as lightweight grammars.
Unlike other generational fuzzers, where the generation of random in-
puts depends on user-provided specifications or grammars for the ran-
dom inputs they can generate, QuickFuzz leverages on existing data-
handling libraries written in Haskell.

Haskell ecosystem [18] has a large number of existing libraries for in-
teracting with most kinds of structured data we use nowadays, e.g., com-
mon file formats, network packets, public key infrastructure certificates,
etc. The fact that these libraries often define complex data types encoding

8 4. CONTRIBUTIONS

ADT-based
Generation

Stochastic
Models

Generational
Fuzzing

JSS’17 HASKELL’18 AST’19 IFL’19

Codebase
Reification

Figure 3: Roadmap of this thesis.

such data is what makes QuickFuzz particularly appealing: these data
types can be a good approximation of the grammar of our data, and we
can obtain random generators for them for free! For this to be effective,
however, we need an automatic mechanism for extracting random gen-
erators from data type definitions, solely based on introspecting the ex-
isting code, and with minimal interaction required by the programmer.

With more than 40 file formats supported for random generation, and
combined with the ability of introducing off-the-shelf mutational fuzzers
into the testing pipeline, QuickFuzz has been shown to be remarkably
useful for discovering bugs on real-world code with minimal effort. Dur-
ing the development of this tool, dozens of security vulnerabilities were
discovered on massively used open-source programs and libraries.

4.2 Paper 2: Branching Processes for QuickCheck Generators

Despite that automatically deriving random generators from data type
definitions can be seen as a mechanical task, doing so too naively can
degrade the performance of the derived generators quite substantially.
The main problem with the derivation mechanism used in QuickFuzz is
that, whenever an automatically derived generator needs to randomly
choose which random construction to generate next, it does so with uni-
form probability across all the possible choices. While this approach is
(theoretically) able to generate the full space of values of any algebraic
data type, empirical results show that it often introduces strong biases
towards generating very small and rather uninteresting values. This lim-
itation is mostly dependent on the shape of the data type being gener-
ated, and cannot be improved nor adjusted once the random generator
is derived at compile time.

While there exists other approaches for solving this problem, we con-
sider that none of them effectively achieves a good trade-off between au-
tomation level and flexibility.

CHAPTER 0. INTRODUCTION 9

In this paper, we propose modeling the generation process encoded
into automatically derived generators using branching processes. This sta-
tistical model lets us predict the distribution of values produced by our
generators. This distribution depends on two main factors. First, their
particular data type definition takes an important role on how the data
gets generated each time a recursive sub-term is needed. This is a fixed
part of our model, and represent the invariants introduced by the data
types we generate. Second, the frequency in which our generators pick
each random construction whenever they generate a value also makes
a large difference in the distribution of generated values. Interestingly,
these frequencies are a tunable parameter of our derived generators, and
thus we can optimize them towards a configuration that fits user’s de-
mands by using the prediction model based on branching processes in a
feedback optimization loop. This way, the optimization of parameters de-
pends on a model that can be predicted analytically and, in consequence,
is much cheaper to compute than sampling a large number of random
values every time we evaluate a possible optimization candidate.

The ideas presented in this paper are implemented in an automated
tool for deriving optimized generators called DRAGEN.

Using this approach, we found that the performance of automatically
derived generators can be considerably improved by tuning their gener-
ation parameters at compile time using our stochastic model. In practice,
we found that this can be used to increase the code coverage triggered
by the random values they generate over real-world applications quite
substantially.

4.3 Paper 3: Generating Random Structurally Rich Algebraic Data
Type Values

The previous paper proposes using a stochastic model for automatically
deriving optimized random generators. In principle, this model only con-
templates the information encoded into data type definitions. However,
in practice, much of the structural information of our data is often en-
coded aside of its corresponding types.

In first place, a common limitation of random testing arises when-
ever we try to generate random values to test functions or procedures
branching differently on very specific patterns of inputs. The reason be-
hind this is simple: whenever a function input pattern grows linearly
in the number of matched constructors, the probability of generating a
value satisfying such pattern decreases multiplicatively if we follow the
standard approach, i.e., building random values using one atomic piece
of data (constructor) at a time.

On the other hand, it is common that data type definitions simply do
not encode enough structural information of the actual data they repre-
sent in order for the derivation process to derive useful random genera-
tors. This is particularly the case in the presence of shallow embedded

10 4. CONTRIBUTIONS

domain-specific languages, where data types are often too generic, and
invariants are preserved mostly via their abstract interfaces.

In this paper, we identify two extra sources of structural information
that can be statically extracted and taken advantage of during the gen-
erator derivation process. In first place, every input pattern matching of
a function of interest can be automatically extracted from the user code-
base, and included into the generation process. This lets us generate com-
plex compositions of data constructors at once, ensuring that our random
data will satisfy the input patterns of our code under test, and hence will
be used to test code branches that otherwise could remain untested us-
ing naive generators. Secondly, the abstract interface of our data types of
interest can be analyzed and extracted from the codebase. Each combina-
tor of this interface can be used to generate random data as well, some-
what replicating the behavior a real programmer would follow to inter-
act with the user code in a real-world scenario. This ability also lets us
generate random data preserving the invariants introduced by this inter-
face, and that are not encoded directly in the data type definition.

The ideas presented in this paper are implemented as an extension of
DRAGEN, called DRAGEN2.

Using this approach, it becomes possible to generate random values
by interleaving data constructors, input patterns and abstract interface
function calls. This can effectively improve the performance of our de-
rived generators, which are able to use more domain-specific informa-
tion extracted from the source code in order to generate structured data.

One of the key contributions of this work is to show how the stochas-
tic model of branching processes used previously can be extended to
contemplate these two new sources of structural information. Using this
extended model, we can automatically derive random generators op-
timized towards producing complex distributions of values, parame-
terized by higher-level random constructions other than just data con-
structors, like input patterns and abstract interface function calls. For
instance, it becomes possible to reason about random distributions of
values where certain patterns of constructors appear (on average) in a
given ratio within every generated value. In the same manner, we can
use this model to derive generators which produce random values fol-
lowing a particular distribution of high-level combinators (from abstract
interfaces) used to build them, which can specified by the programmer.

4.4 Paper 4: Deriving Compositional Random Generators

The previous paper provides an extension to the automated derivation
mechanism of random generators proposed originally. This extension en-
ables us to consider additional sources of structural information when
deriving random generators apart from just data type definitions. Each
source of structural information introduces a new set of random con-
structions that can be used by our generators when producing random

CHAPTER 0. INTRODUCTION 11

values, i.e., one random construction per each data constructor, function
input pattern and abstract interface combinator.

In principle, we could combine every random construction extracted
from the codebase into a single random generator. However, as our code-
base grows, this practice can become unmanageable. The reason for this
is that different parts of our system could expect different kinds of in-
puts, and therefore, they should be tested using random values resem-
bling such expected inputs. For instance, if we consider a code compiler,
a type checker phase should be tested using both valid and invalid ran-
dom input programs. On the other hand, any subsequent phase would
be implemented under the assumption that they work over syntactically
and/or semantically valid inputs. In this case, testing such phases ef-
fectively would require having a random generator that only produces
somewhat valid inputs—or more generically, inputs satisfying certain
invariants. In this light, our testing framework would benefit from hav-
ing not one, but many specialized random generators depending on the
concrete subsystem to be tested. This is, sadly, not compatible with most
automated generator derivation approaches, where a unique (and rigid)
random generator is synthesized.

In this paper we demonstrate how it is possible to implement a fully
compositional generators’ derivation mechanism. Instead of deriving a
single random generator encompassing every possible random construc-
tion, our approach works by deriving a small specialized generator for
each one. Later, these generators can be combined in different ways using
a simple yet powerful type-level domain-specific specification language.
This domain-specific language lets the programmer specify which ran-
dom constructions are of interest while generating values in a simple
manner, abstracting much of the cumbersome details of writing random
generators by hand. Notably, specifying different random generators us-
ing this approach doesn’t require synthesizing their implementation ev-
ery time. In turn, the user simply specifies each generator variant by re-
ferring to the components of the same common underlying machinery,
which is automatically derived once and for all.

To achieve this compositionality, we use the familiar functor coprod-
uct pattern in Haskell, popularized by Swierstra with the name of Data
Types à la Carte [33]. We extended this programming pattern with the
functionality required in the scope of random generation of values, and
shown how the performance limitations [22] commonly associated to
this pattern can be alleviated by using a self-optimizing representation.

4.5 Statement of Contributions

Paper 1: QuickFuzz Testing For Fun And Profit My contributions to this
project include: i) a generators derivation extension, which contemplates
the common case of existing libraries written using shallow embeddings
of the target file format. Before this extension, such libraries simply could

12 4. CONTRIBUTIONS

not be used due to the lack of domain-specific structure encoded into
data types, which are the main source of information used by QuickFuzz
to derive useful random generators for free, and ii) a complete rewrite of
the testing harness from scratch, using as much meta-programming as
possible in order to ease the task of adding support for new file-format
targets.

Moreover, I actively participated in the technical writing of the jour-
nal paper resulting from this project.

Paper 2: Branching Processes for QuickCheck Generators I developed
a generic meta-programming mechanism for deriving random genera-
tors using this model based on branching processes (the first version of
DRAGEN). This includes developing an adjustable optimization process
for the stochastic parameters, based on different statistical goodness-of-
fit measures. This is hidden behind a simple generators specification in-
terface.

The technical writing of this paper was initially done in equal parts
between Alejandro and I, with John Hughes joining us at later stages
with invaluable feedback.

Paper 3: Generating Random Structurally Rich Algebraic Data Type
Values I extended our previous derivation tool and its underlying stochas-
tic model with support for extracting and generating such patterns auto-
matically. I later extended this mechanism to also contemplate extracting
abstract interfaces from the user codebase, which greatly improved the
performance of the derived generators.

The technical writing of this paper was done by both authors jointly.

Paper 4: Deriving Compositional Random Generators I carried out
most of the technical development of this idea, using both meta-pro-
gramming and type-level features available in Haskell.

The majority of the writing was initially done by me.

This work was funded by the Swedish Foundation for Strategic Re-
search (SSF) under the project Octopi (Ref. RIT17-0023) and WebSec (Ref.
RIT17-0011) as well as the Swedish research agency Vetenskapsrådet.

CHAPTER 0. INTRODUCTION 13

References
1. B. Arkin, S. Stender, and G. McGraw. Software penetration testing. IEEE

Security Privacy, 2005.
2. T. Arts, J. Hughes, U. Norell, and H. Svensson. Testing AUTOSAR software

with QuickCheck. In In Proc. of IEEE International Conference on Software
Testing, Verification and Validation, ICST Workshops, 2015.

3. Thomas Arts, Laura M. Castro, and John Hughes. Testing Erlang data types
with Quviq Quickcheck. In Proceedings of the 7th ACM SIGPLAN Workshop on
ERLANG, ERLANG ’08, pages 1–8, New York, NY, USA, 2008. ACM.

4. Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing tele-
coms software with Quviq QuickCheck. In Proceedings of the 2006 ACM SIG-
PLAN workshop on Erlang, pages 2–10, 2006.

5. Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 1032–
1043. ACM, 2016.

6. Rudy Braquehais and Colin Runciman. Fitspec: refining property sets for
functional testing. In Proceedings of the 9th International Symposium on Haskell,
Haskell 2016, Nara, Japan, September 22-23, 2016, pages 1–12, 2016.

7. Lukas Bulwahn. The new QuickCheck for isabelle. In International Conference
on Certified Programs and Proofs, pages 92–108. Springer, 2012.

8. CACA Labs. zzuf - multi-purpose fuzzer.
http://caca.zoy.org/wiki/zzuf, 2010.

9. Sang Kil Cha, Maverick Woo, and David Brumley. Program-Adaptive Mu-
tational Fuzzing. In Proceedings of the 2015 IEEE Symposium on Security and
Privacy, SP ’15, pages 725–741, 2015.

10. K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random
testing of Haskell programs. In Proc. of the ACM SIGPLAN International
Conference on Functional Programming (ICFP), 2000.

11. Koen Claessen, Nicholas Smallbone, and John Hughes. QuickSpec: Guessing
formal specifications using testing. In Proceedings of the 4th International
Conference on Tests and Proofs, TAP 2010, Málaga, Spain, July 1-2, 2010., pages
6–21, 2010.

12. Deja vu Security. Peach: a smartfuzzer capable of performing both genera-
tion and mutation based fuzzing. http://peachfuzzer.com/, 2007.

13. J. Duregård, P. Jansson, and M. Wang. Feat: Functional enumeration of alge-
braic types. In Proc. of the ACM SIGPLAN Int. Symp. on Haskell, 2012.

14. Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based
Whitebox Fuzzing. SIGPLAN Not., 2008.

15. Patrice Godefroid, Michael Y. Levin, and David A. Molnar. SAGE: whitebox
fuzzing for security testing. Commun. ACM, 2012.

16. Google. honggfuzz: a general-purpose, easy-to-use fuzzer with interesting
analysis options. https://github.com/aoh/radamsa, 2010.

17. Gustavo Grieco, Martín Ceresa, and Pablo Buiras. QuickFuzz: An automatic
random fuzzer for common file formats. In Proceedings of the 9th International
Symposium on Haskell, Haskell 2016, pages 13–20, New York, NY, USA, 2016.
ACM.

18. Hackage. The Haskell community’s central package archive of open source
software. http://hackage.haskell.org/, 2010.

http://caca.zoy.org/wiki/zzuf
http://peachfuzzer.com/
https://github.com/aoh/radamsa
http://hackage.haskell.org/

14 4. CONTRIBUTIONS

19. Paul Holser. junit-quickcheck: Property-based testing, JUnit-style, 2019.
20. J. Hughes, U. Norell, N. Smallbone, and T. Arts. Find more bugs with

QuickCheck! In The IEEE/ACM International Workshop on Automation of Soft-
ware Test (AST), 2016.

21. John Hughes. QuickCheck testing for fun and profit. In International Sympo-
sium on Practical Aspects of Declarative Languages, pages 1–32. Springer, 2007.

22. H. Kiriyama, H. Aotani, and H. Masuhara. A lightweight optimization tech-
nique for data types a la carte. In Companion Proceedings of the 15th Int. Con-
ference on Modularity, MODULARITY 2016, New York, NY, USA, 2016. ACM.

23. M. Zalewski. American Fuzzy Lop: a security-oriented fuzzer.
http://lcamtuf.coredump.cx/afl/, 2010.

24. J. Midtgaard, M. N. Justesen, P. Kasting, F. Nielson, and H. R. Nielson. Effect-
driven QuickChecking of compilers. In Proceedings of the ACM on Program-
ming Languages, Volume 1, (ICFP), 2017.

25. Charlie Miller and Zachary NJ Peterson. Analysis of mutation and
generation-based fuzzing. Independent Security Evaluators, Tech. Rep, 2007.

26. Mozilla. Dharma: a generation-based, context-free grammar fuzzer.
https://github.com/MozillaSecurity/dharma, 2015.

27. Neil Mitchell . Data.Derive is a library and a tool for deriving instances for
Haskell programs. http://hackage.haskell.org/package/derive,
2006.

28. Oulu University Secure Programming Group. A Crash Course to Radamsa.
https://github.com/aoh/radamsa, 2010.

29. Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexandru Raz-
van Caciulescu, and Abhik Roychoudhury. Smart greybox fuzzing. IEEE
Transactions on Software Engineering, 2019.

30. Lee Pike. Smartcheck: automatic and efficient counterexample reduction
and generalization. In Proceedings of the 2014 ACM SIGPLAN symposium on
Haskell, pages 53–64, 2014.

31. T. Sheard and Simon L. Peyton Jones. Template meta-programming for
Haskell. SIGPLAN Notices, 37(12):60–75, 2002.

32. Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional, 2007.

33. Wouter Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–436, July
2008.

34. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’89, pages 60–76, 1989.

http://lcamtuf.coredump.cx/afl/
https://github.com/MozillaSecurity/dharma
http://hackage.haskell.org/package/derive
https://github.com/aoh/radamsa

	Introduction
	QuickFuzz Testing For Fun And Profit
	Branching Processes for QuickCheck Generators
	Generating Random Structurally Rich Algebraic Data Type Values
	Deriving Compositional Random Generators

