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Abstract
Due to the advent of powerful solvers, today linear programming has seen many applications in production and routing. In this
publication,we presentmixed-integer linear programming as applied to scheduling geodetic very-long-baseline interferometry
(VLBI) observations. The approach uses combinatorial optimization and formulates the scheduling task as a mixed-integer
linear program. Within this new method, the schedule is considered as an entity containing all possible observations of an
observing session at the same time, leading to a global optimum. In our example, the optimum is found by maximizing the sky
coverage score. The sky coverage score is computed by a hierarchical partitioning of the local sky above each telescope into a
number of cells. Each cell including at least one observation adds a certain gain to the score. The method is computationally
expensive and this publication may be ahead of its time for large networks and large numbers of VLBI observations. However,
considering that developments of solvers for combinatorial optimization are progressing rapidly and that computers increase
in performance, the usefulness of this approach may come up again in some distant future. Nevertheless, readers may be
prompted to look into these optimization methods already today seeing that they are available also in the geodetic literature.
The validity of the concept and the applicability of the logic are demonstrated by evaluating test schedules for five 1-h,
single-baseline Intensive VLBI sessions. Compared to schedules that were produced with the scheduling software sked, the
number of observations per session is increased on average by three observations and the simulated precision of UT1-UTC
is improved in four out of five cases (6 µs average improvement in quadrature). Moreover, a simplified and thus much faster
version of the mixed-integer linear program has been developed for modern VLBI Global Observing System telescopes.

Keywords Combinatorial optimization · Mixed-integer linear programming · Geodetic VLBI · Scheduling · Local sky
coverage · VGOS
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1 Introduction andmotivation

Through immense progress in the development of the
respective solvers, today mixed-integer linear programming
(MILP) has many applications in production and plan-
ning. In this publication, we demonstrate its applicability to
the scheduling process of very-long-baseline interferometry
(VLBI, Sovers et al. 1998) which has many similarities to
routing but also complications beyond.

VLBI is a space geodetic technique used for the mainte-
nance of the International TerrestrialReferenceFrame (ITRF,
Altamimi et al. 2016) and the International Celestial Refer-
ence Frame (ICRF, Fey et al. 2015). Both reference frames
are essential for the determination of geophysical phenom-
ena such as sea-level rise or plate tectonic movements, as
well as for precise navigation on Earth and in space.

Furthermore,VLBI is the only technique able to determine
without hypothesis all transformation parameters between
the ICRF and the ITRF, i.e., the Earth orientation param-
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eters (EOPs). VLBI is especially important for the deter-
mination of the Earth’s phase of rotation UT1 (Universal
Time) which is commonly parameterized as the differ-
ence UT1-UTC with respect to Universal Time Coordi-
nated (UTC) derived by atomic clocks (Lambeck 1980).
To guarantee the availability of UT1-UTC results every
day, the network sessions of 24-h duration carried out by
the International VLBI Service for Geodesy and Astrom-
etry (IVS, Nothnagel et al. 2017) are complemented by
daily 1-h-long, so-called Intensive sessions (Nothnagel and
Schnell 2008) that have the only purpose to determine
UT1-UTC.

VLBI measurements need an active scheduling of the
observations because it has to be guaranteed that two or more
radio telescopes located on the Earth always simultaneously
observe the same compact extragalactic radio sources, such
as quasars, to form a radio interferometer. The radio tele-
scopes are usually located as far apart as several thousand
kilometers. Thus, the visible sky above each radio telescope
is different, and only a subset of common radio sources
can be observed by two or more telescopes at any time.
VLBI scheduling is a combinatorial optimization problem
determining which radio telescopes should observe which
source at what time and for how long in order to achieve
an optimal geometric stability and precision of the final data
adjustment.

Existing scheduling approaches are all heuristic and
sequential, lacking a view of the entire time period to be
scheduled and the constantly changingoptimal optionswhich
might be excluded because of previous decisions. In this
paper, we present a new approach for a VLBI scheduling pro-
gramwhich finds the schedule with the optimal sky coverage
considering the geometries at the whole time period as a sin-
gle decision entity using mixed-integer linear programming,
i.e., we formalize the optimization problem as a linear objec-
tive function with a set of linear inequality constraints over a
set of variables. In contrast to pure linear programming (LP),
which requires that each variable receives a real number, in
mixed-integer linear programming (MILP) we can require
that a pre-defined set of variables receives integer values.
This additional degree of freedom provides us with the pos-
sibility of formulating binary decisions problems, such as
the selection of observations. On the other hand, this addi-
tional strength makes it NP-hard1 to find a solution for a
mixed-integer linear programming formulation,while for lin-
ear programming this is possible in polynomial time. Despite
this computational hardness, highly specialized solvers (e.g.,
CPLEX (2015) andGurobi Optimization (2019)) can be used
for solving real-world instances of mixed-integer linear pro-
gramming in adequate time (Bixby and Rothberg 2007).

1 ForNP-hardproblems the existence of an efficient and exact algorithm
is extremely unlikely Garey and Johnson (1979).

In particular, with the increasing computational power of
servers and the ongoing development of the solvers, integer
linear programming specifically and mathematical program-
ming in general have become a powerful and generic tool
for combinatoric optimization. One of our main contribu-
tions is the transfer of the corresponding scheduling problem
with its manifold geometric and technical constraints into
a mixed-integer programming formulation. We describe the
general setup of this scheduling algorithm emphasizing the
logic behind it. To that end, we focus on the test case of
single-baseline sessions of only 1-hour duration for the deter-
mination of UT1-UTC (so-called Intensives). However, the
basic concepts can be transferred to more general problem
settings.

All existing and frequently used scheduling strategies have
in common that they take a sequential approach. This means
that the observations are scheduled chronologically and that
a new observation is planned based on the already exist-
ing ones. The most commonly used software for producing
geodetic schedules is currently the sked package (Gipson
2016) which has its origin in the early 1980s and which
started off requiring that each scan was selected manually.
In the following years, an automatic selection process was
added featuring a rough sky coverage optimization option.
The selection criterion was how well the observations were
distributed on the local sky above each station. This is due to
that a good local sky coverage is important for the determi-
nation of the delay caused by the wet part of the troposphere.

Later, Steufmehl (1994) extended sked with a dynamic
method based on covariance analysis in analogy to the opti-
mization of geodetic networks. New observations are chosen
such that the average variance of the estimated parameters is
minimized. In the approach of Sun et al. (2014), the obser-
vations are chosen so that each source in the list of candidate
radio sources is observed in a well-balanced manner, opti-
mizing the sampling of the complete celestial sphere. For
short-duration, single-baseline sessions employing twin tele-
scopes, Leek et al. (2015) developed a criterion based on
impact factors. The impact factors depend on the Jacobian
matrix and the covariance matrix of the observations and are
used to find the most influential observations.

Mathematical programming formulations have been used
for scheduling problems before (Williams 2013), for exam-
ple, for the job shop scheduling problem (Błażewicz et al.
1996), in which the sequence of jobs on machines has to be
determined. Furthermore, there are models for most forms
of transportation (Barnhart and Laporte 2007) such as flight
and crew schedules for airplanes (Ball et al. 2007), passen-
ger railway transportation (Caprara et al. 2007; Fügenschuh
et al. 2006) or maritime transportation (Christiansen et al.
2007). Further examples for integer linear programming
(ILP) applied to scheduling problems are the scheduling of
sport events (Nemhauser and Trick 1998; Durán et al. 2007)
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and the scheduling of physicians in the emergency room
(Beaulieu et al. 2000). More related, mathematical program-
ming has also been applied for scheduling Earth observations
via satellites, e.g., Marinelli et al. (2011) and Wang et al.
(2016).Moreover, several authors have presented approaches
to scheduling the observations of astronomical telescopes.
However, to the best of our knowledge mathematical pro-
gramming has not been applied to scheduling problems in
geodetic VLBI before.

Usually, heuristic methods have been proposed, such as
iteratively choosing the observation that requires the tele-
scope to slew as little as possible (Moser and van Straten
2018). Johnston and Adorf (1992) formalized the problem
of scheduling the Hubble Space Telescope as a nonlin-
ear 0-1 integer program and applied a heuristic neural
network algorithm for computing solutions. Giuliano and
Johnston (2008) presented a heuristic approach based on evo-
lutionary algorithms for scheduling the James Webb Space
Telescope.

Lampoudi and Saunders (2013) developed an ILP-based
optimization approach for scheduling telescope networks,
and Lampoudi et al. (2015) presented experimental results
with the exact mathematical solver gurobi, which we also
used for our work. However, while the general methodol-
ogy of their work is similar to ours, the scheduling problems
considered by them and by us are very different.More specif-
ically, the method of Lampoudi et al. (2015) deals with
requests of researchers for observation time, which would
allow the researchers to conduct their experiments. Schedul-
ing, in this sense, means to allocate a time slot for each
request. The problem that we aim to solve, however, is to
schedule every single measurement, each of which typically
takes not longer than a few minutes, while considering geo-
metric constraints that are specific for geodetic VLBI. A
more detailed review of scheduling approaches in astronomy
with a focus on scheduling networks of radio telescopes is
provided by Buchner (2011), who notes that in typical appli-
cations it is ‘not a big deal to lose 15min of observation,’
and thus, a rather coarse discretization of time is justifiable.
This is very different in our application, however, in which
a typical 24-h experiment incorporates several thousand
observations.

The main challenge of scheduling geodetic VLBI exper-
iments is that the problem is not purely combinatoric, but
requires geometric constraints and objectives that are highly
problem-specific. Most prominently, the solutions should
maximize the geometric distributions of the observations
optimizing the local sky coverage at each station. For that
purpose, we present a new score that is developed based on
existing approaches (Sun et al. 2014) and that is used for rat-
ing the sky coverage of the computed schedules. However,
also other geometric and more technical constraints need to
be taken into account. For example, due to the cables connect-

ing the moving and non-moving part of the radio telescope,
the degree of rotation is restricted. Further, the shading of
each radio telescope caused by terrain, buildings and veg-
etation has to be considered when pointing the telescope.
All these constraints make the problem of controlling the
radio telescopes for geodetic VLBI to be a complex and non-
standard scheduling problem. We have tested the proposed
approach on 1-h, single-baseline Intensive sessions for daily
determinations ofUT1-UTC.Compared to the software sked,
more observations were found and the uncertainty of UT1-
UTC was decreased in four out of the five sessions that we
investigated.

The paper is structured as follows. In Sect. 2, we first
present the VLBI scheduling problem in detail discussing all
its requirements and constraints taken into account. After-
ward, in Sect. 3 we introduce a newly developed formal
definitionof the score used for rating the sky coverage. For the
convenience of readers who are not familiar with mathemat-
ical programming, we give a short and general introduction
to this technique in Sect. 4. In Sect. 5, we then present
a mathematical formalization of the scheduling problem,
which we then use in Sect. 6 to give a basic mathematical
programming formulation. This formulation comprises all
constraints that are necessary to obtain a feasible schedul-
ing and may be also used as starting point for future work
for related problems. However, this formulation is not suffi-
cient to be deployed in practice for the considered problem
setting. Further extensions that can be plugged in to model
technical details such as the cable wrap of the radio tele-
scope are given in Appendix B. In Sect. 7, we introduce
simplifications to our model that can be applied to mod-
ern VLBI Global Observing System (VGOS) telescopes. In
Sect. 8, we then evaluate the approach by investigating the
standard deviations of the estimated parameters, the sky cov-
erage and the number of observations. Finally, in Sect. 9
we conclude the paper and give a short outlook on future
work.

2 Problem setting

In this section, we shortly describe the overall problem set-
ting, emphasizing the technical challenges to be solved when
creating a schedule for radio telescopes in the context of
geodetic VLBI. We first note that the radio telescopes used
for VLBI are directional antennas that need active control,
i.e., their movements have to be scheduled. The scheduling
process of VLBI sessions determines which radio telescopes
observe which source at what time and for how long. It aims
at finding the best possible observation sequencewith respect
to a specific criterion, such as the sky coverage or the vari-
ance of the target parameters. In this paper, we present an
approach that optimizes a newly developed score for the local
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Fig. 1 Sky plots with source
transits on January 4, 2018,
18:30–19:30 UT. The blue
transits are visible from both
stations. The gray transits are
only visible at the corresponding
station. On the northern
hemisphere, the sources are
moving clockwise around the
pole of the Earth rotation axis,
which is marked with a black
dot. The thick black lines are the
station-specific horizon masks,
and the orange line represents
the transit of the Sun

(a) (b)

sky coverage (Sect. 3). A good sky coverage is the key to
more accurate estimates of the target parameters, because it
is representing the geometric configuration and the quality
of the sampling of the troposphere.

In this paper, we focus on Intensive sessions for VLBI
which means that each session takes one hour and only two
telescopes are involved. In general, this implies that only
sources that are visible from two stations simultaneously are
possible candidates for an observation. As the radio tele-
scopes are typically located far away from each other, the
sky above each radio telescope is different and only a subset
of all sources is visible from both stations at the same time.

Furthermore, the shading of each radio telescope caused
by terrain, buildings and vegetation has to be taken into
account when controlling the movement of the telescopes.
For this purpose, the local horizon at each station is modeled
with a horizon mask. The general elevation limit is set to
some single-digit value depending on the type of the VLBI
session. To keep our results comparable to the sked results,
we fix this limit to 8◦. In Fig. 1, the transits of visible sources
are illustrated exemplarily for one Intensive session.

The duration of an observation has to be long enough so
that a specified signal-to-noise ratio (SNR) is exceeded. The
latter depends on the observation time, the correlated flux
density of the observed source, the combined sensitivity of
each telescope and its receiver, and the total recorded band-
width.

Another aspect is the duration required to slew the tele-
scope from one source to another. This duration depends
on the rotational speed of the telescopes. Additionally, the
same source should not be observed in succession, because
the same part of the sky would be observed again and no
further geometric information is gathered. Thus, a specified
time has to pass before the same source should be observed
again.

Finally, a rather technical restriction is that the telescopes
with an azimuth–elevation mount cannot rotate arbitrarily
often in the same direction around their azimuth axis because
of the cables connecting the movable part of the telescope
with the fixed one. To prevent the cables from tearing, the
telescope is restricted in its azimuthal movements, typically
to one and a half turns around the axis. This means that it
might be necessary to rotate the telescope in a certain direc-
tion, although the opposite direction comes with a smaller
rotational angle. The mechanism routing the cable is called
cable wrap. More details about geodetic VLBI scheduling
are given by Nothnagel (2018) and Gipson (2016).

3 Sky coverage score

The amount of water vapor in the atmosphere, which is
the driving element of refractive retardation of the signal,
is unpredictable because it is highly variable in space and
time (Davis et al. 1985). Thus, its impact on the delay cannot
be modeled precisely enough, but has to be estimated in the
data analysis process. The common parameter for all obser-
vations of a certain time period, say one hour, is the zenith
wet delay (ZWD). It can best be estimated if observations
with many different elevation angles contribute to the design
(or Jacobian) matrix of the least squares adjustment. This is
themotivationwhywe try to optimize the sky coverage of the
observations already at the time of preparing the observing
schedules.

In routineVLBI analysis, it is assumed that the atmosphere
above each station is rotationally symmetric. Thus, the wet
delay is estimated solely in zenith direction as a consolidat-
ing parameter employing a so-called mapping function to
relate the observations at individual elevation angles to the
zenith direction (Niell 1996). The tilt of the symmetry axis
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of the modeled atmosphere with respect to the zenith direc-
tion is often estimated in the form of gradient parameters, too
(MacMillan 1995). To model the temporal variations, ZWDs
are estimated with P-splines (Fahrmeir et al. 2013) using an
interval length of around 15–60min.

Apart from the ZWDs, additional parameters are esti-
mated, such as relative station clocks and station coordinates.
To distinguish between the impact of the station clocks and
the ZWD, observations at all elevation angles, especially at
low ones, are necessary.2 Moreover, the partial derivatives of
both the station height and the ZWD depend on the elevation
in the same way (Nilsson et al. 2013). Therefore, observa-
tions with many different elevation angles de-correlate the
station heights, the clocks and the ZWDs.

According to Steufmehl (1994), two limitations of the tro-
pospheric delay modeling have to be considered. First, the
mapping function does not transfer the delay from the direc-
tion of the observation into the zenith direction faultlessly.
The impact of this inaccuracy can be reduced with uniformly
spread observations in elevation in each P-spline interval.
Furthermore, the neutral atmosphere is turbulent; that is, the
atmosphere is never strictly rotationally symmetric. A good
coverage of all azimuth directions reduces this effect. Thus,
the systematic errors caused by the troposphere are reduced
by a spatially and temporally uniform distribution of obser-
vations at each station, which is referred to as a good local
sky coverage.

There is no standardized definition of the sky coverage.
In many cases, the local sky is partitioned into a single set
of cells of a certain geometric dimension and a count is
performed of howmany of these cells are coveredwith obser-
vations (e.g., Sun et al., 2014). A full score of the local sky
coverage within a pre-defined time period (score=1) may be
given if in each cell at least one observation is located. Thus,
the logic works in a way that for each cell with at least one
observation 1

N is added to the score where N is the number
of cells.

Unfortunately, this approach has the drawback that differ-
ent observation constellations have the same score, although
they should be rated differently; see Fig. 2. There are three
ways in which the configuration can be altered without
changing the score. First, the distribution of observations
within a cell has no impact. For example, two observations in
two adjacent cells that are located at the common cell border
are rated exactly as two observations located in the middle
of each cell. Secondly, the number of observations within a
cell has no impact. Consider two distributions with the same

2 The partial derivatives with respect to the clock offset and the ZWD
for an observation in zenith are both one. The lower the elevation, the
larger the derivative of the ZWD, which is the value of the mapping
function. Thus, observations at low elevations allow station clocks and
the ZWD to be well de-correlated.

number of observations as an example. One has two observa-
tions in each cell, and the other one has only one observation
in each cell except for one containing the remaining obser-
vations. The latter distribution is clearly worse, but has the
same score. Finally, the score is independent of the distribu-
tion of the cells with at least one observation. For example,
three nearby occupied cells would result in the same score
as three occupied cells which are far away from each other.

To avoid all these drawbacks, we propose a different
scheme working with multiple levels of partitioning. We use
several partitions simultaneously with an increasing number
Ni of cells with Ni < Ni+1. For each partition i , the score
Si , which is the number of occupied cells ni divided by the
total number of cells Ni , is computed. The total score S is
then obtained by summing up the individual scores of each
partition

S =
k∑

i=1

Si =
k∑

i=1

ni
Ni

, (1)

where k is the number of partitions. To reach the highest
possible score, each cell in each partition has to include at
least one observation. The individual contribution of a cell
belonging to the i th partition is 1

Ni
. Thus, the cells of the

roughest partition have the largest impact on the score. The
cell’s impact of the finer partitions is getting smaller. This
approach is rating the distribution of the observations on
the entire sky, but also the local distribution in parts of the
sky. The global distribution is rated by the roughest partition,
whereas the local structures are rated by the finer partitions.
To ensure that the entire sky is used, the roughest partition
should not havemore cells than observations.Making a rough
estimate based on the permitted observation duration is sat-
isfactory for this purpose.

The cells of each partition should be of equal surface
area and similar shape to ensure equal weights. A method
to achieve this is described by Beckers and Beckers (2012):
A disk is divided into concentric rings, and each ring is sub-
divided into several cells. Given the number of cells per ring,
the inner and outer radii can be computed for each ring such
that each cell has the same surface area. These cells are pro-
jected with the Lambert azimuthal equal-area projection to
the hemisphere. Beckers and Beckers (2012) describe how to
choose the number of cells per ring to obtain a similar aspect
ratio for each cell. Some examples are given in Fig. 3.

Since the atmosphere varies over time,we have to limit our
ranking to specific time periods. We may call such a period
the score period for which the score is computed according
to Eq. 1. The duration of the score periods can be adapted to
the interval length of the P-splines for the troposphere mod-
eling to ensure a good estimation of all coefficients. It is also
possible to create overlapping score periods to make the esti-
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Fig. 2 In each partition, six out of thirteen cells are selected. Thus, they have the same score, although the sky coverage is clearly different in each
sky plot

(a) partition into 13
cells

(b) partition into 50
cells

(c) partition into 300
cells

Fig. 3 Partitioning the hemisphere in cells of equal size according to Beckers and Beckers (2012). The number of cells in each ring is stated in
Table 1

Table 1 Hemisphere
partitioning setup. The partitions
are visualized in Fig. 3

Partition # Total cells # Cells per ring

1 2 3 4 5 6 7 8 9 10 11

a 13 1 4 8

b 50 1 6 11 15 17

c 300 1 10 14 20 26 30 35 38 41 42 43

mation more flexible. The total score for a newly generated
observing schedule of full duration of the session considering
the temporal and spatial sky coverage is

S =
u∑

t=1

k∑

i=1

S(t)
i =

u∑

t=1

k∑

i=1

n(t)
i

Ni
, (2)

where u is the number of score periods.
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4 Mixed-integer programming

For readers, who are not familiar with mathematical pro-
gramming, we give a short introduction starting with linear
programs (LPs) and integer linear programs (ILPs). Lin-
ear programming (Dantzig 1963; Papadimitriou and Steiglitz
1998; Robert 2007; Williams 2013) is a global optimization
method that asks for a vector x ∈ R minimizing the linear
objective function

Φ(x) = aT · x = a1 x1 + a2 x2 + · · · + an xn, (3)

subject to linear inequality constraints:

c11 x1 + c12 x2 + · · · + c1n xn ≤ b1
c21 x1 + c22 x2 + · · · + c2n xn ≤ b2

...

cm1 x1 + cm2 x2 + · · · + cmn xn ≤ bm .

(4)

In this context, n is the number of parameters, that is, the
dimensionality of the problem, and m is the number of con-
straints. The vector a contains the coefficients forming the
linear combination with the parameters x. The linear coef-
ficient linking the i th constraint with the j th parameter is
denoted with ci j . Each of the constraints can be interpreted
as a hyperplane dividing the solution space into two half
spaces. The constraints are restricting the parameters to be
within the so-called feasible region. In Fig. 4, this region,
the constraints and the objective function are visualized with
a two-dimensional example. The optimal solution is located
at the intersection of two hyperplanes. This is exploited by
algorithms solving linear programs (Dantzig 1963).

It is possible to restrict parameters to integer values, which
leads to integer linear programs. A linear program contain-
ing integer and continuous parameters is calledmixed-integer
linear programming (MILP). A special case is the restriction
of parameters to binary values. Binary parameters enable
the modeling of logical conditions. MILPs require in gen-
eral more computational resources than linear programs of
the same size; in fact, solving MILP formulations is NP-
hard (Garey and Johnson 1979) in general, while linear
programming formulations can be solved in polynomial time
(Williams 2013).

In this paper, we use an MILP for scheduling VLBI ses-
sions.While linear programs canbe solved efficiently, solvers
for integer linear programs have a worst-case running time
that is exponential in the problem size. On the other hand,
integer linear programming has turned out to be a very ver-
satile approach that has been successfully applied to a large
range of combinatorial optimization problems.

5 Formal model

In this section, we formalize the problem of schedulingVLBI
sessions with multiple radio telescopes for integer program-
ming. We are given a set Q = {q1, q2, . . . , qu} of sources
that are possible candidates for observations. Further, we are
given a set S = {s1, s2, . . . , sv} of stations. Each station cor-
responds to one radio telescope located on Earth. We define
our basic model such that it supports an arbitrary number of
stations, while in our evaluation of the model we restrict our-
selves to the special case of two radio telescopes. The sources
are observed within a pre-defined session described by the
time interval T ⊆ R. We assume that for each source we are
given its exact trajectory, which allows us to pre-compute the
times of its visibility for a given location on Earth. Hence,
we can assume that for a station s ∈ S and a source q ∈ Q
we are given the function vs,q : T → {0, 1}, which models
the visibility of the source q from s. We say that a source q is
visible from s at time t ∈ T if vs,q(t) = 1 and it is not visible
if vs,q(t) = 0; for the computation of vs,q , we refer to Noth-
nagel (2018). A transit hs,q of q over s is a maximally long
time interval I ⊆ T such that for each point t ∈ I in time q
is visible from s; that is, for all t ∈ I we have vs,q(t) = 1.
We denote the set of all transits of q over s by Hs .

In order to observe a source, the telescope at a station
rotates accordingly in the first step and then tracks the source
in the second step. We call the first step slewing and the
second step tracking. During tracking, the received signals
are recorded. Both steps constitute one activity of a telescope
forming a connected entity of the scheduling process.We call
the point in time when the activity switches from the slewing
step to the tracking step the switch time.

In our problem setting, we only consider observations of
sources that are conducted by at least two stations simulta-
neously. Thus, we model an observation of a source q as a
tuple (a1, a2) of activities of two different stations such that
two requirements are fulfilled:

R1 both activities track the source q,
R2 the tracking steps, being part of the respective activities,

start at the same time and have the same duration.

A single observation o consists of two tracking steps being
part of the respective activities. We observe that, by require-
ment R2, this is well defined. A schedule U = (A, O) of a
set Q of sources and a set S of stations consist of a set A of
activities and a set O ⊆ A × A of observations such that

1. each station s ∈ S executes at most one activity a ∈ A
at the same time,

2. for each observation o ∈ O , the duration of its tracking
step is longer than the minimal duration required to reach
a certain SNR of o,
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Fig. 4 Example of a 2D linear
program. The objective function
is x1 + x2 and its value is
indicated by the color bar. The
three inequality constraints are
visualized with blue lines and
the intersections with red points.
The feasible region is marked
with a blue pattern. The
maximum is located at point B.
There is no unique minimum,
instead all points on the segment
AC are minimal
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3. for each activity A, the slewing duration is longer than
theminimal duration required to rotate the telescope from
the last observed source to the next one and

4. only visible sources are observed.

For a given scheduleU , we evaluate its sky coveragew(U),
which we formalize as follows. Following the concepts of
Sect. 3, we introduce k levels of granularity. For each level i ,
we partition the hemisphere above the station s ∈ S into a set
Ci of cells with equal area; with increasing level, the number
of cells in Ci increases. To keep the presentation easy, we
consider only one score period for the entire session. It is
straightforward to extend the objective function to evaluate
multiple score periods. We denote the union of all those sets
by Cs . For each cell c ∈ Cs , we determine a score w(c) as
described in Sect. 3. Here, w(c) corresponds to the fraction
in Eq. 1. A cell c ∈ Cs is occupied by an activity a of s if the
observed source of the activity is located within the cell at
the switch time of a. Hence, for a schedule U and a station
s ∈ S we obtain a set Ls ⊆ Cs of cells that are occupied
by the activities of s in U . We aim at finding a schedule that
maximizes the sky coverage among all possible schedules,
which is

max w(U) =
∑

s∈S

∑

c∈Ls

w(c). (5)

Other common optimization criteria for scheduling are
based on the covariance matrix of the estimated parameters,
for example the trace of this matrix. However, computing the
trace—or any other value based on the covariance matrix—
using a linear combination of the (binary) parameters in a
schedule U is not possible because a matrix inversion is nec-
essary to compute the covariance matrix. That is the reason
for only using the sky coverage score.

Wenote that the presented formalizationdescribes the core
of our model, which can be used as starting point for further
components (e.g., supporting constraints on cable wrap). In
Sect. 6, we present an implementation of the formal model,
and inAppendixB,we describe how to adapt this basicmodel
such that it can be deployed in practice.

6 Optimization approach

In this section, we present the basic MILP model that we use
to create a geodetic VLBI schedule. To keep the presentation
simple, thismodel only comprises themost fundamental con-
cepts and ideas. InAppendixB,we present further extensions
that are necessary to apply the approach in practice, such as
the model for the cable wrap.

Roughly speaking, we discretize the time interval T of
the session into a finite set of subintervals. We chose these
subintervals such that for each station each subinterval can
contain at most one starting point of at most one candidate
activity and such that a source leaves/enters a cell of a par-
tition only at times that correspond to the boundaries of that
subinterval. This allows us to structure the solution space
by reformulating the problem as follows. We assign to each
subinterval one candidate activity. The idea is that the switch
time of the candidate activity lies in that interval. The task is
then to select a subset of these candidate activities. This in
particular means that for each selected candidate activity we
also need to define its exact switch time as well as its start
and end times. Further, for a selected candidate activity we
need to specify the observed source (see Fig. 5). The selec-
tion is done in such a way that it maximizes the score of the
sky coverage over all possible selections. We note that this is
a mere reformulation of the optimization problem presented
in Sect. 5, but the optimal solution is not lost by the applied
discretization.
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Fig. 5 Illustration of the basic model. This simplified example involves
three sources, two stations and 30 atomic intervals.Moreover, one possi-
ble schedule consisting of four observations is included. To each source,
a different color is assigned. In the sky plots, the transit of the sources
is shown as colored arcs. The observations are marked with red circles
and enumerated chronologically. In the below timeline, the boundaries
of the atomic interval are visualized with gray dotted vertical lines.
There is a horizontal line for each station and each source. The time in
which a source is visible from a station is highlighted by its color and
an increased thickness. If the source is not visible, the corresponding
horizontal line remains gray. The activities are marked on the timeline

with colored rectangles. The switch times of the activities are labeled
with the number of the corresponding observation and are marked with
a black vertical bar which divides the rectangle. The left part of each
rectangle represents the slewing phase and the right part the tracking
phase. Observations are only possible if both stations can see the same
source at the same time. (Corresponding horizontal lines are thick and
colored.) In this illustration, only one possible schedule is shown; how-
ever, there are many possible schedules. For instance, the blue source
could be observed before the orange one. To decide which sequence is
the best, we use the MILP

We now formalize these ideas as MILP by starting with
the discretization of the session interval T . Let Tdt be the set
of the points in time that partition T into intervals of equal
length dt , which is set to the shortest permitted scan duration.
Further, for a station s ∈ S, let Ts be the set of the points in
time when a visible source leaves a cell c ∈ Cs and enters
another cell c′ ∈ Cs . The points in time in the union of the
set Tdt and the sets Ts (s ∈ S) partition the interval T into
n intervals. These are the shortest and indivisible intervals
which we call atomic intervals. They serve as the smallest
units for the discretization of time intervals. For the deploy-
ment of the model in practice, we will simplify the atomic
intervals to the set Tdt (see Appendix B). Further, to each
atomic interval and each station, we assign a candidate activ-
ity whose tracking step starts within this interval; the actual
selection of the activity is done by the MILP approach. We
denote those activities of a station s ∈ S by a0s , a

1
s . . . , an−1

s
sorted in increasing chronological order and the set contain-

ing these activities by As . Further, for an activity a, we denote
its time interval by I (a).

Moreover, let B = {
(s, s′) ∈ S × S | s �= s′} be the set of

all possible baselines between the given stations. We assign
to each atomic interval and each baseline b ∈ B a possible
observation whose tracking phase starts within this interval;
the actual selection of the observation is done by the MILP
approach. We denote those observations of a baseline b ∈ B
by o0b, o

1
b . . . , on−1

b sorted in increasing chronological order
and the set containing these activities by Ob.

In the following, we introduce the variables, constraints
and the objective of the MILP model.

6.1 Variables

For each activity a ∈ As , we introduce the following vari-
ables and constants.
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Fig. 6 Example of time-related
variables for one activity and
one station. The variables in
parentheses refer to the atomic
interval containing the
time-related variable t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

slewing tracking

activity a

a.switchTime
(a.iSwitch)

a.startTime
(a.iStart)

a.stopTime
(a.iStop)

1. The binary variable a.isSelected ∈ {0, 1}. We interpret
the variable such that a.isSelected = 1 if the activity is
selected for the schedule andotherwisea.isSelected = 0.

2. For each sourceq ∈ Q, the binaryvariablea.isTracked(q)

∈ {0, 1}.We interpret the variable such thata.isTracked(q)

= 1 if q is observed by the station s during the tracking
step of a.

3. The continuous variable a.startTime ∈ T , which defines
the starting time of the activity.

4. The continuous variable a.switchTime ∈ I (a), which
defines the timewhen the activity switches from the slew-
ing step to the tracking step.

5. The continuous variable a.stopTime ∈ T , which defines
the time when the activity stops.

If a.isSelected = 0, the values of a.startTime, a.switchTime
and a.stopTime do not have any meaning. The variables
related to times are illustrated in Fig. 6.

For each baseline b ∈ B and each observation o ∈ Ob, we
introduce the binary variable o.isSelected ∈ {0, 1}.We inter-
pret the variable such that o.isSelected = 1 if the observation
is selected for the schedule and otherwise o.isSelected = 0.

Finally, for each cell c ∈ Cs of each station we introduce
the binary variable c.isOccupied ∈ {0, 1}. We interpret the
variable such that c.isOccupied = 1 if the cell contains a
selected activity of s.

6.2 Constraints

Next, we introduce the constraints of our basic MILP model
and explain them in detail.
Constraints on a Single Activity. For each station s and for
each activity a ∈ As , we introduce the constraint

∑

q∈Q
a.isTracked(q) = a.isSelected. (C1)

Constraint C1 enforces that each selected activity tracks
exactly one source.

Moreover, we need to ensure that a station s ∈ S only
tracks a source q ∈ Q that is visible. This particularly
requires that we can formulate implications of the form

if condition1 ∧ condition2 then expression1

≤ expression2, (6)

where condition1 and condition2 evaluate to zero or one
expressing the truth values true and false, respectively.
In order to ease the description in this section, we use that
notation. In Appendix A.1, we explain in detail how such
constraints can be systematically expressed in mixed-integer
programming formulations. For each station s ∈ S, each
activity a ∈ As and each source q ∈ Q, let h ∈ Hs,q be the
transit that either starts in I (a), but does not end in I (a) or
contains I (a). We introduce the following constraint if the
transit h exists

if a.isTracked(q) = 1 then a.switchTime ≥ h.start

(C2)

if a.isTracked(q) = 1 then a.stopTime ≤ h.end, (C3)

with h.start and h.end being the start time and the end time
of the transit h, respectively. Otherwise, if h does not exist,
we introduce the following constraint that ensures that the
station s does not track the source q during the activity a.

a.isTracked(q) = 0. (C4)

For the basic model, we assume a fixed minimal duration dA
for the slewing step and a fixed minimal duration dT for the
tracking step; in Appendix B, we explain how to relax this
assumption. For each station s and for each activity a ∈ As ,
we require

a.switchTime − a.startTime≥dA (C5)

a.stopTime − a.switchTime≥dT. (C6)

The duration dA and dT have to be positive; thus, Con-
straint C5 implies that a.startTime < a.switchTime and
Constraint C6 implies that a.switchTime < a.stopTime.
Constraints on Activities of the Same Station. We introduce
a constraint that ensures that a station s ∈ S executes at most
one activity at the same time. To that end, let a ∈ As and
a′ ∈ As be two activities such that the atomic interval of a
precedes the atomic interval of a′. We introduce
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if a.isSelected = 1 ∧ a′.isSelected = 1

then a.stopTime ≤ a′.startTime. (C7)

Constraints on Observations. For each baseline b ∈ B and
each observation o ∈ Ob, we introduce the following con-
straints. To that end, let a and a′ be the activities of o.

if o.isSelected = 1 then a.isSelected = 1 (C8)

if o.isSelected = 1 then a′.isSelected = 1 (C9)

if o.isSelected = 1 then a.switchTime = a′.switchTime.
(C10)

Constraint C8 and Constraint C9 ensure that the correspond-
ing activities are selected, if the observation is selected.
Constraint C10 guarantees that both radio telescopes start the
observation simultaneously. Further, for each source q ∈ Q
we require:

if a.isTracked(q) = 1 ∧ a′.isTracked(q) = 1

then o.isSelected = 1 (C11)

if o.isSelected = 1 then a.isTracked(q)

= a′.isTracked(q). (C12)

Constraint C11 ensures that the observation is selected if both
radio telescopes track the same source. To enforce that both
stations track the same source, Constraint C12 is introduced.

If an activity is selected, there has to be at least one addi-
tional selected activity of another station in the same atomic
interval to form a baseline for an observation. To formalize
this requirement, we introduce the following constraint for
each station s ∈ S and for each activity a ∈ As :

a.isSelected ≤
∑

o∈Os,a

o.isSelected, (C13)

with Os,a ⊆ {Ob|b ∈ B} being the set of all observations
that contain the activity a.
Constraints on Cells. Let Qc,a ⊆ Q be the subset of sources
that are located within the cell c ∈ Cs during the activity
a ∈ As at station s. For each activity a ∈ As and each cell
c ∈ Cs of station s, the following constraint is added.

c.isOccupied ≤
∑

q∈Qc,a

a.isTracked(q). (C14)

This ensures c.isOccupied = 0 if the sum is zero; that is, not
a single cell contains an observation. Else c.isOccupied can
be one or zero.

6.3 Objective

Subject to Constraints C1–C14, we maximize

max
∑

s∈S

∑

c∈Cs
w(c) · c.isOccupied.

By reason of this objective, c.isOccupiedwill always receive
the highest possible value, which is 0 if c does not con-
tain any observation due to Constraint C14 and otherwise 1.
Therefore, it correctlymeasures the sky coverage. For a given
input instance, consider the solution of the MILP formula-
tion, which in particular assigns to each variable o.isSelected
with o ∈ Ob and to each variable a.isSelected with a ∈ As

the value 1 or 0. Let

Aselected = {a ∈ As | s ∈ S and a.isSelected = 1}

and let

Oselected = {o ∈ os | s ∈ S and o.isSelected = 1}.

The tuple (Aselected, Oselected) forms a valid schedule for the
input instancemaximizing the total sky coverage.Altogether,
by construction we obtain the following theorem.

Theorem 1 The presented MILP formulation yields a valid
schedule that maximizes the sky coverage.

7 Simplifiedmodel for modern VGOS
telescopes

In Appendix B, we extend the basic model described in
Sect. 6. In particular, Constraints C5 and C6 fixing the slew-
ing and tracking duration to a constant value are replaced.
The slewing duration is mutable and depends on the source
positions, the slewing rates of the telescope and the cable
wrap (see Appendix B.4). The tracking duration is deter-
mined based on the SNR (Appendix B.1). Those extensions
enlarge the MILP significantly, leading to a longer runtime.
Thus, we have also investigated simplifications of the MILP
for modern VLBI telescopes.

The VLBI Global Observing System (VGOS) incor-
porates new telescopes that are smaller than the legacy
telescopes and can move much faster. VGOS-compatible
telescopes need only 30 s for a full rotation, while legacy
telescopes need several minutes. For example, the legacy
telescope at Wettzell needs 2min for a full rotation and the
legacy telescope at Kokee Park requires more than 3min.
In the following, we introduce simplifications that can be
applied to VGOS telescopes by reason of their fast rotation
speed.However, these simplifications limit the set of possible
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Fig. 7 The cable is illustrated
with a spiral. In the gray
highlighted area, the cable is
overlapping. Depending on the
source configuration, different
ways to slew from one source to
another are possible. In each
example, the point of departure
is marked with a black dot. In a,
the telescope has to rotate
counterclockwise, while in b it
could rotate either clockwise or
counterclockwise
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One possible rotation
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Two possible rotations(a) (b)

schedules, and only a subset of the schedules that are valid
in the original model need to be examined.

We simplify the scheduling problem by introducing regu-
lar observations, i.e., all observations have the same duration
and the lag between two subsequent observations is con-
stant. Moreover, we fix the beginning of the first observation.
Hence, the start time, stop time and switch time of all activ-
ities are pre-defined and are not determined by the LP,
meaning we can remove the variable startTime, switchTime
and stopTime. Then there are only binary variables simpli-
fying the MILP to a pure ILP.

In this setup, the slewing duration has to be fixed to the
time required for a full rotation, to ensure a valid schedule.
Due to the short maximal slewing duration of VGOS tele-
scopes, we can do this without loosing too much potential
observing time. This simplification should not be applied
to legacy telescopes, though, because too much unnecessary
timemay have been reserved for the slewing of the telescopes
when using a standard slewing duration. In order to specify
the start times of the observation, we have to redefine the
atomic intervals. Each atomic interval is exactly as long as
the constant observation duration, and between two atomic
intervals, there is a gap that corresponds to the slewing time.
In Fig. 8, these atomic intervals are highlighted in gray. The
observation durations (e.g. 30 s) match the atomic intervals,
and the slewing phases match the gap between the atomic
intervals. This leads to a schedule with regular observations;
thus, here we automatically schedule one observation per
minute. The first 30 s is reserved for the slewing of the tele-
scopes, while the remaining 30 s is used for the tracking or
rather the observation.

As a consequence, the constraints involving the variables
startTime, switchTime or stopTime can be removed from
the model or have to be reformulated. To ensure that only
visible sources are tracked, Constraint C4 has to be added
if necessary, but Constraint C2 and Constraint C3, which
constrain the switch and stop time, are not used. Moreover,

Constraint C5, C6, C7 and C10 are not needed, because the
start points of the observations are pre-defined.

Two of the features introduced in Appendix B, namely
the consideration of the SNR (see Appendix B.1) and the
constraint on subsequent observations of the same source
(see Appendix B.2), are also used in the simplified model for
VGOS telescopes.

To ensure that only sources are observed that reach a
certain SNR within the fixed observation time, we have to
apply Constraints C17 and C18, if necessary. Due to the fixed
observing time, observations can have an SNR that is much
higher than the specified minimal SNR.

To prevent that the same source is observed twice within
a specified time, we add Constraint C20 with the variable
switchTime referring to the start of the corresponding atomic
interval and not belonging to the parameters of the ILP.

Note that these simplifications are not reasonable, if the
observation duration is significantly shorter than the maxi-
mal slewing duration. For example, if sources are observed
only 10s, three quarters of the session would be spent on the
slewing and a lot of possible observation would be missed.

8 Evaluation

In this section, we evaluate the proposed MILP formula-
tion through concrete test runs. After describing the setup
(Sect. 8.1),wepresent the results of our evaluation (Sect. 8.2).

Apart from the following theoretical evaluation, four INT2
sessions3 were scheduled with a prototype of the presented
MILP and were observed successfully. Thus, the presented
approach is creating valid schedules. However, a bandwidth
of 8 MHz was used, although current INT2 sessions already
use 16MHz. Thus, a comparison of these sessions with other
recent INT2 sessions is not meaningful.

3 The session codes are: q18258, q18259, q18286 and q18287.
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t0 t2 t4 t6 t8 t10t1 t3 t5 t7 t9

Fig. 8 Illustration of atomic intervals for simplified VGOS model.
The atomic intervals are highlighted in gray. The tracking phases are
marked with blue solid arrows and match the atomic intervals. The

slewing phases are marked with dashed red arrows and match the gaps
between the atomic intervals. The activities are illustrated with black
dotted arrows

8.1 Setup for evaluation

The new scheduling approach was implemented in the Anal-
ysis Scheduling Combination Toolbox (ivg::ASCoT, Artz
et al. 2016; Halsig et al. 2017) that has been developed by the
VLBIGroup at theUniversity of Bonn. TheMILP (Sect. 5) is
solved with the Gurobi Optimizer,4 which is freely available
for academic purposes. The Gurobi Optimizer can speed up
the solution ofMILPswith parallel computations. Therefore,
a computer with two processors with 12 cores each is used
to compute the schedules. The solution of the MILP is CPU
and memory-intensive: The scheduling of an Intensive ses-
sion allocates about 80 GB RAM and lasts for several hours.
Thus, regular 24-h IVS sessions are not considered in this
section because of the limited hardware resources, and only
Intensive sessions involving two stations are considered.

There are two stop criteria. If the solution lasts longer than
aday, the optimization is stopped and the current best solution
is used. The second criterion is the difference between the
current lower bound of the objective function and the current
value of the objective function. This difference is called gap
and is given in percent. If the gap is zero, it is proved that
the solution is optimal with respect to the applied objective
function. If the gap is smaller than a specified value, the
optimization is stopped, too. Note that a gap larger than zero
does not necessarily mean that the current solution is not
already optimal. The scheduling approach is summarized in
Fig. 9.

Intensive sessions are usually analyzedwith a least squares
adjustment Koch (2013). By default, a clock offset, a clock
rate and a second-order clock term are estimated for one of
the two stations. Additionally, a ZWD offset for each station
and UT1-UTC are estimated. We compute the covariance
matrix of these parameters based on the schedules, which
is possible without any observation. The stochastic model is
based on the achieved SNR of each observation and does not
consider correlations.

The schedules createdwith theMILPwere comparedwith
those created with the software sked (Gipson 2016). The cri-
teria for the comparison were the score of the sky coverage,
the number of observations and the standard deviation of
UT1-UTC, which is included in the covariance matrix of the
estimated parameters. For ameaningful comparison between

4 http://www.gurobi.com/products/gurobi-optimizer.

sked and the MILP approach, the setup of both programs has
to be the same. Thus, the schedules created with MILP were
based on existing sked schedules. The following parameters
were adopted from the sked schedules:

– the involved stations including their sensitivity (system
equivalent flux density) and recording setup (bandwidth,
channels)

– the source and flux catalogs
– the minimal and maximal scan length
– the minimal SNR for the X and S bands
– the minimal allowed distance to the Sun
– the minimal duration before a source is observed again
– the horizon mask and the minimal allowed elevation
– the start and end of the session

Three different setups for MILP were used. All setups
used the three partitions visualized in Fig. 3 for the sky cov-
erage score. They differed in the constraints on the number
of observations and the number of score periods (see Sect. 3).
The setups are labeled with ‘M’ and introduced in the fol-
lowing.

M1 The number of observations was restricted to be equal
to the number of observations found by sked. Only one
score period was used for the computation of the sky
coverage.

M2 The number of observations was restricted to be equal
to or larger than the number of observations found by
sked. Again only one score periodwas used for the com-
putation of sky coverage. The solution of M1 was used
as start for this setup to speed up the solvers.

M3 There were no constraints on the number of observa-
tions. Two score periods with a duration of half an hour
were used for the computation of the sky coverage.

In order to evaluate the simplified model for VGOS tele-
scopes (Sect. 7), we created two additional schedules for
each session. The investigated sessions were INT1 ses-
sions involving the baseline from Wettzell, Germany, to
Kokee Park, Hawaii, USA. At both observatories, VGOS-
compatible telescopes and legacy telescopes are available.
We used the same time period for the schedules, but we
replaced the legacy telescopes with the VGOS telescopes.
According to the original/legacy schedules, we used the same
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Fig. 9 Flow diagram presenting
the scheduling approach. The
core of the approach is the
MILP incorporating all possible
schedules. It is highlighted dark
gray in the diagram. In each
iteration, the current value of the
objective function and the upper
bound of the objective function
are computed. When both values
coincide, the optimal solution is
found
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SNR target (X band) and the same observation time of 40 s 5

The score periods lasted for 10min and had a 5min over-
lap. Moreover, we used a broadband setup with 32 channels
(using only one polarization) with 32 MHz bandwidth each
for the computation of the SNR. This is definitely lower than
with two polarizations, but this is uncritical for this test. We
labeled this solutions with ‘V.’

V1 The simplified model (Sect. 7) for VGOS telescopes
was used to create the schedules. The observations were
scheduled regularly. Each activity lasted for 70 s. The
first 30 s was reserved for the slewing, whereas the
remaining 40 s was used for the observation.

V2 Themodel described in Appendix Bmodeling the slew-
ing duration was used. However, the observation time
was restricted to 40 s, too.

8.2 Results

We solved the MILP for five Intensive sessions with three
different setups. In most cases, the target gap of 0.1% was

5 Here, we used 40s for the observation duration because the previous
test cases M1–M3 showed that we get reasonable solution within a
runtime of one day. This does not hamper the conclusions of this test.

not reached (see the column denoted with ‘gap’ in Table 2)
and the solutionwas stopped after 24h of computation. Thus,
about 15days of computation were necessary to create the
results. This is also the reason for the rather small sample of
investigated sessions.

We start with comparing the solution of M1 with sked. In
Table2, column gap, it can be seen that the solution type M1
reached an optimal state (gap=0.0) in two cases and that in
the remaining three cases it is very close to the optimum. The
sky coverage score or the objective function is always bet-
ter for the solution of M1 compared with sked (Table 3). In
three out of five cases, the standard deviation of the estimated
UT1-UTC parameter is better, too. However, the improve-
ment in quadrature (IIQ) is rather small, expect for session
18APR03XU (Table 4).

For the sessions 18MAY02XUand 18JUN01XU, the stan-
dard deviation ofUT1-UTC is better for the schedules created
with sked. However, the difference to the latter is marginal.
This indicates that a good sky coverage score—as defined
for solution M1—not necessarily leads to a solution with
the smallest variance of UT1-UTC. In Fig. 10, the schedules
created with sked and M1 are illustrated exemplarily for ses-
sion 18APR03XU. TheMILP approach schedules sources in
the east and west that are not scheduled by sked, so that the
observations cover a larger area of the sky plot. Moreover,
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Table 2 Comparison of the
schedules created with sked and
setups M1–M3 (see Sect. 8.1)

Session #Observations σUT1-UTC (μs) Gap (%)

sked M1 M2 M3 sked M1 M2 M3 M1 M2 M3

18FEB02XU 24 24 24 25 8.7 8.5 8.5 7.6 0.4 3.0 10.6

18MAR01XU 19 19 24 23 11.7 11.2 9.4 9.6 0.0 3.6 10.8

18APR03XU 20 20 20 22 11.2 8.4 8.4 8.6 1.2 7.9 13.3

18MAY02XU 18 18 20 24 8.3 10.5 10.0 8.3 0.0 9.4 14.4

18JUN01XU 21 21 21 24 10.9 11.0 11.0 9.7 0.2 5.9 12.2

The first column contains the session codes. In columns 2–5, you find the number of observations of the
corresponding scheduling approach. The theoretical standard deviation of the estimated parameter UT1-UTC
is given in columns 6–9. Additionally, the gap parameter, which is a measure of how close the schedule is to
the global optimum w.r.t. the sky coverage score, is given for setups M1–M3 in the last columns

Table 3 Values of the sky coverage score, i.e., the objective function,
for the schedules created with sked and setups M1–M3. Two different
realizations of the proposed sky coverage score are used. One has only
one score period in which the cells are evaluated (60 min), and the other
has two score periods (30 min)

Session 60 min 30 min

sked M1 M2 sked M3

18FEB02XU 1.586 1.690 1.690 2.455 2.906

18MAR01XU 1.483 1.646 1.670 1.978 2.719

18APR03XU 1.456 1.670 1.670 2.379 2.812

18MAY02XU 1.483 1.683 1.696 2.162 2.843

18JUN01XU 1.376 1.633 1.633 2.215 2.796

The fist column corresponds to the session codes. The sky coverage
scores for setups M1 and M2 (column 3 and 4) were evaluated with
a temporal resolution of 60min, whereas the sky coverage score for
setup M3 (column 6) was evaluated with a resolution of 30min (see
Sect. 8.1). The sky coverage scores for the schedules created with sked
were evaluated with both temporal resolutions (columns 2 and 5)

Table 4 Improvement in quadrature of the accuracy of UT1-UTC with
respect to the solution provided by sked

Session IIQ (µs)

M1 M2 M3

18FEB02XU − 1.7 − 1.7 − 4.3

18MAR01XU − 3.3 − 7.0 − 6.6

18APR03XU − 7.4 − 7.4 − 7.3

18MAY02XU 6.4 5.5 0.5

18JUN01XU 1.5 1.5 − 5.0

The first column contains the session codes. The improvement in
quadrature is given in columns 2–4 for setups M1–M3. A negative
sign indicates that the standard deviation of the schedule created with
the MILP is smaller than the standard deviation of the schedule created
with sked

sked observes one source three times. These observations are
very close and thus do not improve the spatial coverage. The
schedule of M1 observes the same source at most twice.

Due to the missing constraints on the maximal number
of observations and the resulting more complex MILP, the

gap of M2 is larger compared with M1. On average, the gap
is 6% (Table 2). Only for the sessions 18MAR01XU and
18MAY02XU, additional observationswere scheduled using
M2. The gap of solutionM3 is even larger (on average 12%).
Nevertheless, for each session, additional observations were
found. M3 found more observations than M2 because of the
different objective function. InM3, each cell can be occupied
twice: once in the first half of the session and another time in
the second half of the session. Considering two observations
within the same cell of which one is located in the first half
of the session and the other in the second half, the second
observation increases the score for setup M3 but not for M2.
Thus, in setup M2 the MILP had no reason to schedule this
second observation (unless other constraints force it, like a
minimally required number of observations). Hence, speci-
fying the temporal and spatial resolution of the sky coverage
score high enough is essential to this approach (see M2 vs.
M3). Excluding session 18MAY02XU, the average improve-
ment in quadrature of UT1-UTC is 5.8 µs for solution M3.
A possible reason why the variance of UT1-UTC cannot be
improved for session 18MAY02XU is that no correlations
were used for the stochastic model.

To evaluate the simplified model, we compared the solu-
tion V1 (simplified model) with solution V2 (full model but
with fixed observation duration). There is a significant dif-
ference in the required runtime necessary to find the optimal
solution or rather a solution very close to it. The optimal
schedule for all five Intensive sessions was found in less than
a minute using the simplified model (solution V1). The solu-
tion of each schedule corresponding to the setup V2 was
stopped after 24 h. The schedules created with setup V1
always have 51 observations (Table 5). When using the full
model about 26 additional observations are found. Thus, the
standard deviation of UT1-UTC is also better in the V2 sce-
nario (more than one micro second). However, the simplified
model can be further improved. Considering the observable
part of the sky (Fig. 1), there is no need for a full rotation
around the azimuth in the case of the baseline Wettzell–
Kokee Park. In fact, the angle between the most westerly part
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Fig. 10 Sky plots of session
18APR03XU. Light gray
transits are visible only from the
station the sky plot corresponds
to. The blue transits are visible
from both stations. The dark part
of the blue transits has enough
SNR, whereas the light part does
not. Each red point corresponds
to an observation and it shows
the position of the source at the
beginning of the observation

M1sked

W
E
T
T
Z
E
L
L

K
O
K
E
E

P
A
R
K

Table 5 Comparison of the schedules created with the simplified (V1)
and the full model (V2) for VGOS telescopes (see Sect. 8.1). The first
column contains the session codes. Columns 2–3 include the number of
observations. In columns 4–5, the theoretical standard deviation of the
estimated parameter UT1-UTC is given. The gap parameter is given in
the last two columns. The smaller this value, the closer the schedule is
to the global optimum

Session #Observations σUT1-UTC (µs) Gap (%)

V1 V2 V1 V2 V1 V2

18FEB02XU 51 77 4.5 4.1 0.0 1.2

18MAR01XU 51 77 5.1 4.1 0.0 2.3

18APR03XU 51 77 4.8 4.0 0.0 1.9

18MAY02XU 51 78 6.5 5.2 0.0 1.4

18JUN01XU 51 78 5.1 4.1 0.0 2.2

of the visible sky and the most easterly part of the visible sky
is smaller than 180 degrees. Thus, the constant slewing time
could be reduced to 20 s without jeopardizing the validity of
the schedules. Moreover, in a postprocessing step, the time
not required for the slewing could be added to the observa-
tion time, if possible. These improvements would increase
the number of observations and their SNR.

You can find further applications and comparisons of the
simplified model in Corbin and Haas (2019).

9 Conclusions

Mixed-integer linear programming had been applied to opti-
mize production and routing for quite some time. In this
publication, we have shown that it can also be applied to
VLBI scheduling with its many constraints. For validation,
the new scheduling strategy using combinatorial optimiza-
tion has been integrated into the VLBI software ivg::ASCoT.
The set of all possible schedules satisfying the parameters of
a valid VLBI schedule with respect to visibility, slew times,
SNR, etc. is described with an MILP using inequality con-
straints.

The MILP maximizes the local sky coverage above each
station with respect to a newly developed score. It partitions
the sky into cells of equal size and similar shape multiple
times and enlarges the number of cells each time. An occu-
pied cell adds a gain to the sky coverage score depending
on its size. The advantage of this method is that the distri-
bution on the entire sky but also the local distribution of the
observations has an impact on the score.
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In order to evaluate the new approach, schedules already
created with the software sked were also computed with the
new approach using the same setup. Because of the long
runtime, only five Intensive sessions (see Sect. 8) could be
investigated in more detail. For all sessions, more observa-
tions were scheduled as compared with sked. In one case,
six additional observations were found. The standard devia-
tion of UT1-UTC could be reduced in four cases (on average
6 µs improvement in quadrature). Only for one session, no
improvement was achieved. Moreover, four Intensive ses-
sions created with a prototype of the presented MILP have
been observed, successfully. This indicates that the proposed
MILP creates valid schedules.

The runtime of the MILP depends on several parameters,
for example the number of sources, stations and atomic inter-
vals, as well as on the duration of the session. To find the
optimal solution of an Intensive session or a solution very
close to the optimum, several hours of computations were
necessary. However, the same problem can be described by
a variety of different MILP formulations, with different run-
times. We have focused on modeling the VLBI observation
process accurately and on avoiding strong simplifications
and discretizations. Due to the long running times of our
method, however, an interesting question for future research
is whether there are justifiable simplifications that lead to
an acceleration. For example, there could be more effec-
tive formulations for the cable wrap and the slewing of the
telescopes. In fact, this part of the model requires a lot of
constraints and variables and is the main reason for the long
runtime.

In the future, scheduling needs to be done for modern
VGOS telescopeswhich can reach anypoint on the skywithin
30s. For the time being, simplification of the scheduling pro-
cess can be achieved by setting the slewing duration as a fixed
parameter of 30 s for networks involving only fast-moving
VGOS telescopes as is done in the current VGOS test ses-
sions.With this restriction, the runtime is reduced drastically.
In a postprocessing step, the time not required for the slew-
ing could be added to the observation time, such that the idle
time is decreased, to further improve the results. However,
this should only be an interim stage as long as the solvers and
the computational power are the limiting factors. As soon as
the VGOS development group decides to quit the 30-second
scheme, the simplifications need to be abandoned again and
more sophisticated heuristics need to be applied.

For this, the solution of the MILP can be accelerated by
computing a schedule with a fast sequential approach as a
starting value for the MILP. Furthermore, instead of solving
one large MILP, the session could be subdivided into parts,
and for each subsession, a smaller MILP could be solved.

Finally, it can be stated that with this application we have
demonstrated that MILP can be applied in geodesy as well.
The MILP can be used in the future for the development

of faster heuristics optimizing the sky coverage score. It is
especially useful for evaluating those heuristics.
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A Technical details

A.1 Implications

The presentedMILP formulation particularly requires impli-
cations of the form

if condition then expression1 ≤ expression2, (7)

where condition either evaluates to zero or one expressing the
truth valuestrue andfalse, respectively. Such constraints
are expressed inmixed-integer programming formulations as
follows

expression1 − expression2 ≤ M (1 − condition),

where M is a constant chosen appropriately large. If
condition evaluates to 1,we obtain expression1−expression2
≤ 0, which is equivalent to requiring expression1 ≤
expression2. Otherwise, if condition evaluates to 0, the con-
straint is trivially satisfied, which implies that expression1 ≤
expression2 is switched off as constraint. Further, implica-
tions of the form

if condition then expression1 = expression2 (8)
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can be transformed into two implications:

if condition then expression1 ≤ expression2

if condition then expression2 ≤ expression1.

For multiple necessary conditions C1, . . . ,Ck , the implica-
tion

if C1 ∧ . . . ∧ C2 then expression1 ≤ expression2

is transformed into

expression1 −expression2

≤ M (1 − C1) + · · · + M (1 − Ck).

Moreover, for the binary variables x1, . . . , xk an implication
of the form

if
k∑

i=1

xi = 0 then expression1 ≤ expression2

is transformed into

expression1 − expression2 ≤ M x1 + · · · + M xk .

Finally, the implication

if condition then expression1 ≥ |expression2|

is transformed into

expression1 − expression2 ≥ M (1 − condition)

expression1 + expression2 ≥ M (1 − condition).

B Model extensions for deployment in
practice

In this section, the basic model (Sect. 6) is extended to model
further constraints that are necessary to deploy the computed
schedule in practice. We model the duration of the observa-
tion such that a specified SNR is reached. Furthermore, we
introduce constraints to ensure that a source is not observed
multiple times within a specified duration and to control the
number of observations.Moreover, the timenecessary to slew
the telescopes is modeled more precisely and the movement
restriction caused by the cable wrap (Fig. 7) is considered.

In order to realize those extensions, we slightly simplify
the model by constructing the atomic intervals only based on
Tdt omitting the times Ts (s ∈ S). The advantage is twofold.
In the first place, the number of atomic intervals is signif-
icantly decreased. Secondly, the atomic intervals have unit
length. However, with this assumption the transit of a source

can be located inmore than one cell during an atomic interval.
To solve this ambiguity, we only count the cell that contains
the beginning of the atomic interval. Hence, this assumption
theoretically might have a negative impact on the achieved
sky coverage, but considering Earth’s rotational speed of
approximately 1

4
◦

min and the length of the atomic intervals
of 20–60s the introduced error is negligible in practice.

B.1 Duration of observation

In the basic model (Sect. 6), the duration of observations
is fixed. However, the duration of observation should be
chosen such that a specified SNR is reached. We therefore
replace Constraint C6 by the following constraints to model
the duration of observations more accurately. For each base-
line b ∈ B, each observation o ∈ Ob and each source q in Q,
the minimal time tmin(o, q) that is required to reach a speci-
fied SNR is pre-computed.6 Let a and a′ be the activities of
o and

a.mDuration = a.stopTime − a.switchTime. (9)

If the duration is smaller than a maximally permitted
duration—which is introduced to avert too long observations
of sources—the following constraints are added:

if o.isSelected ∧ a.isTracked(q) = 1

then a.mDuration ≥ tmin(o, q) (C15)

if o.isSelected ∧ a′.isTracked(q) = 1

then a′.mDuration ≥ tmin(o, q). (C16)

Otherwise, the source cannot be observed due to the lowSNR
and the following constraints are introduced instead:

a.isTracked(q) = 0 (C17)

a′.isTracked(q) = 0. (C18)

Moreover, the following constraints ensure that both partic-
ipating stations have the same observation duration:

a.mDuration = a′.mDuration. (C19)

B.2 Time between successive observations of the
same source

A source should not be observed too often repetitively,
because frequently observing the same source ties up

6 According to Gipson (2016) further corrections have to be applied to
the sensitivity of the telescope–receiver pair that is elevation-dependent
Footnote 6 continued
and the flux density that depends on the constellation of the baseline to
the source. Thus, the SNR is not constant over time and the reference
epoch for the SNR computations is the beginning of the atomic interval.
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resources, while it does not lead to a better sky coverage.
We therefore introduce a hard constraint that requires that
a source can only be observed once by the same telescope
within a fixed period tmin of time.

To that end, we introduce the integer constant a.iSwitch ∈
N for every activity. It defines the index of the atomic interval
that contains the switch time of the activity. This is a constant
and not a variable because the switch time of an activity is
contained in a pre-defined atomic interval. Moreover, for an
activity a of a station s ∈ S, let

Prea = {a′ | a′.iSwitch < a.iSwitch, a ∈ As, a
′ ∈ As}

be the set containing all preceding activities of a. Accord-
ingly, let

Succa = {a′ | a′.iSwitch > a.iSwitch, a ∈ As, a
′ ∈ As}

be the set of all succeeding activities.Moreover, for two activ-
ities a and a′ of the same station let Aa,a′ = Succa ∩Prea′ be
the activities that lie between both activities (assuming that
a precedes a′).

For each activity a ∈ As , each preceding activity a′ ∈
Prea and each sourceq ∈ Q, we add the following constraint:

if a.isTracked(q) = 1 ∧ a′.isTracked(q) = 1

then a′.switchTime + tmin ≤ a.switchTime. (C20)

B.3 Number of observations

For our experiments (seeSect. 8),we introduce the possibility
of enforcing a certain number of observations by introducing
the following constraints,

∑

o∈O
o.isSelected ≥ nmin (C21)

∑

o∈O
o.isSelected ≤ nmax, (C22)

where nmin and nmax are theminimal andmaximal number of
observations, respectively.Weobserve that thefirst constraint
might lead to an empty solution space, if nmin is not chosen
large enough. Still, both constraints are a helpful tool to eval-
uate our approach and to assess how UT1-UTC is affected
by different geometric configurations without changing the
number of observations.

B.4 Duration of slewing and cable wrap

In this section, we model the duration of the slewing phase
more precisely and further incorporate constraints modeling
a valid cable wrap. To that end, we introduce for each activity
a the following variables.

1. To keep track of the position of the cable end attached
to the movable part of the telescope, the continuous vari-
ables a.StartWrap, a.SwitchWrap and a.StopWrap are
introducedwhich correspond to the azimuthal position of
the cable at a.startTime, a.switchTime and a.stopTime,
respectively. They are restricted to be within the limits of
the cable wrap at each station.

2. The integer variablea.iStart ∈ N,whichdefines the index
of the atomic interval that contains the start time of the
activity.

3. The integer variablea.iStop ∈ N, which defines the index
of the atomic interval that contains the stop time of the
activity.

4. The continuous variable a.�ts, which corresponds to the
minimum time required to slew the telescope between
two observations.

5. The binary decision variable a.dir ∈ {0, 1}. We interpret
the variable such that a.dir = 1 if the telescope moves
clockwise and counterclockwise otherwise.

6. The continuous variable �ε ∈ [0, 90], which corre-
sponds to the slew in elevation during the slewing step.

7. For each atomic interval following the atomic interval
a.iSwitch and the atomic interval itself, a binary variable
a.stop(i) ∈ {0, 1} is introduced. If the stop time of the
activity is located in this interval, it is one; otherwise, it
is zero. Only one of those variables of an activity can be
one.

Index variables. We first introduce constraints that ensure
that the index variables a.iStart and a.iStop are set correctly
for each activity a (see Fig. 6). To that end, we introduce for
each station s ∈ S and for each activity a ∈ As the following
constraints:

a.iStart · dt ≤ a.startTime (C23)
(
a.iStart + 1

) · dt > a.startTime (C24)

a.iStop · dt < a.stopTime (C25)
(
a.iStop + 1

) · dt ≥ a.stopTime (C26)

if a.isSelected = 1 then
∑

i≥a.iSwitch

a.stop(i) ≤ 1. (C27)

Constraint C23 and Constraint C24 ensure that the variable
a.iStart is set to the index of the atomic interval that contains
the start time of the activity. Analogously, by Constraint C25
and Constraint C26 the variable a.iStop is set to the index of
the atomic interval that contains the stop time of the activity.
Constraint C27 ensures that at most one atomic interval is
selected as interval that contains the stop time of the consid-
ered activity. Furthermore, for each station s, each activity
a ∈ As and each atomic interval i ≥ a.iSwitch we introduce
the following constraints ensuring that a.stop(i) is one if the
stop time of the activity a is located in the i th interval:
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if a.isSelected = 1 ∧ a.stop(i) = 1 then a.iStop = i .
(C28)

Start position of telescopes. We now introduce constraints
that ensure that the variables are initialized correctly. To
be consistent with sked, we assume that the telescopes are
already tracking the first scheduled source at the specified
start time of the session. For each station s ∈ S and for each
activity a ∈ As , the following constraints are introduced that
set the slew angles of the first selected activity to zero.

if a.isSelected = 1 ∧
∑

a′∈Prea
a′.isSelected = 0

then a.SwitchWrap = a.StartWrap (C29)

if a.isSelected = 1 ∧
∑

a′∈Prea
a′.isSelected = 0

then a.�ε = 0. (C30)

For each station s ∈ S, for each activity a ∈ As and for each
source q ∈ Q, we introduce the constraint

if Ca,q then a.StartWrap = Az0(q), (C31)

where Ca,q is equivalent to

a.isSelected = 1 ∧ a.isTracked(q) = 1 ∧
∑

a′∈Prea
a′.isSelected = 0 (10)

and Az0(q) corresponds to the azimuth of source q at the
start of the first selected atomic interval (start of the session).
Continuous cable wrap. Next, we define constraints that
ensure that the cable wrap (see Fig. 7) is recorded correctly.
More precisely, for each station s ∈ S, each activity a ∈ As

and each succeeding activity a′ ∈ Succa the following con-
straints are introduced to ensure that the cable position is
correctly propagated from one selected activity to the next
selected activity.

if isNext(a, a′) then a.StopWrap = a′.StartWrap. (C32)

To that end, we introduce the expression

a.isSelected = 1 ∧ a′.isSelected = 1 ∧∑

a′′∈Aa,a′
a′′.isSelected = 0, (11)

which we abbreviate with isNext(a, a′) because it is only one
if the activity a′ is the next selected activity after the selected
activity a.
Movements of telescope during tracking. In particular at high
elevation angles, it may happen that the telescope has to track

the source across several degrees of azimuth. In cases where
this happens near the cable wrap limits, we have to model
how to move the telescope during the observation phase such
that the cablewrap remains valid. For each station s ∈ S, each
activity a ∈ As , each source q ∈ Q and each atomic interval
i ≥ a.iSwitch, the change in azimuth during the tracking step
a.1AzM(q) is approximated by subtracting the azimuth of
the observed source at the start of the atomic interval iSwitch
and the azimuth at the end of the atomic interval iStop. The
following constraint is added:

if a.isSelected = 1 ∧ a.isTracked(q) = 1 ∧ a.stop(i) = 1

then a.StopWrap − a.SwitchWrap = a.1AzM(q).

(C33)

The tracking in elevation during the observation period does
not affect the cable wrap and thus does not have to be con-
sidered.
Long arc slewing. Similarly, we have to model how to do
the slewing of the telescope such that the cable wrap always
remains valid. However, this time we also consider the slew-
ing in elevation because it has an impact on the timenecessary
for slewing the telescope. For each station s ∈ S, each activ-
ity a ∈ As , each succeeding activity a′ ∈ Succa , each source
q and q ′ ∈ Q, the change in azimuth required to rotate
the telescope from source q to q ′ clockwise a.1AzCW(a′)
and counterclockwise a.1AzCCW(a′) is approximated (see
Fig. 7). This is done by subtracting the azimuth of the
observed source at the start of the atomic interval a.iSwitch
and the azimuth of the subsequent observed source at the end
of the atomic interval a′.iSwitch.

if isNext(a, a′) ∧ a.isTracked(q) = 1 ∧ a′.isTracked(q ′) = 1

then a′.SwitchWrap − a.SwitchWrap = a′.dir a.�AzCW(a′)
+ (1 − a′.dir) a.�AzCCW(a′). (C34)

Moreover, the change in elevation a.1El(a′) between the
switch times of the activities a and a′ is approximated by
subtracting the elevation of the observed source at the start
of the atomic interval a.iSwitch and the elevation at the end
of the atomic interval a′.iSwitch.

if isNext(a, a′) ∧ a.isTracked(q) = 1 ∧ a′.isTracked(q ′) = 1

then a′.�ε = a.�El(a′). (C35)

Time for slewing. The slew duration is approximated with
the slew rate of the station in azimuth vAz(s) and elevation
vEl(s). For each station s ∈ S and each activity a ∈ As , we
introduce the following constraints.

if a.isSelected = 1 then a.�ts

≥ |a.SwitchWrap − a.StartWrap|
vAz(s)

(C36)
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if a.isSelected = 1 then a.�ts ≥ |a.�ε|
vEl(s)

. (C37)

Constraint C36 enforces that the duration of the slewing
step is larger than the time required to slew the telescope
in azimuth. Accordingly, Constraint C37 enforces that the
duration of the slewing step is larger than the time required
to slew the telescope in elevation. The variable a.�ε includes
not only the change during the slewing but also the one dur-

ing the preceding tracking step. Thus, the term
∣∣∣ a.�ε
vEl(s)

∣∣∣ is

larger than necessary. However, this effect is small because
the largest contribution is caused by the slewing.

Condition C5 is replaced by the following constraint to
model the slewing duration accurately. For each station s
and for each activity a ∈ As , we require

if a.isSelected = 1 then a.switchTime

− a.startTime ≥ a.�ts + constTime. (C38)

Here, constTime is a fixed time including the actions that are
necessary before each observation.

B.5 Speeding up the solution

The following constraints are not required for valid sched-
ules, but they speed up the process of finding a solution of the
MILP formulation. For each station s ∈ S, for each activity
a ∈ As and for each preceding activity a′ ∈ Prea , we intro-
duce the following constraints:

if a.isSelected = 1 ∧ a′.isSelected = 1

then a.iStart ≥ a′.iSwitch. (C39)

And for each succeeding activity a′ ∈ Succa , we introduce
the constraints:

if a.isSelected = 1 ∧ a′.isSelected = 1

then a.iStop ≤ a′.iSwitch (C40)

if isNext(a, a′) then a′.switchTime − a.switchTime

≤ �tmax. (C41)

Constraint C39 sets all activities between the switch index
and the end index to ‘not selected.’ Constraint C40 sets all
activities between the start index and the switch index to ‘not
selected.’ Constraint C41 enforces that the maximal dura-
tion between two succeeding observations is smaller than the
specified value �tmax. With this constraint, Constraints C7,
C32, C34, C35, C40 and C39 do not have to be introduced
for all succeeding or preceding activities but only for those
having an effect on the solution.

In the case of a sessionwith only one baseline, the inequal-
ity Constraints C15 and C16 can be replaced by equality

constraints:

if o.isSelected = 1 then a.mDuration = tmin(o, q)

(C42)

if o.isSelected = 1 then a′.mDuration = tmin(o, q).

(C43)

This is reducing the number of possible schedules. More-
over, in this case Constraint C19 is not necessary. By adding
constraints ensuring that within the first intervals at least one
observation is selected, the constraints for the start position
of telescope, which are only relevant for the first observation,
can be reduced, too.
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