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Abstract
Numerical model reduction is exploited for computational homogenization of the model problem of a poroelastic medium
under transient conditions. It is assumed that the displacement and pore pressure fields possess macro-scale and sub-scale
(fluctuation) parts. A linearly independent reduced basis is constructed for the sub-scale pressure field using POD. The
corresponding reduced basis for the displacement field is constructed in the spirit of the NTFA strategy. Evolution equations
that define an apparent poro-viscoelastic macro-scale model are obtained from the continuity equation pertinent to the RVE.
The present model represents an extension of models available in literature in the sense that the pressure gradient is allowed to
have a non-zero macro-scale component in the nested FE2 setting. The numerical results show excellent agreement between
the results from numerical model reduction and direct numerical simulation. It was also shown that even 3D RVEs give
tractable solution times for full-fledged FE2 computations.

Keywords Poroelasticity · Computational homogenization · Numerical model reduction

1 Introduction

A large class of natural and engineering materials are porous
with a pore-fluid interacting with the solid skeleton. These
materials are often micro-heterogeneous in the sense that
there is a pronounced difference in the mechanical proper-
ties between the differentmicro-constituents, e.g. solid grains
and pore fluid.Moreover, heterogeneitymay occur on amuch
larger length scale. A typical example is porous rock which
might be saturated by different pore fluids (e.g. patchy satura-
tion models [25,28]) or which might be composed of zones
with varying material properties of the solid skeleton (e.g.
double porosity models [12,22]). In both cases, the mechani-
cal properties, such as compressibility of the constituents and
permeability of the pore space, are highly heterogeneous. The
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pronounced pressure gradients resulting from external load-
ing are equilibrated via the redistribution of the contained
pore fluid.

The straightforward approach is to model the problem
on one single scale using Direct Numerical Simulation
(DNS). However, resolving the substructural features is
computationally very expensive and, therefore, some sort
of homogenization strategy is preferable. When the intrin-
sic material properties are nonlinear and/or the fine-scale
problem is inherently transient, it is necessary to resort to
nested macro- and sub-scale computations (FE2), whereby
the sub-scale computations are carried out on a so-called
Representative Volume Element (RVE)1 in each quadrature
point in themacro-scale domain, possiblywithin a given time
step. Clearly, the purpose is to obtain macro-scale properties
of engineering interest; hence, whether it is possible to avoid
resolution via DNS of the fine-scale problem and accept the
homogenized solution can only be assessed via some sort of
goal-oriented error quantification.

However, it is widely realized that straight-forward appli-
cation of the FE2-strategy can be computationally intractable

1 For convenience, we use the notation Representative Volume Element
(RVE) rather than Statistical Volume Element (SVE) throughout this
paper although it is unclear whether the used volume elements are truly
representative. For more details see [16,24].
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for a fine macro-scale mesh, particularly in 3D. Therefore,
there is significant interest in reducing the cost of solving
the individual RVE-problems by introducing some kind of
reduced basis, here denoted Numerical Model Reduction
(NMR). In particular, we note strategies that are based on
the superposition of “modes” that are characteristic for the
RVE-solution fields. In the case of sub-scale small strain
(visco)plasticity, various attempts have beenmade to approx-
imate the inelastic strain field by a reduced basis consisting of
so-called “inelastic modes”. One of the early proposals is the
so-called “eigendeformation-based reduced order homoge-
nization” technique by Fish and coworkers [7,23], which in
its turn relies on the Transformation Field Analysis (TFA)
that was originally proposed by Dvorak and Benveniste
[4]. A similar approach, coined Nonuniform Transforma-
tion Field Analysis (NTFA), was proposed by Michel and
Suquet [20,21,26]. Recent developments are e.g. by Fritzen
and coworkers [8–11], who extended the idea further within
the framework of Proper Orthogonal Decomposition (POD)
and applied it to visco-elasticity and, more generally, to a
subclass of Standard Dissipative Materials.

Quite importantly, however, is the obvious fact that the
richness of the reduced basis will determine the accuracy
of the RVE-solution, which calls for error control. Here, we
consider the full FE-solution as the exact one. An example
of error estimation due to model reduction, although not in
a homogenization context and for a PGD-basis, is Ladeveze
and Chamoin [18]. More recently, Ekre et al. [6] investigated
the transport of error from the micro- to the macro-scale
model in a reduced FE2 approach.

In recent years, several attempts have been made to
establish multi-scale procedures for poroelastic media, e.g.
Su et al. [27]. A recent contribution is byKhoei andHajiabadi
[17]. However, the straight-forward FE2-strategy turns out,
as mentioned above, to be intractable for realistic large-scale
problems in 3D. Jänicke et al. [13,15] studied the computa-
tional homogenization of heterogeneous poroelastic media
under locally undrained conditions, i.e. fluid redistribution
is only allowed locally whilst global fluid transport is sup-
pressed. This “selective” homogenization approach allows to
reduce the macro-scale problem to that of a single-phase vis-
coelastic material, whereby the “’mode coefficients” play the
role of classical internal variables of the macro-scale model.
More recently, this selective homogenization towards a vis-
coelastic macro-scale material was extended to account for
Darcy-type seepage in fluid-filled fracture networks [14].

In this paper, we introduce the FE2 approach with
Numerical Model Reduction based on the complete, i.e.
non-selective, upscaling of the poroelastic fine-scale model
towards a poro-viscoelastic macro-scale model. The scale
transition is formulated in terms of a Variationally Consis-
tent Homogenization schemewithweakly periodic boundary
conditions on the RVE problems. Inspired by the NTFA

approach, we use training computations and POD to iden-
tify a reduced basis of pore pressure modes that allows us to
shift all fine-scale computations from the “online” FE2 solu-
tion phase towards an “offline” training phase. The resulting
macro-scale model contains both the viscoelastic properties
associated with local fluid redistribution on the RVE level
as well as the hydro-mechanical properties of a macroscopic
poroelastic medium. Therefore, it is called poro-viscoelastic.
We benchmark the predictions emerging from the poro-
viscoelastic NMR procedure against results from DNS in
several numerical examples and demonstrate the numerical
efficiency of the model in a large-scale 3D example.

Throughout this paper, meager type is used to denote
scalars, whereas bold type is used to denote vectors and
(higher order) tensors. Single contraction is denoted by ·.
For example, if a,b are vectors and A is a second order ten-
sor, we have a ·b = aibi , (A ·b) = Ai j b j , where the Einstein
summation convention is used.

As to homogenization in the spatial domain, volume and
surface averaging of an intensive field � are denoted

〈�〉� := 1

|Ω�|
∫

Ω�
� dΩ, 〈〈�〉〉� := 1

|Γ�|
∫

Γ�
� dΓ , (1)

where the domain occupied by the RVE isΩ� with boundary
Γ�. The macro-scale representation of � is denoted �̄, and
frequently it holds that �̄ := 〈�〉�.

The paper is organized as follows: Sect. 2 gives a short
review of the poroelastic fine-scale model. Section 3 is
devoted to the two-scale modeling based on computational
homogenization. The NMR strategy is presented in Sect. 4.
Section 5 presents the numerical results for 1D, 2D and 3D
settings including benchmark experiments. Finally, Sect. 6
concludes the paper with a summary and an outlook to future
work.

2 Fine-scale modeling of a poroelastic
medium

2.1 Preliminaries

We give a brief summary of poroelasticity under geometri-
cally linear and quasi-static conditions. Initially introduced
by Biot [1,2], poroelasticity as a homogenized continuum
model of solid-fluid mixtures with hydro-mechanical cou-
pling can be seen as a special case of the more general class
ofmaterials described by the Theory of PorousMedia (TPM)
as proposed e.g. by De Boer [3] and Ehlers [5]. The pri-
mary global fields are the displacement of the solid skeleton,
denoted u, and the intrinsic pore fluid pressure, denoted p.
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2.2 Constitutive relations for the sub-scale
constituents

The constitutive relations for the equilibrium stress σ and the
seepage velocity w become:

σ = E : ε − α pI, ε[u] := (u ⊗ ∇)sym, (2a)

w = −K · ζ , ζ [p] := ∇p, (2b)

where ε is the strain2 and ζ is the pressure gradient. The
material properties are as follows: E is the fourth order elas-
ticity modulus tensor which is defined in the simplest case
of isotropy by the constant parameters G and K , which are
the shear modulus and compression modulus, respectively.
K is the second order constant permeability tensor, defined
(in the simplest case of isotropy) by the scalar permeability
coefficient k. Finally, α is the Biot coefficient.

We also introduce the storage function Φ that represents
the current volume fraction of fluid

Φ(ε, p) := φ + α I : ε + β p, (3)

where φ is the initial porosity of the solid phase, and β is the
intrinsic compression compliance of the pore fluid. Note that
φ is taken as constant and independent of the deformation.
As to the spatial variation of these parameters, they may be
strongly heterogeneous on the fine scale.

2.3 Strong and weak format of the fine-scale
problem

Restricting to quasi-statics, we thus seek the displacement
u(x, t) : Ω × R

+ → R
3 and the pore pressure p(x, t) :

Ω × R
+ → R that solve the system

− σ (ε[u], p) · ∇ = 0 in Ω × (0, T ], (4a)

Φ̇(ε[u], p) + w(ζ [p]) · ∇ = 0 in Ω × (0, T ], (4b)

u = up on Γ
(u)
D × (0, T ], (4c)

t := σ · n = tp on Γ
(u)
N × (0, T ], (4d)

p = pp on Γ
(p)
D × (0, T ], (4e)

w := w · n = wp on Γ
(p)
N × (0, T ], (4f)

together with the constitutive relations in (2) and (3) and the
initial condition

Φ(•, 0) = φ + αI : ε[u(•, 0)] + β p(•, 0) = φ in Ω. (5)

2 [•] to denote operational arguments.

Clearly, (4a) represents static equilibrium, whereas (4b)
expresses mass conservation of the two-phase solid-fluid
mixture.

The standard space-variational format corresponding to
(4) reads: Find (u(•, t), p(•, t)) in the appropriately defined
spaces U × P that solve

∫
Ω

[ε[u] : E : ε[δu] − α p[δu · ∇]] dΩ

=
∫

Γ
(u)
N

tp · δu dΓ ∀δu ∈ U
0, (6a)

∫
Ω

[
α [u̇ · ∇] δ p + β ṗ δ p + ζ [p] · K · ζ [δ p]] dΩ

=
∫

Γ
(p)
N

wp δ p dΓ ∀δ p ∈ P
0, (6b)

where U0 and P
0 are the appropriately defined test spaces.

3 Two-scale analysis based on
computational homogenization

3.1 First order homogenization in the spatial
domain

We replace the single-scale problem in Sect. 2 by a two-scale
problem upon introducing (i) running averages in the weak
format and (ii) scale separation via first-order homogeniza-
tion. The first step is to replace the space-variational problem
in (6) by that of finding (u(•, t), p(•, t)) ∈ UFE2 ×PFE2 that
solves
∫

Ω

[
a(u)

� (u; δu) − b�(p; δu)
]
dΩ

=
∫

Γ
(u)
N

tp · δu dΓ ∀δu ∈ VFE2 , (7a)

∫
Ω

[
b�(δ p; u̇) + m�( ṗ; δ p) + a(p)

� (p; δ p)
]
dΩ

=
∫

Γ
(p)
N

wp δ p dΓ ∀δ p ∈ QFE2 , (7b)

where the pertinent space-variational forms in (7) are given
as

a(u)

� (u; v) := 〈ε[u] : E : ε[v]〉� , (8a)

a(p)
� (p; q) := 〈ζ [p] · K · ζ [q]〉� , (8b)

b�(p; v) := 〈α p I : ε[v]〉� = 〈α p (v · ∇)〉� , (8c)

m�(p; q) := 〈β p q〉� . (8d)

Here, (v; q) represent arbitrary but admissible displacement
and pore pressure fields. Obviously, these space-variational
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forms represent running averages on square/cubic domains
Ω� with the side length L� and located at each macro-scale
spatial point x̄ ∈ Ω . We note that the introduced averaging
results in a change of the original problem. The weak format
thus serves as the basis for variationally consistent homoge-
nization as discussed below.

Next, in order to define the two-scale solution and test
spacesUFE2 ,VFE2 and PFE2 ,QFE2 associated3 with FE2, we
introduce scale separation and first-order homogenization.
The standard approach is then to decompose the sub-scale
fields u and p into a macro-scale part, uM and pM, and a
micro-scale or fluctuating part, uμ and pμ, within each RVE
such that

u = uM[ū] + uμ, with uM[ū](x, t) := ū + h̄(t)

· [x − x̄], h̄ := h[ū] = ū ⊗ ∇, (9a)

p = pM[ p̄]+pμ, with pM[ p̄](x, t):= p̄+ζ̄ (t)

· [x − x̄], ζ̄ :=h[ p̄] = ∇ p̄. (9b)

We are now in the position to define the two-scale trial and
test spaces

UFE2 := {u|Ω�,i = uM[ū] + uμ
i , uμ

i ∈ U
μ

�,i , ū ∈ Ū},
(10a)

VFE2 := {δu|Ω�,i = uM[δū] + δuμ
i , δuμ

i ∈ V
μ

�,i ,

δū ∈ Ū
0, δu|

Γ
(u)
N

= δū}, (10b)

whereas

PFE2 := {p|Ω�,i = pM[ p̄] + pμ
i , pμ

i ∈ P
μ

�,i , p̄ ∈ P̄},
(11a)

QFE2 := {δ p|Ω�,i =pM[δ p̄]+δ pμ
i , δ pμ

i ∈Qμ

�,i , δ p̄∈P̄0,

δ p|
Γ

(p)
N

=δ p̄}. (11b)

The trial and test spaces for the macro-scale problem are
denoted Ū, V̄ and for the micro-scale problem U

μ

�,i ,V
μ

�,i ,

and P
μ

�,i ,Q
μ

�,i . We introduce the notation

u ∈ UFE2 −→ (ū, {uμ
i }) ∈ Ū ×

[
�iU

μ

�,i

]
, (12a)

p ∈ P
2
FE −→ ( p̄, {pμ

i }) ∈ P̄ ×
[
�iP

μ

�,i

]
. (12b)

Hence, there exist components (uμ, pμ) and corresponding
spaces (U

μ

�,i ,P
μ

�,i ) for each single RVE Ω�,i .

3 We refer to FE2 in a discrete sense where Ω�,i pertains to an RVE
centered at the macro-scale quadrature point x̄i .

We now restate the two-scale problem (7) as follows: Find
(ū, {uμ

i }, p̄, {pμ
i }) ∈ Ū×[�iUμ

�,i ]× P̄×[�iPμ

�,i ] that solve
∫
Ω

[
a(u)

� (u; uM[δu] + δuμ) − b�(p; uM[δū] + δuμ)
]
dΩ (13a)

=
∫
Γ

(u)
N

tp ·
[
uM[δu]+δuμ

]
dΓ ∀(δū, δuμ)∈V̄ × [�iVμ

�,i ],

∫
Ω

[
b�(pM[δ p̄] + δ pμ; u̇) + m(p)

� ( ṗ; pM[δ p̄] + δ pμ) (13b)

+a(p)
� (p; pM[δ p̄] + δ pμ)

]
dΩ

=
∫
Γ

(p)
N

qp
[
pM[δ p̄] + δ pμ

]
dΓ ∀(δ p̄, δ pμ) ∈ Q̄ × [�iQμ

�,i ],

whereweused the interpretation δuμ = δuμ
i and δ pμ = δ pμ

i
inside Ω�,i .

3.2 Macro-scale problem

We obtain the macro-scale (homogenized) problem from
(13) upon choosing purely macroscopic test functions; hence
δu = uM[δū] and δ p = pM[ p̄] such that

∫
Ω

[
a(u)

� (u;uM[δū]) − b�(p;uM[δū])
]
dΩ

=
∫

Γ
(u)
N

tp · uM[δū]dΓ ∀δū ∈ Ū
0, (14a)

∫
Ω

[
b�(pM[δ p̄]; u̇) + m(p)

� ( ṗ; pM[δ p̄])

+a(p)
� (p; pM[δ p̄])

]
dΩ=

∫
Γ

(p)
N

wp pM[δ p̄] dΓ ∀δ p̄∈P̄0,

(14b)

or, more explicitly,∫
Ω

σ̄ : [δū ⊗ ∇]dΩ =
∫

Γ
(u)
N

t̄p · δū dΓ , ∀δū ∈ Ū
0, (15a)

∫
Ω

˙̄Φδ p̄ dΩ +
∫

Ω

˙̄Q · ∇δ p̄ dΩ −
∫

Ω

w̄ · ∇δ p̄ dΩ

=
∫

Γ
(u)
N

w̄pδ p̄ dΓ , ∀δ p̄ ∈ P̄
0, (15b)

wherewe introduced the variationally consistentmacro-scale
(homogenized) fields

σ̄ = 〈σ 〉� = 〈E : ε[u] − α pI〉� , (16a)

q̄ = 〈w〉� = −〈K · ζ [p]〉� , (16b)

Φ̄ = 〈Φ〉� = 〈φ + α I : ε[u] + β p〉� , (16c)

Q̄ = 〈Φ [x − x̄]〉� = 〈[φ + α I : ε[u] + β p] [x − x̄]〉� .

(16d)
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In addition, t̄p and w̄p are defined as the suitably homoge-
nized quantities on the Neumann boundary parts.

Note that, according to (15b) and (4b), the total macro-
scopic seepage velocity w̄ can be computed as

w̄ = q̄− ˙̄Q= 〈w〉� − 〈
Φ̇[x−x̄]〉� = 〈w + [x − x̄] (w · ∇)〉�

= 1

|Ω�|
∫

Γ�
w [x − x̄] dΓ . (17)

Also note that the homogenized stress can be expressed
in standard fashion as the surface integral

σ̄ = 1

|Ω�|
∫

Γ�
(t ⊗ [x − x̄])symdΓ . (18)

3.3 Micro-scale problem on a representative volume
element

In the previous section, themacro-scale problemwas defined,
and it was established that the macro-scale fields in (16)
depend on (u, p) inside the pertinentΩ�. We shall now con-
sider the local problemon a singleRVEΩ�,i to determine the
implicit relation (uμ

i , pμ
i ){ū, p̄}, whereu|Ω�,i = uM[ū]+uμ

i
and p|Ω�,i = pM[ p̄] + pμ

i . To this end, we consider the
problem in (13) for a single test function δuμ

i ∈ V
μ

�,i and

δ pμ
i ∈ Q

μ

�,i . For brevity, we henceforth drop index i since
we now restrict to one single RVE.

The decomposition in (9) presumes that the solution
(u, p) can be uniquely decomposed into macroscopic parts
(uM , pM ) and fluctuations (uμ, pμ). This imposes con-
straints on U

μ

� and P
μ

� in (13). In order to be explicit, we
shall consider an expanded format of the problem. To this
end, we introduce the richer spaces as follows:

U� = [H1(Ω�)]3, P� = H1(Ω�), (19)

where H1(•) is the Sobolev space of functions with square
integrable derivatives.

In order to ensure a uniquely solvable RVE-problem, we
next adopt the following additional model assumptions:

– We assume that uμ and pμ are periodic, i.e.

�uμ
��(x) = 0, �pμ

��(x) = 0 ∀δx ∈ Γ +
� , (20)

where we introduced the “difference operator” �•��(x)
:= •(x)−•(x−(x)); x ∈ Γ +

� is an “image point” whereas
x−(x) ∈ Γ − = Γ� \ Γ +

� is the corresponding “mir-
ror point”, see Fig. 1. Upon introducing, for the sake of
brevity, the RVE-forms

d(u)

� (λ,u) := 1

|Ω�|
∫

Γ +
�

λ · �u�� dΓ ,

Γ+

Γ−

x+
(1)

x−
(1)

x+
(2)

x−
(2)

x−
(2)

x+
(3)

x−
(3)

x−
(3)

x−
(3)

Fig. 1 RVEwith decomposition of the boundaryΓ� into image bound-
ary Γ +

� and mirror boundary Γ −
�

d(p)
� (μ, p) := 1

|Ω�|
∫

Γ +
�

μ [[p]]� dΓ , (21)

we may express the variational (weak) statements4 of the
micro-periodicity constraints in (20) as

d(u)

� (δλ,u) = d(u)

� (δλ,uM[ū, ε̄]), ∀δλ ∈ T�, (22a)

d(p)
� (δμ, p) = d(p)

� (δμ, pM[ p̄, ζ̄ ]), ∀δμ ∈ P�,

(22b)

whereby it is obvious that the Lagrange multiplier δλ in
(22a) represents a field of virtual boundary tractions on
Γ +

� , whereas the Lagrange multiplier δμ in (22b) rep-
resents a field of virtual boundary fluxes, see Remark 2
below. Here, we introduce the test spaces

T� = [L2(Γ
+
� )]3, Q� = L2(Γ

+
� ), (23)

where L2(•) is the space of square integrable functions.
Upon introducing the expressions for uM and pM from
(9) on theRHS in (22a) and (22b), respectively, we obtain
the explicit expressions

d(u)

� (δλ;uM[ū, h̄]) =
[

1

|Ω�|
∫

Γ +
�

δλ ⊗ �x�� dΓ

]
: h̄,

(24a)

d(p)
� (δμ; pM[ p̄, ζ̄ ]) =

[
1

|Ω�|
∫

Γ +
�

δμ �x�� dΓ

]
· ζ̄ ,

(24b)

where it was used that
∫
Γ�

[x − x̄] dΓ = 0. Hence, we

conclude that it is only the data h̄ and ζ̄ that will have an
effect on the periodicity conditions.

4 The concept of weakly periodic boundary conditions is discussed in
more detail in [19] for first-order computational homogenization.
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– We assume that ū and p̄ physically play the role of
surface-averaged quantities as follows:

〈〈u〉〉� = ū, 〈〈p〉〉� = p̄, (25)

which conditions are expressed weakly as

δλ̄ · 〈〈u〉〉� = δλ̄ · ū ∀δλ̄ ∈ R
3, (26a)

δμ̄ 〈〈p〉〉� = δμ̄ p̄ ∀δμ̄ ∈ R. (26b)

The space-variational RVE-problem5 can now be stated
as follows: For a given history ū(t), h̄(t), p̄(t), ζ̄ (t), find
u(•, t) ∈ U�, p(•, t) ∈ P�, λ(•, t) ∈ T�, μ(•, t) ∈ Q�,
λ̄ ∈ R

3, μ̄ ∈ R that solve

a(u)

� (u; δu) − b�(p; δu) − d(u)

� (λ; δu) − λ̄ · 〈〈δu〉〉�
= 0 ∀δu ∈ U�, (27a)

b�(δ p; u̇) + m�( ṗ; δ p) + a(p)
� (p; δ p)

+ d(p)
� (μ; δ p) + μ̄ 〈〈δ p〉〉� = 0 ∀δ p ∈ P�, (27b)

− d(u)

� (δλ;u) = −d(u)

� (δλ;uM[ū, h̄]) ∀δλ ∈ T�, (27c)

d(p)
� (δμ; p) = d(p)

� (δμ; pM[ p̄, ζ̄ ]) ∀δμ ∈ Q�, (27d)

− δλ̄ · 〈〈u〉〉� = −δλ̄ · ū ∀δλ̄ ∈ R
3, (27e)

δμ̄ 〈〈p〉〉� = δμ̄ p̄ ∀δμ̄ ∈ R. (27f)

It is possible to identify the tractions t and the flux w on
the entire RVE-boundary Γ� as follows:

t(•, t) =
{

λ(•, t) + λ̄(t) on Γ +
�−λ(•, t) + λ̄(t) on Γ −
�

with λ ∈ T�, λ̄ ∈ R
3,

(28a)

w(•, t) =
{

μ(•, t) + μ̄(t) on Γ +
�−μ(•, t) + μ̄(t) on Γ −
�

with μ ∈ Q�, μ̄ ∈ R.

(28b)

In particular, it appears that the spaces T� andQ� represent
“self-equilibrating” tractions and fluxes, respectively.

Remark 1 Setting δu ∈ R
3 in (27a), we obtain the solution

λ̄ = 0. Nevertheless, it is still necessary to satisfy the con-
straint (27e) in order to prevent Rigid Body Modes (RBM),
in this case translation. However, the macro-scale stress σ̄

is invariant to any constant translation ū within the RVE,
which means that ū can be prescribed to any given value, say
ū = 0. Moreover, σ̄ is invariant to the skew-symmetric part
of h̄ since ε[u] = ε̄ + ε[u]μ; hence it is only ε̄ := h̄sym that
has to be fed to the RVE problem as data. 	


5 To simplify notation, without losing generality, we assume henceforth
that the natural boundary conditions are sufficiently smooth to effect
only the macro-scale problem.

Remark 2 Setting δλ = δσ̄ · n, with σ̄ ∈ R
3×3
sym , into (27c),

and setting δμ = δw̄ · n, with w̄ ∈ R
3, into (27d), we obtain

the conditions

〈ε[u]〉� = ε̄, 〈ζ [p]〉� = ζ̄ . (29)

In other words, the conditions that the volume-averaged
strain equals ε̄, and that the volume-averaged pressure-
gradient equals ζ̄ are “built-in” the problem formulation. 	

Remark 3 Setting δu = u̇, δ p = p and summing up (27a)
and (27b), we are able to derive the relation

〈σ : ε̇〉� − 〈w · ζ 〉� + 〈
Φ̇ p

〉
�

=
[

1

|Ω�|
∫

Γ�
λ ⊗ [x − x̄] dΓ

]
: ˙̄ε + λ̄ · ˙̄u

−
[

1

|Ω�|
∫

Γ�
μ [x − x̄]dΓ

]
· ζ̄ − μ̄ p̄. (30)

Moreover, taking (16)–(18) into account together with (28)
and choosing λ̄ = 0, μ̄ = − ˙̄Φ, we can derive the identity

〈σ : ε̇〉� − 〈w · ζ 〉� + 〈
Φ̇ p

〉
� = σ̄ : ˙̄ε − w̄ · ζ̄ + ˙̄Φ p̄.

(31)

This expression is precisely the macro-homogeneity con-
dition; therefore, it is a “built-in” property of the problem
formulation. 	


4 Numerical model reduction in space for the
RVE problem

4.1 Decomposition of sub-scale fields

The standard decomposition of the sub-scale fields were
given in (9). However, in order to utilize NMR for the pur-
pose of solving the RVE problems in an efficient manner, it
is convenient to introduce the alternative decompositions6

u = ustat{ε̄, p̄, ζ̄ } + ũμ, (32a)

p = pstat{ε̄, p̄, ζ̄ } + p̃μ, (32b)

λ = λstat{ε̄, p̄, ζ̄ } + λ̃
μ
, (32c)

μ = μstat{ε̄, p̄, ζ̄ } + μ̃μ, (32d)

λ̄ = λ̄stat{ε̄, p̄, ζ̄ } + ˜̄λμ, (32e)

μ̄ = μ̄stat{ε̄, p̄, ζ̄ } + ˜̄μμ, (32f)

where the fields (ustat, pstat,λstat, λ̄stat, μstat, μ̄stat) ∈ U� ×
P� × T� × R

3 × Q� × R solve the “stationary” problem

6 Curly brackets denote implicit dependence on the argument.
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a(u)

� (ustat; δu)−b�(pstat; δu)−d(u)

� (λstat; δu)

−λ̄stat · 〈〈δu〉〉� =0 ∀δu ∈ U�, (33a)

a(p)
� (pstat; δ p) + d(p)

� (μstat; δ p)

+ μ̄stat 〈〈δ p〉〉� = 0 ∀δ p ∈ P�, (33b)

− d(u)

� (δλ;ustat) = −d(u)

� (δλ; uM[ū, ε̄]) ∀δλ ∈ T�, (33c)

d(p)
� (δμ; pstat) = d(p)

� (δμ; pM[ p̄, ζ̄ ]) ∀δμ ∈ Q�, (33d)

− δλ̄ · 〈〈ustat〉〉� = 0 ∀δλ̄ ∈ R
3, (33e)

δμ̄ 〈〈pstat〉〉� = δμ̄ p̄ ∀δμ̄ ∈ R. (33f)

Remark We note that ustat �= uM and pstat �= pM in general;
hence, ũμ �= uμ and p̃μ �= pμ. Moreover, λ̄stat = 0 and

μ̄stat = 0, and it is concluded that λ̄ = ˜̄λμ = 0, whereas
μ̄ = ˜̄μμ �= 0. Although it is possible to exclude λ̄stat and
μ̄stat a priori from the formulation of the sensitivity problem,
these variables are retained henceforth in order to preserve
symmetry of the problem formulation. 	


Since the problem in (33) is linear for each given time, t
serves only as a load parameter, we may compute the solu-

tion in termsof sensitivities (û(ε̄)
i j , p̂(ε̄)

i j , λ̂
(ε̄)

i j , μ̂
(ε̄)
i j , ˆ̄λ(ε̄)

i j , ˆ̄μ(ε̄)
i j ),

(û( p̄), p̂( p̄), λ̂
( p̄)

, μ̂( p̄), ˆ̄λ( p̄), ˆ̄μ( p̄)) and (û(ζ̄ )
i , p̂(ζ̄ )

i , λ̂
(ζ̄ )

i , μ̂
(ζ̄ )
i ,

ˆ̄λ(ζ̄ )
i , ˆ̄μ(ζ̄ )

i ) via the ansatz expansions

ustat(x, t) =
∑
i, j

û(ε̄)
i j (x)(ε̄(t))i j + û( p̄)(x) p̄(t)

+
∑
i

û(ζ̄ )
i (x)(ζ̄ (t))i , (34a)

pstat(x, t) =
∑
i, j

p̂(ε̄)
i j (x)(ε̄(t))i j + p̂( p̄)(x) p̄(t)

+
∑
i

p̂(ζ̄ )
i (x)(ζ̄ (t))i , (34b)

λstat(x, t) =
∑
i, j

λ̂
(ε̄)

i j (x)(ε̄(t))i j + λ̂
( p̄)

(x) p̄(t)

+
∑
i

λ̂
(ζ̄ )

i (x)(ζ̄ (t))i , (34c)

μstat(x, t) =
∑
i, j

μ̂
(ε̄)
i j (x)(ε̄(t))i j + μ̂( p̄)(x) p̄(t)

+
∑
i

μ̂
(ζ̄ )
i (x)(ζ̄ (t))i , (34d)

λ̄stat(t) =
∑
i, j

ˆ̄λ(ε̄)
i j (ε̄(t))i j + ˆ̄λ( p̄) p̄(t) +

∑
i

ˆ̄λ(ζ̄ )
i (ζ̄ (t))i ,

(34e)

μ̄stat(t) =
∑
i, j

ˆ̄μ(ε̄)
i j (ε̄(t))i j + ˆ̄μ( p̄) p̄(t) +

∑
i

ˆ̄μ(ζ̄ )
i (ζ̄ (t))i ,

(34f)

while noting that uM and pM can be expanded in a similar
fashion as

uM(x, t) =
∑
i, j

ûM(ε̄)
i j (x)(ε̄(t))i j with

ûM(ε̄)
i j (x) = 1

2

[
(xi − x̄i ) e j + (x j − x̄ j ) ei

]
, (35a)

pM(x, t) = p̂M( p̄)(x) p̄(t) +
∑
i

p̂M(ζ̄ )
i (x)(ζ̄ (t))i with

p̂M( p̄)(x) = 1, p̂M(ζ̄ )
i (x) = xi . (35b)

The following set of problems are then solved “offline” as
a preliminary to themodel reduction. It is possible to sequen-
tially solve for (pstat, μstat, μ̄stat) and (ustat,λstat, λ̄stat), in
terms of the sensitivities, from the equations (33b), (33d),
(33f) and from (33a), (33c), (33e) respectively:

– ε̄ �= 0, p̄ = 0, ζ̄ = 0:

– Solve for sensitivity fields ( p̂(ε̄)
i j , μ̂

(ε̄)
i j ), ˆ̄μ(ε̄)

i j ) from

a(p)
� ( p̂(ε̄)

i j ; δ p) + d(p)
� (μ̂

(ε̄)
i j ; δ p)

+ ˆ̄μ(ε̄)
i j 〈〈δ p〉〉� = 0 ∀δ p ∈ P�, (36a)

d(p)
� (δμ; μ̂

(ε̄)
i j ) = 0 ∀δμ ∈ Q�, (36b)

δμ̄ 〈〈 p̂(ε̄)
i j 〉〉� = 0 ∀δμ̄ ∈ R, (36c)

which has the trivial solution p̂(ε̄)
i j = 0, μ̂(ε̄)

i j =
0, ˆ̄μ(ε̄)

i j = 0.

– Solve for sensitivity fields (û(ε̄)
i j , λ̂

(ε̄)

i j , ˆ̄λ(ε̄)
i j ) from

a(u)

� (û(ε̄)
i j ; δu) − d(u)

� (λ̂
(ε̄)

i j ; δu)

− ˆ̄λ(ε̄)
i j · 〈〈δu〉〉� = 0 ∀δu ∈ U�, (37a)

− d(u)

� (δλ; û(ε̄)
i j ) = −d(u)

� (δλ; ûM(ε̄)
i j ) ∀δλ ∈ T�,

(37b)

− δλ̄ · 〈〈û(ε̄)
i j 〉〉� = 0 ∀δλ̄ ∈ R

3. (37c)

– ε̄ = 0, p̄ �= 0, ζ̄ = 0:

– Solve for sensitivity fields ( p̂( p̄), μ̂( p̄), ˆ̄μ( p̄)) from

a(p)
� ( p̂( p̄); δ p) + d(p)

� (μ̂( p̄); δ p)

+ ˆ̄μ( p̄) 〈〈δ p〉〉� = 0 ∀δ p ∈ P�, (38a)

d(p)
� (δμ; μ̂( p̄)) = d(p)

� (δμ; p̂M( p̄)) ∀δμ ∈ Q�,

(38b)

δμ̄ 〈〈 p̂( p̄)〉〉� = δμ̄ ∀δμ̄ ∈ R. (38c)
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– Solve for sensitivity fields (û( p̄), λ̂
( p̄)

, ˆ̄λ( p̄)) from

a(u)

� (û( p̄); δu) − d(u)

� (λ̂
( p̄); δu)

− ˆ̄λ( p̄) 〈〈δu〉〉� = b�( p̂( p̄); δu) ∀δu ∈ U�,

(39a)

− d(u)

� (δλ; û( p̄)) = 0 ∀δλ ∈ T�, (39b)

− δλ̄ · 〈〈û( p̄)〉〉� = 0 ∀δλ̄ ∈ R
3. (39c)

– ε̄ = 0, p̄ = 0, ζ̄ �= 0:

– Solve for sensitivity fields ( p̂(ζ̄ )
i , μ̂

(ζ̄ )
i , ˆ̄μ(ζ̄ )

i ) from

a(u)

� ( p̂(ζ̄ )
i ; δ p) + d(p)

� (μ̂
(ζ̄ )
i ; δ p)

+ ˆ̄μ(ζ̄ )
i 〈〈δ p〉〉� = 0 ∀δ p ∈ P�, (40a)

d(p)
� (δμ; μ̂

(ζ̄ )
i ) = d(p)

� (δμ; p̂M(ζ̄ )
i ) ∀δμ ∈ Q�,

(40b)

δμ̄ 〈〈 ˆ̄p(ζ̄ )
i 〉〉� = 0 ∀δμ̄ ∈ R. (40c)

– Solve for sensitivity fields (û(ζ̄ )
i , λ̂

(ζ̄ )

i , ˆ̄λ(ζ̄ )
i ) from

a(u)

� (û(ζ̄ )
i ; δu) − d(u)

� (λ̂
(ζ̄ )

i ; δu)

− ˆ̄λ(ζ̄ )
i · 〈〈δu〉〉� = b�( p̂(ζ̄ )

i ; δu) ∀δu ∈ U�,

(41a)

− d(u)

� (δλ; û(ζ̄ )
i ) = 0 ∀δλ ∈ T�, (41b)

−δλ̄ · 〈〈 ˆ̄u(ζ̄ )
i 〉〉� = 0 ∀δλ̄ ∈ R

3. (41c)

4.2 Numerical model reduction based on the NTFA
strategy

We first note that the fluctuation fields ũμ(•, t) ∈ U�,

p̃μ(•, t) ∈ P�, λ̃
μ
(•, t) ∈ T�, μ̃μ(•, t) ∈ Q�, ˜̄λμ(•, t) ∈

R
3, ˜̄μμ(t) ∈ R, solve the truly transient RVE problem

a(u)

� (ũμ; δu) − b�( p̃μ; δu) − d(u)

� (λ̃
μ; δu)

− ˜̄λμ · 〈〈δu〉〉� = 0 ∀δu ∈ U�, (42a)

b�(δ p; ˙̃uμ) + m�( ˙̃pμ; δ p) + a(p)
� ( p̃μ; δ p) + d(p)

� (μ̃μ; δ p)

+ ˜̄μμ 〈〈δ p〉〉�
= −b�(δ p; u̇stat) − m�( ṗstat; δ p) ∀δ p ∈ P�, (42b)

− d(u)

� (δλ; ũμ) = 0 ∀δλ ∈ T�, (42c)

d(p)
� (δμ; p̃μ) = 0 ∀δμ ∈ Q�, (42d)

− δλ̄ · 〈〈
ũμ

〉〉
� = 0 ∀δλ̄ ∈ R

3, (42e)

δμ̄
〈〈
p̃μ

〉〉
� = 0 ∀δμ̄ ∈ R. (42f)

Once again, ˜̄λμ is kept as an unknown variable for the sake
of symmetry although it is known that the solution must be
˜̄λμ = 0.

The NMR-strategy for the solution of (42) is then outlined
as follows:

– Introduce the reduced RVE space P0
�,R = span{ p̂a}MR

a=1

in the spatial domain, where { p̂a(x)}MR
a=1 is a set of lin-

early independent global basis functions called “pressure
modes”. The pressure modes are identified in a train-
ing phase by solving (42) with different loadings u̇stat
and ṗstat with a POD of extracted snapshots of p̃μ. The
“exact” solution p̃μ ∈ P

0
� is then approximated by

p̃μ
R ∈ P

0
�,R as follows7:

p̃μ(x, t) ≈ p̃μ
R(x, t) :=

MR∑
a=1

p̂a(x)ξa(t) ∈ P
0
�,R, (43)

where {ξa(t)}MR
a=1 are “mode activity” parameters. For

computational efficiency, MR should be a finite, i.e. rea-
sonably small, number. It turns out that the parameters
ξa(t) represent internal variables which define the vis-
coelastic contribution to the macro-scale model. Most
importantly, however, the response of the poroelastic
RVE depends on the loading in terms of the macro-
scale quantities {ε̄, p̄, ζ̄ } as well as on the parameter set
{ξa(t)}MR

a=1.
– Establish NMR-approximations for the other fluctuation
fields in the spirit of NTFA, i.e. introduce the expansions

ũμ(x, t) ≈ ũμ
R(x, t) :=

MR∑
a=1

ûa(x)ξa(t) ∈ U
0
�,R, (44a)

λ̃
μ
(x, t) ≈ λ̃

μ

R(x, t) :=
MR∑
a=1

λ̂a(x)ξa(t) ∈ T
0
�,R, (44b)

μ̃μ(x, t) ≈ μ̃
μ
R(x, t) :=

MR∑
a=1

μ̂a(x)ξa(t) ∈ Q
0
�,R, (44c)

˜̄λμ(t) ≈ ˜̄λμ
R(t) :=

MR∑
a=1

ˆ̄λaξa(t) ∈ R
3, (44d)

˜̄μμ(t) ≈ ˜̄μμ
R(t) :=

MR∑
a=1

ˆ̄μaξa(t) ∈ R, (44e)

whereby it is noted that the same mode activity param-
eters are employed to represent all the fields. Now, the

7 Here, we consider solely the approximation involved in NMR, i.e. we
completely ignore the error due to discretization in space-time.
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key property is that it is possible to determine the mode
basis sets introduced in (44) in terms of the pressure
basis { p̂a(x)}MR

a=1 which is identified in the training phase
via POD. In order to do so, let us first consider the
system defined by (42a), (42c), (42e) and insert the

NMR-expansions for the fields { p̃μ
R, ũμ

R, λ̃
μ

R, ˜̄λμ
R}. Since

these equations must hold for any t , the coefficients of
each mode activity parameter ξa(t) must vanish; hence,
the problem reduces to that of finding the modes ûa ∈
U�, λ̂a ∈ T�, ˆ̄λa ∈ R

3 for a = 1, 2, . . . , MR from the
system

a(u)

� (ûa; δu) − d(u)

� (λ̂a; δu)

− ˆ̄λa · 〈〈δu〉〉� = b�( p̂a; δu) ∀δu ∈ U�, (45a)

− d(u)

� (δλ; ûa) = 0 ∀δλ ∈ T�, (45b)

− δλ̄ · 〈〈
ûa

〉〉
� = 0 ∀δλ̄ ∈ R

3. (45c)

Now, sinceU�,R ⊆ U� andT�,R ⊆ T�,wemaychoose

δu = ûb in (45a), δλ = λ̂b in (45b), and δλ̄ = ˆ̄λb in
(45c) and combine the results, to give the useful (as will
be shown later) relation

a(u)

� (ûa; ûb) = b�( p̂a; ûb), a, b = 1, 2, . . . , MR.

(46)

– As the final task, determine the values of the mode
activity parameters ξa(t), a, b = 1, 2, . . . , MR from
(42b), (42d), (42f). Upon inserting the appropriate NMR-
expansions, choosing δ p = p̂a in (42b), choosing δμ =
μ̂a in (42d) and choosing δμ̄ = ˆ̄μa in (42f), we obtain
the system of equations

∑
b

[
b�( p̂a; ûb) + m�( p̂a; p̂b)

]
ξ̇b

+
∑
b

[
a(p)
� ( p̂a; p̂b)+d(p)

� (μ̂b; p̂a)+ ˆ̄μb
〈〈
p̂a

〉〉
�

]
ξb

= −b�( p̂a; u̇stat) − m(p)
� ( ṗstat; p̂a),

a = 1, 2, . . . , MR, (47a)∑
b

d(p)
� (μ̂a; p̂b)ξb = 0, a = 1, 2, . . . , MR, (47b)

ˆ̄μa

∑
b

〈〈
p̂b

〉〉
� ξb = 0, a = 1, 2, . . . , MR. (47c)

Noting that

(i) d(p)
� (μ̂a; p̂b) = 0 for a, b = 1, 2, . . . , MR, which
follows from (47b) and (42d) with μ̂a ∈ Q�,

(ii) ˆ̄μa
〈〈
p̂b

〉〉
� = 0 for a, b = 1, 2, . . . , MR, which fol-

lows from (47c) and (42f) with ˆ̄μ ∈ R, and finally,

(iii) the relation in (46) holds,
we may rewrite (47) as follows:

∑
b

[
a(u)

� (ûa; ûb)+m�( p̂a; p̂b
]
ξ̇b+a(p)

� ( p̂a; p̂b)ξb

= −b�( p̂a; u̇stat)−m�( ṗstat; p̂a),
a = 1, 2, . . . , MR. (48)

Remark Since it is only theNMR-modes ûa and p̂a that occur
in (48), there is no need to actually compute the basis modes
ûa, μ̂a as part of the “online” algorithm. 	


It is convenient to rewrite (48) in the abbreviated form

∑
b

[
Ŝab + M̂ab

]
ξ̇b +

∑
b

K̂abξb = f̂a
[ ˙̄ε, ˙̄p, ˙̄ζ

]
(49)

or, in matrix format, as

[
Ŝ+M̂

]
ξ̇+K̂ ξ= f̂

[ ˙̄ε, ˙̄p, ˙̄ζ
]
, (50)

where the matrix entries are defined as

Ŝab := a(u)

� (ûa; ûb) = 〈
ε[ûa] : E : ε[ûb]

〉
� , (51a)

M̂ab := m�( p̂a; p̂b) = 〈
β p̂a p̂b

〉
� , (51b)

K̂ab := a(p)
� ( p̂a; p̂b) = 〈

ζ [ p̂a] · K · ζ [ p̂b]
〉
� . (51c)

Moreover, the RHS of (49), representing the macroscopic
loading, is given as

f̂a
[ ˙̄ε, ˙̄p, ˙̄ζ

]
= −

∑
i, j

[
b̂(ε̄)
i j,a+m̂(ε̄)

i j,a

]
( ˙̄ε)i j−

[
b̂( p̄)
a +m̂( p̄)

a

] ˙̄p

−
∑
i

[
b̂(ζ̄ )
i,a + m̂(ζ̄ )

i,a

]
( ˙̄ζ )i , (52)

where

b̂(ε̄)
i j,a := b�( p̂a; û(ε̄)

i j )=
〈
α p̂aI : ε[û(ε̄)

i j ]
〉
�

=
〈
α p̂a

[
û(ε̄)
i j · ∇

]〉
�

,

(53a)

m̂(ε̄)
i j,a := m�( p̂a; p̂(ε̄)

i j )=
〈
β p̂a p̂(ε̄)

i j

〉
�

, (53b)

b̂( p̄)
a := b�( p̂a; û( p̄))=

〈
α p̂aI : ε[û( p̄)]

〉
�

=
〈
α p̂a

[
û( p̄) · ∇

]〉
�

,

(53c)

m̂( p̄)
a := m�( p̂a; p̂( p̄))=

〈
β p̂a p̂( p̄)

〉
�

, (53d)

b̂(ξ̄ )
i,a := b�( p̂a; û(ξ̄ )

i )=〈α p̂a I : ε[û(ξ̄ )
i ]〉�=〈α p̂a

[
û(ξ̄ )
i · ∇

]
〉�,

(53e)

m̂(ζ̄ )
i,a := m�( p̂a; p̂(ζ̄ )

i ) =
〈
β p̂a p̂(ζ̄ )

i

〉
�

. (53f)
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When (50) has been solved for ξa(t), we may express the
pertinent macro-scale fields as

σ̄ =
∑
i, j

ˆ̄σ (ε̄)
i j (ε̄)i j + ˆ̄σ ( p̄) p̄ +

∑
i

ˆ̄σ (ζ̄ )
i (ζ̄ )i +

MR∑
a=1

ˆ̄σ aξa, (54a)

q̄ =
∑
i, j

ˆ̄q(ε̄)
i j (ε̄)i j + ˆ̄q( p̄) p̄ +

∑
i

ˆ̄q(ζ̄ )
i (ζ̄ )i +

MR∑
a=1

ˆ̄qaξa, (54b)

Φ̄ = 〈φ〉� +
∑
i, j

ˆ̄Φ(ε̄)
i j (ε̄)i j+ ˆ̄Φ( p̄) p̄+

∑
i

ˆ̄Φ(ζ̄ )
i (ζ̄ )i+

MR∑
a=1

ˆ̄Φaξa,

(54c)

Q̄ = 〈φ [x − x̄]〉� +
∑
i, j

ˆ̄Q(ε̄)
i j (ε̄)i j + ˆ̄Q( p̄) p̄ +

∑
i

ˆ̄Q(ζ̄ )
i (ζ̄ )i

+
MR∑
a=1

ˆ̄Qaξa, (54d)

where

ˆ̄σ (ε̄)
i j =

〈
E : ε[û(ε̄)

i j ] − α p̂(ε̄)
i j I

〉
�

, (55a)

ˆ̄σ ( p̄) =
〈
E : ε[û( p̄)] − α p̂( p̄)I

〉
�

, (55b)

ˆ̄σ (ζ̄ )
i =

〈
E : ε[û(ζ̄ )

i ] − α p̂(ζ̄ )
i I

〉
�

, (55c)

ˆ̄σ a = 〈
E : ε[ûa] − α p̂aI

〉
� , (55d)

ˆ̄q(ε̄)
i j = −

〈
K · ζ [ p̂(ε̄)

i j ]
〉
�

, (56a)

ˆ̄q( p̄) = −
〈
K · ζ [ p̂( p̄)]

〉
�

, (56b)

ˆ̄q(ζ̄ )
i = −

〈
K · ζ [ p̂(ζ̄ )

i ]
〉
�

, (56c)

ˆ̄qa = − 〈
K · ζ [ p̂a]

〉
� , (56d)

ˆ̄Φ(ε̄)
i j =

〈
α ε[û(ε̄)

i j ] : I + β p̂(ε̄)
i j

〉
�

, (57a)

ˆ̄Φ( p̄) =
〈
α ε[û( p̄)] : I + β p̂( p̄)

〉
�

, (57b)

ˆ̄Φ(ζ̄ )
i =

〈
α ε[û(ζ̄ )

i ] : I + β p̂(ζ̄ )
i

〉
�

, (57c)

ˆ̄Φa = 〈
α ε[ûa] : I + β p̂a

〉
� , (57d)

ˆ̄Q(ε̄)
i j =

〈[
α ε[û(ε̄)

i j ] : I + β p̂(ε̄)
i j

]
[x − x̄]

〉
�

, (58a)

ˆ̄Q( p̄) =
〈[

α ε[û( p̄)] : I + β p̂( p̄)
]
[x − x̄]

〉
�

, (58b)

ˆ̄Q(ζ̄ )
i =

〈[
α ε[û(ζ̄ )

i ] : I + β p̂(ζ̄ )
i

]
[x − x̄]

〉
�

, (58c)

ˆ̄Qa = 〈[
α ε[ûa] : I + β p̂a

]
[x − x̄]

〉
� . (58d)

Finally, it is convenient to derive the spectral form of the
evolution equation (50). Thus, we execute a basis shift {ξ } →

f̂1 f̂a

Ĉ1 Ĉa

Êstat

{σ̄, ˙̄Φ, w̄}

{σ̄, ˙̄Φ, w̄}

{˙̄ ε
,
˙̄ p,

˙̄ ζ}

Fig. 2 Generalized Maxwell rheology for the poro-viscoelastic NMR
model according to the spectral evolution equation (59). Êstat represents
the stiffness of the stationary problem

{χ = R̂
−1

ξ} by solving the generalized eigenvalue problem
for Ŝ and M̂ as presented in [14]. The matrix R̂ contains the
eigenvectors of the generalized eigenvalue problem.Wemay
write

χ̇ + Ĉχ = f̂
�[˙̄ε, ˙̄p, ˙̄ζ ] (59)

where f̂
�
represents the sensitivity of the spectral evolution

equation for {˙̄ε, ˙̄p, ˙̄ζ } and the diagonal matrix Ĉ contains
the characteristic frequencies of the viscoelastic model. It is
important to remark that the rheology of theNMRmodelwith
the spectral evolution according to equation (59) corresponds
to the rheology of a generalized Maxwell–Zener model, see
visualization in Fig. 2.

4.3 Special cases

Viscoelastic macro-scale model: An important special case
of the model above is defined by the constraints μ̄ = 0 and
ζ̄ = 0, which correspond to the situation of an “undrained”
RVE, i.e the value of the storage function Φ̄ is stationary.
Fluid redistribution is only possible “locally”, i.e. within the
RVE. The condition μ̄ = 0 infers that the appropriate value
of p̄ = 〈〈p〉〉� is part of the solution in the sense that it is
computed as post-processing when p is known. In addition,
the constraint equation (27f) becomes obsolete. Altogether,
these model choices give rise to the single-phase viscoelastic
macro-scale model proposed in [13,14]. The procedure may,
therefore, be called “selective” homogenization. The macro-
scale problem is then reduced, as compared to the coupled
problem for (ū, p̄) in (15), to the equilibrium problem that
is pertinent to a single-phase continuum

∫
Ω

σ̄ : [δū ⊗ ∇] dΩ =
∫

Γ
(u)
N

t̄p · δū dΓ , ∀δū ∈ Ū
0, (60)

123



Computational Mechanics (2020) 65:1063–1083 1073

where σ̄ , as given in (54a), simplifies to

σ̄ =
∑
i, j

ˆ̄σ (ε̄)
i j (ε̄)i j +

MR∑
a=1

ˆ̄σ aξa . (61)

The fields ˆ̄σ (ε̄)
i j and ˆ̄σ a are still given in (55a) and (55d),

respectively.
The corresponding NMR-reduced RVE-problem is still

that in (49) with the RHS simplified as

f̂a
[ ˙̄ε] = −

∑
i, j

[
b̂(ε̄)
i j,a + m̂(ε̄)

i j,a

]
( ˙̄ε)i j . (62)

The problem of determining the stationary solution is sim-
plified accordingly.

Poroelastic macro-scale model: A second special case
arises if the viscoelastic properties of the macro-scale
model are inactive. The underlying modeling assump-
tion is that the problem is completely described by the
stationary problem (33) whilst the transient fluctuations

{ũμ, p̃μ, λ̃
μ
, μ̃μ, ˜̄λμ, ˜̄μμ} are evanescent. This is the case if

(i) the RVE size L� → 0, i.e. the characteristic frequencies
Ĉa → ∞, or if (ii) the material parameters of the fine-scale
model are chosen such that | p̃μ| � |pstat|, i.e. f̂a → 0.

Incompressible pore fluid: The case of an incompressible
pore fluid can be approximated by choosing β → 0. Hence,
m�( ṗ; δ p) is dropped from the transient problem (42) such
that (50) can be simplified as

Ŝξ̇ + K̂ ξ = f̂
[ ˙̄ε, ˙̄p, ˙̄ζ

]
. (63)

Hence, the poro-viscoelastic character of the macro-scale
model is preserved.

4.4 Computational cost of the NMRmodel

To conclude this section, we address the computational
cost of the NMR model. As mentioned in the previous
sections, the key advantage of the method is that all com-
putational efforts on the micro-scale can be executed as
pre-computations. The computational cost for the training
can be estimated as

ctraining := O(ntraining nit n
2
S) + O(MR n2S), (64)

where the first contribution to (64) refers to the ntraining
transient training computations for the snapshot generation
whilst the second contribution refers to the linear-elastic

computations needed to determine the system matrices in
(59). In the 3D case, on may choose ntraining = 10 (6 strain,
1 pressure, and 3 pressure gradient loading cases). The num-
ber nit refers to the number of iteration steps needed to solve
the transient problems, nS is the number of degrees of free-
dom of the RVE problem, and MR is the number of modes
that span the reduced basis.

Once the NMRmodel is trained, it can be re-used to solve
an arbitrary number of macroscopic initial boundary value
problems on Ω . The “online” cost of a macroscopic compu-
tation can be estimated as

cNMR = O(nit [n2M + nM M2
R]), (65)

where nM is the number of macroscopic degrees of freedom.
In each Gauss point, the MR evolution equations need to be
updated. For simplicity reasons, we assume that the number
of Gauss points corresponds to nM.

The gain in computational efficiency of the NMR model
can be be quantified if the computational cost of the DNS
solution is taken into account as

cDNS = O(nit n
2
DNS), (66)

where nDNS is the number of degrees of freedom of the DNS
model. Moreover, we estimate the computational cost of a
conventional FE2 model with as nested solution of micro-
and macroscopic boundary value problems as

c2FE = O(nit [n2M + nM n2S]). (67)

For the sake of simplicity, we assume nit to be of the same
order of magnitude in all three cases.

With that, the speedup fromDNS to conventional FE2 can
be estimated as

speedupDNS→FE2 ∼
[(

nM
nDNS

)2

+ nM nS
nDNS

nS
nDNS

]−1

, (68)

where nM
nDNS

� 1, nM nS
nDNS

≤ 1, and nS
nDNS

� 1. However, the
latter enters (68) only with power 1. By contrast, the speedup
from DNS to NMR can be estimated as

speedupDNS→NMR ∼
[(

nM
nDNS

)2

+ nM nS
nDNS

nS
nDNS

(
MR

nS

)2
]−1

(69)

with MR
nS

� 1. In particular in the 3D case, “much smaller”
means in fact “several orders of magnitude smaller”.

Finally, one may quantify the gain in computational
efficiency from fully-nested conventional FE2 to NMR by
evaluating
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Table 1 Material parameters of damaged and undamaged porous rock
used for the poroelastic fine-scale model (1mD ≈ 1e-12 m2) [25]

Set 1 Set 2

Matrix Inclusions Matrix Inclusions

G [GPa] 3.1 31 3.1 6.1

K [GPa] 3.7 37 3.7 7.4

α [–] 0.9075 0.075 0.9075 0.8150

β [1/GPa] 0.08144 0.02146 0.06185 4.563

k [mD/(Pa s)] 10 1 10 100

c2FE − cNMR = O(nit nM [n2S − M2
R]). (70)

Altogether, we conclude that the computational savings of
using NMR compared with DNS and FE2 scale with the
complexity of the problem and, thus, can be huge. In Sect. 5,
we investigate computational costs in terms of examples at
increasing complexity more explicitly.

5 Numerical results

In this section, we validate the proposed NMR method and
demonstrate its performance in a large-scale reduced FE2

computation. The material parameters used to define the
poroelastic fine-scale model are listed in Table 1. All simu-
lations were carried out running the Finite Element package
COMSOL Multiphysics via Matlab livelink on a standard
laptop computer.

In the subsequent simulations, mechanical loads are
applied by means of a linear ramp function and kept con-
stant after t = tramp. Thus, we define the loading function

γ (t) =
⎧⎨
⎩

t

tramp
, t ≤ tramp,

1, t > tramp.

(71)

5.1 Consolidation of a layered poroelastic medium

The first numerical example aims to provide a proof of
concept of the proposed poro-viscoelastic NMR procedure.
For simplicity reasons, we choose a periodically layered
poroelastic medium. The 1D RVE shown in Fig. 3a repre-
sents the unit cell of the layered medium with L� = 1m
and d = 0.25m. Strains in the lateral directions equal
zero. The material parameters are chosen according to set
1 given in Table 1. We train the poro-viscoelastic substitute
medium in three transient precomputations,wherewe choose
ε̄ = f1 γ (t), ζ̄ = f2 γ (t)Pa/m and p̄ = f2 γ (t)Pa individ-
ually with tramp = 1e-4 s. Note that the factors f1 = 1e-4
and f2 = 1e+6 are introduced to obtain snapshots of the pore

pressure with the same order of magnitude. The snapshots of
the pressure field extracted from the training computations
undergo a POD and result in a reduced basis that consists of
22 basis modes. The characteristic frequencies Ĉa are com-
puted as

Ĉa = [4.71e+3, 3.80e+3, 2.65e+3, 1.62e+3, 1.18e+3,
7.26e+2, 5.89e+2, 3.96e+2,

2.31e+1, 2.17e+2, 1.45e+2, 9.03e+1, 7.90e+1,

5.42e+1, 3.62e+2, 2.73e+1,

1.54e+1, 1.26e+1, 8.92e+0, 1.71e-1,

3.51e+0, 2.86e+0]1/s. (72)

Remark – We observed that it is difficult to find a reduced
basis with a reasonably low approximation error if the
POD includes snapshots of all loading cases (ε̄, p̄, ζ̄ ).
The reason is that the pressure snapshots for the the
loading cases (ε̄, p̄) are strongly different from the snap-
shots for the ζ̄ loading case. As a simple work-around,
we execute two separate PODs, the first based on the
snapshots from the (ε̄, p̄) loading cases, whilst the sec-
ond is based on the snapshots from the ζ̄ loading case.
The output of both PODs is combined to one unified
reduced basis. Obviously, this procedure does not guar-
antee orthogonality of the reduced modes. Nevertheless,
the approximation error turns out to be negligibly small as
demonstrated in the subsequent validation experiments.

– The characteristic frequencies given in (72) correspond
to relaxation times of aMaxwell–Zenermodel. As shown
subsequently, the chosen reduced basis allows for a
high-fidelity approximation of the RVE properties incor-
porating (a) relaxation processes over many decades in
time and (b) three strongly different macroscopic loading
scenarios (ε̄, p̄, ζ̄ ). The complexity of the RVE proper-
ties explains the maybe surprisingly high number of 22
modes.

Examples of pressure modes are shown in Fig. 3b.
Finally, all sensitivities and system matrices that define the
poro-viscoelastic substitute medium are computed from the
definitions presented in Sect. 4.

We are now in the position to utilize the poro-viscoelastic
substitute model for the simulation of the macroscopic con-
solidation experiment shown in Fig. 3c as a reduced FE2

computation. For validation purposes, we also compute a
DNS of the macroscopic consolidation experiment which
serves as reference. The reference computation is performed
with full geometrical resolution, i.e. all layers contained in
the macroscopic sample are discretized. In accordance with
Fig. 3, the boundary conditions are chosen as t̄(x̄ = 0) = t̄p,
p̄(x̄ = 0) = 0 (drained boundary), ū(x̄ = 10 L�) = 0, and
w̄(x̄ = 10 L�) = 0 (undrained boundary).
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(a)
L

d

x − x̄

(b)

22

20

19

14

8

p̂
χ a

x − x̄(c)

x̄

10 L

t̄ = t̄p

p̄ = 0 ū = 0
w̄ = 0

Fig. 3 a 1DRVE of the layered poroelastic mediumwith L� = 1m and d = 0.25m. bExample pressure modes p̂χ
a . The given numbers correspond

to the mode numbers resulting from the snapshot POD. c Macroscopic consolidation experiment with t̄p = 1e+6 γ (t) Pa and tramp = 1e-2 s

Firstly, we compare the pore pressure distribution p̄(x̄)
in the macroscopic computation domain at different times
during the consolidation experiment, see Fig. 4a. At t =
1e+0 s, the reference computation shows pressure gradients
between the layers of the fully resolved sample that are equi-
librated in the course of time. Hence, at t = 1e+2 s, the
global pressure decay due to the drained boundary condi-
tion p̄ = 0 at x̄ = 0 becomes dominant. By construction,
the reduced FE2 computation, using the poro-viscoelastic
NMR model, is unable to resolve the fluctuations (wave-
length L�) of the pore pressure field at t = 1e+0 s. Instead,
the NMR model correctly predicts the pore pressure that
is measured at the RVE boundaries. This is in line with
(25)2 where we constrain the macroscopic pressure to equal
the surface average of the microscopic pressure. Also, at
t = 1e+2 s and t = 1e+3 s, the poro-viscoelastic com-
putation matches the reference computation with very high
accuracy.

Secondly, we investigate the displacement ū measured at
the surface x̄ = 0, see Fig. 4b. We observe three distinct
phases of the consolidation experiment: (i) The loading phase
for t < 1e-4 s, (ii) the phase where the inter-layer pressure
gradients are equilibrated by local redistribution of the pore
fluid for t ∈ [1e-2, 1e+1] s (“viscoelastic creeping”), and
(iii) the phase of macroscopic drain-off due to the bound-
ary condition p̄ = 0 at x̄ = 0 at t > 1e+1 s (“poroelastic
creeping”). In all phases, the poro-viscoelastic NMR model
predicts the material behavior with very high accuracy.

The macroscopic drain-off w̄(x̄ = 0) during the consoli-
dation test as well as the change in fluid content Φ̄ − 〈φ〉�
stored in the pore space at several evaluation points are plot-
ted in Fig. 5. In both cases, the poro-viscoelastic NMRmodel
is in excellent agreement with the reference computation.

5.2 Role of the RVE size

An important issue in computational homogenization is to
decidewhether the chosen volume element is large enough to
be considered as sufficiently representative. In standard first-
order homogenization of single-phase materials, the size of
an RVE is determined mainly in terms of stochastic repre-
sentativity and boundary layer effects, e.g. due to over-stiff
boundary conditions, whereas computational homogeniza-
tion of poroelastic media involves an additional imprinted
internal length scale, namely the diffusion length.

In the subsequent study, we aim to investigate the effect
of RVE size on the macroscopic poro-viscoelastic properties
of the homogenized model. We consider a 2D poroelastic
medium (plain strain) consisting of stiff, circular inclusions
which are embedded in a softer matrix. The material param-
eters are chosen according to set 1 in Table 1. The RVEs are
constructed such that they contain one single inclusion with
radius r = 0.175m per 2D volume l2. Hence, the volume
fraction of the inclusions is for n = 0.385. The different RVE
sizes, |Ω�| = {1, 4, 25}m2, are shown in Fig. 6a. For each
RVE size, we generate an ensemble of five periodic RVEs
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Fig. 4 a Macroscopic pressure
p̄ measured during
consolidation of the 1D layered
poroelastic medium. b
Macroscopic displacement ū at
the boundary at x̄ = 0

(a)

1 0 1 2 1 3t =

p̄

x̄

(b)

t

ū
( x̄

=
0)

Fig. 5 1D consolidation test. a
Outflux w̄ of pore fluid across
the drained boundary at x̄ = 0.
b Change of fluid content
Φ̄ − 〈φ〉� observed at different
positions x̄

(a)

t

w̄
(x̄

=
0)

(b)

x̄
x̄
x̄

t

Φ̄
φ

(a)

(b)

x̄1

x̄2

l

50 l

t̄ = t̄p
p̄ = 0

ū · n = 0 w̄ = 0

Fig. 6 a Examples of periodic RVE realizations, l = 0.5m, |Ω�| = {1, 4, 25} l2, with randomly distributed but equally sized circular inclusions
(radius r = 0.175m, volume fraction n = 0.385). bMacroscopic consolidation test with normal surface loading t̄p = t̄p · n = 1e+6 Pa
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Fig. 7 Pressure modes p̂χ
a

associated with the 16 slowest
viscoelastic internal variables
χa for one example RVE
(|Ω�| = 25 l2)

p̂χ
1 p̂χ

2 p̂χ
3 p̂χ

4

p̂χ
5 p̂χ

6 p̂χ
7 p̂χ

8

p̂χ
9 p̂χ

10 p̂χ
11 p̂χ

12

p̂χ
13 p̂χ

14 p̂χ
15 p̂χ

16

with randomly distributed inclusions. The minimal distance
between the inclusions is constrained to be larger than 0.1 r .

For each individual RVE, we perform training computa-
tions with a POD of the extracted snapshots and compute
the properties of the corresponding poro-viscoelastic NMR
model. We show the pressure modes associated with the 16
lowest characteristic frequencies in Fig. 7 for one example
RVE with |Ω�| = 25 l2. The 16 lowest characteristic fre-
quencies associated with the poro-viscoelastic variables χa

are

Ĉa = [2.973e+1, 1.727e+1, 1.259e+1, 1.080e+1,
1.104e+1, 1.158e+1, 1.148e+1, 4.347e+0,

3.720e+0, 2.644e+0, 8.942e-1, 1.314e+0,

1.163e+0, 1.764e-1, 3.114e-1, 2.782e-1] 1/s.
(73)

Note that the NMR model used for the subsequent sim-
ulations contains additional pressure modes with higher
characteristic frequencies. Typically, we employ 27 pressure
modes for each RVE. For the sake of brevity, the higher pres-
sure modes are omitted in Fig. 7.

We now use the individually identified NMR models
to predict the RVE responses to an external loading. The
NMR results are validated against reference computations

obtained from solving the respective RVE problems with
full geometrical resolution. Examples of effective proper-
ties are plotted in Figs. 8a, 9a, and 10a for five random
RVE realizations of the smallest size |Ω�| = l2 and in
Figs. 8b, 9b, and 10b for five random RVE realizations of
the largest size |Ω�| = 25 l2. The loading is applied as fol-
lows: ε̄11(t) = 1e-4 γ (t), ζ̄ = 0, p̄ = 0 for Fig. 8, ε̄ = 0,
ζ̄1(t) = 1e+6 γ (t)Pa/m, p̄ = 0 for Fig. 9, and ε̄ = 0, ζ̄ = 0,
p̄(t) = 1e+6 γ (t)Pa for Fig. 10, tramp = 1e-4 s. All other
components of the macroscopic fields are zero.

First of all, we remark that choosing a periodic RVE con-
taining one single inclusion results in a strong scattering of
the transient behavior, see Figs. 8, 9, and 10a. This might
be somewhat surprising since the only difference between
these RVEs with |Ω�| = l2 is the position of the inclusion.
In the case of linear elasticity, it is clear that the homoge-
nized properties of a periodic RVE under periodic boundary
conditions that contain one single inclusion do not depend
on the position of the inclusion. Obviously, this is not true
in the present case. The explanation for this behavior is the
presence of the pressure diffusionmechanism. Since only the
pore pressure fluctuation in(20)2 is periodic but not the pre-
scribed macroscopic part p̄M, the position of the inclusion
controls the diffusion behavior close to the RVE boundary
which results in the scattering behavior as seen in Figs. 8, 9,
and 10a.

123



1078 Computational Mechanics (2020) 65:1063–1083

Fig. 8 Effective stress response
σ̄11 under the loading
ε̄11(t) = 1e-4 γ (t), ζ̄ = 0,
p̄ = 0. a Five example RVE
realizations with |Ω�| = l2, b
five example RVE realizations
with |Ω�| = 25 l2
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σ̄
1
1
| ε̄ 1

1
(t
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t
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1
1
| ε̄ 1

1
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Fig. 9 Effective seepage
velocity w̄1 under the loading
ε̄ = 0, ζ̄1(t) = 1e+6 γ (t) Pa/m,
p̄ = 0. a Five example RVE
realizations with |Ω�| = l2, b
five example RVE realizations
with |Ω�| = 25 l2

(a)

w̄
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| ζ̄ 1

(t
)

t
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Fig. 10 Effective porosity
increase Φ̄ − 〈φ〉� under the
loading ε̄ = 0, ζ̄ = 0,
p̄(t) = 1e+6 γ (t)Pa. a Five
example RVE realizations with
|Ω�| = l2, b five example RVE
realizations with |Ω�| = 25 l2
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(b)
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The scatter is significantly reduced if we increase the RVE
size. This holds, in particular, for the macroscopic stress σ̄11
under the loading ε̄11(t), see Fig. 8, and the porosity increase
Φ̄ − 〈φ〉� under the loading p̄(t), see Fig. 10. To a lesser
extent, this also holds for the effective seepage velocity w̄1

under ζ̄1(t), see Fig. 10.Moreover, for the larger RVE sizewe
observe that the stationary state (t → ∞) is reached much
later than for the smaller RVE size. This is related to the larger
diffusion length associated with a larger RVE size. We show
in the subsequent experiments that, nevertheless, all RVE
sizes are suitable for predicting the transient behavior. Most

importantly, however, we want to highlight that all NMR
predictions (lines in Figs. 8, 9, 10) are in excellent agreement
with the reference computations for the chosen RVEs (dots
in Figs. 8, 9, 10).

Finally, we want to employ the identified NMR rules to
execute reduced FE2 simulations of the macroscopic con-
solidation experiment shown in Fig. 6b for the two different
sets of material parameters given in Table 1. For each RVE
size, we execute ensemble averaging of the individual poro-
viscoelastic NMR models. The ensemble averaged reduced
FE2 computations are validated against a DNS which we

123



Computational Mechanics (2020) 65:1063–1083 1079

Fig. 11 Validation of NMR
predictions for the 2D
consolidation test with material
properties according to Table 1
(set 1). Each NMR solution is
computed by averaging an
ensemble of five RVEs. a Pore
pressure p̄(t) computed using
the largest RVE size
|Ω�| = 25 l2. b Displacement
ū1 observed at x̄ = 0 for
different RVE sizes

(a)

p̄

x̄1

t

(b)

ū
( x̄

=
)

t

|Ω | l2

4 l2

25 l2

Fig. 12 Validation of NMR
predictions for the 2D
consolidation test with material
properties according to Table 1
(set 2). The NMR solution is
computed by averaging an
ensemble of five RVEs using the
largest RVE size |Ω�| = 25 l2.
a Evolution of the pore pressure
p̄(t). b Displacement ū1
observed at x̄ = 0

(a)

p̄

x̄1

t

(b)

ū
(x̄

=
)

t

use as reference solution. The reference sample for DNS is
generated according to Fig. 6b. It is periodic in x̄2-direction
and contains 50 stochastically distributed inclusions. The
reference computation is carried out with full geometrical
resolution of the inclusions. The boundary conditions on the
macroscopic problem are t̄ = [t̄p, 0]T at x̄1 = 0 with the
prescribed traction t̄p = 1e+6 γ (t) and tramp = 1e-4 s.
Moreover, p̄ = 0 at x̄1 = 0 (drained boundary). All other
boundaries undergo symmetry conditions, i.e. ū · n = 0 and
w̄ = 0 (undrained boundary).

The results obtained for parameter set 1 are shown in
Fig. 11. As for the 1D case, we observe a pronounced fluc-
tuation of the pore pressure field p̄ for t = 1e-1 s that
decays rapidly over time. The associated process is local
redistribution of pore fluid between the inclusions and the
matrix material in their vicinity. With the passage of time,
the drained boundary condition p̄(x̄1 = 0) = 0 induces a
macroscopic transport of pore fluid over the full length of the
sample. Note that the reduced FE2 solution shown in Fig. 11a
is computed using the largest RVE size |Ω�| = 25 l2. The
agreement with the reference computation is very good. Nev-
ertheless, it is important to remark that a certain deviation
from the reference computations is to be expected due to the
fact that the reference geometry itself is stochastic.

In Fig. 11b we plot the displacement ū1(x̄ = 0). Here,
we compare ensemble averages of the RVE sizes |Ω�| =
{1, 4, 25} l2. Whilst the displacement related to local redis-
tribution at t = 1 s is not very pronounced in this example,
the NMR predictions of all RVE sizes show a very good
agreement with the reference computation of the transient
behavior. The only systematic deviation from the reference
computation is the slight underestimation of the settlement
in the fully equilibrated state by the smallest RVE size.

The same consolidation test has been performed with
parameter set 2. The pressure distribution and the settlement
are plotted in Fig. 12. Because the material properties G, K ,
and β are chosen to represent a significantly softer material
than in parameter set 1, the amplitude of the pressure fluc-
tuation at t = 1e-1 s is, compared to the overall pressure
level, much larger. This is also reflected in the displacement
ū1(x = 0) where the local redistribution process at t = 1 s
(“viscoelastic creeping”) is much more pronounced than for
parameter set 1. In this case, all NMR computations have
been carried out on the basis of the ensemble consisting of
five RVE realizations of the largest size. Taking into account
that also the reference geometry itself is stochastically dis-
turbed, we find again a very good agreement of the reduced
FE2 computation with the reference computation.
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Fig. 13 a 3D poroelastic RVE
containing 8 spherical
inclusions; L� = 0.2m,
r = 4.15e-2m, n = 0.3. b
Macroscopic inhomogeneous
consolidation experiment with
L = 10m, H = 20m,
t̄p = −1e+6 Pa. Data computed
at point P (6,0,-6)m will be
used for RVE visualizations (a)

x1 x̄1

x2 x̄2

x3 x̄3

LL

L
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(b)

x̄1
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Fig. 14 Examples of pressure
modes p̂a associated with the 16
slowest viscoelastic internal
variables χa
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5.3 Consolidation experiment with inhomogeneous
boundary conditions

We conclude our investigations with a 3D consolidation
experiment with inhomogeneous boundary conditions. We
assume a poroelastic RVE that contains 8 spherical inclu-
sions, see Fig. 13a, and use the material parameters of set

2, see Table 1. The macroscopic problem is displayed in
Fig. 13b. The loading at the top surface is applied via the pre-
scribed traction t̄ = [0, 0, t̄p]T on a rigid plate. We choose
t̄p = −γ (t) 1e+6 Pa and tramp = 1e-4 s. The remaining
part of the top surface is traction-fee and drained ( p̄ = 0).
Symmetry conditions apply to all other boundaries. Hence,
ū · n = 0 and w̄ = 0.
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Fig. 15 a Reduced FE2

computation of the macroscopic
seepage ‖w̄‖ during the
inhomogeneous consolidation
experiment. bMicroscopic
seepage ‖w‖ evaluated during
FE2 computation in the RVE
adjacent to point P (6,0,-6)m at
t = 60 s and at t = 3600 s

(a) t = 60 s t = 3600 s

log10( w̄ ) [m/s]−10 −6

(b) t = 60 s t = 3600 s

log10( w ) [m/s]−8.5 −7

We follow the NMR procedure and perform training
computations to identify all relevant sensitivities of the poro-
viscoelastic substitute model. Examples of pressure modes
are displayed in Fig. 14. Finally, we are able to execute the
reduced FE2 computations. In Fig. 15a we display the effec-
tive seepage w̄ in the sample at different times. The arrows
represent the seepage velocity vector. In Fig. 15b, we show,
as a post-processing result, the local seepage velocity w as
observed in an RVE adjacent to the evaluation pointP for the

same instants of time. We see that, at t = 60 s, the seepage
is active essentially in the horizontal direction in the part of
the sample which is exposed to the strong inhomogeneity of
the loading. By contrast, the seepage at t = 3600 s is active
mainly in the vertical direction towards the drained bound-
ary. This behavior is also reflected by the streamlines in the
RVE, see Fig. 15b.

It is important to remark that, for the given exam-
ple, the fully resolved macroscopic geometry would con-
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Table 2 Comparison of computation times between DNS and NMR
solutions

DNS NMR (s)

1D RVE 1s 2

Consolidation test 4 s 5

2D RVE (L� = 5 l) 31 s 2

Consolidation test 107s 31

3D RVE 1037s 2

Consolidation test Not tractable 431

tain 2,000,000 inclusions. A DNS of the sample would
be far beyond typically available computing and memory
resources. By contrast, the reduced FE2 simulation based on
the poro-viscoelastic NMR approach requires only a short
computation time with a low memory utilization. The com-
putational effectiveness is discussed in more detail in the
subsequent section.

5.4 Computation time

To investigate computational effectiveness, we compare the
explicit computation times betweenDNSandNMRsolutions
for the previous examples. All simulations were carried out
on a standard laptop computer. The computation times are
reported in Table 2 for the 1D case (cf. Sect. 5.1), the 2D case
(cf. Sect. 5.2) and the 3D case (cf. Sect. 5.3). The computa-
tion times are evaluated for the solution of (i) one load case
on one single RVE and of (ii) the macroscopic consolidation
experiments. We observe that, with increasing complexity of
the problem, the NMRmodel becomes more andmore favor-
able. In practice, the computational effort to solve the RVE
problem by NMR does not depend on the dimensionality of
the problem. The speed-up factor for solving one single 3D
RVE problem is 500. With NMR, also the 3D macroscopic
consolidation experiment can be solved within a few min-
utes, although the relaxation behavior of the RVE problem
gives rise to a considerable number of evolution equations.
By contrast, the DNS of the 3D consolidation test, containing
2,000,000 inclusions, exceeds the capacities of the used com-
puter resources by far. It is, therefore, impossible to quantify
the speed-up in that case. These results point to the high
computational effectiveness of the proposed method.

6 Concluding remarks: outlook

To provide increased modeling capability at the computa-
tional homogenization of fine-scale poroelasticity, we have
considered the situation where the pore pressure field pos-
sesses macro-scale as well as sub-scale parts. The corre-
sponding RVE problems will becomemore expensive as part

of the FE2 algorithm. Accordingly, it was expected that the
NMR approach is muchmore efficient. Indeed, the presented
numerical results show that theNMRmethod provides excel-
lent agreement with the reference solution obtained from
DNS for a quite small number of pressure modes. More-
over, it was shown that even 3D RVEs employed as part of
the FE2 algorithm give tractable solution times.

As to future work, it is of significant interest to evalu-
ate the importance of including the macro-scale viscoelastic
variables, i.e. to discern when it is sufficient to assume that
the RVE problem is reduced to what is coined the stationary
problem. Such a reduction would mean that the macro-scale
model is purely poroelastic. Another aspect that requires fur-
ther investigation is the effect of the compressibility of the
pore fluid on the NMR algorithm. Whilst in rock mechan-
ics applications the bulk moduli of fluid and solid phase are
usually of the same order of magnitude, the assumption of
an, in practice, incompressible pore fluid is common for the
description of “softer” porous media such as biological tis-
sues or soft clay with full water saturation.
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