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Abstract: The hydroamination reaction is a convenient alternative strategy for the formation of C–
N bonds. Herein, we report a new versatile and convenient protocol for the hydroamination of 
arylacetylenes with anilines using palladium iodide in the absence of any added ligand as catalyst. 
Mild conditions, excellent regio- and stereoselectivity, and high functional group tolerance are the 
main features of this methodology. A subsequent reduction step gives access to a wide variety of 
secondary aromatic amines. 
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1. Introduction 

Amines, imines, and enamines are useful building blocks in organic synthesis and ubiquitous 
motifs in biologically active molecules, as exemplified in Figure 1. 
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Figure 1. Selected example of biologically active compounds containing amine, imine, or enamine 
functionalities. 
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One of the most attractive strategies for their preparation is the catalytic hydroamination of 
unsaturated compounds, such as alkenes or alkynes [1–8]. The hydroamination reaction, consisting 
of the addition of an N–H bond to a C–C multiple bond, features a 100% atom efficiency associated 
with the large availability of the starting materials (these are alkynes, alkenes, amines). Nevertheless, 
in order to promote the addition of the amino group on the multiple C–C bond, a high activation 
barrier, resulting from the repulsion between the high electron density of the nucleophile and the π-
electrons of the multiple bond, needs to be overcome. In this context, metal catalysis can serve as a 
powerful tool to reduce the activation barrier either by coordinating the multiple bond and thus 
subtracting the electron density or by N-H metalation, resulting in a strongly nucleophilic metal 
amide moiety. Amide intermediates can be also generated by the oxidative addition of the N–H bond 
to the metal. Several metals have been found to catalyze hydroamination reactions. Early transition 
metals, such as Ti or Zr, as well as lanthanides, display high activity [9–14], although they are poorly 
stable, owing to their oxophilicity that renders them air and moisture sensitive. Late transition metals 
[3,15–19] feature a superior stability to moisture and air, together with broader functional group 
tolerance. Remarkably, cationic gold-based catalysts were highly active in the hydroamination of 
alkynes with amines [20–21]. The choice of the catalytic system is driven not only by the performance 
but also by its availability and cost. In this regard, palladium is clearly more attractive than rhodium, 
iridium, or gold. 

Palladium-catalyzed hydroamination reactions have found several applications in the synthesis 
of biologically relevant heterocycles [22–25]. Alkynes [26], alkenes [27], dienes [28], and allenes [29] 
can serve as acceptor in combination with both aromatic and aliphatic amines. Despite the versatility 
of palladium-catalyzed hydroaminations, elaborate and expensive catalytic systems are often 
required. In particular, in the reaction between an alkyne and an aromatic amine, palladium has been 
employed in the presence of NHC [30] or NHCP [31] ligands. In both these cases, the catalytic 
precursor needs to be activated with a silver salt that acts as halogen scavenger. 3-Imino phosphine 
(3IP) ligands [32] also provide an efficient alternative but, similarly, a multistep synthesis for 
obtaining the catalytic active complex is required. Yamamoto and coworkers contributed 
significantly to the field by exploiting the possibility of using simple palladium salts such as 
palladium nitrate [33]. A dramatic rate enhancement effect was observed with 2-aminophenols, 
where the chelating OH group was crucial for the reaction outcome. Subsequently, the same research 
group was able to expand the reaction scope to variously substituted aryl amines resorting to an aqua 
palladium complex [Pd(dppe)(H2O)2](TfO)2 [34]. The Yamamoto’s group also reported the use of 
Pd(PPh3)4 in combination with benzoic acid for the hydroamination of internal alkynes to allyl amines 
[35]. 

Owing to its flexibility and synthetic attractiveness, hydroamination reactions are still of high 
interest, and we recently reported the hydroamidation of propargylic ureas to give imidazolidin-2-
ones and imidazol-2-ones [36]. In this work, we report the use of a cheap and commercially available 
palladium catalyst (i.e., PdI2) for the hydroamination of arylacetylenes with anilines under mild 
reaction conditions and low catalyst loading. 

2. Results and Discussion 

The palladium-catalyzed intermolecular hydroamination reaction was initially investigated 
using aniline (1a, 1 equiv, 0.4 mmol) and phenylacetylene (2a, 1.2 equiv) as model substrates, in 
dioxane (0.2 M) as the solvent at 80 °C for 18 h, in the presence of catalytic amount of a palladium salt 
(2 mol%, Table 1). Palladium acetate did not provide any conversion, while palladium dichloride 
produced only traces of imine 3a (Table 1, Entries 1–2). Gratifyingly, palladium iodide resulted in 
73% 1HNMR yield of the hydroamination product, which was identified as (E)-N,1-diphenylethan-1-
imine 3a deriving from the Markovnikov addition to the triple bond followed by isomerization (Table 
1, Entry 3). An excess of iodide anions (from added KI) caused a slight decrease in the catalytic activity 
of PdI2 (Table 1, Entry 4), and a similar outcome was found in the presence of K2PdI4 (Table 1, Entry 
5). This result is in agreement with Brunet’s study, where PtBr2 was used in combination with 
bromide anions for the hydroamination of terminal alkynes [37]. The excess of iodide anions can in 
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this case be detrimental to the yield, since it can affect the equilibrium of species I and II in the 
catalytic cycle (see below). We then investigated the effect of concentration, temperature, catalyst 
loading, and solvent. At 0.4 M, compound 3a was obtained with 81% yield (Table 1, entries 6), while 
a further increase of the concentration to 0.8 M led to a less satisfactory result (Table 1, entries 7). As 
expected, temperature also plays a fundamental role in this transformation. In fact, when the reaction 
was performed at 100 °C, we observed a slightly decrease in the yield of 3a (Table 1, entry 8, 77%). 
Synthetically useful yields were still observed when reducing the catalyst loading to 1.0 mol% (Table 
1, entry 9) and to 0.5 mol% (Table 1, entry 10) with yields of 3a of 63% and 47%, respectively.  

Table 1. Optimization study for the hydroamination of phenylacetylene with anilinea. 

 

Entry Pd source (%) Conc. 
(M) 

T  
(°C) 

Solvent Conv. (%) 1a Yieldb (%) 3a 

1 Pd(OAc)2 (2) 0.2 80 1,4-dioxane <5 - 
2 PdCl2 (2) 0.2 80 1,4-dioxane 7 5 
3 PdI2 (2) 0.2 80 1,4-dioxane 91 73 
4 PdI2 (2) + KI (20%) 0.2 80  1,4-dioxane 82 64 
5 K2PdI4 (2) 0.2 80 1,4-dioxane 81 62 
6 PdI2 (2) 0.4 80 1,4-dioxane 99 81 
7 PdI2 (2) 0.8 80 1,4-dioxane 95 74 
8 PdI2 (2) 0.4 100 1,4-dioxane 99 77 
9 PdI2 (1) 0.4 80 1,4-dioxane 84 63 

10 PdI2 (0.5) 0.4 80 1,4-dioxane 69 47 
11 PdI2 (2) 0.4 80 DMF <5 0 
12 PdI2 (2) 0.4 80 MeCN 38 27 
13 PdI2 (2) 0.4 80 toluene 47 36 

a Reaction conditions: 1a (1 equiv, 0.4 mmol), 2a (1.2 equiv), Pd source, solvent, 18 h. b Yield calculated by 1H 
NMR using dimethyl maleate as internal standard. 

Lastly, different solvents were evaluated. Dimethylformamide (DMF) proved to be ineffective 
under these reaction conditions (entry 11), while acetonitrile and toluene allowed the formation of 
the desired imine 3a even though in lower yields (entries 12 and 13). 

Once the best reaction conditions (Table 1, entry 6) were determined, we then investigated the 
scope for variously substituted anilines (1) and arylacetylenes (2) (Scheme 1). In general, the yields 
attained using PdI2 as catalyst were comparable with the ones achieved with the previously 
employed more complex catalytic systems [30]. For example, different alkyl chains at the para position 
of the aniline provided good yields, irrespective of the length of the chain (yields of 3b, 67%; 3c, 79%; 
3e, 67%) or the steric hindrance (3d, 80%). Interestingly, an isopropyl group at the ortho position of 
the aniline also allowed an excellent product yield (3f, 83%). Fluoro-containing groups were well 
tolerated under these reaction conditions, regardless of their position or electronic properties. With a 
CF3 group at the meta position, the expected imine 3g was formed in 78% yield, and the same result 
was observed starting from the aniline ring bearing an OCF3 substituent para to the NH2 group (3h, 
78%). para-Substituted anilines with fluoro, chloro, or bromo smoothly underwent the 
hydroamination, resulting in 75% (3i), 70% (3j), and 60% (3k) yields of the desired imines, 
respectively. Even a disubstituted aniline, such as 2-methyl-3-chloroaniline, behaved nicely, 
providing the corresponding product 3l with 85% yield. The OMe substituent in para position on the 
aniline ring led to 95% yield of 3m, while the presence of two OMe groups caused a significant 
decrease of the yield (3n, 29%). 
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The versatility of the process with respect to the nature of the arylacetylene partner was also 
considered. Both electron-withdrawing and electron-donating groups were highly compatible with 
the catalytic protocol, providing excellent yields of the corresponding imines (3o–q, 82–85%). 

Scheme 1. Scope for the hydroamination of arylacetylene derivatives with anilines. Reaction 
conditions: 1 (1 equiv, 0.8 mmol) , 2 (1.2 equiv, 1 mmol), PdI2 (2 mol%, 0.016 mmol), dioxane (2 mL), 
80 °C, 18 h. Yield calculated by 1H NMR using dimethyl maleate as internal standard. a Reaction 
performed at 100 °C. 

Other substrates were less tolerated (Scheme 2). For instance, 4-iodoaniline gave only 26% yield 
of the corresponding imine (3r). The iodide on the ring was highly reactive under palladium catalysis, 
leading to a complex mixture of byproducts. For the same reason, 2-bromoaniline in combination 
with phenyl acetylene gave only 30% of the expected 3s. The presence of a strongly electron-
withdrawing group, such as the nitro group on the aniline ring, completely inhibited the process. 
Alkylacetylenes were considerably less reactive than arylacetylenes, as exemplified by the formation 
of 3v in 20% yield starting from 1-decyne. Primary alkylamines were not reactive under the optimized 
conditions, likely due to their pronounced coordinating nature. 
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Scheme 2. Limitations for the PdI2-catalyzed hydroamination of acetylene derivatives. Yield 
calculated by 1H NMR. 

Not surprisingly, imine products 3 were unstable under acidic conditions and the isolated yields 
after column chromatography were very low. We then decided to reduce compounds 3 to the 
corresponding, more stable secondary amines 4, using simple and inexpensive NaBH4. The overall 
isolated yields for the two-step synthesis of secondary amines 4 (I step: PdI2-catalyzed 
hydroamination and II step: reduction) starting from anilines and terminal arylacetylenes, reported 
in Scheme 3, ranged from 17% to 90%. In some cases, the two-step yield was about 20% lower than 
the corresponding NMR hydroamination yield (4o-q). This was mainly due to a non-optimized 
reduction procedure, which can be improved with the use of alternative reduction reagents, such as 
NaBH3CN. 

From a mechanistic point of view, coordination of the triple bond of 2 to PdI2 generates the π-
complex I (Scheme 4). This type of coordination makes the triple bond susceptible to undergo 
nucleophilic attack of the nitrogen atom of amine 1 resulting in the vinylpalladium iodide 
intermediate II. Then, protonolysis of II regenerates PdI2 and leads to enamine intermediate III, 
which readily tautomerizes to imine 3. The presence of the iodide counteranion in the process is 
crucial and we believe that its role may be connected, on one hand, to its higher ability to act as the 
leaving group in the nucleophilic attack step and, on the other hand, to its higher electron-releasing 
power, which tends to favor the protonolysis step [38]. Moreover, iodide anions display a superior 
ability to stabilize palladium(II) species, compared to other counteranions, such as acetates [39]. 
Efforts at understanding the effect of iodide anions in this transformation are underway in our 
laboratories [40]. 
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Scheme 3. Overall isolated yields for secondary amines 4 after two steps (hydroamination and 
reduction). 
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Scheme 4. Proposed mechanism for PdI2-catalyzed hydroamination of terminal alkynes 2 with 
anilines 1 leading to imines 3 through the formation of vinylamines III as intermediates. 

3. Materials and Methods  

3.1. Materials 

All chemicals were purchased from commercial sources and used as received. Dioxane and 
methanol were dried and stored over molecular sieves previously activated in an oven at 300 °C 
overnight. Catalytic reactions were carried out under nitrogen using the standard Schlenk technique. 
Reaction mixtures were analyzed using a GC Agilent Tenchnologies 7820A GC System equipped 
with FID detector and column Agilent Technologies 19091J 413 (30mX0,32mm) and a gas 
chromatograph Agilent Technologies 6890N Network GC System equipped with quadrupole Agilent 
Technologies 5973 Network Mass Selective Detector and column Fused Silica Capillary Column 
(30mX0,25mm) for GC-MS analyses. 1H NMR and 13C NMR spectra were recorded at 300 K on a 
Bruker 400 MHz using the solvent as internal standard (7.26 ppm for 1H NMR and 77.16 ppm for 13C 
NMR for CDCl3). The terms m, s, d, t, q and quint represent multiplet, singlet, doublet, triplet, 
quadruplet, and quintuplet respectively, and the term br means a broad signal.  

3.2. General Procedures 

3.2.1. Hydroamination of Terminal Alkynes with Anilines 

A flame-dried test tube of 10 mL was charged with palladium iodide (0.016 mmol, 2 mol%), 
aniline 1 (0.8 mmol, 1 equiv) and alkyne 2 (1 mmol, 1.2 equiv). The test tube was sealed with a rubber 
cup, filled with nitrogen, evacuated, and backfilled with nitrogen three times. Then, dry 1,4-dioxane 
(2 mL) was added. The tube was placed in an oil bath at 80 or 100 °C and stirred for 18 hours. The 
reaction crude was cooled to room temperature, filtered through celite, and dried under reduced 
pressure. The 1H NMR analysis on the reaction crude using dimethyl maleate as the internal standard 
was immediately acquired to determine the yield of imine 3. 

3.2.2. Reduction of Imine 3 to Secondary Amine 4 

The hydroamination crude was transferred in a two-neck round-bottom flask and dissolved in 
dry methanol (2 mL). The flask was placed in an ice bath and sodium borohydride (2–5 equiv) was 
added portion wise. The mixture was stirred at 0 °C until a complete conversion of 3, detected by 
TLC analysis. The mixture was quenched with 2 mL of KOH (1M). The crude was diluted with 20 
mL of EtOAc, washed with water and brine and dried over MgSO4. The pure amine 4 was obtained 
after flash column chromatography using a mixture of hexane and EtOAc as eluent. 

3.3. Product Characterization 
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N-(1-Phenylethyl)aniline (4a) was synthesized from aniline (73 μL) and phenylacetylene (105 
μL) following the general hydroamination procedure. Two equiv of NaBH4 were employed during 
the reduction step. The reaction crude was purified by flash column chromatography using 
hexane/ethyl acetate (98:2) as eluent to give 4a (118 mg, 75%) as pale-yellow oil. The spectroscopic 
data of 4a are consistent with literature values [41]. 1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 7.6 Hz, 
2H), 7.40 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.2 Hz, 1H), 7.18 (t, J = 7.9 Hz, 2H), 6.75 (t, J = 7.3 Hz, 1H), 6.62 
(d, J = 7.8 Hz, 2H), 4.57 (q, J = 6.7 Hz, 1H), 4.38 (br s, 1H), 1.60 (d, J = 6.7 Hz, 3H). 

4-Methyl-N-(1-phenylethyl)aniline (4b) was synthesized from p-toluidine (86 mg) and 
phenylacetylene (105 μL) following the general hydroamination procedure. Four equiv of NaBH4 
were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate (98:2) as eluent to give 4b (88 mg, 52%) as yellow oil. The 
spectroscopic data of 4b are consistent with literature values [41]. 1H NMR (400 MHz, CDCl3) δ 7.55 
(d, J = 7.7 Hz, 2H), 7.49 (t, J = 7.1 Hz, 2H), 7.43–7.37 (m, 1H), 7.10 (d, J = 7.7 Hz, 2H), 6.63 (d, J = 7.8 Hz, 
2H), 4.64 (q, J = 6.8 Hz, 1H), 4.05 (br s, 1H), 2.39 (s, 3H), 1.68 (d, J = 6.9 Hz, 3H). 

4-Ethyl-N-(1-phenylethyl)aniline (4c) was synthesized from 4-ethylaniline (99 μL) and 
phenylacetylene (105 μL) following the general hydroamination procedure. Two equiv of NaBH4 
were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate (98:2) as eluent to give 4c (113 mg, 63%) as yellow oil. 
The spectroscopic data of 4c are consistent with literature values [42]. 1H NMR (400 MHz, CDCl3) δ 
7.50 (d, J = 7.6 Hz, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 7.06 (d, J = 8.5 Hz, 2H), 6.60 (d, J 
= 8.4 Hz, 2H), 4.58 (q, J = 6.7 Hz, 1H), 4.19 (br s, 1H), 2.63 (q, J = 7.6 Hz, 2H), 1.62 (d, J = 6.7 Hz, 3H), 
1.28 (t, J = 7.6 Hz, 3H). 

4-Isopropyl-N-(1-phenylethyl)aniline (4d) was synthesized from 4-isopropylaniline (108 mg) 
and phenylacetylene (105 μL) following the general hydroamination procedure. Two equiv of NaBH4 
were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate (98:2) as eluent to give 4d (140 mg, 73%) as orange 
viscous oil. The spectroscopic data of 4d are consistent with literature values [43]. 1H NMR (400 MHz, 
CDCl3) δ 7.45 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H), 7.04 (d, J = 8.2 Hz, 2H), 
6.56 (d, J = 8.2 Hz, 2H), 4.52 (q, J = 6.7 Hz, 1H), 4.32 (br s, 1H), 2.83 (hept, J = 6.9 Hz, 1H), 1.57 (d, J = 
6.7 Hz, 3H), 1.24 (d, J = 6.9, 6H). 

4-Butyl-N-(1-phenylethyl)aniline (4e) was synthesized from 4-butylaniline (119 mg) and 
phenylacetylene (105 μL) following the general hydroamination procedure. Two equiv of NaBH4 
were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate (98:2) as eluent to give 4e (124 mg, 61%) as dark orange 
oil. 1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 
6.98 (d, J = 8.4 Hz, 2H), 6.54 (d, J = 8.4 Hz, 2H), 4.52 (q, J = 6.7 Hz, 1H), 4.29 (br s, 1H), 2.52 (t, J = 7.7 
Hz, 1H), 1.64–1.51 (m, 5H), 1.42-1.34 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 
145.3, 144.9, 132.1, 129.1 (2C), 128.7 (2C), 127.0, 126.1 (2C), 113.7 (2C), 54.1, 34.8, 34.0, 25.0, 22.4, 14.1. 

2-Isopropyl-N-(1-phenylethyl)aniline (4f) was synthesized from 2-isopropylaniline (108 mg) and 
phenylacetylene (105 μL) following the general hydroamination procedure. Two equiv of NaBH4 
were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate (98:2) as eluent to give 4f (145 mg, 76%) as yellow oil. 1H 
NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.7 Hz, 2H), 7.34 (t, J = 7.4 Hz, 2H), 7.28–7.21 (m, 1H), 7.18 (d, J 
= 7.6 Hz, 1H), 6.97 (t, J = 7.7 Hz, 1H), 6.73 (br s, 1H), 6.45 (br s, 1H), 4.55 (q, J = 6.7 Hz, 1H), 4.07 (br s, 
1H), 3.02 (br s, 1H), 1.61 (br s, 3H), 1.35 (d, J = 6.7 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 145.5, 143.9, 
131.8, 128.8, 126.9, 126.7, 125.9, 124.9, 117.2, 111.8, 53.5, 27.5, 25.5, 22.5, 22.4. 

N-(1-Phenylethyl)-3-(trifluoromethyl)aniline (4g) was synthesized from 3-
trifluoromethylaniline (100 μL) and phenylacetylene (105 μL) following the general hydroamination 
procedure. Two equiv of NaBH4 were employed during the reduction step. The reaction crude was 
purified by flash column chromatography using hexane/ethyl acetate (98:2) as eluent to give 4g (151 
mg, 71%) as dark yellow oil. The spectroscopic data of 4g are consistent with literature values [44]. 
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1H NMR (400 MHz, CDCl3) δ 7.39–7.31 (m, 4H), 7.29–7.23 (m, 1H), 7.17 (t, J = 7.9 Hz, 1H), 6.90 (d, J = 
7.6 Hz, 1H), 6.80 (s, 1H), 6.65 (d, J = 8.2 Hz, 1H), 4.51 (q, J = 6.7 Hz, 1H), 1.57 (d, J = 6.7 Hz, 3H).  

N-(1-Phenylethyl)-4-(trifluoromethoxy)aniline (4h) was synthesized from 4-
trifluoromethoxyaniline (108 μL) and phenylacetylene (105 μL) following the general 
hydroamination procedure. Two equiv of NaBH4 were employed during the reduction step. The 
reaction crude was purified by flash column chromatography using hexane/ethyl acetate (98:2) as 
eluent to give 4h (142 mg, 63%) as dark orange oil. 1H NMR (400 MHz, CDCl3) δ 7.44–7.34 (m, 4H), 
7.32–7.24 (m, 1H), 6.98 (d, J = 8.7 Hz, 2H), 6.55–6.42 (m, 2H), 4.47 (q, J = 6.7 Hz, 1H), 4.14 (br s, 1H), 
1.55 (d, J = 6.7 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 146.1, 144.8, 140.3 (q, J = 1.7 Hz), 128.8 (2C), 
127.1, 125.8 (2C), 122.3 (2C), 120.7 (q, J = 255.1 Hz), 113.5 (2C), 53.8, 25.1. 

4-Fluoro-N-(1-phenylethyl)aniline (4i) was synthesized from 4-fluoraniline (76 μL) and 
phenylacetylene (105 μL) following the general hydroamination procedure. Two equiv of NaBH4 
were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate (95:5) as eluent to give 4i (120 mg, 70%) as dark orange 
oil. The spectroscopic data of 4i are consistent with literature values [41]. 1H NMR (400 MHz, CDCl3) 
δ 7.44–7.33 (m, 4H), 7.32–7.24 (m, 1H), 6.90–6.79 (m, 2H), 6.51–6.43 (m, 2H), 4.46 (q, J = 6.7 Hz, 1H), 
3.96 (br s, 1H), 1.55 (d, J = 6.7 Hz, 3H). 

4-Chloro-N-(1-phenylethyl)aniline (4j) was synthesized from 4-chloroaniline (102 mg) and 
phenylacetylene (105 μL) following the general hydroamination procedure. Five equiv of NaBH4 
were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate (95:5) as eluent to give 4j (111 mg, 60%) as orange solid. 
The spectroscopic data of 4i are consistent with literature values [41]. 1H NMR (400 MHz, CDCl3) δ 
7.46–7.38 (m, 4H), 7.37–7.29 (m, 1H), 7.17–7.09 (m, 2H), 6.55–6.47 (m, 2H), 4.52 (q, J = 6.7 Hz, 1H), 4.12 
(s, 1H), 1.58 (d, J = 6.7 Hz, 3H). 

4-Bromo-N-(1-phenylethyl)aniline (4k) was synthesized from 4-bromoaniline (138 mg) and 
phenylacetylene (105 μL) following the general hydroamination procedure. Two equiv of NaBH4 
were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate (98:2) as eluent to give 4k (106 mg, 48%) as red solid. The 
spectroscopic data of 4k are consistent with literature values [42]. 1H NMR (400 MHz, CDCl3) δ 7.38–
7.31 (m, J = 7.3, 6.1 Hz, 4H), 7.30–7.23 (m, 1H), 7.21–7.14 (m, 2H), 6.40 (d, J = 8.8 Hz, 2H), 4.46 (q, J = 
6.7 Hz, 1H), 4.10 (br s, 1H), 1.53 (d, J = 6.7 Hz, 3H). 

3-Chloro-2-methyl-N-(1-phenylethyl)aniline (4l) was synthesized from 3-chloro-2-methylaniline 
(119 μL) and phenylacetylene (105 μL) following the general hydroamination procedure. Three equiv 
of NaBH4 were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate/CH2Cl2 (89:2:9) as eluent to give 4l (134 mg, 68%) as dark 
yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.41–7.34 (m, 4H), 7.32–7.25 (m, 1H), 6.89 (t, J = 8.0 Hz, 1H), 
6.77 (d, J = 8.0 Hz, 1H), 6.33 (d, J = 8.1 Hz, 1H), 4.57 (q, J = 6.7 Hz, 1H), 4.04 (br s, 1H), 2.36 (s, 3H), 1.62 
(d, J = 6.7 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 146.3, 144.8, 134.5, 128.8 (2C), 127.2, 127.1, 125.8 (2C), 
119.4, 118.0, 109.7, 53.7, 25.3, 13.8. 

4-Methoxy-N-(1-phenylethyl)aniline (4m) was synthesized from 4-methoxyaniline (98 mg) and 
phenylacetylene (105 μL) following the general hydroamination procedure. Two equiv of NaBH4 
were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate (98:2) as eluent to give 4m (181 mg, 90%) as orange 
crystals. The spectroscopic data of 4m are consistent with literature values [41]. 1H NMR (400 MHz, 
CDCl3) δ 1H NMR (400 MHz, CDCl3) δ 7.44–7.33 (m, 4H), 7.30–7.25 (m, 1H), 6.77–6.71 (m, 2H), 6.55–
6.50 (m, 2H), 4.46 (q, J = 6.6 Hz, 1H), 4.00–3.60 (two signals: br s, 1H and s, 3H centred at 3.74 ppm), 
1.54 (d, J = 6.7 Hz, 3H). 

3,4-Dimethoxy-N-(1-phenylethyl)aniline (4n) was synthesized from 3,4-dimethoxyaniline (123 
mg) and phenylacetylene (105 μL) following the general hydroamination procedure. Five equiv of 
NaBH4 were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate/CH2Cl2 (89:2:9) as eluent to give 4n (35 mg, 17%) as dark 
red oil. 1H NMR (400 MHz, CDCl3) δ 7.38 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 7.7 Hz, 2H), 7.27–7.19 (m, 1H), 



Catalysts 2020, 10, 176 10 of 12 

 

6.65 (d, J = 8.6 Hz, 1H), 6.20 (s, 1H), 6.05 (d, J = 8.6 Hz, 1H), 4.43 (q, J = 6.7 Hz, 1H), 3.76 (s, 3H), 3.73 (s, 
3H), 1.53 (d, J = 6.7 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 149.7, 144.9, 141.7, 128.7, 127.0, 126.0, 112.8, 
104.9, 99.8, 56.5, 55.6, 54.9, 24.8. 

N-(1-(p-Tolyl)ethyl)aniline (4o) was synthesized from aniline (72 μL) and 4-ethynyltoluene (122 
μL) following the general hydroamination procedure. Three equiv of NaBH4 were employed during 
the reduction step. The reaction crude was purified by flash column chromatography using 
hexane/ethyl acetate (98:2) as eluent to give 4o (96 mg, 57%) as yellow oil. The spectroscopic data of 
4o are consistent with literature values [43]. 1H NMR (400 MHz, CDCl3) δ 7.38 (d, J = 8.3 Hz, 2H), 
7.29–7.17 (m, 4H), 6.82–6.73 (m, 1H), 6.64 (d, J = 6.0 Hz, 2H), 4.60–4.54 (m, 1H), 3.97 (br s, 1H), 2.44 (s, 
3H), 1.60 (d, J = 6.7 Hz, 3H). 

N-(1-(4-(tert-Butyl)phenyl)ethyl)aniline (4p) was synthesized from aniline (72 μL) and 4-tert-
butylphenylacetylene (179 μL) following the general hydroamination procedure. Three equiv of 
NaBH4 were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate (98:2) as eluent to give 4p (128 mg, 63%) as orange solid. 
The spectroscopic data of 4p are consistent with literature values [45]. 1H NMR (300 MHz, CDCl3) δ 
7.40–7.27 (m, 4H), 7.16–7.07 (m, 2H), 6.66 (t further split, J = 7.3, 1H), 6.55 (d, J = 8.5 Hz, 2H), 4.50 (q, J 
= 6.7 Hz, 1H), 4.03 (br s, 1H), 1.53 (d further split, J = 6.7, 3H), 1.35–1.30 (m, 9H). 

N-(1-(4-Fluorophenyl)ethyl)aniline (4q) was synthesized from aniline (72 μL) and 4-
fluorophenylacetylene (110 μL) following the general hydroamination procedure. Three equiv of 
NaBH4 were employed during the reduction step. The reaction crude was purified by flash column 
chromatography using hexane/ethyl acetate (98:2) as eluent to give 4q (108 mg, 63%) as dark orange 
oil. The spectroscopic data of 4q are consistent with literature values [41]. 1H NMR (400 MHz, CDCl3) 
δ 7.43–7.34 (m, 2H), 7.21–7.13 (m, 2H), 7.06 (t, J = 8.7 Hz, 2H), 6.74 (t, J = 7.3 Hz, 1H), 6.57 (d, J = 7.6 
Hz, 2H), 4.52 (q, J = 6.7 Hz, 1H), 4.24 (br s, 1H), 1.55 (d, J = 6.8 Hz, 3H).  

4. Conclusions 

In conclusion, we developed a simple and versatile palladium-catalyzed protocol for the 
hydroamination of terminal arylacetylenes with anilines, in the absence of organic ligands or 
additives. This novel methodology features high functional group tolerance and offers a valuable 
alternative to reported methods for the synthesis of secondary aromatic amines. The presence of 
iodide anions was crucial to achieve good to excellent yields of the corresponding imine products. 
We envisage wide diffusion of this versatile methodology within the organic chemistry community. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/10/2/176/s1, Copies 
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