

Title: One more look on visualization of operation of a root-finding algorithm

Author: Ireneusz Gościniak, Krzysztof Gdawiec

Citation style: Gościniak Ireneusz, Gdawiec Krzysztof. (2020). One more look on
visualization of operation of a root-finding algorithm. "Soft Computing" 2020
(article in press), doi 10.1007/s00500-020-04784-0

Soft Computing
https://doi.org/10.1007/s00500-020-04784-0

METHODOLOGIES AND APPL ICAT ION

Onemore look on visualization of operation of a root-finding
algorithm

Ireneusz Gościniak1 · Krzysztof Gdawiec1

© The Author(s) 2020

Abstract
Many algorithms that iteratively find solution of an equation require tuning. Due to the complex dependence of many
algorithm’s elements, it is difficult to know their impact on the work of the algorithm. The article presents a simple root-
finding algorithm with self-adaptation that requires tuning, similarly to evolutionary algorithms. Moreover, the use of various
iteration processes instead of the standard Picard iteration is presented. In the algorithm’s analysis, visualizations of the
dynamics were used. The conducted experiments and the discussion regarding their results allow to understand the influence
of tuning on the proposed algorithm. The understanding of the tuning mechanisms can be helpful in using other evolutionary
algorithms. Moreover, the presented visualizations show intriguing patterns of potential artistic applications.

Keywords Self-adaptation · Root finding · Dynamics · Iterations · Visualization

1 Introduction

Methods for determining function’s localminimumare based
on the value of the function or its gradient (mostly numer-
ically determined). The gradient method determines the
direction of particlemovement based on the knowledge of the
gradient of the objective function (at the point reached in the
previous step), and on this basis, it calculates the next posi-
tion of the particle (Polak 1997)—a typical example of the
gradient method is described by the expression (the gradient
descent):

x ′
i = xi − γ∇ f (xi), (1)

where −∇ f (xi) is the negative gradient of f , γ—step
size, x ′

i—the current position of the i th particle in a D-
dimensional environment and xi—the previous position of
the i th particle. Many modifications of this method are
described in the literature, and their operation mechanisms

Communicated by V. Loia.

B Ireneusz Gościniak
ireneusz.gosciniak@us.edu.pl

Krzysztof Gdawiec
kgdawiec@ux2.math.us.edu.pl

1 Institute of Computer Science, University of Silesia,
Bȩdzińska 39, 41-200 Sosnowiec, Poland

are well known (Klein et al. 2009; Konečný and Richtárik
2017; Senov and Granichin 2017).

A group of algorithms solving such problems includes
evolutionary algorithms. The analysis of evolutionary algo-
rithm is a very complex task (Gosciniak 2008, 2017).
Some optimization algorithms can have similar behavioural
characteristics as evolutionary algorithms (Weise 2009). A
particular attention should be paid to the particle swarm opti-
mization (PSO) algorithms (Zhang et al. 2014). The complex
nature of particles movement in these algorithms does not
allow a precise definition of their effect on the algorithm.

Particle’s movement in the PSO algorithm is described by
the following equation (Yang and Li 2010):

x ′
i = xi + v′

i , (2)

where x ′
i is the current position of the i th particle in a D-

dimensional environment, xi—the previous position of the
i th particle and v′

i—the current velocity of the i th particle in
a D-dimensional environment that is given by the following
formula:

v′
i = ωvi + η1r1(xpb i − xi) + η2r2(xgb − xi), (3)

where vi is the previous velocity of the i th particle, ω—the
inertia weight (ω ∈ [0, 1]), η1, η2—acceleration constants
(η1, η2 ∈ (0, 1]), r1, r2—random numbers generated uni-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-04784-0&domain=pdf
http://orcid.org/0000-0003-1315-6082
http://orcid.org/0000-0001-9434-9307

I. Gościniak, K. Gdawiec

formly in the [0, 1] interval, xpb i—the best position of the
i th particle and xgb—the global best position of the particles.

The inertia weight (ω) and acceleration constants (η1, η2)
play a very important role in the algorithm—they are respon-
sible for the particle dynamics. The acceleration constants
direct the particle towards its own best position or the global
best position (Sengupta and Mishra 2014). The particle can
be trapped in a local optima for too high values of the acceler-
ation constants or cannot reach the solution for too lowvalues
of these constants. Balance of the exploration and exploita-
tion is also controlled by the inertia weight (Bansal et al.
2011). The control rules of inertia weight can be classified as
follows: constant (Shi and Eberhart 1998); random (Eberhart
and Shi 2001); time varying (linear decreasing Shi and Eber-
hart 1999, sigmoid increasing/decreasing Malik et al. 2007,
simulated annealing Al-Hassan et al. 2006, Sugeno func-
tion Lei et al. 2006, exponential decreasing law Chen et al.
2006; Li andGao 2009, logarithmic decreasing lawGao et al.
2008); adaptive control using feedbacks of the optimization
process (best fitness Saber et al. 2006; Shi and Eberhart 2001,
fitness of the current and previous iterations Yang et al. 2007,
global best and average local best fitness Arumugam andRao
2008, particle rank Panigrahi et al. 2008, distance to parti-
cle and global best positions Qin et al. 2006 and distance to
global best position Suresh et al. 2008). The value of inertia
weight mostly presented in the literature is within the range
of [0.4, 0.9] (see Jordehi and Jasni 2013). Both the inertia
weight and the acceleration constants allow to control the
particle behaviour within a wider range. The test function
(problem being solved) and the selected method of iteration
also influence particle’s behaviour. The particle dynamics
is determined by the adaptation mechanics resulting mostly
fromparticles’ cooperation. Themethod of algorithm param-
eters selecting is not deterministic—these values are selected
by a tuning process depending on a solved problem and the
iteration method that is used (similarly to evolutionary algo-
rithms Bansal et al. 2011; Sengupta and Mishra 2014).

Due to the particle motion mechanism and particle’s
behaviour control parameters, we can use the wording—a
particle dynamics. The tuning—selection of the proper val-
ues of the parameters—is a very important problem for the
algorithm. Inmost cases, the algorithm tuning process is intu-
itive and it is based on user experience.

Finding of roots of a given function f , i.e. solving the
equation f (x) = 0, is a very important problem in prac-
tical applications, e.g. physics (Franklin 2013), electronics
(Chun and Kwasinski 2011) or computer graphics (Chen
and Ma 2015). In many of these applications, the function
is a polynomial one. So, the following question arises: can
we solve the polynomial equation by its radicals (i.e. giving
the formula for the roots in terms of the polynomial’s coef-
ficients, the four algebraic operations: addition, subtraction,
multiplication, division and the extraction of roots, i.e. square

roots, cube roots, etc.)? The answer to this question is that
for polynomials of degree greater than four we cannot find
such formulas (Grant and Kleiner 2015). The formulas for
quadratic polynomial are known since the Babylonians. For
the cubic polynomial the formulas were found by G. Car-
dano, whereas for the quartics by L. Ferrari both in the
XVI century. In 1779 P. Ruffini and in 1826 N.-H. Abel
proved the unsolvability by radicals of the polynomial equa-
tion of degree greater than four—the Abel–Ruffini theorem
(Grant and Kleiner 2015). Thus, to solve a general poly-
nomial equation we need to use some numerical methods,
which are iterative methods and define discrete dynamical
systems. In the literature, we can find many such methods,
e.g. Newton’s method (Kalantari 2009) and Halley’s method
(Kalantari 2009), or even the gradient descent method can be
used for root finding (Kotarski and Lisowska 2018).

The analysis of dynamics of dynamical systems is a very
important problem (Sayama 2015), because it gives us an
understanding of the changes that occur in the system. To
analyse the dynamics, we can use many different methods
(Broer and Takens 2011). One of such methods is a graphical
presentation of the dynamics. The graphical representation
provides a lot of intuitive, geometrical insight into the sys-
tem’s dynamics, which would be hard to infer if we had just
looked at algebraic equations (Sayama 2015). In the analysis
of the complex polynomial root-finding process, the graph-
ical presentation of dynamics is a very popular method and
it even got its own name, namely polynomiography (Kalan-
tari 2009). In polynomiography we visualize the root-finding
process by using the number of iterations needed to obtain
the root of a given polynomial and some colour map. The
obtained images show the dynamics of the process. For the
visualization and the analysis of algorithm’s behaviour, we
can use methods similar to these used in polynomiography
(Kalantari 2004). The polynomiography visualizes the com-
plex nature of the relationships between parameters.

The images generated using polynomiography very often
reveal aesthetic patterns with a very complex structure
(Gdawiec 2017). Because these complex patterns are gen-
erated with a simple method polynomiography, besides its
analytic purposes, it also found application in computer-
aided design and in the arts (Kalantari 2004). Polynomiogra-
phy assists the designer in the creation of aesthetic patterns,
because the designer must select only some parameters
used in the method and the computer generates the pattern,
whereas without polynomiography to create the same pattern
the designer must spend a lot of time and put a lot of work
in the creation process.

The PSO-based gradient-like method is presented in the
paper. In this simple root-finding algorithm, tuning parame-
ters such as inertia weight and acceleration constant, and an
adaptivemechanism depending on the location of the particle
are proposed. This algorithm is used to show the influence

123

One more look on visualization of operation of a root-finding algorithm

of the tuning parameters on particle’s behaviour. Moreover,
we propose the use of different iteration processes instead of
the standard Picard iteration that is used in the root-finding
methods and optimization algorithms.

The aim of the article is to show the dynamics of parti-
cle motion and the influence of the parameters on particle’s
behaviour. For this purpose, we use a visualization method
and analysis similar to the polynomiography. The used visu-
alization method—presented in the article—can also have an
artisticmeaning. According to the authors, the understanding
of the dynamics of particle’s motion is a very important for
its use in the group of evolutionary algorithms. The proper
selection of particle dynamics may not cause the influence
of the environment on the algorithm—as it is realized in the
algorithm presented in Gosciniak (2017).

Let’s try to summarize. What cannot be found in this arti-
cle? The article is not a recipe how to effectively adjust
the parameters of the algorithm. (Tuning an algorithm is
a complex problem to be solved by other optimization
algorithms—for instance by a genetic algorithm.) So what is
this article about? Its main task is to visualize and analyse the
complex nature of particle dynamics resulting from the selec-
tion of algorithm’s coefficients and its interaction with the
environment. However, if we analyse the behaviour of parti-
cles in evolutionary algorithms working in multidimensional
spaces, a fractal analysis method can be proposed (Gosciniak
2017). What are the benefits of the article? Besides the men-
tioned visualization and the analysis of the complex nature
of particle dynamics, the results of the paper can find appli-
cation in the generative art. (Another example of this kind
of algorithm can be the Newton’s method, which is at the
forefront in this field.)

The rest of the paper is organized as follows. Section 2
introduces a root-finding algorithm that is based on the gra-
dient method. This method will be used to illustrate the
influence of the parameters on its behaviour. Next, Sect. 3
introduces the iteration processes known in fixed-point the-
ory for finding the fixed points of different types of functions.
Section 4 presents a method of visualization of algorithm’s
operation. And next, in Sect. 5 based on the obtained poly-
nomiographs we discuss the research results. Finally, in
Sect. 6 we give some concluding remarks.

2 The root-finding algorithm

Let f : RD → R be some function. We want to find zeroes
of f , i.e. to solve the following equation

f (x) = 0. (4)

To solve (4), we use the following algorithm:

xn+1 = xn + vn+1, (5)

where x0 ∈ R
D is a starting position, v0 = [0, 0, . . . , 0] is

a starting velocity, vn+1 is the current velocity of the parti-
cle (vn+1 = [v1n+1, v

2
n+1, . . . , v

D
n+1]) and xn is the previous

position of the particle (xn = [x1n , x2n , . . . , xDn]). The algo-
rithm uses a similar methodology as the PSO algorithm, i.e.
it sums the position of the particle xn with its current velocity
vn+1.

The current velocity of the particle is determined by the
component of velocity of the previous iteration (inertia) and
the component resulting from its current position (accelera-
tion):

vkn+1 = ωvkn + η f (xn)
f (xn) − f (xn + εk)

∑D
j=1 | f (xn) − f (xn + ε j)| , (6)

where k ∈ {1, 2, . . . , D}, vkn+1—the current velocity of
the particle in the direction k, vkn—the previous velocity of
the particle in the direction k, ω ∈ [0, 1)—inertia weight,
η ∈ (0, 1]—acceleration constant, εk—the step in the direc-
tion k (ε1 = [τ, 0, . . . , 0], ε2 = [0, τ, 0, . . . , 0], . . ., εD =
[0, . . . , 0, τ], where τ > 0).

Determining the particle motion towards the root is sim-
ilar to the gradient method—the marked part of Eq. (6).
The acceleration is influenced by the adaptation mecha-
nism resulting from the value of the function in the previous
position of the particle— f (xn). (It works effectively at deter-
mining a root of the function.) For this reason (when ω = 0)
for xn fulfilling the condition f (xn) = 0, the next particle
position is xn+1 = xn . The algorithm’s tuning involves the
selecting inertia weight (ω) and acceleration constant (η)—
similarly as in the PSO algorithm. The effect of changes in
these parameters, i.e. particle dynamics, will be visualized
using the method described in Sect. 4.

3 Iteration processes

Let T : RD → R
D be given by the following formula:

T (xn) = xn + vn+1. (7)

Thus, algorithm (5) can be written in the following form

xn+1 = T (xn). (8)

In the literature, this type of iteration is called the Picard iter-
ation and it is widely used in many optimization algorithms
and in finding fixed points of a given function.

In fixed-point theory, some other iteration processes were
introduced to find the fixed points of different types of func-
tions:

123

I. Gościniak, K. Gdawiec

1. The Mann iteration (Mann 1953):

xn+1 = (1 − αn)xn + αnT (xn), n = 0, 1, 2, . . . , (9)

where αn ∈ (0, 1] for all n ∈ N.
2. The Ishikawa iteration (Ishikawa 1974):

xn+1 = (1 − αn)xn + αnT (yn),

yn = (1 − βn)xn + βnT (xn), n = 0, 1, 2, . . . , (10)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.
3. TheAgarwal iteration (Agarwal et al. 2007) (S-iteration):

xn+1 = (1 − αn)T (xn) + αnT (yn),

yn = (1 − βn)xn + βnT (xn), n = 0, 1, 2, . . . , (11)

where αn ∈ [0, 1] and βn ∈ [0, 1] for all n ∈ N.

Let us notice that the Mann iteration for αn = 1 reduces
to the Picard iteration, the Ishikawa iteration reduces to the
Mann iteration when βn = 0 and to the Picard iteration when
αn = 1, βn = 0, and the S-iteration reduces to the Picard
iteration when αn = 0, or αn = 1 and βn = 0. A review
of various iteration processes and their dependencies can be
found in Gdawiec and Kotarski (2017).

All the presented iterations used only one mapping, but
in the fixed-point theory exist iterations that use several
mappings and are used to find common fixed points of the
mappings. Let us recall some of them.

1. The Das–Debata iteration (Das and Debata 1986):

xn+1 = (1 − αn)xn + αnT2(yn),

yn = (1 − βn)xn + βnT1(xn), n = 0, 1, 2, . . . , (12)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.
2. The Khan–Cho–Abbas iteration (Khan et al. 2011):

xn+1 = (1 − αn)T1(xn) + αnT2(yn),

yn = (1 − βn)xn + βnT1(xn), n = 0, 1, 2, . . . , (13)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.
3. The generalized Agarwal iteration (Khan et al. 2011):

xn+1 = (1 − αn)T3(xn) + αnT2(yn),

yn = (1 − βn)xn + βnT1(xn), n = 0, 1, 2, . . . , (14)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N.

Let us notice that the Das–Debata iteration for T1 = T2
reduces to the Ishikawa iteration, the Khan–Cho–Abbas iter-
ation reduces to the Agarwal iteration when T1 = T2, and

the generalized Agarwal iteration reduces to the Khan–Cho–
Abbas iteration when T1 = T3 and to the Agarwal iteration
when T1 = T2 = T3.

Having such a variety of different iteration processes, we
can use them in our algorithm. In the iterations with a single
mapping we use (7) as the mapping, and in the case of itera-
tion with several mappings we use also (7), but with different
values of ω and η parameters for each of the mappings.

4 Visualization of the dynamics

To visualize the dynamics of the proposed algorithm, we
will use method that is very similar to the method used in
polynomiography (Gdawiec et al. 2015). Because of this sim-
ilarity, we will call the obtained images polynomiographs,
although our algorithm finds roots of arbitrary functions and
not only of polynomials as in polynomiography.

In the algorithm, we choose iteration method, e.g. one
of the methods presented in Sect. 3, parameters ω, η for a
single mapping T or ω1, ω2, ω3 and η1, η2, η3 for T1, T2, T3
(depending on the chosen iteration).Moreover,we choose the
maximumnumber of iterationsmwhich the algorithm should
realize, the accuracy of the computations r and a colouring
function C : N → {0, 1, . . . , 255}3. Then, for each x0 in the
solution space A we use our algorithm. The iterations of the
algorithm proceed till the convergence criterion:

|xn+1 − xn| < r (15)

is satisfied or the maximum number of iterations is reached.
When the algorithm ends, we assign a colour to x0 using
colouring functionC and the number of performed iterations.

The pseudocode of the visualization algorithm is pre-
sented in Algorithm 1. In the algorithm, the selected iteration
method is denoted as Iq , where q is a vector of parameters
of the iteration.

The solution space A is contained in a D-dimensional
space, so Algorithm 1 will return visualization in this space.
If D = 2, then we obtain a single image that can be easily
presented on a screen. When D > 2, then it is hard to visu-
alize the result on a 2D surface of the screen. In this case, we
make cross section of A with a two-dimensional plane and
visualize this cross section.

5 Discussion on the research results

In this section, we present and discuss the results of visualiz-
ing the dynamics of themethod introduced in Sect. 2 together
with the various iterationmethods presented in Sect. 3. In our
study, we used functions fi : R2 → R for i ∈ {1, 2, 3, 4}
given by the following formulas:

123

One more look on visualization of operation of a root-finding algorithm

Algorithm 1: Visualization of the dynamics

Input: f – function, A ⊂ R
D – solution space, m – the

maximum number of iterations, Iq – iteration method,
q ∈ [0, 1]N – parameters of the iteration Iq , ω, ω1, ω2,
ω3, η, η1, η1, η2, η3 – parameters defining functions T ,
T1, T2, T3, C – colouring function, r – accuracy

Output: visualization of the dynamics

1 foreach x0 ∈ A do
2 i = 0
3 v0 = [0, 0, . . . , 0]
4 while i ≤ m do
5 xn+1 = Iq (xn)
6 if |xn+1 − xn | < r then
7 break

8 i = i + 1

9 colour x0 with C(i)

f1(x, y) =
√

(−x3 + 3xy2 + 1)2 + (y3 − 3x2y)2, (16)

the function f1 has three roots, namely [1, 0], [−0.5,
−0.866025], [−0.5, 0.866025];

f2(x, y) =
√

(x4 − 6x2y2 + y4 − 10x2 + 10y2 + 9)2+
+ (4x3y − 4xy3 − 20xy)2 ,

(17)

the function f2 has four roots, namely [−3, 0], [−1, 0], [1, 0],
[3, 0];

f3(x, y)=
√

(x5−10x3y2+5xy4−x)2+(5x4y−10x2y3+y5−y)2,

(18)

the function f3 has five roots, namely [−1, 0], [0,−1], [0, 0],
[0, 1], [1, 0];

f4(x, y) =
√

(x6−15x4y2+15x2y4−y6+10x3−30xy2−8)2+
+ (6x5y−20x3y3+6xy5+30x2y−10y3)2

,

(19)

the function f4 has six roots, namely [−2.207, 0], [−0.453,
−0.785], [−0.453, 0.785], [0.906, 0], [1.103,−1.911],
[1.103, 1.911].

Because R
2 is isomorphic with C and for each [x, y] ∈

R
2 we have x + iy = z ∈ C, then the functions fi for

i ∈ {1, 2, 3, 4} can be written in the following form:

f1(z) = |z3 − 1|, (20)

f2(z) = |z4 − 10z2 + 9|, (21)

f3(z) = |z5 − z|, (22)

f4(z) = |z6 + 10z3 − 8|. (23)

Fig. 1 Colour map used in the experiments

The functions (20)–(23) have the same roots as the fol-
lowing functions:

g1(z) = z3 − 1, (24)

g2(z) = z4 − 10z2 + 9, (25)

g3(z) = z5 − z, (26)

g4(z) = z6 + 10z3 − 8. (27)

Similar approach, to the one presented in this paper, for
function z3−1 for which visualization of the dynamics using
Mann and Ishikawa iteration in the Newton’s method can be
found in Kotarski et al. (2012).

In all experiments, the same colour map was used to
colour the obtained images. The colour map is presented in
Fig. 1. The colour map has 256 colours (ordered from left to
right). The colour number represents the number of iterations
needed to reach the solution. Moreover, in every experiment
the following parameters were used: τ = 1.0e−3, m = 256,
r = 1.0e−2, image resolution 800 × 800 pixels. The solu-
tion spaces depend on the function and are the following:
A1 = A3 = [−2.0, 2.0]2, A2 = [−4.0, 4.0] × [−2.0, 2.0],
A4 = [−2.3, 1.7] × [−2.0, 2.0].

The software used in the research was implemented in
the C++ programming language. The experiments were real-
ized on a computer with the Intel Core i5-2520M processor,
4 GB RAM, and Linux 3.16.7-42-desktop openSUSE 13.2
(Harlequin 64-bits, KDE Platform version 4.14.9).

In all experiments, the polynomiographs are generated
using Algorithm 1 in 2D space. Thus, looking at the gener-
ated images we can read two important characteristics. The
first one is the speed of convergence of the algorithm, i.e.
the colour of each point gives us information on how many
iterations were performed by the algorithm to reach the root.
The second characteristic is the dynamics of the algorithm.
Low dynamics is in areas where the variation of colours is
small, whereas in areas with a large variation of colours the
dynamics is high.

5.1 The Picard iteration

The behaviour of particles is affected by the speed and inertia.
They are controlled by two parameters: the acceleration con-
stant (η) and the inertia weight (ω) for the described above
benchmark functions. The visualization of method’s dynam-
ics allows to analyse their impact on the algorithm’s work.

We start the experiments with the f1 function given by
(16). This function has three roots that, thanks to the symme-

123

I. Gościniak, K. Gdawiec

Fig. 2 Polynomiographs of f1
and the Picard iteration for
ω = 0 and varying η

try similar areas, create the corresponding dynamics of the
particle. As was already mentioned, the parameters of the
examples have been chosen so that in addition to the visu-
alization of particle’s dynamics, the polynomiograph also
represents (according to the authors) an aesthetic image.

In Fig. 2 visualizations of the dynamics for the f1 and
the Picard iteration using ω = 0 and varying η are presented.
The acceleration constant is the only factor influencing a par-
ticle motion—it affects its speed. (The larger the value of η,
the greater the speed vn+1.) Moreover, the generation time
of each image is shown in Fig. 2. Looking at the results, we
see that the increase in particle’s velocity can shorten the
creation time of the image. The black colour shows places
which have not reached a solution in the given number of
256 iterations—Fig. 2a. The areas of the same colour indi-
cate the same number of iterations required to determine the
f (xn) = 0—they look similar to the contour lines on themap
(Fig. 2f). The magnifications of the marked areas in Fig. 2f
are presented in Fig. 3.

Inertia helps the particle to escape from a not promis-
ing area of solution space. Figure 4 presents examples of
visualizations obtained for f1 and the Picard iteration using
rather high inertia, i.e. ω = 0.7 and varying η, and also their
generation times. The shortest time of the creation of poly-
nomiographs in Fig. 4 is obtained by the polynomiograph
from Fig. 4c. Both too low and too high velocities may cause
the increase in the time of polynomiograph creation.

Fig. 3 Magnification of the marked areas in Fig. 2f

Figure 5 presents examples of visualizations obtained for
f1 and the Picard iteration using η = 0.025 and varying
ω, and also their generation times. From the results, it is
possible to observe that the higher the value of ω, the lower
the generation time—the minimal value of time is obtained
by polynomiograph in Fig. 5c. In this case, both too low and
too high inertia may cause the extension of the time.

Figures 6 and 7 show examples of visualizations obtained
for η = 0.1 and η = 0.3 (respectively) and various values of
ω for function f1. Looking at the figures, we see that for the
higher velocity of particle (acceleration constant increases in
the following figures) the high value of inertia weight causes
the increase in the creation time of the image.

From all the images obtained for f1 and the Picard iter-
ation, we see that the dynamics of the method changes in

123

One more look on visualization of operation of a root-finding algorithm

Fig. 4 Polynomiographs of f1 and the Picard iteration for ω = 0.7 and varying η

Fig. 5 Polynomiographs of f1
and the Picard iteration for
η = 0.025 and varying ω

Fig. 6 Polynomiographs of f1 and the Picard iteration for η = 0.1 and varying ω

a significant way when we change two parameters of the
method (ω, η). A smooth image represents low dynamics
of the particles. Moreover, we see that using the proposed
method we obtain interesting patterns and more diverse pat-
terns are observed for particles with greater dynamics.

Polynomiographs of the Picard iteration for the f2 func-
tion are shown in Fig. 8. Two groups of areas forming a
different dynamics are clearly visible in Fig. 8a. The proper
value of ω is responsible for creating a particle dynamics
balance—it is evident in Fig. 8c. In this case, we observe a

123

I. Gościniak, K. Gdawiec

Fig. 7 Polynomiographs of f1 and the Picard iteration for η = 0.3 and varying ω

Fig. 8 Polynomiographs of f2 and the Picard iteration for η = 0.01 and varying ω

Fig. 9 Polynomiographs of f3 and the Picard iteration for ω = 0.5 and varying η

reduction in the time of the polynomiograph creation. How-
ever, an excessive increase in the inertia coefficient extends
this time.

The next figure—Fig. 9—shows polynomiographs of the
Picard iteration for the f3 function. The function f3, thanks
to the symmetry of roots placement, has four areas that cre-
ate similar particle dynamics. The increase in the value of the
acceleration constant (the particle moves faster—it increases
in its dynamics) can shorten the time of creation of the poly-
nomiograph. The dynamics of the particle is limited in the
whole area of the polynomiograph—it is shown in Fig. 8b–d.
However, areas from which the particle does not reach the
solution (black colour) arise.

Two groups of areas with different dynamics are vis-
ible in Fig. 10. The images in this figure were created
using the f4 function and the Picard iteration. Increasing
the value of the inertia weight increases the dynamics of the

particle—it shortens the time of creation of the polynomio-
graph (Fig. 10a, b). The excessive value of inertia weight
can be compensated by a decrease in the value of acceler-
ation constant—consequently, similar particle dynamics is
obtained in the whole area (Fig. 10c, d).

5.2 TheMann iteration

TheMann iteration is enhanced by theα parameter in relation
to the Picard iteration. It gives the possibility to adjust the
dynamic of the particle behaviour independently of the ω

and η.
Figure 11 presents the dynamics of the method for ω = 0,

η = 0.025 using the Mann iteration and f1. For α = 1, we
obtain the Picard iteration (Fig. 11a). From the images, we
see that the decrease in the value of the parameter α, which
is responsible for a linear combination in the Mann itera-

123

One more look on visualization of operation of a root-finding algorithm

Fig. 10 Polynomiographs of f4 and the Picard iteration for varying ω and η

Fig. 11 Polynomiographs of f1
and the Mann iteration for
ω = 0, η = 0.025 and varying α

tion, reduces the dynamics of particles. We can also observe
that reducing the dynamics of particles can cause the lack of
finding a solution (black colour), even for large areas of the
solution space. Moreover, we see that the lower the value of
α, the greater the generation time.

The acceleration constant (η) affects particle dynamics.
Using a wide range of changes in α = 0.2, 0.5, 0.7, 0.9
(which limits the particle dynamics) in Fig. 12, there are
no areas where the algorithm does not reach the solution. It
is a result of increased particle dynamics by increasing the
acceleration constant (η = 0.35).

Relatively large dynamics of particles for f1 is presented
in Figs. 13 and 14 obtained for different values of parameters
ω and η defining T and theα parameter in theMann iteration.
From the images, we can observe that the decrease in the
value of the parameter α, which reduces the proportion of
the part specified by T in the Mann iteration, reduces the

dynamic of the particle. The high particle dynamics allows
to obtain interesting patterns.

Significantly lower particles dynamics is presented in
Fig. 15. The polynomiographs in this figure were obtained
for f1, ω = 0.3, η = 0.3 and varying α in the Mann itera-
tion. These images are similar to the images obtained for the
Picard iteration. The decrease in particle’s dynamics smooths
out the images—it is also visible in the remaining images.
Figure 15a, b and Fig. 15c, d—although different in particle’s
dynamics—are similar in the colouring.

Tuning the algorithm is a multidimensional problem. It
means that an increase in the number of parameters compli-
cates this task. The polynomiographs fromFig. 16 (generated
for the f2 function) show the particle dynamics constituting
the intersection of the algorithm tuning space for the α. The
increase in the α parameter value increases the dynamics
of the particles. Properly selected value of this parameter

123

I. Gościniak, K. Gdawiec

Fig. 12 Polynomiographs of f1 and the Mann iteration for ω = 0, η = 0.35 and varying α

Fig. 13 Polynomiographs of f1 and the Mann iteration for ω = 0.8, η = 0.1 and varying α

Fig. 14 Polynomiographs of f1 and the Mann iteration for ω = 0.6, η = 0.2 and varying α

Fig. 15 Polynomiographs of f1 and the Mann iteration for ω = 0.3, η = 0.3 and varying α

(Fig. 16c) minimizes the time of the polynomiograph cre-
ation.

As in the previous example, in Fig. 17 polynomiographs
generated using a varying α parameter are presented, but this
time the f3 function was used. A limitation of the dynamic

range observed in Fig. 17c occurs for the shortest time of
a polynomiograph creation. Moreover, we can observe that
the change in the α parameter by 0.1 affects the dynamics
in different way. In Fig. 17a, b the dynamics is almost the

123

One more look on visualization of operation of a root-finding algorithm

Fig. 16 Polynomiographs of f2 and the Mann iteration for ω = 0.8, η = 0.01 and varying α

Fig. 17 Polynomiographs of f3 and the Mann iteration for ω = 0.8, η = 0.025 and varying α

Fig. 18 Polynomiographs of f4 and the Mann iteration for α = 0.1 and varying η and ω

Fig. 19 Polynomiographs of f1 and the Ishikawa iteration for β = 0.4,
ω = 0.5, η = 0.3 and varying α

same, whereas in Fig. 17b, c and in Fig. 17c, d the change is
significant.

Fig. 20 Polynomiographs of f1 and the Ishikawa iteration for β = 0.8,
ω = 0.5, η = 0.3 and varying α

Examples of polynomiographs for the Mann iteration and
function f4 are presented inFig. 18. Thevalue of theα param-

123

I. Gościniak, K. Gdawiec

Fig. 21 Polynomiographs of f1 and the Ishikawa iteration for α = 0.7,
ω = 0.2, η = 0.6 and varying β

Fig. 22 Polynomiographs of f1 and the Ishikawa iteration for α = 0.3,
ω = 0.2, η = 0.4 and varying β

eter is small, which significantly limits the dynamics of the
particle. The increase in the value of the acceleration constant
slightly reduces the time of the polynomiograph creation—
Fig. 18b. A significant reduction in the inertia weight causes
a reduction in particle dynamics and reduces the time needed
to the polynomiograph creation—it is visible in Fig. 18d.

5.3 The Ishikawa and the Das–Debata iterations

In the Ishikawa iteration, an additional parameter β is intro-
duced in relation to the Mann iteration. This parameter, like
the parameter α, has an impact on the dynamics of particles.
It is also involved in the creation of an additional reference
point (the sample in the solution space). In this way, particle
motion is a linear combination of its position and a move-
ment of reference point. This gives the possibility to define
two different operators (T1 and T2) for transforming the cur-
rent position of the particle and the position of the reference
point—the Das–Debata iteration. For the differentiation of
these operators, the parameters ω1, ω2 and η1 and η2 are
responsible.

Two types of iterations—Ishikawa andDas–Debata—give
a wide range of possibilities for the regulation of the algo-
rithm’s work. The use of these iterations causes twisting
contour lines. The α parameter, as in the case of the Mann
iteration, limits the dynamics of a particle. A similar function
as the parameter α is realized by the parameter β in relation
to the reference point.

Fig. 23 Polynomiographs of f2 and the Ishikawa iteration for β = 0.9, η = 0.01 and varying α, ω

Fig. 24 Polynomiographs of f3 and the Ishikawa iteration for ω = 0.7, η = 0.02 and varying α, β

123

One more look on visualization of operation of a root-finding algorithm

Fig. 25 Polynomiographs of f4 and the Ishikawa iteration for ω = 0.9, η = 0.0007 and varying α, β

Fig. 26 Polynomiographs of f1 and the Das–Debata iteration for α =
0.6, β = 0.7, η1 = 0.4, ω2 = 0.4, η2 = 0.4 and varying ω1

Fig. 27 Polynomiographs of f1 and the Das–Debata iteration for α =
0.6, β = 0.5, η1 = 0.5, ω2 = 0.3, η2 = 0.4 and varying ω1

Figures 19 and 20 show the reduction of the dynamics of
the particle for f1 by theα parameter in the Ishikawa iteration.
A small value of β parameter causes that the reference point
is created close to the active point. The same value of the α

parameter is the cause of creation of similar patterns.
The reduction of the dynamics of the reference point cre-

ation for f1 by the α parameter in the Ishikawa iteration
is shown in Figs. 21 and 22. A significant decrease in the
dynamics of the reference point creation weakens the effect
of twisting lines—it is also visible in the direction to the cen-
tre of the pattern. For large values of the β parameter, major
changes occur on the periphery of the image—Fig. 22.

Fig. 28 Polynomiographs of f1 and the Das–Debata iteration for α =
0.4, β = 0.1, ω1 = 0.3, ω2 = 0.3, η2 = 0.4 and varying η1

Fig. 29 Polynomiographs of f1 and the Das–Debata iteration for α =
0.4, β = 0.3, ω1 = 0.2, ω2 = 0.4, η2 = 0.4 and varying η1

Polynomiographs presented in Fig. 23 for the f2 function
and the Ishikawa iteration show particle dynamics for chang-
ingω andα parameters. Comparing Fig. 23a, b, an increase in
dynamics due to an increase in theω value is observed, which
shortens the time of the polynomiograph creation. Then a fur-
ther increase in dynamics due to an increase in the ω value
results in a longer time of a polynomiograph creation—Fig.
23c.Reducing the dynamics of the particle through the appro-
priate selection of the α parameter reduces the time of the
polynomiograph creation. This method of particle dynam-
ics reduction is ineffective and may cause the particle not to
reach a solution.

123

I. Gościniak, K. Gdawiec

Fig. 30 Polynomiographs of f1 and the Das–Debata iteration for α =
0.9, β = 0.7, ω1 = 0.4, η1 = 0.2, η2 = 0.5 and varying ω2

Fig. 31 Polynomiographs of f1 and the Das–Debata iteration for α =
0.7, β = 0.5, ω1 = 0.4, η1 = 0.2, η2 = 0.7 and varying ω2

Fig. 32 Polynomiographs of f1 and the Das–Debata iteration for α =
0.8, β = 0.4, ω1 = 0.1, η1 = 0.6, ω2 = 0.3 and varying η2

Figure 24 shows the changes in particle dynamics for the
function f3 under the influence of changes in the α and β

parameters for the Ishikawa iteration. Comparing the times
of polynomiographs creation in Fig. 24b, c with Fig. 24a or d,
the effect of change in theα parameter on particle’s dynamics
is noticeably greater than that of β.

Polynomiographs obtained for the f4 function using the
Ishikawa iteration are presented in Fig. 25. The obtained
results confirm the observations from the previous exam-
ple (Fig. 24), i.e. the change in the α parameter has a much

Fig. 33 Polynomiographs of f1 and the Das–Debata iteration for α =
0.6, β = 0.7, ω1 = 0.1, η1 = 0.3, ω2 = 0.2 and varying η2

Fig. 34 Polynomiographs of f1 and the Das–Debata iteration for ω1 =
0.4, η1 = 0.2, ω2 = 0.9

Fig. 35 Polynomiographs of f1 and the Das–Debata iteration for α =
0.5, β = 0.4, η1 = 0.2, ω2 = 0.9, η2 = 0.9 and varying ω1

greater effect on the behaviour of the particle than the change
in the β parameter.

Figures 26, 27, 28, 29, 30, 31, 32, 33, 34 and 35 present
polynomiographs created using the Das–Debata iteration for
the f1 function. In this iteration, the ω1 inertia weight is
responsible for the dynamics of the reference point creation.
Small differences of the dynamics of the reference point cre-
ation can cause the creation of similar patterns—Figs. 26
and 27. A similar effect is given by the change in the refer-
ence point dynamics by determining the η1 parameter—see

123

One more look on visualization of operation of a root-finding algorithm

Fig. 36 Polynomiographs of f2 and the Das–Debata iteration for varying α, β, ω1, η1, ω2, η2

Fig. 37 Polynomiographs of f3 and the Das–Debata iteration for α = 0.5, β = 0.5, η1 = 0.05, ω2 = 0.9, η2 = 0.05 and varying ω1

Fig. 38 Polynomiographs of f4 and the Das–Debata iteration for α = 0.5, β = 0.5, ω1 = 0.8, η1 = 0.05, ω2 = 0.9 and varying η2

Figs. 28 and 29. Small differences of the η1 parameter are
the cause of creation of similar patterns.

Dynamics of particle’s movement has a significant impact
on the appearance of the polynomiograph. The parametersω2

and η2 are responsible for this dynamics. As it was already
mentioned, both the dynamics of the reference point and
the dynamics of the particle are responsible for the creation
of intriguing images. Figures 30 and 31 show the effect of
the change in inertia weight ω2 on the particle dynamics.
High particle dynamics allows to obtain interesting images.
Figures 32 and 33 show the effect of the change in the accel-
eration constant η2 on the creation of a polynomiograph. In
these images, a smaller dynamics is observed.

The images in Figs. 34 and 35 visualize a high dynamics
of particle’s movement. Due to varying of a large number of

parameters, the detailed analysis of their dependence is dif-
ficult. The general rule that proper selection of the dynamics
of particles reduces the operating time of the algorithm is
confirmed. Moreover, from the images we see that the use of
Das–Debata iteration allows to create interesting patterns.

Polynomiographs of the f2 function and the Das–Debata
iteration for varying all parameters are presented in Fig. 36.
The obtained polynomiographs present a high dynamics of
the particle. The shortest time of polynomiograph’s creation
is obtained for Fig. 36c. In this case, the narrowed range of
the particle’s dynamic for the entire polynomiograph area is
observed. As it was already mentioned, tuning the algorithm
cannot be covered by the deterministic rule due to the very
complex nature of the relationship between the algorithm’s
coefficients and the environmental impact.

123

I. Gościniak, K. Gdawiec

Fig. 39 Polynomiographs of f1 and the Agarwal iteration for α = 0.5,
ω1 = ω2 = ω3 = 0.4, η1 = η2 = η3 = 0.3 and varying β

Fig. 40 Polynomiographs of f1 and the Agarwal iteration for β = 0.5,
ω1 = ω2 = ω3 = 0.4, η1 = η2 = η3 = 0.3 and varying α

Figure 37 presents polynomiographs obtained for the f3
function using the Das–Debata iteration and varying ω1

parameter. In subsequent images, it is possible to observe
the effect of increasing in the value of ω1, which is responsi-
ble for the dynamics of creating the reference point. Changes
in the values of inertia weight of the reference point transfor-
mation have a small impact on the dynamics of the particle,
as well as changes in the β parameter. Appropriate selection
of the ω1 parameter can shorten the time of the polynomio-
graph’s generation—it is presented in Fig. 37c.

The results of using the Das–Debata iteration for f4 and a
varying η2 parameter are presented in Fig. 38. Even for low

values of the acceleration constant parameter, but with high
dynamics of the reference point creation and a high inertia
weight of the particle, it is possible to obtain a sufficient
particle dynamics for an effective movement in the solution
space. The obtained polynomiographs present very similar
particle dynamics. The shortest time of polynomiograph’s
creation is obtained for Fig. 38b.

5.4 The Agarwal and the Khan–Cho–Abbas
iterations

The generalized Agarwal iteration is more complex than the
previously presented iterations. It introduces an additional
transformation T3 (with parametersω3, η3) of particle in rela-
tion to the Das–Debata iteration.

Figures 39 and 40 present images obtained with the Agar-
wal iteration (T1 = T2 = T3) for f1 and varying α and β

parameters. When we look at these images, we see that they
have features of a twisting line, similarly to the Ishikawa
iteration. Depending on the dynamics of the particles, it is
possible to obtain images similar to the ones obtained with
the Ishikawa iteration.

Operator T3 causes the introduction of an additional
dynamics of particles, the contribution of which produces
the unique visual effects—the additional twisting lines are
visible. The increase in dynamics of particles allows creat-
ing images of an artistic meaning. Moreover, we observe that
the time of generation of the images (the working time of the
algorithm) is longer that in the case of the previous iterations.
This is due to the complexity of the iteration and the particle’s
dynamics.

Polynomiographs of the f2 function and the Agarwal iter-
ation with varying α and β parameters are presented in Fig.
41. In the presented images, the shortest time of polynomio-
graph’s creation is obtained for the parameters responsible
for the highest dynamics of the particle (Fig. 41a). The intro-
duction of the additional transformations causes that even
extreme changes in the α and β parameters do not introduce
drastic changes in particle’s dynamics (Fig. 41b, c). Signif-

Fig. 41 Polynomiographs of f2 and the Agarwal iteration for ω1 = ω2 = ω3 = 0.9, η1 = η2 = η3 = 0.01 and varying α and β

123

One more look on visualization of operation of a root-finding algorithm

Fig. 42 Polynomiographs of f3 and the Agarwal iteration for α = 0.9,
β = 0.9, η1 = η2 = η3 = 0.01 and varying ω = ω1 = ω2 = ω3

Fig. 43 Polynomiographs of f4 and the Agarwal iteration for α = 0.5,
β = 0.5, ω1 = ω2 = ω3 = 0.8 and varying η = η1 = η2 = η3

Fig. 44 Polynomiographs of f1 and the generalized Agarwal iteration
for α = 0.5, β = 0.5, η1 = 0.4, ω2 = ω3 = 0.4, η2 = η3 = 0.3
(T2 = T3) and varying ω1

icant changes in dynamics are noticeable for simultaneous
change in both parameters (Fig. 41d).

Polynomiographs of the Agarwal iteration for the f3
function are shown in Fig. 42. They present the limitation
of particle dynamics by reducing the values of the inertia
weights ω1, ω2 and ω3—limiting the dynamics results in
longer polynomiograph creation time.

The last example for the Agarwal iteration—Fig. 43—
presents images obtained for the f4 function. The obtained
images show the particle dynamics increase by the increasing

Fig. 45 Polynomiographs of f1 and the generalized Agarwal iteration
for α = 0.5, β = 0.5, ω1 = 0.1, ω2 = ω3 = 0.4, η2 = η3 = 0.3
(T2 = T3) and varying η1

Fig. 46 Polynomiographs of f1 and the Khan–Cho–Abbas iteration for
α = 0.5, β = 0.5, ω1 = 0.5, η1 = 0.2, η2 = 0.5, ω3 = 0.4, η3 = 0.3
and varying ω2

Fig. 47 Polynomiographs of f1 and the Khan–Cho–Abbas iteration for
α = 0.5, β = 0.5, ω1 = 0.5, η1 = 0.2, ω2 = 0.6, ω3 = 0.4, η3 = 0.3
and varying η2

in the acceleration constant. In this case, this results in a
shortening of the polynomiograph’s creation time.

The generalized Agarwal iteration fulfils the condition
T1 �= T3. Operators T2 and T3 are the same for Figs. 44 and
45, whichwere obtained for the f1 function. The dynamics of
the particle is influenced by three transformations. Even large
change in the transformation T1 (by using ω1 or η1), which

123

I. Gościniak, K. Gdawiec

Fig. 48 Polynomiographs of f2 and the Khan–Cho–Abbas iteration for
α = 0.5, β = 0.8, and varying ω1, η1, ω2, η2, ω3, η3

Fig. 49 Polynomiographs of f3 and the Khan–Cho–Abbas iteration for
α = 0.5, β = 0.8 and varying ω1, η1, ω2, η2, ω3, η3

is responsible for the creation of a reference point, may have
smaller effect on the appearance of the polynomiographs.

Figures 46 and 47 present polynomiographs for theKhan–
Cho–Abbas iteration and the f1 function. The excessive
growth of the dynamics of the particles determined by the
change in the parameters of the transformation T2 is clearly
visible in these images. It confirms only the observation that
the excessive growth of dynamics of particles extends the
time of image creation.

Polynomiographs of the Khan–Cho–Abbas iteration for
fixed α, β and varying ω1, η1, ω2, η2, ω3, η3 for the f2 func-
tion are presented in Fig. 48. The ω and η parameters change
in the opposite directions, i.e. when ω increases/decreases,
then η decreases/increases. It results in a characteristic
change in dynamics presented in the polynomiographs by
changing the colours. The shortest time of polynomiograph’s
creation is obtained for Fig. 48b.

A similar change in the parameters is introduced in the
examples of using the Khan–Cho–Abbas iteration that are
shown in Figs. 49 and 50. The images in Fig. 49 are obtained

Fig. 50 Polynomiographs of f4 and the Khan–Cho–Abbas iteration for
α = 0.5 and varying β, ω1, η1, ω2, η2, ω3, η3

Fig. 51 Polynomiographs of f1 and the generalized Agarwal iteration
for α = 0.5, β = 0.3, ω1 = 0.3, η1 = 0.4, ω2 = 0.6, η2 = 0.7,
η3 = 0.5 and varying ω3

Fig. 52 Polynomiographs of f1 and the generalized Agarwal iteration
for α = 0.8, β = 0.3, ω1 = 0.2, η1 = 0.5, ω2 = 0.6, η2 = 0.7,
ω3 = 0.5 and varying η3

for the f3 function, whereas the ones in Fig. 50 for the
f4 function. Shortening the time of the polynomiograph,
creation for Figs. 49b and 50b is obtained—these images
visualize the reduction of the particle dynamic range. In all

123

One more look on visualization of operation of a root-finding algorithm

Fig. 53 Polynomiographs of f1 and the generalized Agarwal iteration
for α = 0.5, β = 0.5, η1 = 0.4, ω2 = 0.6, ω3 = 0.9

Fig. 54 Polynomiographs of f1 and theAgarwal iteration forω1 = 0.3,
η1 = 0.4, ω2 = 0.6, η2 = 0.7, ω3 = 0.9, η3 = 0.5

cases, the influence of the reference point on the movement
of the particle is limited.

The generalized Agarwal iteration introduces T3 transfor-
mation with ω3 and η3 parameters. Figures 51 and 52 show
the effect of changing in these parameters on the creation of
polynomiographs for the f1 function. Due to the adaptation
mechanism on which the particle acceleration depends, the

Fig. 56 Polynomiographs of f3 and the generalized Agarwal iteration
for ω1 = 0.9 and varying α, β, η1, ω2, η2, ω3, η3

inertia of the particle has a significantly greater effect on the
visual effects. This can be also observed in other presented
images.

Moreover, the images in Figs. 53 and 54 were obtained for
the f1 function using the generalized Agarwal iteration and
varying different parameters. The shortest times are obtained
for images in Figs. 53b and 54a. These images illustrate the
high particle dynamics, and they look like brush painting
images.

Polynomiographs of the generalized Agarwal iteration for
the f2 function and varying all parameters are presented in
Fig. 55. Shortening the time of polynomiographs creation
occurs in subsequent images. (The shortest time is obtained
for Fig. 55d.) The generalized Agarwal iteration gives the
greatest possibility of the particle dynamics control.

The last two figures present polynomiographs generated
by the generalized Agarwal iteration for the f3 (Fig. 56) and
f4 (Fig. 57) functions. The generation algorithm is tuned just
like in the previous example. We observe a limitation of the

Fig. 55 Polynomiographs of the generalized Agarwal iteration for varying α, β, ω1, η1, ω2, η2, ω3, η3

123

I. Gościniak, K. Gdawiec

Fig. 57 Polynomiographs of f4 and the generalized Agarwal iteration
for varying α, β, ω1, η1, ω2, η2, ω3, η3

dynamic range for the images having the shortest time of
polynomiograph creation (Figs. 56b, 57b).

6 Conclusions

The inertia weight and the acceleration constants are pre-
sented in many optimization algorithms which require
parameters tuning—it is exemplified by the PSO algorithm.
The discussion presented in the article allows to show their
impact on the work of the proposed root-finding algorithm.
Both too large and too small dynamics of the particles will
have an adverse effect on the work of the algorithm. More-
over, the presented experiments show that the dependence of
particle’s dynamics on the parameters used in the root-finding
method (inertia weight and acceleration constant) and in the
various iteration methods is a non-trivial function.

The visualization of the dynamics is a tool that not only
illustrates the behaviour of particles, but also creates attrac-
tive patterns of artistic value. Thus, these patterns and the
method of their creation can be used in graphics design. Some
of the presented images look like brush paintings. Particle
dynamics reflects the dynamics of the brush movement. This
allows to obtain images that can be determined as art.

The genetic algorithm can be used to tune the algorithm to
obtain optimal behaviour due to the large number of param-
eters. This approach can be realized as a future work.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of
interest.

Humanparticipants or animals This article does not contain any studies
with human participants or animals performed by the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Agarwal R, O’Regan D, Sahu D (2007) Iterative construction of fixed
points of nearly asymptotically nonexpansive mappings. J Nonlin-
ear Convex Anal 8(1):61–79

Al-HassanW, Fayek M, Shaheen S (2006) Psosa: an optimized particle
swarm technique for solving the urban planning problem. In: 2006
international conference on computer engineering and systems, pp
401–405. https://doi.org/10.1109/ICCES.2006.320481

Arumugam M, Rao M (2008) On the improved performances of the
particle swarm optimization algorithms with adaptive parameters,
cross-over operators and root mean square (RMS) variants for
computing optimal control of a class of hybrid systems. Appl
Soft Comput 8(1):324–336. https://doi.org/10.1016/j.asoc.2007.
01.010

Bansal J, Singh P, Saraswat M, Verma A, Jadon S, Abraham A (2011)
Inertia weight strategies in particle swarm optimization. In: 2011
third world congress on nature and biologically inspired comput-
ing, pp 633–640. https://doi.org/10.1109/NaBIC.2011.6089659

Broer H, Takens F (2011) Dynamical systems and chaos. Springer, New
York

ChenXD,MaW(2015)Aplanar quadratic clippingmethod for comput-
ing a root of a polynomial in an interval. Comput Graph 46:89–98.
https://doi.org/10.1016/j.cag.2014.09.014

Chen G, Huang X, Jia J, Min Z (2006) Natural exponential inertia
weight strategy in particle swarm optimization. In: 2006 6th world
congress on intelligent control and automation, vol 1, pp 3672–
3675. https://doi.org/10.1109/WCICA.2006.1713055

Chun S, Kwasinski A (2011) Analysis of classical root-findingmethods
applied to digital maximum power point tracking for sustain-
able photovoltaic energy generation. IEEE Trans Power Electron
26(12):3730–3743. https://doi.org/10.1109/TPEL.2011.2157707

Das G, Debata J (1986) Fixed points of quasinonexpansive mappings.
Indian J Pure Appl Math 17(11):1263–1269

Eberhart R, Shi Y (2001) Tracking and optimizing dynamic systems
with particle swarms. In: Proceedings of the 2001 congress on
evolutionary computation (IEEE Cat. No.01TH8546), vol 1, pp
94–100. https://doi.org/10.1109/CEC.2001.934376

Franklin J (2013) Computational methods for physics. Cam-
bridge University Press, Cambridge. https://doi.org/10.1017/
CBO9781139525398

Gao Y, An X, Liu J (2008) A particle swarm optimization algorithm
with logarithm decreasing inertia weight and chaos mutation. In:
2008 international conference on computational intelligence and
security, vol 1, pp 61–65. https://doi.org/10.1109/CIS.2008.183

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICCES.2006.320481
https://doi.org/10.1016/j.asoc.2007.01.010
https://doi.org/10.1016/j.asoc.2007.01.010
https://doi.org/10.1109/NaBIC.2011.6089659
https://doi.org/10.1016/j.cag.2014.09.014
https://doi.org/10.1109/WCICA.2006.1713055
https://doi.org/10.1109/TPEL.2011.2157707
https://doi.org/10.1109/CEC.2001.934376
https://doi.org/10.1017/CBO9781139525398
https://doi.org/10.1017/CBO9781139525398
https://doi.org/10.1109/CIS.2008.183

One more look on visualization of operation of a root-finding algorithm

Gdawiec K (2017) Fractal patterns from the dynamics of combined
polynomial root finding methods. Nonlinear Dyn 90(4):2457–
2479. https://doi.org/10.1007/s11071-017-3813-6

Gdawiec K, Kotarski W (2017) Polynomiography for the polynomial
infinity norm via Kalantari’s formula and nonstandard itera-
tions. Appl Math Comput 307:17–30. https://doi.org/10.1016/j.
amc.2017.02.038

Gdawiec K, Kotarski W, Lisowska A (2015) Polynomiography based
on the non-standard Newton-like root finding methods. Abstr
ApplAnal 2015,Article ID 797594. https://doi.org/10.1155/2015/
797594

Gosciniak I (2008) Immune algorithm in non-stationary optimization
task. In: 2008 international conference on computational intelli-
gence for modelling control automation, pp 750–755. https://doi.
org/10.1109/CIMCA.2008.181

Gosciniak I (2017) Discussion on semi-immune algorithm behaviour
based on fractal analysis. Soft Comput 21(14):3945–3956. https://
doi.org/10.1007/s00500-016-2044-y

Grant H, Kleiner I (2015) Turning points in the history of mathematics.
Birkhäuser, Basel. https://doi.org/10.1007/978-1-4939-3264-1

Ishikawa S (1974) Fixed points by a new iteration method. Proc Am
Math Soc 44(1):147–150. https://doi.org/10.1090/S0002-9939-
1974-0336469-5

Jordehi A, Jasni J (2013) Parameter selection in particle swarm optimi-
sation: a survey. J Exp Theor Artif Intell 25(4):527–542. https://
doi.org/10.1080/0952813X.2013.782348

Kalantari B (2004) Polynomiography and applications in art, educa-
tion and science. Comput Graph 28(3):417–430. https://doi.org/
10.1016/j.cag.2004.03.009

Kalantari B (2009) Polynomial root-finding and polynomiog-
raphy. World Scientific, Singapore. https://doi.org/10.1142/
9789812811837

Khan S, Cho Y, Abbas M (2011) Convergence to common fixed points
by a modified iteration process. J Appl Math Comput 35(1):607–
616. https://doi.org/10.1007/s12190-010-0381-z

Klein S, Pluim J, Staring M, Viergever M (2009) Adaptive stochastic
gradient descent optimisation for image registration. Int J Comput
Vis 81(3):227–239. https://doi.org/10.1007/s11263-008-0168-y

Konečný J, Richtárik P (2017) Semi-stochastic gradient descent meth-
ods. Front ApplMath Stat 3:9. https://doi.org/10.3389/fams.2017.
00009

Kotarski W, Lisowska A (2018) Polynomiography via the hybrids of
gradient descent and Newton methods with Mann and Ishikawa
iterations. In: Rocha A, Adeli H, Reis L, Costanzo S (eds) Trends
and advances in information systems and technologies, advances
in intelligent systems and computing, vol 746. Springer, Cham, pp
455–464. https://doi.org/10.1007/978-3-319-77712-2_43

Kotarski W, Gdawiec K, Lisowska A (2012) Polynomiography via
Ishikawa and Mann iterations. In: Bebis G, Boyle R, Parvin B,
Koracin D, Fowlkes C, Wang S, Choi MH, Mantler S, Schulze J,
AcevedoD,Mueller K, PapkaM (eds) Advances in visual comput-
ing, lecture notes in computer science, vol 7431. Springer, Berlin,
pp 305–313. https://doi.org/10.1007/978-3-642-33179-4_30

Lei K, Qiu Y, He Y (2006) A new adaptive well-chosen inertia weight
strategy to automatically harmonize global and local search ability
in particle swarm optimization. In: 2006 1st international sympo-
sium on systems and control in aerospace and astronautics, pp
977–980. https://doi.org/10.1109/ISSCAA.2006.1627487

Li H, Gao Y (2009) Particle swarm optimization algorithm with expo-
nent decreasing inertia weight and stochastic mutation. In: 2009
second international conference on information and computing
science, vol 1, pp 66–69. https://doi.org/10.1109/ICIC.2009.24

Malik R, Rahman T, Hashim S, Ngah R (2007) New particle swarm
optimizer with sigmoid increasing inertia weight. Int J Comput
Sci Secur 1:35–44

Mann W (1953) Mean value methods in iteration. Proc Am
Math Soc 4(3):506–510. https://doi.org/10.1090/S0002-9939-
1953-0054846-3

Panigrahi B, Pandi V, Das S (2008) Adaptive particle swarm opti-
mization approach for static and dynamic economic load dis-
patch. Energy Convers Manag 49(6):1407–1415. https://doi.org/
10.1016/j.enconman.2007.12.023

PolakE (1997)Optimization algorithms and consistent approximations.
Springer, New York. https://doi.org/10.1007/978-1-4612-0663-7

Qin Z, Yu F, Shi Z, Wang Y (2006) Adaptive inertia weight particle
swarm optimization. In: Rutkowski L, Tadeusiewicz R, Zadeh L,
Żurada J (eds)Artificial intelligence and soft computing—ICAISC
2006. Springer, Berlin, pp 450–459

Saber A, Senjyu T, Urasaki N, Funabashi T (2006) Unit commitment
computation—a novel fuzzy adaptive particle swarm optimization
approach. In: 2006 IEEEPES power systems conference and expo-
sition, pp 1820–1828. https://doi.org/10.1109/PSCE.2006.296189

Sayama H (2015) Introduction to the modeling and analysis of complex
systems. Open SUNY Textbooks, Geneseo

Sengupta A, Mishra V (2014) Time varying vs fixed acceleration
coefficient PSO driven exploration during high level synthesis:
Performance and quality assessment. In: 2014 international con-
ference on information technology, pp 281–286. https://doi.org/
10.1109/ICIT.2014.16

Senov A, Granichin O (2017) Projective approximation based gradi-
ent descent modification. IFAC PapersOnLine 50(1):3899–3904.
https://doi.org/10.1016/j.ifacol.2017.08.362

Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In:
Proceedings of IEEE international conference on evolutionary
computation, pp 69–73. IEEEComputer Society,Washington,DC,
USA. https://doi.org/10.1109/ICEC.1998.699146

Shi Y, Eberhart R (1999) Empirical study of particle swarm opti-
mization. In: Proceedings of the 1999 congress on evolutionary
computation-CEC99 (cat. no. 99TH8406), vol 3, pp 1945–1950.
https://doi.org/10.1109/CEC.1999.785511

Shi Y, Eberhart R (2001) Fuzzy adaptive particle swarm optimization.
In: Proceedings of the 2001 congress on evolutionary computation
(IEEE cat. no. 01TH8546), vol 1, pp 101–106. https://doi.org/10.
1109/CEC.2001.934377

Suresh K, Ghosh S, Kundu D, Sen A, Das S, AbrahamA (2008) Inertia-
adaptive particle swarm optimizer for improved global search.
In: 2008 eighth international conference on intelligent systems
design and applications, vol 2, pp 253–258. https://doi.org/10.
1109/ISDA.2008.199

Weise T (2009) Global optimization algorithms—theory and applica-
tion, 2nd edn. http://www.it-weise.de/projects/book.pdf

Yang S, Li C (2010) A clustering particle swarm optimizer for
locating and tracking multiple optima in dynamic environments.
IEEE Trans Evolut Comput 14:959–974. https://doi.org/10.1109/
TEVC.2010.2046667

Yang X, Yuan J, Yuan J, Mao H (2007) A modified particle swarm opti-
mizer with dynamic adaptation. Appl Math Comput 189(2):1205–
1213. https://doi.org/10.1016/j.amc.2006.12.045

Zhang W, Ma D, Wei J, Liang H (2014) A parameter selection strategy
for particle swarm optimization based on particle positions. Expert
Syst Appl 41(7):3576–3584. https://doi.org/10.1016/j.eswa.2013.
10.061

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s11071-017-3813-6
https://doi.org/10.1016/j.amc.2017.02.038
https://doi.org/10.1016/j.amc.2017.02.038
https://doi.org/10.1155/2015/797594
https://doi.org/10.1155/2015/797594
https://doi.org/10.1109/CIMCA.2008.181
https://doi.org/10.1109/CIMCA.2008.181
https://doi.org/10.1007/s00500-016-2044-y
https://doi.org/10.1007/s00500-016-2044-y
https://doi.org/10.1007/978-1-4939-3264-1
https://doi.org/10.1090/S0002-9939-1974-0336469-5
https://doi.org/10.1090/S0002-9939-1974-0336469-5
https://doi.org/10.1080/0952813X.2013.782348
https://doi.org/10.1080/0952813X.2013.782348
https://doi.org/10.1016/j.cag.2004.03.009
https://doi.org/10.1016/j.cag.2004.03.009
https://doi.org/10.1142/9789812811837
https://doi.org/10.1142/9789812811837
https://doi.org/10.1007/s12190-010-0381-z
https://doi.org/10.1007/s11263-008-0168-y
https://doi.org/10.3389/fams.2017.00009
https://doi.org/10.3389/fams.2017.00009
https://doi.org/10.1007/978-3-319-77712-2_43
https://doi.org/10.1007/978-3-642-33179-4_30
https://doi.org/10.1109/ISSCAA.2006.1627487
https://doi.org/10.1109/ICIC.2009.24
https://doi.org/10.1090/S0002-9939-1953-0054846-3
https://doi.org/10.1090/S0002-9939-1953-0054846-3
https://doi.org/10.1016/j.enconman.2007.12.023
https://doi.org/10.1016/j.enconman.2007.12.023
https://doi.org/10.1007/978-1-4612-0663-7
https://doi.org/10.1109/PSCE.2006.296189
https://doi.org/10.1109/ICIT.2014.16
https://doi.org/10.1109/ICIT.2014.16
https://doi.org/10.1016/j.ifacol.2017.08.362
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/CEC.1999.785511
https://doi.org/10.1109/CEC.2001.934377
https://doi.org/10.1109/CEC.2001.934377
https://doi.org/10.1109/ISDA.2008.199
https://doi.org/10.1109/ISDA.2008.199
http://www.it-weise.de/projects/book.pdf
https://doi.org/10.1109/TEVC.2010.2046667
https://doi.org/10.1109/TEVC.2010.2046667
https://doi.org/10.1016/j.amc.2006.12.045
https://doi.org/10.1016/j.eswa.2013.10.061
https://doi.org/10.1016/j.eswa.2013.10.061

	One more look on visualization of operation of a root-finding algorithm
	Abstract
	1 Introduction
	2 The root-finding algorithm
	3 Iteration processes
	4 Visualization of the dynamics
	5 Discussion on the research results
	5.1 The Picard iteration
	5.2 The Mann iteration
	5.3 The Ishikawa and the Das–Debata iterations
	5.4 The Agarwal and the Khan–Cho–Abbas iterations

	6 Conclusions
	References

