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Abstract: The paper presents research on evaluation of corrosion resistance of Ni-W alloy coatings
subjected to heat treatment. The corrosion resistance was tested in 5% NaCl solution by the
use of potentiodynamic polarization technique and electrochemical impedance spectroscopy.
Characteristics of the Ni-W coatings after heat treatment were carried out using scanning electron
microscopy, scanning Kelvin probe technique and X-ray diffraction. Suggested reasons for the
improvement of properties of the heat treated Ni-W coating, obtained at the lowest current density
value (125 mA·cm−2), are the highest tungsten content (c.a. 25 at.%) as well as the smallest and the
most homogeneous electrochemically active surface area.

Keywords: Ni-W alloy coating; heat treatment; corrosion resistance

1. Introduction

The electroplating technique is increasingly used to obtain new materials with specific functional
properties. This is due to the fact that by controlling the deposition parameters, i.e. voltage,
current, bath composition, temperature, it is possible to influence the structure of the obtained
material, and hence its properties. The advantage of this method is the possibility of simultaneously
co-depositing several metals as well as incorporation powders of metals, non-metals or chemical
compounds into the coating [1–44]. Thus, the electroplating technique allows obtaining alloy and
composite coatings (amorphous or crystalline) with a specific chemical and phase composition, as well
as modelled surface morphology. Many metals are currently used as electrode materials in various
electrochemical processes. Among them are the metals from the group of irons, especially nickel,
which is characterized by good corrosion resistance and high catalytic activity in the process of
hydrogen evolution. In order to improve the utilization of nickel coatings, various methods of their
modifications could be applied, such as the use of alloys instead of pure elements. The interest
in electrodeposited nickel - tungsten alloys is due to their specific magnetic, electrical, mechanical,
thermal and corrosion properties [19–39,44]. These alloy coatings are widely used in the elements
of machines operating under high mechanical load, at high temperatures, as well as in aggressive
environments. Ni-W coatings are also used as electrode materials for hydrogen evolution reaction
(HER) [2,19,40]. It should be noted that nickel - tungsten alloys can only be obtained from aqueous
solutions through an induced code position, that is, tungsten is code posited with nickel. Sulphate,
sulfamine and citrate baths with the addition of sodium tungstate are usually used [19–39,44].
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Generally, heat treatment of electrolytic coatings should increase their corrosion resistance what
was confirmed in earlier studies e.q. in [10,13,15,17,41]. The formation of new phases and the reduction
of the active surface after heat treatment are the main reasons for improving the corrosion resistance
of these materials. Thus, we expect that heat treatment of investigated Ni-W alloy coatings can also
significantly slow down corrosion processes occurring on its surface.

According to our knowledge there is lack of information about corrosion resistance of Ni-W
coatings subjected to heat treatment in the air. Thus, the aim of this work is to study corrosion properties
of heat-treated Ni-W coatings in 5% NaCl solution especially with respect to surface morphology,
chemical and phase composition. The Ni-W coatings were deposited under galvanostatic conditions at
the following cathodic current densities: 125, 150, 175 and 200 mA·cm−2. The heat treatment of all
coatings was carried out at a temperature of 1173 K. Therefore, the coatings discussed in the article
were marked as follows: C125/1173, C150/1173, C175/1173 and C200/1173.

2. Materials and Methods

The Ni-W alloy coatings were obtained by electroplating from the electrolyte of the following
composition (concentrations in g·dm−3): NiSO4·7H2O–13, Na2WO4·2H2O–68, C6H5O7Na3·2H2O–200
and NH4Cl–50. For preparation of the bath ultrapure water (Millipore, 18.2 MΩ cm) and ‘analytical
grade’ reagents (Avantor Performance Materials Poland S.A.) were used. The coatings were deposited
galvanostatically at the current densities 125, 150, 175 and 200 mA·cm−2 and temperature of 343 K. The
coatings were deposited on the steel (S235) plate of 1.0 cm2 geometric surface area. A platinum mesh
served as an auxiliary electrode. The chemical composition of the as-deposited Ni-W alloy coatings is
presented in Table 1.

Table 1. Chemical composition of the as-deposited Ni-W alloy coatings determined by energy dispersive
spectroscopy, in dependence on deposition current density.

Type of As-Deposited Coatings At.% Ni At.% W

Ni-W (jdep = 125 mA·cm−2) 75.4 ± 0.4% 24.6 ± 0.4%
Ni-W (jdep = 150 mA·cm−2) 77.3 ± 0.2% 22.7 ± 0.2%
Ni-W (jdep = 175 mA·cm−2) 78.5 ± 0.7% 21.5 ± 0.7%
Ni-W (jdep = 200 mA·cm−2) 80.2 ± 0.1% 19.8 ± 0.1%

Heat treatment of Ni-W alloy coatings was carried out in a muffle stove of the type FCF 2.5
SHMgO (Czylok Company, Jastrzębie-Zdrój, Poland) at 1173 K for 1 h in the air.

The surface morphology and chemical composition of the heat-treated coatings was studied using
a scanning electron microscope (SEM, JEOL JSM–6480, JEOL Ltd., Tokyo, Japan) equipped with an
energy dispersive spectroscopy (EDS) detector (JEOL Ltd., Tokyo, Japan). The phase composition was
determined by means of X-ray diffraction method using Philips X’Pert PW 3040/60 X-ray diffractometer
(U = 40 kV, I = 30 mA, Panalytical, Almelo, Netherlands) with copper radiation (λ (Cu Kα) = 1.54178 Å).
The data collection was over the 2-theta range of 20◦ to 120◦ in steps of 0.02◦.

Corrosion resistance of the heat-treated coatings was determined, using potentiodynamic
polarization technique and electrochemical impedance spectroscopy (EIS). These measurements were
carried out in a 5 wt.% NaCl solution, using three-electrode cell and an AUTOLAB® electrochemical
system (PGSTAT30, Metrohm Autolab B.V., Utrecht, Netherlands). The auxiliary electrode was a
platinum mesh and the reference electrode was a saturated calomel electrode (SCE). Potentiodynamic
curves were recorded in the potential range ± 100 mV versus open circuit potential with rate
v = 1 mV·s−1.

The electrochemical impedance spectroscopy was performed at the corrosion potential. In these
measurements, the amplitude of the ac signal was 10 mV. A frequency range from 10 kHz to 0.1 Hz
was covered with 10 points per decade. All electrochemical investigations were made at 298 K.
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Contact potential difference (CPD) maps and surface topography maps of the heat-treated coatings
were recorded by means of Scanning Kelvin Probe (SKP) technique using PAR Model 370 Scanning
Electrochemical Workstation (Princeton Applied Research, Oak Ridge, USA) equipped with a tungsten
Kelvin probe (KP). The scanning area was 4000 × 4000 µm2 and the distance between the probe and
the sample was ca. 100 µm.

3. Results and Discussion

The heat-treated Ni-W coatings are characterized by grey, smooth and uniform surface. The surface
morphology of the coatings differs, which means it depends on the deposition current density (Figure 1).
The surface of C125/1173 coating shows small, separately located globules changing into larger ones
with increasing of deposition current density. Coatings obtained at low current density values have a
poorly developed surface. It can be explained by that low current densities favor the slow discharge of
ions at electrodes, and therefore the growth rate of the resulting grains exceeds the speed of forming of
new ones. As the current density increases, the rate of formation of new grains also increases what
result in more developed surface. The increase in the density of the deposition current causes intense
hydrogen evolution, which in turn can cause the formation of porous coatings.
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Figure 1. Surface morphology of Ni-W coatings after heat treatment in the air, in dependence on
deposition current density: (a) C125/1173, (b) C150/1173, (c) C175/1173 and (d) C200/1173.

The phase composition of the as-deposited Ni-W alloy coatings is independent of applied current
conditions. All X-ray diffraction patterns show the presence of reflexes coming from solid solution
of W in Ni. An example of X-ray diffraction pattern obtained for Ni-W coating deposited at current
density of 175 mA·cm−2 is shown in the Figure 2a. The phase composition of the Ni-W alloy coatings
after heat treatment is also independent of applied current conditions. During the heat treatment in the
air the solid solution of tungsten in nickel breaks down and chemical reaction with oxygen proceeds
leading to a formation of new phases. X-ray diffraction patterns shown in Figure 2b–e indicate that
the C125/1173, C150/1173, C175/1173 and C200/1173 coatings consist of three phases, i.e., Ni4W, WO2

and WO3.
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Figure 2. X-ray diffraction patterns for the as-deposited (a) C175/- and after heat treatment (b) C125/1173,
(c) C150/1173, (d) C175/1173, (e) C200/1173 Ni-W coatings.

Values of the corrosion parameters i.e. corrosion potential Ecorr and corrosion current density jcorr

were determined from measured dependencies j = f (E). It was found that the value of the corrosion
potential for the C125/1173 coating is the highest compared to the Ecorr obtained for the coatings
deposited at larger current densities i.e. C150/1173, C175/1173 and C200/1173 (Figure 3, Table 2). It was
also noted that, for the C125/1173 coating, the value of corrosion current density is lower compared to
the other coatings (Table 2). This suggests that the C125/1173 coating, is more corrosion resistant in
5 wt.% NaCl solution than the other investigated coatings. It should be added that all heat-treated
Ni-W coatings are characterized by the definitely higher corrosion resistance compared to the substrate
(corrosion potential of S235 steel is −739 mV) [4].

The results of the EIS investigations presented in the form of Nyquist plots (−Z” = f (Z′)) were
shown in Figure 4. For all investigated coatings one semicircle in the whole range of frequencies
is observed. It has been found that this behavior of the heat-treated Ni-W coatings could be
described by one-CPE electrode model (Figure 5). This is typical model for rough or porous materials.
Such equivalent circuit is characteristic for materials composed of cylindrical pores of radius r and
length l. As was shown in a paper [45] for short and wide pores l2/r is very small and only one
semicircle on the complex plane plot (Nyquist plot) was observed. The one-CPE model consists of
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the solution resistance Rs in series with a parallel connection of the CPE element (ZCPE = 1/[(jω)φ T]
where T is the capacitive parameter, φ is a dimensionless parameter and ω is the angular frequency of
ac voltage) and the polarization resistance Rp [42].
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Table 2. Corrosion potential Ecorr and corrosion current density jcorr determined for Ni-W coatings
after heat treatment in the air, in dependence on deposition current density.

Ni-W Coating Ecorr (mV) jcorr (µA·cm−2)

C125/1173 −508 5.9
C150/1173 −538 9.2
C175/1173 −539 10.9
C200/1173 −550 11.7
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Table 3. EIS parameters determined for Ni-W coatings after heat treatment in the air, in dependence on
deposition current density.

Ni-W Coating
Rp

(kΩ·cm2)
T φ

Rs
(Ω·cm2) Rf

C125/1173 1.845 0.000146 0.87 1.19 2.00
C150/1173 1.535 0.000274 0.89 1.79 5.33
C175/1173 1.451 0.000328 0.89 1.51 6.39
C200/1173 1.122 0.000488 0.86 1.27 7.33

Rp is the polarization resistance, T is the capacitive parameter, φ is the parameter related to the rotation of the
complex plane plot, Rs is the solution resistance, Rf is the factor of electrochemically active surface area.

The double-layer capacitance, Cdl, was calculated according to [43]:

T = Cdl
φ (1/Rs + 1/Rp)1-φ (1)

The ratio of capacitances Cdl determined for Ni-W coating and ideally smooth nickel electrode
(20 µF·cm−2 [43]) gives factor of electrochemically active surface area, Rf (Table 3). Larger values of this
parameter indicate larger interfacial surface, and hence deterioration of material corrosion resistance.
The smallest electrochemically active surface area and the highest polarization resistance obtained for
C125/1173 sample clearly indicate that this coating exhibit the best anticorrosion properties compared
with the other coatings.

Figure 6 shows CPD maps registered for the studied Ni-W coatings. Statistical analysis of the
obtained maps allows determining parameters describing quantitatively the surface properties i.e.
average (CPDav) and root mean square (CPDq) of contact potential difference [46–48]. It was stated
that the C125/1173 coating (Figure 6a, Table 4) is characterized by the highest value of CPDav which
equals c.a. −1060 mVKP (mVKP is the voltage measured in relation to the Kelvin probe). Increasing of
the deposition current density to 200 mA·cm–2 (Figure 6d, Table 4) causes that the CPDav decreases by
about 140 mVKP. Deviation of the CPD values from the mean (represented by CPDq) is the smallest for
C125/1173 and equals c.a. 16 mVKP. It means that this coating shows the most homogeneous surface
of all the coatings tested. It should be noted that in the case of C200/1173 coating, obtained at the
highest current density, CPDq increases more than two times in comparison with C125/1173. Figure 7
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shows the tungsten content (at.%) and corrosion current density (jcorr) plotted versus the average
contact potential difference (CPDav). It has been found that the increase of tungsten content in the
Ni-W coating causes linear increase of CPDav. What is more, the corrosion rate (represented by jcorr) of
Ni-W coatings linearly decreases with increasing CPDav. Thus, CPDav value allows estimating the
corrosion rate of Ni-W coatings after heat treatment in air.
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(b) C150/1173, (c) C175/1173 and (d) C200/1173.

Table 4. Statistical parameters obtained using CPD maps of the heat-treated Ni-W coatings.

Ni-W Coating C125/1173 C150/1173 C175/1173 C200/1173

CPDav
(mVKP) −1058 −1104 −1169 −1194

CPDq
(mVKP) 16 22 17 55

CPDav—average value, CPDq—root mean square, mVKP is the voltage measured in relation to the Kelvin probe.

Figure 8 shows surface topography maps of the heat-treated Ni-W coatings obtained at deposition
current density 125 mA·cm−2 (a) and 200 mA·cm−2 (b). Maps allow determining parameters describing
quantitatively the surface roughness i.e. root mean square roughness (Sq), maximum peak height (Sp)
and maximum pit depth (Sv). It was found that for the C125/1173 coating Sq = 0.8 µm, Sp = 2.9 µm,
Sv = 2.6 µm and for C200/1173 coating Sq = 9.8 µm, Sp = 20.9 µm, Sv = 21.1 µm. It can be concluded
that both coatings are characterized by a uniform distribution of peaks and valleys heights around
the mean. However, it should be noted that for C200/1173 coating Sp and Sv parameters are 7-8 times
higher in comparison with C125/1173. This fact can be explained by that as the deposition current
density increases, the small globules visible on the C125/1173 surface (see Figure 1) change into larger
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ones. It was also stated that the deviation of peaks and valleys heights around the mean (Sq parameter)
for C200/1173 is higher. This is due to the fact that the Sq parameter is directly related to the heights of
peaks and valleys on the material surface.
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4. Conclusions

It was found that C125/1173 coating is the most resistant to corrosion in 5 wt.% NaCl solution of all
the coatings tested. This is evidenced by the highest values of the corrosion potential, average contact
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potential difference and polarization resistance as well as the lowest value of the corrosion current
density. The reason for this is the highest tungsten content in C125/1173 and the smallest surface area
of this coating. Analysis of contact potential difference distribution shows also that the C125/1173
coating is characterized by the most homogeneous surface of all the coatings tested.
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electrodeposition parameters of Ni-W on Ni cathode for alkaline water electrolyser. Int. J. Hydrog. Energy
2013, 38, 4291–4297.

36. Chen, S.H.; Lai, J.H.; Wu, M.Y.; Lee, H.B.; Lee, C.Y. A study on the corrosion and wear behavior of
electrodeposited Ni-W coatings. J. Chin. Corros. Eng. 2012, 26, 1–8.

37. Sriraman, K.; Raman, S.G.S.; Seshadri, S. Corrosion behaviour of electrodeposited nanocrystalline Ni-W and
Ni-Fe-W alloys. Mater. Sci. Eng. A 2007, 460, 39–45. [CrossRef]

38. Sunwang, N.; Wangyao, P.; Boonyongmaneerat, Y. The effects of heat treatments on hardness and wear
resistance in Ni- W alloy coatings. Surf. Coat. Technol. 2011, 206, 1096–1101. [CrossRef]

39. Ko, Y.-K.; Chang, G.-H.; Lee, J.-H. Nickel tungsten alloy electroplating for the high wear resistant materials
applications. Solid State Phenom. 2007, 124–126, 1589–1592.

40. Popczyk, M.; Łosiewicz, B. Influence of surface development of Ni/W coatings on the kinetics of the
electrolytic hydrogen evolution. Solid State Phenom. 2015, 228, 293–298. [CrossRef]

http://dx.doi.org/10.1088/0957-4484/14/2/346
http://dx.doi.org/10.4028/www.scientific.net/MSF.844.167
http://dx.doi.org/10.2298/JSC0112899O
http://dx.doi.org/10.1016/j.surfcoat.2016.09.052
http://dx.doi.org/10.1016/j.electacta.2011.04.119
http://dx.doi.org/10.1016/j.matdes.2008.06.036
http://dx.doi.org/10.1007/s11665-014-1149-7
http://dx.doi.org/10.1016/j.jallcom.2013.12.085
http://dx.doi.org/10.14723/tmrsj.41.35
http://dx.doi.org/10.1016/j.wear.2015.10.003
http://dx.doi.org/10.1007/s11249-013-0134-x
http://dx.doi.org/10.1016/j.corsci.2010.12.001
http://dx.doi.org/10.4028/www.scientific.net/MSF.849.671
http://dx.doi.org/10.1016/j.electacta.2009.11.037
http://dx.doi.org/10.1016/j.apcata.2011.07.015
http://dx.doi.org/10.1016/j.msea.2007.02.055
http://dx.doi.org/10.1016/j.surfcoat.2011.07.082
http://dx.doi.org/10.4028/www.scientific.net/SSP.228.293


Materials 2020, 13, 1172 11 of 11
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