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Abstract An effective formula describing expansive plant

growth is derived from the modified Lockhart/Ortega-type

equation. Its applicability is demonstrated on selected

experimental data extracted from available literature.

Quantitative information about the ‘‘diffusion rate’’ (k2) of

the growth factors is obtained for two different model

species in plant science: Arabidopsis thaliana L. belongs to

the dicots and Zea mays L. belongs to the monocots. It is

shown that the value of the diffusion rate may be useful in

comparing different datasets and serve as a measure of

reproducibility of standard measurements. Analysis of the

formula and fits allows to identify and suggest a set of

criteria for reporting future experiments, which would

improve comparability and reproducibility of the results.

Keywords Auxin � Arabidopsis thaliana L. � Juglone �
Fusicoccin � Garlic extract � Zea mays L. � Lockhart
equation � Ortega equation

Introduction

The modulation of mechanical properties during expansive

growth is a hot topic for plant cell growth community (e.g.,

recently Boudon et al. 2015; Bidhendi and Geitmann 2016

but also in Rojas et al. 2011 and in Barbacci et al. 2013).

The physical mechanism of individual cell growth and

elongation has been attributed over the last few decades to

various factors ranging from wall plasticity concept by

Schopfer (2001) through the loss of stability model prop-

agated by Wei and Lintilhac (2007) and Lintilhac (2014,

Fig. 1) to the hydrodynamic model propagated by Zonia

(2010). A recent review by Kutschera and Niklas (2013)

indicated that these two contrasting views (i.e., ‘‘plasticity’’

vs. ‘‘instability’’ model) do not differ in terms of the fun-

damental mechanism. Indeed, in both cases cell elongation

is related to difference between turgor pressure P and a

yield threshold Y, which in the first case leads to a ‘‘creep’’

growth (Cogsrove 1985, 2000 for review) parameterized by

Lockhart (1965) equation dV/dt * (P-Y) or to an insta-

bility in the latter. It must be noted that both approaches

fail to describe analytically shapes of growth functions. On

the other hand, a recent study on Escherichia coli response

to an osmotic shock (Rojas et al. 2014) has shown that in

the case of relatively thin 3 nm bacteria cell walls, the

growth rate is not directly dependent on turgor pressure.

The results pointed to the cell wall as a limiting factor and

reduced turgor pressure as a possible trigger of a signaling

cascade (compare with the ‘‘recurrent model’’, Pietruszka

2016). This paradigm change has yet to be confirmed for

cell walls of plants, which are much thicker *100 nm.

However, some explanation of this dichotomy has

already been provided by Kroeger et al. (2011) by ana-

lyzing pollen tube oscillations, which take place on a

similar time scale (minutes) as the time shock response of
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bacteria. Based on experimental data and an analytical

model they proposed a self-regulatory mechanism between

cell expansion driven by the turgor pressure and opening of

calcium channels in a tube apex, which takes place above a

certain critical expansion rate. In this context, based on the

Lockhart equation, it was shown that for short periods of

oscillations, the average growth rate was insensitive to

turgor pressure but remained dependent on it for longer

oscillations. At least from a physical point of view, con-

sidering the steady growth as a limit when (1) the oscil-

lation period goes to infinity and (2) there are no sudden

external stimuli, the first paradigm is restored. The oscil-

lations of tube elongation were also observed in the case of

the second model for tip-growth studies—root hairs

(Marzec et al. 2015). These oscillations were related to

polymerization of actin microtubules which occurs peri-

odically (Vazquez et al. 2014).

In the search for a more flexible function, the Lockhart

equation has been augmented by Ortega (1985) to account

for time variations of the turgor pressure P(t) by addition of

dP/dt factor. In such terms, it is (at least analytically)

possible to bridge the gap between the earlier contrasting

views by envisaging an almost constant (or slowly creep-

ing) average value of P(t), with fluctuations dP(t) that

exceed the ‘‘instability’’ threshold for a short time (Pi-

etruszka and Haduch-Sendecka 2015). In other words, the

wall plasticity model would be adequate for longer periods,

while cell instability would be confined to the time scales

of the fluctuations.

The Ortega equation has proved its flexibility through-

out the last decades with the latest amendments taking into

account: transpiration and water uptake (Geitmann and

Ortega 2009), parameterization of growth factor concen-

tration (Pietruszka 2013) and inclusion of environmental

conditions (Barbacci et al. 2013).

One may ask the question, if solutions of the augmented

Lockhart/Ortega equation can be used to describe the

growth function of the cell or an elongating coleoptile

segment and possibly give us more insight into the long-

term mechanism of the cell elongation. There seems to be

no doubt that on a scale of hours or days, the growth rate is

limited by cell wall biosynthesis (see review of Boyer

2009), which is dependent on (P - Y) and the plasticity of

the cell wall (Kutschera and Niklas 2013). However, it

must be noted that the Lockhart/Ortega approach is not

suitable for description of the growth of the whole plant,

which must include cell division, differentiation and

expansive growth and lies beyond a simple analytical for-

mula (see Boudon et al. 2015 or Bidhendi and Geitmann

2016).

Therefore, neglecting possible short-term fluctuations,

and considering (P - Y) to be almost constant (or slowly

decreasing—we assume concomitant water uptake),

Winship et al. (2010), one can justify the use of the

Lockhart and Ortega formalism but expanded to include

growth factor concentration (Pietruszka 2012). Under such

conditions, it should be possible to obtain an approximate

solution of the Lockhart/Ortega equation in the long time

regime, which would primarily be based on the plasticity

model. However, the potential agreement of a formula

derived from the plasticity model, would not automatically

nullify the ‘‘instability’’ paradigm, as they act on different

time scales.

In its basic application, such a formula would allow to

compare and contrast experimental results without favoring

any of the phenomenological models. However, in its

deeper interpretation, it may be used to quantify growth

functions using parameters directly connected to the cell

wall plasticity like a concentration of different growth

factors. For example, it can be used to compare growth

curves under different experimental conditions by

describing them by a set of fittable parameters, which later

on can be interpreted in the context of cell wall biosyn-

thesis. This formula might be also used in comparative

studies of different genotypes, i.e., wild-type and mutant

plants, to describe function of mutated gene in the pro-

cesses of cell growth. During last few years the significant

progress in description of molecular basis of cell elonga-

tion was made, but there is still lack of precise methods for

quantification and modeling of plant cell growth.

Methods

The derivation is based on an earlier notion (Pietruszka

2012) that a growth factor (WLF) concentration formula

can be obtained from a sum of growth factor production

rate k1 ([k1] = concentration•time-1) and a depletion-like

part with proportionality constant k2 ([k2] = time-1):

dnðtÞ
dt

¼ k1 � k2nðtÞ; ð1Þ

hereafter referred to as ‘‘diffusion rate’’ (note, it should not

be confused with the ‘‘diffusion constant’’ D in the Fick’s

law, for no spatial gradients were introduced). One can

think of k2 in terms of depletion and diffusion since both

processes contribute to the rate of change of n(t) propor-

tionally to n(t).

One has to note that similar but much complicated and

more specific models have already been introduced in the

literature. For example, Rojas et al. (2011) (see Eq. 2) used

similar terms to describe the kinetics of pectin chemistry in

the oscillatory growth of pollen tube cell. In this context k1
would be an equivalent of the de-esterification and k2
would incorporate cross-linking, dilution by deposition and

advection terms. In our case, we would not want to limit
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the formula to any specific factors like calcium pectates

(Proseus and Boyer 2006) or hormones (Chavarria-Krauser

et al. 2005). Therefore, the derivation presented here is

detailed but generally applicable (see Supplementary

Information Eqs. (1)–(14) for detailed discussion) and after

several steps one obtains general solution in form:

VðtÞ ¼ V0e
U0n0

1
k2

k1
n0

tþ 1
k2
�n0

k1

� �
ðe�k2 �t�1Þ

� �
; ð2Þ

where V stands for the volume evolving in time t,

V0 = V(t = 0), and A0 represents the Lockhart constant

(representing viscoelastic properties of the cell wall;

[A0] = 10-6 MPa-1 9 s-1). The formula can be simpli-

fied (see SI Eqs. (15)–(22)) by considering only time

intervals shorter than growth factor production rate k1, so

k1t\ 1, which decouples the equation into two major

contributions. The first component (SI Eq. (18)) is pri-

marily dependent on the production rate k1 and can be

represented by simple linear term At ? B. The second one

[SI Eqs. (19)–(20)] is dominated by the depletion-like

effects (k2) and has a form of double exponent

exp(-exp(-k2t)); its representation, using parameters C

and D, has been described in the last paragraph of the

Supplementary Information (SI).

We shall neglect the correlations between above terms,

and simply add both contributions arriving at the formula

derived from an approximated solution of the modified

Lockhart/Ortega equation:

VðtÞ � V0

V0

¼ At þ Bþ Ce�e�Dðt�teÞ ð3Þ

Equation (3) describes the relative growth curves and is a

simple sum of a linear ‘‘start-up’’ region and a nonlinear

accelerated (and decelerated) growth. The two time regions

are both valid in the long time scale in which the plasticity

mode is dominant (see ‘‘Introduction’’). Here, we intro-

duced parameter te (effective start-up time) to deal with

mathematically and practically inseparable contributions

from (1) multiplicative factor ‘‘F’’ (see SI) in front of the

inner exponent and (2) difficult to estimate moment when

plant cell or elongating organ resumes growth. In cases

when a growth factor is added to the plant environment, te
cannot be directly equated with the time of addition but

rather as an effective moment at which it starts to domi-

nate. The indeterminate starting point also affects the linear

part At ? B and any time shift A�dt is included in the

parameter B. Additionally, due to approximations made in

the SI Eq. (18) and SI Eq. (20), we introduced parameters

B1 and B2 as any offsets of the (relative) elongation at

t = 0, including slowly varying (almost constant) terms in

the expansion, noise and measurement uncertainty. To sum

up, parameter B includes all constants and slowly varying

orders of expansion and therefore has no theoretical use

and effectively normalizes the result to the first data point.

From the experimental side, it accounts for any constant

offset of the experimental data, for example whenever

length is used instead of a relative elongation (see Fig. 2)

or for uncertainty in a determination of V0. For practical

purposes and dimensional consistency it might also be

convenient to use time constants T1 * 1/k1 and T2 * 1/k2
instead of production and depletion rates k1 and k2,

respectively (for the detailed description see SI).

Fitting this equation to the experimental data provides

parameters A, B, C, D and te which later on are connected

with the U0 and T2, under a condition that the proper unit

scaling was done (for example, if the experimental data

contains relative elongation in lm/cm, it must be corrected

by a factor of 1/10,000). It has to be stated that dropping

the assumption made earlier that T1 � T2 would mostly

change B and C, and only weakly affect U0 and T2 (note

that A, B and C C 0).

Here, we can already identify at least one parameter of

the equation D (k2) as 1/T2 and get a first estimate of U0

from parameter A. At the current approximation level,

parameter C can only be used to quantify growth as an

equivalent of ‘growth amplitude’ (for further interpretation,

in the context of ‘‘acid growth’’, see e.g., Pietruszka and

Haduch-Sendecka 2016). Following the convention used in

SI Eq. (20), C can be roughly associated with k2 (1/T2)

through C * exp(T2) * exp(1/k2) but it would be valid

only in the epoch when a diffusion mechanism is dominant

(nonlinear). It needs emphasizing that the formula

describes the (relative) change of the volume, whereas the

experimental data is usually given as relative elongation or

length increments, neglecting any changes in diameter.

However, such approximation only weakly affects the

value of parameter D (k2, T2) obtained from the fit. It

follows from the fact that D comes from the double

exponential term exp(-exp(-D(t - te))), which can

accumulate any cube or square root operations in the

parameter te.

Finally, in order to obtain other parameters (U0, T1) we

would have to use the complete formula.

VðtÞ ¼ V0e
�U0

T2
T1

ðT1�T2Þ e
�t
T2�1

� �
�t

h i
ð4Þ

which is highly nonlinear and not practical for common

applications. In other words, the (semi-empirical) formula

allows fitting of T2 and estimation of U0, which is related to

U0(P - Y)n0, where U0 is a Lockhart constant,

(P - Y) difference in pressures. The proportionality factor

n0 comes from the unknown initial concentration of growth

factors at t = 0. Within the current approximation

A * U0(P - Y) n0, and A should be dependent on con-

centration n0.
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In order to test the applicability of the formula, a com-

puter program written in Python (Oliphant 2007) pro-

gramming language was prepared (Zajdel et al. 2014). Its

functionality comprises three parts: (1) reading and scaling

of the data; (2) obtaining an initial estimate of fit param-

eters; (3) fitting procedure using Simplex (Nelder–Mead

algorithm) and least squares (Levenberg–Marquardt LSQ)

methods implemented in package scipy.optimize (van der

Walt et al. 2011; Jones et al. 2001).

Part (1) aims to ensure that the fitting parameters have

proper dimensions and requires the y-axis to be dimen-

sionless relative elongation and the x-axis—time in sec-

onds. If the above conditions are met, parameter A contains

contribution from U0(P - Y)n0 and parameter D is equal to

k2 (s
-1) (T2 is expressed in seconds). If the incoming data

are not normalized, then T2 is expressed in time units of the

original measurement.

Part (2) utilizes user’s interaction (point-and-click on

screen) to obtain an estimate of te, which is roughly

equivalent to the inflection point of the curve. Then, an

initial fit is performed using Simplex algorithm, which is

slow but stable at this level of the refinement, when only

initial estimates of parameters are known. As the last step,

a full matrix least square fit is applied in order to estimate

standard deviations of the parameters. We have to note that

a successful fit of the LSQ part requires data of good

quality, which meet criteria given later in the paper. The

visualization of fits is preformed using the Matplotlib

package (Hunter 2007).

Results

The practical use of the formula was carried out on several

growth curves which were collected from available fig-

ures and converted to data points from a literature survey.

The experimental base included:

1. Arabidopsis thaliana L. (Boyes et al. 2001, Fig. 3C),

(Gendreau et al. 1997, Fig. 1A, B), (Nishimura et al.

2004, Fig. 4A),

2. Zea mays L. (Schopfer 2006, Fig. 2A), (Pietruszka

2010, Fig. 7A, B), (Polak et al. 2012, Figs. 2, 3, 8),

(Rudnicka et al. 2013, Figs. 1, 2, 5).

At present, the only parameter that can be directly

inferred from the fit is the diffusion rate k2, which

involves the effective transport to/from the cell wall.

Tables 1, 2, 3 and 4 and SI Tables 1–10 present diffusion

rates obtained from fits for the selected datasets. The

results are presented in seconds as a common SI unit. For

a better comparison, a second column gives the results in

the time units used in each paper. Before the fits the data

were normalized in the fitting software to the

dimensionless quantities, but the figures were plotted in

the original measured units.

Examples of selected fits are presented in Figs. 1 and 2.

For interested readers, a complete set of figures was pro-

vided in the Supplemental Information (SI) file as SI

Figs. 1–10. All of the plots show linearly interpolated

experimental points together with both components of the

equation presented on a denser grid: the linear growth

(linear) and nonlinear diffusive term (nonlinear). The ver-

tical olive line marks the fitted value of te. The estimated

statistical uncertainties (standard deviations) of the

parameters were obtained from the LSQ part of the fits and

were reported on 1r level.

Discussion

The discussion of the results will be divided into two parts.

First, an applicability of the formula will be checked. Later

on, a general comparability of results between different

experimental conditions and species will be reviewed.

Applicability of the formula

The formula SI Eq. (20) was tested on two plants Zea mays

L. and Arabidopsis thaliana L. using 39 datasets digitized

from 7 papers, which came from 6 different measurement

methodologies. The fits to the growth (or relative growth)

curves were very good in 31 cases and good in 4 [SI

Fig. 1B–3 (open and closed circles in the original data)].

One fit showed discrepancy at early time [SI Fig. 4 (plus

sign)]. In the remaining 3 cases (SI Fig. 5 diamond, SI

Fig. 7 closed and open triangle) the fit converged to solu-

tions with a wrong slope of the linear part. We have to note

that the good agreement in almost 90 % cases is obtained

despite the fact that we are only analyzing length (relative

elongation) instead of the relative volume.

The decrease of the general agreement in the 7 unsat-

isfactory cases can be related to the time range of the

reported data. The initial linear ‘‘lag’’ term of the formula

requires that a sufficiently long time span at the beginning

of the data set is measured. The second nonlinear sigmoid

curve must be measured at least to its inflection point and

preferably have a reasonable ‘‘follow-up’’ at the end of the

measurement.

Especially the first condition must be fulfilled as it gives

a stable base line for the nonlinear part. Omission of this

initial region may potentially hinder successful fits to the

data obtained in the usually time consuming experiments.

The short length of the start-up region versus the post-

growth saturation biases the fit of the linear part towards

the post-growth slope. The bias causes fit to be worse at an

onset of the nonlinear part which is seen on several plots
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[especially on SI Fig. 5 (bottom right) and SI Fig. 7

(middle)].

We have to point out that the obtained diffusion rates

cannot be directly equated to the growth rate. A good

example can be drawn by comparison of the results in SI

Table 1, where the diffusion rate k2 (parameter D) is

slightly higher for the hypocotyls grown in the light than

those grown in the dark. Here, over tenfold increase in

length is incorporated into amplitude parameter C.

Nonetheless, this result has its own interesting interpreta-

tion and reference to the literature; well known is the fact

that light diminishes the level of active auxin in irradiated

plant organs and induces its diffusion into shade areas; the

increase in the depletion rate k2 exactly and numerically

reflects this phenomenon.

Hereafter, we shall only concentrate on the parameter k2
(D) as the one connected with the microscopic properties of

the model. Its usability is apparent in two areas:

1. A higher value of k2 is equivalent to a faster depletion

rate of the growth factor concentration with the lower

limit reached at the linear follow-up region at the end

of the measurement.

2. Under the same growth conditions plants should

display the same diffusion rates, which should give a

unique opportunity to verify reproducibility and com-

pare different measurements. It should also aid in

predicting values of k2 in future experiments (interpo-

lation between known cases or close extrapolation).

Parameterization of the experimental data

The comparison of different diffusion rates could be safely

made only in a few cases where authors reported several of

parameterized datasets. The results are presented in SI

Table 2 (Nishimura et al. 2004), SI Tables 5–7 (Polak et al.

2012) and SI Tables 8–10 (Rudnicka et al. 2013). The dif-

fusion rates and amplitude parameters (C) for each

table were collected and presented, respectively, in Fig. 3 for

Nishimura et al. (2004), SI Figures: 11, 12, 13 for Polak et al.

(2012), SI Figures: 14, 15, 16 for Rudnicka et al. (2013).

Table 1 Diffusion rate obtained for coleoptile of maize grown under constant dim green light at 25 �C and influence of indole-3-acetic acid

(IAA) and fusicoccin (FC)

Polak et al. 2012 k2 (s
-1) k2 (min-1) T2 (s) T2 (min)

Figure 2: black diamond, control (12.6 ± 0.6)e-05 0.0076 ± 0.0003 7920 ± 360 132 ± 6

Figure 3: black triangle, IAA 10-5 M (29.3 ± 1.5)e-05 0.0176 ± 0.0009 3410 ± 170 56.9 ± 2.9

Figure 8: black triangle, FC 10-6 M (18.6 ± 2.8)e-05 0.0112 ± 0.0017 5370 ± 810 89 ± 14

Table 2 Fit parameters for coleoptile of maize grown under constant dim green light at 25 �C and influence of indole-3-acetic acid (IAA) and

fusicoccin (FC)

Polak et al. 2012 A (s-1) B C D (s-1)

Figure 2: black diamond, control (1.4 ± 0.1)e-06 0.0017 ± 0.0006 0.0872 ± 0.0048 (12.6 ± 0.6)e-05

Figure 3: black triangle, IAA 10-5 M (2.7 ± 0.1)e-06 -0.0023 ± 0.0008 0.0985 ± 0.0038 (29.3 ± 1.5)e-05

Figure 8: black triangle, FC 10-6 M (3.6 ± 1.1)e-06 -0.0117 ± 0.0037 0.1870 ± 0.0360 (18.6 ± 2.8)e-05

Table 3 Diffusion parameter obtained from natural growth cycle of wild (Col-0) Arabidopsis measured during principal growth stages 5 and 6

Boyes et al. 2001: Fig. 3C k2 (s
-1) k2 (day

-1) T2 (s) T2 (day)

Wild-type Col-0 (1.3 ± 0.3)e-06 0.11 ± 0.02 800000 ± 170000 9.3 ± 1.9

Table 4 Fit parameters for natural growth cycle of wild (Col-0) Arabidopsis measured during principal growth stages 5 and 6

Boyes et al. 2001: Fig. 3C A (s-1) B C D (s-1)

Wild-type Col-0 (0.0 ± 2.1)e-09 0.0046 ± 0.0006 0.0316 ± 0.0094 (1.3 ± 0.3)e-06

Acta Physiol Plant (2016) 38:216 Page 5 of 9 216
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The results inferred from the paper of Nishimura et al.

(2004) presenting growth rate of Arabidopsis thaliana L.

mutants in single AHK genes (encoding Arabidopsis His-

tidine Kinase cytokinin receptors), show similar values of

calculated k2 for both wild-type ecotypes (Columbia and

Wassilewskija) and a systematic increase of the calculated

diffusion rate for subsequent mutations (Fig. 3). A quan-

titative analysis of the plot indicates that k2 was signifi-

cantly affected in plants containing ahk3-1 mutations (2

double mutants and the triple one). The double mutant

ahk2-1 ahk4-1 had a diffusion rate similar to the both

analyzed wild-type ecotypes, which points at ahk3-1 as the

critical factor. Here, one can also qualitatively verify an

approximate dependence C * exp (1/k2) since C decreases

as k2 increases (SI Eq. 22).

A wider comparison can be made on the basis of papers

reporting growth kinetics of Zea mays L. Polak et al.

(2012) and Rudnicka et al. (2013). In the first one a garlic

extract (GE) containing thiosulphinate was used as a

growth inhibitor (4.4 ± 0.3 mM) in solutions diluted 50,

20, 15 and 10 times. SI Fig. 11 presents dependence of the

diffusion parameter k2 obtained under different dilutions of

GE. Both 109 and 509 solutions display remarkably

similar values of k2, which are larger (faster depletion) than

values obtained from control growth. The value for 209

dilution is on the other hand much lower even than the

control, which can be either an outlier or result from a

systematic trend. This becomes more clear by comparison

of SI Figs. 12 and 13, which contain fit results for systems

bFig. 1 Fit to the data of Polak et al. (2012) describing growth for

coleoptile segments of maize under constant dim green light at 25 �C
in control conditions (closed diamond in Fig. 2) and under the

influence of indole-3-acetic acid (IAA 10-5 M—closed triangle in

Fig. 3) and fusicoccin (FC 10-6 M—closed triangle in Fig. 8).

Compare with Lüthen et al. (1990) or Hager (2003) in the general

context of ‘‘acid growth hypothesis’’, and the results presented in SI

Figs. 11–13 for the estimated diffusion rate k2 and amplitude C (see

also Pietruszka and Haduch-Sendecka 2016). The biosynthesis

(production) linear region ends up approximately at te, while the

curvilinear (inactivation) region prevails above te

Fig. 2 Fit to the data of Boyes et al. 2001 (Fig. 3c) describing natural

growth cycle of wild (Col-0) Arabidopsis thaliana L.
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with indole-3-acetic acid (IAA) and fusicoccin (FC). The

results suggest that between 109 and 209 dilution there is

a systematic decrease of the k2 factor, which requires fur-

ther investigation.

The next set of papers studied growth properties of Zea

mays L. under influence of juglone (JG) and IAA. The JG

itself significantly changed growth kinetics at 10 lM
concentration, where the nonlinear part was almost com-

pletely suppressed. Under increased concentration of JG

the k2 values came closer to the control, which was rather

unusual behavior (SI Fig. 14).

On the other hand, a clear trend could be identified in the

100 lM IAA ? JG series (SI Fig. 15), where addition of

JG led to increased values of k2 indicating an increased

depletion rate. At the same time, the amplitude C de-

creased. Similar tendency was found in the JG ? FC case

(SI Fig. 16).

Comparison and transferability of results between papers

Comparison of growth kinetics of plants depends on mul-

tiple factors: plant genetics, incubation medium, lighting

and temperature conditions just to name a few. As a result

the comparison of the papers and reproducibility between

groups utilizing different experimental approaches is a very

difficult task. At least one has to remain consistent within

its own technique.

The results obtained in the first section (Arabidopsis

thaliana L.) were barely comparable as they differed in

light cycling used for growth. The values of k2 (s-1)

obtained for natural growth 1.2 9 10-6 (Boyes et al.

2001), 16 h light and 8 h dark 1.2 9 10-5 (Gendreau et al.

1997) or constant light 2.5 9 10-6 (Nishimura et al. 2004)

differed by an order of magnitude (growth temperatures

were not comparable as well).

The better situation was in the case of Zea mays L. with

one reported case of dark grown plants (Schopfer 2006)

with k2 = 0.90(2) s-1 and four grown under constant green

light at 25 �C (Polak et al. 2012; Rudnicka et al. 2013).

Figure 4 presents results collected from SI Tables 5 and

8–10. There is a reasonable agreement between the control

values, which are equal within 4r limit and the estimated

weighted average is (1.08 ± 0.06) 9 10-4 (hatched area).

This might be used as a guide for future experiments

allowing to reject outliers (due to faulty conditions) already

at the control stage, thus avoiding wasting resources.

Suggested set of experiment criteria required

for a successful fit using Eq. (4)

The applicability of the semi-phenomenological formula to

a fit requires data of sufficient quality. Here is a suggested

minimal set of indications required for a good fit:

1. A sufficiently long, almost linear, ‘start-up’ phase must

be recorded at the beginning of the data collection.

Data containing ‘kinks’ or delayed effects must be

rejected at this early stage. (For example, SI Figs. 3, 4

(asterisk), 7 (open triangle), 8 (semi-open diamond)

with fits to data with insufficient start-up region.)

2. The nonlinear part must be fully presented from the

bottom to top bends.

3. The ‘follow-up’ linear part cannot be too long (longer

than the start up). It can be measured, but must be

shortened for the fit. First of all—it lies beyond the

approximation region (t\ T2). Secondly, its slope will

Fig. 4 Diffusion rate k2 and amplitude parameter C obtained for Zea

mays L. grown under constant green light at 25 �C. Error bars depict
statistical uncertainty on 1r levelFig. 3 Diffusion rate k2 and amplitude C for roots of Arabidopsis

thaliana L. grown under constant lighting conditions, corresponding

to the fit in SI Fig. 2. The error bars represent statistical uncertainty

on 1r level obtained from the LSQ part of the fit (std-dev)
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dominate in the fit of the linear contribution to the

formula causing bad agreement in the early times.

The above criteria consider only a technical aspect of fit,

that is a stable numerical solution. They are not aimed to

guarantee the overall correctness of the result. Also when

additional growth factors are used, the addition time should

not coincide with the onset of the nonlinear part (e.g., as

results in SI Fig. 10 after Rudnicka et al. 2013) since it

would result in an unsettled ‘shock’ state (unless that is the

intention of the operator). When modifications of growth

medium are performed, a stability of the growth conditions

must be assured.

Conclusions

The connection between the experiment and theory of the

plant enlargement by cell elongation was done on the basis

of a modified Lockhart/Ortega kind of equation linking the

diffusion parameter k2 with the microscopic properties of

the biophysical model. The derived Eq. (3) allows to

quantitatively describe the shape of a growth curve for

plants as was shown for model species Arabidopsis thali-

ana L. and Zea mays L. The obtained values allowed for

deeper analysis of growth kinetics allowing to clearly

identify trends and abnormalities in the growth curves.

Recently, the presented approach was successfully applied

to quantitatively describe effective diffusion rates and

correlations between growth and proton influx rates in Zea

mays L. (Pietruszka and Haduch-Sendecka 2016).

The transferability (comparability and reproducibility)

of diffusion parameter k2 has been demonstrated in the case

of Zea mays L. grown under the same experimental con-

ditions, where the weighted average value was found to be

(1.08 ± 0.06) 9 10-4.

Further expansion of the approach into new species and

diverse conditions of growth might aid in creating a data-

base of biophysical parameters for different plants. In the

future, this cumulative knowledge may help in inferring

valuable new results without experimental work.

To sum up, the simple formula can be used to fit a vast

number of datasets for different plants and under variable

conditions. The quantitative character of the fits: (1) pro-

vides researchers with new opportunities to analyze and

interpret their data; (2) gives a better chance to catch and

scrutinize outliers and (3) allows to focus on areas of

interest, which would be impossible with only qualitative

comparison. The above factors, can be used to open up new

avenues in analyzing growth curves of plants and organs.
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