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Abstract We study the set-valued Cauchy equation postulated for orthogonal vectors. We
give its general solution as well as we look for selections of functions satisfying the
equation.
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1 Introduction

We call function f : X → Y orthogonally additive if it satisfies a conditional functional
equation

f (x + y) = f (x) + f (y) for all x, y ∈ X with x ⊥ y. (1)
In the standard settings X is considered to be a real inner product space with the orthog-

onality relation given by means of the inner product and Y is an Abelian group. However,
we may introduce an abstract orthogonality relation in any at least two-dimensional linear
space, defining a so called orthogonality space.

The orthogonal additivity (1) has wide applications both inside and outside mathemat-
ics. With help of it we can give, e.g., several characterizations of inner product spaces
among normed spaces as well as of Hilbert spaces among Banach spaces (see Rätz [25] or
Sikorska [29] for more reference items).

Equation (1) has its applications in physics, in the theory of ideal gas (see Aczél &
Dhombres [1], Truesdell & Muncaster [32], Arkeryd & Cercignani [2]). In the three-
dimensional Euclidean space, by means of (1) we obtain the formula for the distribution law
of velocities in an ideal gas at a fixed temperature.
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There are also applications of (1) in actuarial mathematics in a premium calculation
principle (see Heijnen & Goovaerts [11]): it was shown, namely, that the variance principle
is the only covariance-additive premium principle.

We start with the following definition of the orthogonality space (see Gudder &
Strawther [10], Rätz [22]).

Let X be a real linear space with dim X ≥ 2 and let ⊥ be a binary relation on X such that

(01) x ⊥ 0 and 0 ⊥ x for all x ∈ X;
(02) if x, y ∈ X \ {0} and x ⊥ y, then x and y are linearly independent;
(03) if x, y ∈ X and x ⊥ y, then for all α, β ∈ R we have αx ⊥ βy;
(04) for any two-dimensional subspace P of X, for every x ∈ P and for every λ > 0,

there exists y ∈ P such that x ⊥ y and x + y ⊥ λx − y.

An ordered pair (X,⊥) is called an orthogonality space.
The notion of the orthogonality space covers the case of an inner product space with the

classical orthogonality as well as an arbitrary real normed linear space with the so called
Birkhoff orthogonality. But it is also the case with the ”trivial” orthogonality defined on a
linear space by (01) and the condition that two nonzero vectors are orthogonal if and only
if they are linearly independent.

Solutions of (1) are known (see Rätz [22], and also Rätz [23, 24], Rätz & Szabó [26],
Baron & Rätz [4] and Baron & Volkmann [5]). Before giving the form of solutions, let us
recall that a mapping q defined on a group is called quadratic if for all x and y from the
domain, q(x + y) + q(x − y) = 2q(x) + 2q(y).

Theorem 1.1 Let (X,⊥) be an orthogonality space and (Y,+) be an Abelian group. Every
orthogonally additive function f : X → Y has the form f = a + q, where a is additive and
q is quadratic (and orthogonally additive).

Theorem 1.2 Let (X, ‖ · ‖) be a real inner product space with dim X ≥ 2 and let (Y,+)

be an Abelian group. Then f : X → Y is orthogonally additive if and only if there exist
additive mappings a : X → Y and b : R → Y such that f (x) = a(x) + b(‖x‖2) for all
x ∈ X.

Studies of set-valued additive functions have already a pretty long history (see, e.g.,
Rådström [21], Henney [12, 13], Godini [9], Nikodem [16, 17]). Looking for the selec-
tions of such functions is interesting due to their applications, among others, in stability
considerations (see, e.g., [3]).

The main aim of this paper is to combine the above strands of research and to study the
conditional equation

F(x + y) = F(x) + F(y) for all x, y ∈ X with x ⊥ y, (2)

where F maps an orthogonality space X into the family of non-empty subsets of a Fréchet
space or, more generally, a topological vector space Y .

In the paper we will use the following notations. For a topological vector space Y, let
c(Y ) denote the collection of all nonempty compact subsets of Y , cc(Y ) - the family of all
convex members of c(Y ), and bcl(Y ) - the collection of all nonempty, closed and bounded
subsets of Y .

While speaking generally about a topological vector space Y we will assume that it
satisfies T0 separation axiom. This implies already that the space considered is not only
Hausdorff but also regular.
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2 Solutions of the Equation

We start our considerations with solving (2) in the class of functions defined on an orthog-
onality space and with values in the family of nonempty compact and convex elements of a
metric linear space. The main steps used for solving the equation of orthogonal additivity in
a single-valued case are: splitting the function into its odd and even parts - both also orthog-
onally additive, looking for the solutions of each part separately, and representing the final
result as the sum of the so obtained partial solutions.

While solving the equation of orthogonal additivity for set-valued functions we cannot
use the same methods directly.

Indeed, if for all x ∈ X,

G(x) := 1

2

(
F(x) + F(−x)

)
and H(x) := 1

2

(
F(x) − F(−x)

)

(with ”normal” algebraic difference), then, in general,

F(x) �= G(x) + H(x).

For that reason we will use another difference, namely the so called Hukuhara difference
(see Hukuhara [15]), which however not always exists.

Let Y be a real topological vector space and let A,B,C be elements of cc(Y ). We say
that a set C is the Hukuhara difference of A and B, i.e., C = A −B, whenever B +C = A.
If this difference exists, then it is unique (by Corollary 2.1 below).

In what follows we give some notations and present results which will be used in the
sequel.

Lemma 2.1 (Rådström’s cancelation law) Assume that A,B, C are subsets of a topological
vector space Y such that B is closed and convex, C is bounded, nonempty, and A + C ⊂
B + C. Then A ⊂ B.

The above law has been formulated by Rådström’s [20] in the case where Y is a normed
space but the proof given there is valid in topological vector spaces (cf., Smajdor [30],
Urbański [33]).

Corollary 2.1 Assume that A, B,C are subsets of a topological vector space Y such that A
and B are closed and convex, C is bounded, nonempty, and A + C = B + C. Then A = B.

If (Y, d) is a metric space, on the set of all nonempty closed and bounded subsets of Y

we define the Hausdorff distance as follows. For any A, B ∈ bcl(Y ),

h(A,B) := max{ sup
x∈A

d(x, B), sup
y∈B

d(A, y)},

where d(x, B) := inf{d(x, y) : y ∈ B}. Or, equivalently,

h(A,B) = inf{ε > 0 : A ⊂ Bε and B ⊂ Aε}, (3)

where Aε = ∪a∈AK(a, ε) and K(a, ε) = {x ∈ Y : d(a, x) ≤ ε}. In the case of (translation)
invariant metric on a linear space, Aε = A + K(ε), where K(ε) is simply a closed ball of
radius ε centered at the origin. It can be shown that the Hausdorff distance between two
elements of bcl(Y ) is the uniform distance between their associated distance functionals
[6, Section 3.2]. The space bcl(Y ) equipped with the Hausdorff distance forms a metric
space.
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It is known that if (Y, d) is complete, so do bcl(Y ), c(Y ) and cc(Y ), if considered with
the Hausdorff metric (see, e.g., Castaing & Valadier [7] or Beer [6]).

In the sequel, we list some properties of the Hausdorff distance.

Lemma 2.2 Assume that (Y, d) is a metric linear space. Then

(a) for any A, B,C ∈ bcl(Y ), h(A + C, B + C) ≤ h(A,B);
(b) for all An,Bn, A, B ∈ bcl(Y ), n ∈ N, if An → A and Bn → B, then An + Bn →

A + B;
(c) if d is invariant, then for any A,B ∈ bcl(Y ) and some ε > 0,

h(A,B) < ε =⇒ (
A ⊂ B+K(ε) and B ⊂ A+K(ε)

) =⇒ h(A,B) < 2ε;
(d) if A ∈ bcl(Y ), (αn)n∈N is a sequence of real numbers converging to α ∈ R and d is

invariant, then αnA → αA.

Proof For (d), take A ∈ bcl(Y ), a sequence αn → α ∈ R, n ∈ N, and fix ε > 0. Let U be
a balanced and symmetric neighbourhood of zero such that U ⊂ K(ε). By the boundedness
of A, there exists μ > 0 such that A ⊂ μU . By the convergence of (xn)n∈N, there exists
n0 ∈ N such that ξn := αn − α satisfy |ξn| < 1

μ
for all n ≥ n0.

For any n ≥ n0 we have

anA = (α + ξn)A ⊂ αA + ξnA ⊂ αA + ξnμU = αA + |ξn|μU ⊂ αA + U ⊂ αA + K(ε).

Analogously, we obtain
αA ⊂ αnA + K(ε),

which, by (c), finishes the proof of (d).

By Lemma 2.2(c), we see in fact that the convergence of a sequence of sets with respect
to the Hausdorff metric can be equivalently defined as: An → A if and only if for every
neighbourhood V of zero in Y (or element of a basis of neighbourhoods of zero) there exists
n0 ∈ N such that An ⊂ A + V and A ⊂ An + V for every n ≥ n0. By this way, we say also
that (An)n∈N is a Cauchy sequence if for every neighbourhood V of zero in Y there exists
n0 ∈ N such that An ⊂ Am + V and Am ⊂ An + V for all m, n ≥ n0.

The proof of the next lemma in the case when Y is a normed linear space, was given by
Piszczek in [19].

Lemma 2.3 Assume that (Y, d) is a Fréchet space (locally convex, complete metric linear
space with an invariant metric; see, e.g., Rolewicz [27]). If An,Bn,A,B ∈ cc(Y ), n ∈ N,
An → A, Bn → B and there exist the Hukuhara differences An − Bn for all n ∈ N, then
there exists the Hukuhara difference A − B and An − Bn → A − B.

Proof Let Cn := An − Bn for all n ∈ N, whence An = Bn + Cn, n ∈ N. Let U be a
neighbourhood of zero in Y . Since Y is locally convex, there exist convex neighbourhoods
of zero W, W1 such that W ⊂ W1 ⊂ U . Further, there exists a neighbourhood V of zero
such that V + V ⊂ W . Since An → A and Bn → B then there exists n0 ∈ N such that for
all n, m ≥ n0,

An ⊂ Am + V, Am ⊂ An + V, Bn ⊂ Bm + V, Bm ⊂ Bn + V.

Take n, m ≥ n0. We have the following inclusions

An + Bm ⊂ Am + Bm + V, Am + Bm ⊂ Am + Bn + V,
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Bn + Cn + Bm ⊂ Bm + Cm + Bm + V, Bm + Cm + Bm ⊂ Bm + Cm + Bn + V,

whence,

Bn + Cn + Bm ⊂ Bm + Cm + Bn + V + V ⊂ Bm + Cm + Bn + W.

By Lemma 2.1,
Cn ⊂ Cm + W ⊂ Cm + U.

Analogously, we obtain Cm ⊂ Cn+U . This means that (Cn) is a Cauchy sequence in cc(Y ),
and so, (Cn) is convergent, say to C ∈ cc(Y ).

On the other side, for a fixed neighbourhood U of zero and V such that V + V ⊂ U

there exists n0 ∈ N such that for all n ≥ n0,

Cn ⊂ C + V, C ⊂ Cn + V, Bn ⊂ B + V, B ⊂ Bn + V.

Hence,
Bn + Cn ⊂ B + C + U, B + C ⊂ Bn + Cn + U.

It means that Bn + Cn → B + C. But Bn + Cn = An → A. Consequently, since cc(Y ) is a
Hausdorff space, B + C = A, and C = A − B.

In what follows we present the main result of the paper concerning the general solutions
of (2).

Theorem 2.1 Let (X,⊥) be an orthogonality space and (Y, d) be a Fréchet space. If
F : X → cc(Y ) satisfies (2), then there exist an additive function a : X → Y and a
quadratic function Q : X → cc(Y ), i.e., satisfying for all x, y ∈ X condition Q(x + y) +
Q(x − y) = 2Q(x) + 2Q(y), which is orthogonally additive, such that F = a + Q.
Moreover, such representation is unique.

Proof Put x = y = 0 in (2). Since F(0) is bounded, on account of Corollary 2.1
immediately we get

F(0) = {0}. (4)
Take x ∈ X. There exists y ∈ X such that x ⊥ y and x + y ⊥ x − y. By (2) and the

properties of the orthogonality relation we obtain (cf., [8] or [28] for more general results)

F(2x) = F(x + y) + F(x − y)

F (x + y) = F(x) + F(y)

F (x − y) = F(x) + F(−y)

F (−x − y) + F(−x + y) = F(−2x)

F (−x) + F(y) = F(−x + y)

F (−x) + F(−y) = F(−x − y)

F (y) = F

(
x + y

2

)
+ F

(−x + y

2

)

F(−y) = F

(−x − y

2

)
+ F

(
x − y

2

)

F

(−x − y

2

)
+ F

(−x + y

2

)
= F(−x)

F

(
x + y

2

)
+ F

(
x − y

2

)
= F(x).
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Multiplying first three from the above equations by 3 and last four equations by 2, and
summing up all ten equalities side by side, by convexity of the sets we derive

3F(2x) + 3F(x + y) + 3F(x − y) + F(−x + y) + F(−x − y)

+ F(−x) + F(y) + F(−x) + F(−y) + 2F(y) + 2F(−y)

+ 2F

(−x + y

2

)
+ 2F

(−x − y

2

)
+ 2F

(
x + y

2

)
+ 2F

(
x − y

2

)

= 3F(x + y) + 3F(x − y) + 3F(x) + 2F(y) + F(y) + 3F(x) + 2F(−y) + F(−y)

+ F(−2x) + F(−x + y) + F(−x − y) + 2F

(−x + y

2

)
+ 2F

(
x + y

2

)

+ 2F

(−x − y

2

)
+ 2F

(
x − y

2

)
+ 2F(−x) + 2F(x).

On account of Corollary 2.1, we have

3F(2x) = F(−2x) + 8F(x), x ∈ X. (5)

In the next step, using some ideas from Smajdor [31], we will prove that there exists the
Hukuhara difference F(x) − F(−x). First, by induction we will prove that for every n ∈ N

we have
2n + 1

2 · 4n
F (x) = F

( x

2n

)
+ 2n − 1

2 · 4n
F (−x), x ∈ X. (6)

Validity of (6) for n = 1, i.e.,

3

8
F(x) = F

(x

2

)
+ 1

8
F(−x), x ∈ X, (7)

follows from (5) (and the convexity of sets). By validity of (6) for a fixed n, and by (7) we
obtain

2n + 1

2 · 4n
F

(x

2

)
= F

( x

2n+1

)
+ 2n − 1

2 · 4n
F

(
−x

2

)

2n + 1

2 · 4n
· 3

8
F(x) = 2n + 1

2 · 4n
F

(x

2

)
+ 2n + 1

2 · 4n
· 1

8
F(−x)

2n − 1

2 · 4n
F

(
−x

2

)
+ 2n − 1

2 · 4n
· 1

8
F(x) = 2n − 1

2 · 4n
· 3

8
F(−x).

Summing up the above equalities, by Corollary 2.1 we get

2n + 1

2 · 4n
F

(x

2

)
+ 2n + 1

2 · 4n
· 3

8
F(x) + 2n − 1

2 · 4n
F

(
−x

2

)
+ 2n − 1

2 · 4n
· 1

8
F(x)

= F
( x

2n+1

)
+ 2n − 1

2 · 4n
F

(
−x

2

)
+ 2n + 1

2 · 4n
F

(x

2

)
+ 2n + 1

2 · 4n
· 1

8
F(−x) + 2n − 1

2 · 4n
· 3

8
F(−x),

whence
2n+1 + 1

2 · 4n+1
· F(x) = F

( x

2n+1

)
+ 2n+1 − 1

2 · 4n+1
F(−x), x ∈ X,

so (6) holds for all n ∈ N. Consequently, for all n ∈ N and all x ∈ X there exists the
Hukuhara difference

F
( x

2n

)
= 2n + 1

2 · 4n
F (x) − 2n − 1

2 · 4n
F (−x),

and we have

2nF
( x

2n

)
= 2n + 1

2 · 2n
F (x) − 2n − 1

2 · 2n
F (−x), x ∈ X, n ∈ N. (8)
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By Lemma 2.3 and Lemma 2.2, there exists the Hukuhara difference 1
2F(x) − 1

2F(−x)

for all x ∈ X. Define H(x) := 1
2

(
F(x) − F(−x)

)
for all x ∈ X. We have F(x) =

2H(x) + F(−x) and F(−x) = 2H(−x) + F(x), whence

F(x) = 2H(x) + 2H(−x) + F(x), x ∈ X.

On account of Corollary 2.1,

2H(x) + 2H(−x) = {0}, x ∈ X,

and H is a single valued function

H(x) = {a(x)}, x ∈ X.

We will show that a is additive. For this end, fix x, y ∈ X, x ⊥ y. We have

{a(x)} + {a(y)} = H(x) + H(y) = 1

2

(
F(x) − F(−x)

) + 1

2

(
F(y) − F(−y)

)

= 1

2

(
F(x) + F(y)

) − 1

2

(
F(−x) + F(−y)

) = 1

2
F(x + y) − 1

2
F(−x − y)

= 1

2

(
F(x + y) − F(−x − y)

) = H(x + y) = {a(x + y)}.

Hence, a is orthogonally additive and odd, so it is additive (see, e.g., Rätz [22]).
Define Q(x) := 1

2

(
F(x) + F(−x)

)
for all x ∈ X. Q is an even, orthogonally additive

function. We will show that it is quadratic, and using a procedure analogous to one used by
Rätz [22] (see also Rätz [23, 24], Rätz & Szabó [26]), we will proceed with four steps.

(a) If x + y ⊥ x − y, then Q(x) = Q(y).
Fix x, y ∈ X, x + y ⊥ x − y. Then

Q(x) = Q

(
x + y

2

)
+ Q

(
x − y

2

)
= Q

(
x + y

2

)
+ Q

(
y − x

2

)
= Q(y).

(b) Q(2x) = 4Q(x), x ∈ X.
Fix x ∈ X; there exists y ∈ X such that x ⊥ y and x + y ⊥ x − y. Then, by (a),

Q(2x) = Q(x + y) + Q(x − y) = Q(x)) + Q(y) + Q(x) + Q(−y) = 4Q(x).

(c) Q(αx + βx) + Q(αx − βx) = 2Q(αx) + 2Q(βx), x ∈ X, α, β ∈ R.
Fix x ∈ X and α, β ∈ R. There exists y ∈ X such that x ⊥ y and x + y ⊥ x − y.

We have

Q ((α + β)x) + Q ((α − β)y) = Q ((α + β)x + (α − β)y) = Q (α(x + y) + β(x − y)) (9)

= Q (α(x + y)) + Q (β(x − y)) = Q(αx) + Q(αy) + Q(βx) + Q(βy).

Set in the above β := α. Then, since by (4), Q(0) = {0}, we have

Q(2αx) = 2Q(αx) + 2Q(αy),

and, by (b) we obtain Q(αx) = Q(αy). Consequently, the substitution of the last
equality into (9) gives (c).

(d) Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y), x, y ∈ X.
Take x, y ∈ X. If x and y are linearly dependent, the equality holds by (c). Assume

x and y are linearly independent. There exist u, v ∈ X such that u ⊥ v, u+v ⊥ u−v
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and lin{u, v} = lin{x, y}. Then x = αu + βv, y = γ u + δv for some α, β, γ, δ ∈ R.
We have

Q(x + y) + Q(x − y) = Q(αu + βv + γ u + δv) + Q(αu + βv − γ u − δv)

= Q
(
(α + γ )u

) + Q
(
(β + δ)v

) + Q
(
(α − γ )u

) + Q
(
(β − δ)v

)

(c)= 2Q(αu) + 2Q(γu) + 2Q(βv) + 2Q(δv)

= 2Q(αu + βv) + 2Q(γu + δv) = 2Q(x) + 2Q(y).

Consequently,

a(x) + Q(x) = {a(x)} + Q(x) = 1

2

(
F(x) − F(−x)

) + 1

2

(
F(x) + F(−x)

) = F(x),

for all x ∈ X.
For proving the uniqueness of the representation, let an additive function b : X → Y , and

a quadratic function R : X → cc(Y ) be second pair of functions such that F = b+R. Then

F(x) = a(x) + Q(x) = b(x) + R(x) (10)

a(2nx) + Q(2nx) = b(2nx) + R(2nx)

1

2n
a(x) + Q(x) = 1

2n
b(x) + R(x), n ∈ N, x ∈ X,

whence, Q = R and, on account of Corollary 2.1 and (10), a = b. This finishes the proof.

Theorem 2.2 Let (X, ‖ · ‖) be an inner product space and (Y, d) be a Fréchet space. Func-
tion F : X → cc(Y ) satisfies (2) if and only if there exist additive functions a : X → Y and
B : [0, ∞) → cc(Y ) such that

F(x) = a(x) + B(‖x‖2), x ∈ X. (11)

Proof It is easy to see that function F of the form (11) is a solution of (2).
By Theorem 2.1 we know that F = a + Q, where a : X → Y is additive and Q : X →

cc(Y ) is quadratic. In order to finish the proof, it is enough to find the form of the quadratic
function Q. Take x, y ∈ X such that ‖x‖ = ‖y‖. We have x + y ⊥ x − y and by (a)
in the proof of Theorem 2.1, Q(x) = Q(y), so Q is constant on spheres centered at the
origin. Hence, there exists a function B : [0, ∞) → cc(Y ) such that Q(x) = B(‖x‖2) for
all x ∈ X. Repeating the argument used by Rätz in [22], since Q is orthogonally additive,
we derive that B is additive on the positive half-line.

Having solved (2), we may look for selections of such multivalued functions. However,
in the next section we will do it in more general settings (cf., Theorem 3.1 and Remark 3.1).

3 Selections

In this section we ask whether for a given set-valued orthogonally additive function
F : X → c(Y ), i.e., a function satisfying (2), there exists a single-valued orthogonally addi-
tive function f : X → Y such that f (x) ∈ F(x) for every x ∈ X. Such a function f is
called a selection for F . We apply an approach similar to one used by Smajdor [30] for
quadratic functions (see also Smajdor [31]). Another approach of proving the existence of
an additive selection of a multi-valued additive function was presented by Nikodem in [17].
In conditional version, however, such approach fails to be used.
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Lemma 3.1 Let (X,⊥) be an orthogonality space and let Y be a topological vector space.
If F : X → c(Y ) satisfies (2) then there exists a minimal (in the sense of inclusion between
values for each fixed argument) solution F0 : X → c(Y ) of this equation contained in F .

Proof Define

F := {G : X → c(Y ) : G is a solution of (2) and G ⊂ F }.
F is nonempty since F ∈ F . Consider the chain C ⊂ F . Then F1(x) := ⋂

G∈C G(x), x ∈
X, is a solution of (2). Indeed, take x, y ∈ X with x ⊥ y. On account of Lemma 10.4 in
[14] (see also Lemma 1.5 in [30]) we have

F1(x)+F1(y) =
⋂

G∈C
G(x)+

⋂

G∈C
G(y) =

⋂

G∈C

(
G(x)+G(y)

) =
⋂

G∈C
G(x+y) = F1(x+y).

Obviously F1 ⊂ F , so F1 ∈ F . By the Kuratowski-Zorn Lemma, there exists a minimal
element of F .

Theorem 3.1 Let (X,⊥) be an orthogonality space and let Y be a locally convex linear
topological space. If F : X → c(Y ) satisfies (2), then there exists a selection f : X → Y of
F satisfying (1).

Proof By Lemma 3.1, there exists a minimal solution F0 of (2). We will show that F0 is a
single-valued function. Suppose, to the contrary, that there exists x0 ∈ X and two different
elements y1, y2 ∈ F0(x0). Space Y is locally convex, so by the Hahn-Banach theorem there
exists a continuous linear functional l ∈ Y ∗ such that l(y1) �= l(y2). Define

G(x) := {y ∈ F0(x) : max l(F0(x)) = l(y)}, x ∈ X.

G(x) is nonempty, compact as a closed subset of a compact set, and G(x) ⊂ F0(x) for
any x ∈ X. Moreover, it is a solution of (2). Indeed, fix x, y ∈ X, x ⊥ y and take u ∈
G(x)+G(y). There exist v ∈ G(x) and w ∈ G(y) such that u = v +w. Surely, v ∈ F0(x),
w ∈ F0(y) and l(v) = max l(F0(x)), l(w) = max l(F0(y)). We have

u = v + w ∈ F0(x) + F0(y) = F0(x + y),

and

l(u) = l(v) + l(w) = max l(F0(x)) + max l(F0(y))

= max l(F0(x) + F0(y)) = max l(F0(x + y)),

whence, u ∈ G(x + y). A similar argument can be used to prove the second inclusion.
Namely, for a fixed x, y ∈ X, x ⊥ y take u ∈ G(x + y). Then

l(u) = max l(F0(x + y)) = max l
(
F0(x) + F0(y)

) = max l(F0(x)) + max l(F0(y)).

Of course, u ∈ F0(x + y), and since F0 satisfies (2), there exist v ∈ F0(x) and w ∈ F0(y)

such that u = v + w. We have

l(u) = l(v) + l(w) ≤ max l(F0(x)) + max l(F0(y)) = l(u),

whence, v ∈ G(x), w ∈ G(y) (if we had, e.g., v �∈ G(x), it would follow that
max l(F0(x)) > l(v), and then from the equality above it would follow that max l(F0(y)) <

l(w); impossible), and u ∈ G(x) + G(y). This shows that G is a solution of (2).
Since G(x) ⊂ F0(x) and F0 is a minimal solution of (2) contained in F , it is G = F0.

This gives a contradiction, since, in particular it is not true that both y1, y2 ∈ G(x0). Indeed,
if y1 ∈ G(x0), then max l(F0(x0)) = l(y1) �= l(y2), whence, y2 �∈ G(x0), and the same we
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would get if we supposed y2 ∈ G(x0). Consequently, the contradiction shows that F0 (= G)
is single-valued. So, there exists f : X → Y satisfying (1) such that f (x) ∈ F(x) for any
x ∈ X.

Remark 3.1 In Theorem 3.1 we may assume less, namely Y can be a topological vector
space that has sufficiently many linear functionals, i.e., for every y ∈ Y with y �= 0 there
exists a continuous linear functional l ∈ Y ∗ such that l(y) �= 0. By the Hahn-Banach
theorem, every locally convex space has sufficiently many linear functionals.

Remark 3.2 The condition x ⊥ y in (2) may be changed for more general (x, y) ∈ D for
any ∅ �= D ⊂ X × X and the respective assertions of Lemma 3.1 and Theorem 3.1 will
remain valid.

The selection in Theorem 3.1 is not uniquely determined.

Example 3.1 Let (X, ‖ · ‖) be an inner product space with dim X ≥ 2 and let Y be a
locally convex space. Let, moreover, A ∈ cc(Y ). Then function F : X → cc(Y ) defined as
F(x) := ‖x‖2A, x ∈ X, is set-valued orthogonally additive.

Of course, every function f : X → Y given by f (x) := ‖x‖2a, x ∈ X, with a ∈ A is
an orthogonally additive selection of F .

We finish the section with two easy corollaries.

Corollary 3.1 Let (X,⊥) be an orthogonality space and let Y be a locally convex topo-
logical vector space. If F : X → c(Y ) satisfies (2), then there exist an additive function
a : X → Y and a quadratic function q : X → Y , which is orthogonally additive, such that
a(x) + q(x) ∈ F(x) for all x ∈ X.

Corollary 3.2 Let (X, ‖·‖) be an inner product space with dim X ≥ 2 and let Y be a locally
convex topological vector space. If F : X → c(Y ) satisfies (2), then there exist additive
functions a : X → Y and b : R → Y such that a(x) + b(‖x‖2) ∈ F(x) for all x ∈ X.

In the present section we were checking for the existence of selections of a set-valued
orthogonally additive function with values being nonempty compact subsets of a locally
convex topological vector space Y . It is an open problem whether solutions F : X → cc(Y )

of (2) for such a space Y remain of the same form as it was for a Fréchet space.
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Boston (1998)
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24, 709–715 (1976)

http://dx.doi.org/10.1007/s00010-014-0288-0
http://dx.doi.org/10.1007/s00010-014-0288-0

	Set-valued Orthogonal Additivity
	Abstract
	Introduction
	Solutions of the Equation
	Selections
	Conflict of Interest Statement
	Open Access
	References

	ADP5BA8.tmp
	Citation style: Sikorska Justyna.(2015). Set-valued orthogonal additivity. "Set-Valued and Variational Analysis" (Vol. 23, iss. 3 (2015), s. 547-557), doi 10.1007/s11228-015-0321-z


