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The long-standing problem of representing the general massive one-loop Feynman integral as a 
meromorphic function of the space-time dimension d has been solved for the basis of scalar one-
to four-point functions with indices one. In 2003 the solution of difference equations in the space-
time dimension allowed to determine the necessary classes of special functions: self-energies need 
ordinary logarithms and Gauss hypergeometric functions 2 F1, vertices need additionally Kampé de 
Fériet-Appell functions F1, and box integrals also Lauricella-Saran functions F S . In this study, alternative 
recursive Mellin-Barnes representations are used for the representation of n-point functions in terms of 
(n − 1)-point functions. The approach enabled the first derivation of explicit solutions for the Feynman 
integrals at arbitrary kinematics. In this article, we scetch our new representations for the general 
massive vertex and box Feynman integrals and derive a numerical approach for the necessary Appell 
functions F1 and Saran functions F S at arbitrary kinematical arguments.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

We are studying scalar one-loop Feynman integrals,

Jn(d) =
∫

ddk

iπd/2

1

Dν1
1 Dν2

2 · · · Dνn
n

, (1)

with inverse propagators Di = (k + qi)
2 − m2

i + iε. We assume 
νi = 1 as well as momentum conservation and all external mo-
menta to be incoming, 

∑n
e=1 pe = 0. The qi are loop momenta 

shifts and will be expressed for applications by the external mo-
menta pe . Dimensions d = 4 + 2m − 2ε with m ≥ 0 are of physical 
interest because tensor one-loop Feynman integrals of rank r in 
4 − 2ε dimensions may be expressed by scalar integrals taken in 
higher dimensions up to d = 4 + 2r − 2ε [1]. Higher indices νi
will also appear in the reductions, but may be eliminated by in-
tegration by parts identities, so that a complete reduction basis of 
higher-dimensional scalar one- to four point integrals with indizes 
one may be derived. One-loop integrals with variable indices are 
also needed in the context of the loop-by-loop Mellin-Barnes ap-
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proach to multi-loop integrals of the Mathematica package AMBRE 
[3–6].

The first terms of the ε-expansion of one- to four-point scalar 
functions for d = 4 − 2ε , until including the constant term, were 
given by G. t’Hooft and M. Veltman in 1978 [7]. A systematic 
numerical treatment of the next terms of order ε-terms was per-
formed in 1992 [8], and a systematic numerical approach was 
worked out in 2001 [9]. It has been shown in 2003 [10,11] that 
representations in general dimension d, including d = 4 − 2ε , will 
rely on certain multiple hypergeometric functions of the type 
2 F1, F1, F S . Though, the explicit solutions for arbitrary kinematics 
could not be found.

A scetch of the Feynman integrals at arbitrary kinematics in 
terms of 2 F1, F1, F S and their explicit numerical determination are 
the subject of this letter. The dependence on the external momenta 
pe will be contained exclusively in the functions Rn:

Rn ≡ R12...n = − λn

Gn
− iε. (2)

The Rn carry the causal regulator −iε. The Cayley matrix λ12...n

was introduced in [12]. It is composed of the variables Yij , and its 
determinant λn is:
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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λn ≡ det(λ12...n) =

∣∣∣∣∣∣∣∣∣

Y11 Y12 . . . Y1n

Y12 Y22 . . . Y2n
...

...
. . .

...

Y1n Y2n . . . Ynn

∣∣∣∣∣∣∣∣∣
, (3)

with

Yij = Y ji = m2
i + m2

j − (qi − q j)
2. (4)

Further, we use the (n −1) ×(n −1) dimensional Gram determinant 
Gn ,

Gn ≡ −2n det(G12···n), (5)

and

det(G12···n) = (6)∣∣∣∣∣∣∣∣∣

(q1 − qn)
2 . . . (q1 − qn)(qn−1 − qn)

(q1 − qn)(q2 − qn) . . . (q2 − qn)(qn−1 − qn)
...

. . .
...

(q1 − qn)(qn−1 − qn) . . . (qn−1 − qn)
2

∣∣∣∣∣∣∣∣∣
.

We use the special assignment for tadpoles:

G1 = −2. (7)

Both determinants λn and Gn are independent of a common shift 
of the internal momenta qi . Further, we introduce the notion R(i),

R(i) ≡ r(i) − iε ≡ − det(λi)/G1 − iε = m2
i − iε, (8)

and use, wherever it is unique from the context,

R1 ≡ R(i). (9)

We derived in [13] a new ansatz, a recursion relation for the 
Feynman integrals defined in (1),

Jn(d) = −1

2π i

c0+i∞∫
c0−i∞

ds
�(−s)�(d−n+1

2 + s)

2�(d−n+1
2 )

× �(s + 1)R−s−1
n

n∑
k=1

∂k Rn k− Jn(d + 2s), (10)

and its solution by a sequence of Mellin-Barnes representations. 
We use the representation ∂k Rn for the co-factor of the Cayley ma-
trix, also called signed minors in e.g. [12]:

∂k Rn = ∂ Rn

∂m2
k

=
(

0
k

)
n
. (11)

The operator k− reduces an n-point Feynman integral Jn(d) to (n −
1)-point integrals Jn−1(d) by shrinking the kth propagator, 1/Dk:

k− Jn(d) =
∫

ddk

iπd/2

1∏n
j �=k, j=1 D j

. (12)

The recurrence relation (10) is the master integral for one-loop 
n-point functions in space-time dimension d, representing them by 
n integrals over (n − 1)-point functions with a shifted, continuous 
dimension d + 2s. The recurrence starts at n = 2 with the tadpole 
J1(d) in the integrand:
J1(d;m2
i ) =

∫
ddk

iπd/2

1

k2 − m2
i + iε

= − �(1 − d/2)

(m2
i − iε)1−d/2

≡ −�(1 − d/2)

R1
1−d/2

. (13)

Eqn. (10) contains for n = 2 the term 
∫

ds( R1
R2

)s , multiplied by 
�-matrices with arguments depending on s, and is formally 
a Mellin-Barnes integral. Our representation is an alternative to 
Eq. (19) of [11]. There, an infinite sum over a discrete dimensional 
parameter s was derived in order to represent an n-point function 
Jn(d) by integrals Jn−1(d + 2s).

The further evaluations will depend, concerning the kinematics, 
exclusively on the R1, R2, etc. introduced in (2). Although, there 
will arise exceptional cases when the specific choice of the exter-
nal scalars (pei pe j ) or of internal mass squares m2

i will lead to 
vanishing or divergent determinants λn or Gn . In such cases, one 
has to go back to intermediate definitions and look for specific so-
lutions.1 See also the remarks in [14].

2. Massive vertex and box functions

Representations of the massive self-energy, vertex and box inte-
grals can be derived iteratively from (10) by closing the integration 
contours of the Mellin-Barnes integrals e.g. to the right and taking 
the two series of residues of the corresponding �-functions with 
arguments (−s + · · · ). One Cauchy sum constitutes the analogue 
of the so-called boundary or b-terms of [11], the other one has a 
genuine d-dependence. Both sums together represent the Feynman 
integrals. In our approach, closed analytical expressions could be 
determined for arbitrary kinematics.

The general massive vertex and box integrals J3(d), J4(d) have 
first been presented at the conference “Loops and Legs 2018 
(LL2018)”. The vertex is

J3(d) = J123 + J231 + J312, (14)

with short notations R3 = R123, R2 = R12 etc., and:

J123 = �

(
2 − d

2

)
∂3 R3

R3

∂2 R2

R2

R2

2
√

1 − R1/R2
(15)

[
− R

d
2 −2
2

√
π

2

�
(

d
2 − 1

)
�
(

d
2 − 1

2

) 2 F1

(
d − 2

2
,1; d − 1

2
; R2

R3

)

+ R
d
2 −2
3 2 F1

(
1,1; 3

2
; R2

R3

)]

+ �

(
2 − d

2

)
∂3 R3

R3

∂2 R2

R2

R1

4
√

1 − R1/R2

[
+2R1

d
2 −2

d − 2
F1

(
d − 2

2
;1,

1

2
; d

2
; R1

R3
,

R1

R2

)

− R
d
2 −2
3 F1

(
1;1,

1

2
;2; R1

R3
,

R1

R2

)]

+ (R1(1) ↔ R1(2)).

1 A complete analysis of the exceptional kinematical cases has been performed by 
K.H.P; to be published elsewhere.
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We use the abbreviation (11). For d → 4, both the sums of expres-
sions with 2 F1 and F1 in square brackets in (15) approach zero, 
thus compensating the pole factor �(2 − d/2) in this limit. The J3
stays finite at d = 4, as it should be for any massive 3-point func-
tion. And the ε expansion for J123 to order n needs, in this case, 
the evaluation of the components to order (n + 1).

The corresponding massive four-point function is:

J4(d) = J1234 + J2341 + J3412 + J4123, (16)

with R4 = R1234, R3 = R123, R2 = R12 etc., and:

J1234 = �

(
2 − d

2

)
∂4 R4

R4

{
[

b123

2

(
− R

d
2 −2
3 2 F1

(
d − 3

2
,1; d − 2

2
; R2

R3

)

+ R
d
2 −2
4

√
π

�
(

d−2
2

)
�
(

d−3
2

) 2 F1

(
1

2
,1;1; R2

R3

))]

+
�
(

d−2
2

)
�
(

d−3
2

) √
π

4

∂3 R3

R3

∂2 R2√
1 − R1/R2

× 2 F1

(
1

2
,1;1; R2

R3

)

[
+ R

d
2 −2
2

d − 3
F1

(
d − 3

2
;1,

1

2
; d − 1

2
; R2

R4
,

R2

R3

)

− R
d
2 −2
4 F1

(
1

2
;1,

1

2
; 3

2
; R2

R4
,

R2

R3

)]

+ R1

8

�
(

d−2
2

)
�
(

d−3
2

) ∂3 R3

R3

∂2 R2

R2

1

1 − R1/R3

1

1 − R1/R2

[
− R

d
2 −2
1

�
(

d−3
2

)
�
(

d
2

)

×F S

(
d − 3

2
,1,1;1,1,

1

2
; d

2
,

d

2
,

d

2
; R1

R4
, · · ·

R1

R1 − R3
,

R1

R1 − R2

)

+ R
d
2 −2
4

√
π

×F S(
1

2
,1,1;1,1,

1

2
;2,2,2,

R1

R4
,

R1

R1 − R3
,

R1

R1 − R2
)
]

+ (R1(1) ↔ R1(2))

}

+ (2,3,1) + (3,1,2), (17)

where the function b123 is independent of d,

b123 = 1

2

∂3 R3

R3

∂2 R2

R2

[
R2√

1 − R1
R2

2 F1

(
1,1; 3

2
; R2

R3

)

− 1

2

R1√
1 − R1

R2

F1

(
1;1,

1

2
;2; R1

R3
,

R1

R2

)]
+ (1 ↔ 2). (18)
Here, it is R1 = R1(1) and (11) defines derivatives like ∂2r2. The 

term b123, when multiplied with �(− d−4
2 )R

d
2 −2
3 , equals the term 

of J123 in (15) with d-independent F1 and F S . It replaces the 
so-called b3-term of the vertex integral in [11] for arbitrary kine-
matics, while the d-dimensional parts of J1234 agree.

For d → 4, all the expressions in square brackets in (17) ap-
proach zero, thus compensating the pole of �(2 −d/2) in this limit. 
As a result, the J4 stays finite at d = 4, as it should be for any 
massive 4-point function. And the ε expansion for J1234 to order 
n needs, in this case, the evalution of the components to order 
(n + 1).

The derivations of J123 and J1234 were done under the assump-
tion that the kinematical arguments x, y, z of the 2 F1, F1, F S fulfill 
|x|, |y|, |z| < 1. Nevertheless, the above formulae are valid at ar-
bitrary kinematical arguments, for massive vertices at 
e(d) > 2
and for box integrals at 
e(d) > 3. In Appendix A to Appendix C
we will show how to calculate the various F1 and F S for arbitrary 
complex arguments; for 2 F1 we assume that such calculations are 
well-known.

3. Numerical results

The scalar one-loop basis consists of one- to four-point func-
tions. Our two-point function J2(d) is in complete agreement with 
[11], while for J3(d) and J4(d) our results are novel. Concerning 
numerical results for the 3-point functions we refer to several ta-
bles in [13]. The kinematics was chosen such that the results of 
[11] could be compared.2 Another numerical comparison, for a box 
integral J4(d) with vanishing Gram determinant, may be found in 
[15].

In Table 1 we show few examples of four-point functions in 
comparison to other packages. We did not aim at maximal accu-
racy and claim essentially six to eight safe digits (absolute values). 
Further, one propagator is massive and d = 4 or d = 5, and we 
can also allow for complex masses at the internal lines. A sam-
ple ε-expansion is reproduced for the generalized hypergeometric 
function F1 in Table B.2.

For the safe numerical calculation of massive vertices J3 and 
massive box integrals J4 we collect stable numerical representa-
tions for the generalized hypergeometric functions F1 and F S in 
the Appendices.

4. Discussion

The massive one-loop Feynman integrals have been represented 
as meromorphic functions of space-time d in terms of generalized 
hypergeometric functions. Many details left out here will be pub-
lished elsewhere. The Feynman integrals can be calculated numer-
ically at arbitrary kinematics and arbitrary dimension d, including 
potential pole locations at d = 4 + 2m. For phenomenological or 
multi-loop applications, it is wishful to have the pole expansions 
in closed analytical form. Their derivation is subject of a subse-
quent study.

The new recursion (10) has a unique feature. It allows to de-
rive n-dimensional Mellin-Barnes integrals for n-point Feynman 
integrals. Generally, n-dimensional integrals are obtained by sector 
decomposition methods, while in the Mellin-Barnes approach, as it 
is advocated in numerical loop calculations, the number of dimen-
sion grows faster. Within the MBsuite, AMBRE generates for the 
most general massive n-point one-loop function an Nn = 1

2 n(n +
1)-dimensional MB-integral; according to the number of entries 

2 We would like to thank Oleg Tarasov for a helpful discussion concerning this 
issue.
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Table 1
Comparison of the box integral J4 defined in (17) with 
the LoopTools function D0(p2

1, p2
2, p2

3, p2
4, (p1 + p2)2, (p2 +

p3)2, m2
1, m2

2, m2
3, m2

4) [16,17] at m2
2 = m2

3 = m2
4 = 0. Further 

numerical references are the packages K.H.P_D0 (PHK, un-
published) and MBOneLoop [15]. External invariants: (p2

1 =
±1, p2

2 = ±5, p2
3 = ±2, p2

4 = ±7, s = ±20, t = ±1).

(p2
1, p2

2, p2
3, p2

4, s, t) 4-point integral

(−,−,−,−,−,−) d = 4, m2
1 = 100

J4 0.00917867
LoopTools 0.0091786707
MBOneLoop 0.0091786707
(+,+,+,+,+,+) d = 4, m2

1 = 100
J4 −0.0115927 − 0.00040603 i
LoopTools −0.0115917 − 0.00040602 i
MBOneLoop −0.0115917369 − 0.0004060243 i

(−,−,−,−,−,−) d = 5, m2
1 = 100

J4 0.00926895
K.H.P_D0 0.00926888
MBOneLoop 0.0092689488
(+,+,+,+,+,+) d = 5, m2

1 = 100
J4 −0.00272889 + 0.0126488 i
K.H.P_D0 (–)
MBOneLoop −0.0027284242 + 0.0126488134 i

(−,−,−,−,−,−) d = 5, m2
1 = 100 − 10 i

J4 0.00920065 + 0.000782308 i
K.H.P_D0 0.0092006 + 0.000782301 i
MBOneLoop 0.0092006481 + 0.0007823090 i
(+,+,+,+,+,+) d = 5, m2

1 = 100 − 10 i
J4 −0.00398725 + 0.012067 i
K.H.P_D0 −0.00398723 + 0.012069 i
MBOneLoop −0.0039867702 + 0.0120670388 i

Y i j in the second Symanzik polynomial, F (x) = 1
2 xi Yi j x j − iε. For a 

vertex or box, N3 = 6, N4 = 10. In the present approach, it is only 
N ′

3 = 3, N ′
4 = 4. Evidently, a replacement of the original kinemati-

cal invariants m2
i , (pe,i pe, j) or Yij by the alternatives Rn = −λn/Gn

is an essential building block and it might well be possible to 
find similar lower-dimensional MB-representations also for more 
involved multi-loop integrals.

Basic numerical features of the new n-dimensional MB-repre-
sentation (10) have been studied in [15] in comparison with [2], 
with the package MBOneLoop, including cases of small or vanish-
ing Gram determinant.

It is interesting to compare our results for J3(d) and J4(d) with 
the earlier study [11]. The d-dependent part of J3(d) as well as 
much of the d-dependent part of J4(d) agree with our results. 
Further, the expressions for the b-terms in [11] differ from our 
d-independent parts, although in certain kinematical regions they 
do agree numerically for J3(d). We find no agreement for J4(d), 
due to the various contributing b-terms.
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Appendix A. The Appell function F1 and Lauricella-Saran 
function F S

Numerical calculations of specific Gauss hypergeometric func-
tions 2 F1, Appell functions F1 (Eqn. (1) of [18]), and Lauricella-
Saran functions F S (Eqn. (2.9) of [19]) are needed for the scalar 
one-loop Feynman integrals:

2 F1(a,b; c; x) =
∞∑

k=0

(a)k(b)k

k! (c)k
xk, (A.1)

F1(a;b,b′; c; y, z)

=
∞∑

m,n=0

(a)m+n(b)m(b′)n

m! n! (c)m+n
ymzn, (A.2)

F S(a1,a2,a2;b1,b2,b3; c, c, c; x, y, z) (A.3)

=
∞∑

m,n,p=0

(a1)m(a2)n+p(b1)m(b2)n(b3)p

m! n! p! (c)m+n+p
xm ynzp .

The (a)k is the Pochhammer symbol. The series converge for 
|x|, |y|, |z| < 1, but the functions are needed for arbitrary ar-
guments. All the 2 F1, F1, F S are finite and have no pole terms 
in ε . Practically all aspects of 2 F1 are well-known and imple-
mented in computer algebra systems, in Mathematica as built-in 
symbol Hypergeometric2F1[a,b,c,z]. There is no pub-
lic F S -package, while the Appell function F1(a; b1, b2; c; x, y)

[18] is implemented in Mathematica as built-in symbol Ap-
pellF1[a,b1,b2,c,x,y] and in few other public packages. 
All the implementations have systematic limitations.

One approach to the numerics of F1 and F S may be based on 
Mellin-Barnes representations. For the Gauss function 2 F1 and the 
Appell function F1, Mellin-Barnes representations are known. See 
Eqn. (1.6.1.6) in [20],

2 F1(a,b; c; z) = 1

2π i

�(c)

�(a)�(b)
(A.4)

×
+i∞∫

−i∞
ds (−z)s �(a + s)�(b + s)�(−s)

�(c + s)
,

and Eqn. (10) in [18], which is a two-dimensional MB-integral:

F1(a;b,b′; c; x, y) = 1

2π i

�(c)

�(a)�(b′)
(A.5)

×
+i∞∫

−i∞
dt (−y)t

2 F1(a + t,b; c + t, x)

× �(a + t)�(b′ + t)�(−t)

�(c + t)
.

For the Lauricella-Saran function F S we derived the following, new, 
three-dimensional MB-integral:

F S(a1,a2,a2;b1,b2,b3; c, c, c; x, y, z) (A.6)

= 1

2π i

�(c)

�(a1)�(b1)

+i∞∫
−i∞

dt F1(a2;b2,b3; c + t; y, z)

× (−x)t �(a1 + t)�(b1 + t)�(−t)

�(c + t)
.

A general numerical evaluation of these representations deserves 
some sophistication. Let us mention the simple one-loop massive 
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QED vertex for which no trivial MB method exists when the kine-
matics is Minkowskian, a problem discussed e.g. in [21] and solved 
in [4]. It was demonstrated in [22] that MBOneLoop, a fork of the 
package MBnumerics [14,15,23,24] may be used to solve (A.4) to 
(A.6) at arbitrary kinematics with high precision.

One might also try to approach the generalized hypergeomet-
ric functions using Pochhammer’s double loop contours [25,26], or 
study the defining differential equations [27–29], etc. After several 
trials, we decided to base our numerics on the integral repre-
sentations of F1 proposed in [30] and F S proposed in [19]; see 
Appendix B and Appendix C.

Appendix B. The Appell function F1

A one-dimensional integral representation for F1 [30] is quoted 
in Eqn. (9) of [18]:

F1(a;b,b′; c; x, y) = �(c)

�(a)�(c − a)
(B.1)

×
1∫

0

du
ua−1(1 − u)c−a−1

(1 − xu)b(1 − yu)b′ .

We need three specific cases, taken at d ≥ 4. Namely for vertices:

F v
1 (d) ≡ F1

(
d − 2

2
;1,

1

2
; d

2
; xc, yc

)
(B.2)

= 1

2
(d − 2)

1∫
0

du u
d
2 −2

(1 − xcu)
√

1 − ycu
.

Integrability is violated at u = 0 if not 
e(d) > 2. Similarly, for box 
integrals:

F b
1(d) ≡ F1

(d − 3

2
;1,

1

2
; d − 1

2
; xc, yc

)
(B.3)

= 1

2
(d − 3)

1∫
0

du ud/2−5/2

(1 − xcu)
√

1 − ycu

= F v
1 (d − 1).

Integrability is violated at u = 0 if not 
e(d) > 3. Finally for the 
definition of the box Saran function F S (C.1):

F S
1 (yc, zc) ≡ F1(1;1,

1

2
; 3

2
; yc, zc) (B.4)

= 1

2

1∫
0

du√
1 − u(1 − ycu)

√
1 − zcu

.

The singularity at u = 1 is integrable.
Numerical checks may be performed using transformations of 

F1 functions with different values of x, y [31], e.g.

F1(a;b,b′; c; x, y) = (1 − x)−b(1 − y)−b′

× F1

(
c − a;b,b′; c; x

x − 1
; y

y − 1

)
. (B.5)

However, the relations do not allow to transform the real parts of 
both x, y to values smaller than one.
Appendix B.1. Specific values of 2 F1 and F1 at d = 4

The vertex function (15) contains 2 F1 and F1 with specific val-
ues at d = 4:

2 F1

(
1,1; 3

2
; xc

)
= ArcSin(

√
xc)√

1 − xc
√

xc
(B.6)

and

F1

(
1;1,

1

2
;2; xc, yc

)
= 2

ArcTanh
[√

xc
√

1−yc√
xc−yc

]
√

xc
√

xc − yc

− 2
ArcTanh

[ √
xc√

xc−yc

]
√

xc
√

xc − yc
. (B.7)

Using logarithms only, ArcSin(z) = −i ln(iz + √
1 − z2) and

ArcTanh(z) = 1
2 [ln(1 + z) − ln(1 − z)]. Eqn. (B.7) is only valid if 

(xc − yc) has a well-defined imaginary part. For xc = x − iεx and 
yc = y − iεy this is not necessarily the case if εx and εy are in-
dependent and both infinitesimal. So (B.7) has to be used with a 
grain of care.

The box function (17) contains additional 2 F1 and F1 with spe-
cific values at d = 4:

2 F1

(
1

2
,1;1; xc

)
= 1√

1 − xc
(B.8)

and

F1

(
1

2
;1,

1

2
; 3

2
; xc, yc

)
= 1√

1 − yc
2 F1(

1

2
;1,

3

2
; xc − yc

1 − yc
)

=
ArcTanh

(√
xc−yc
1−yc

)
√

xc − yc
. (B.9)

Eqn. (B.9) is only valid if (xc − yc) has a well-defined imaginary 
part. Finally, we like to mention that we have no analogue to 
(B.8) and (B.9) for F S at d = 4, namely F S (

1
2 , 1, 1; 1, 1, 12 ; 2, 2, 2; xc,

yc, zc).
The Appell function F S

1 = F1(1; 1, 12 ; 32 ; yc, zc) used in the in-
tegrand of the definition of the Saran function (C.1) can also be 
simplified:

F1(1;1,
1

2
; 3

2
; yc, zc) = 1

1 − zc
2 F1

(
1,1; 3

2
; yc − zc

1 − zc

)

=
ArcSin

√
yc−zc
1−zc√

(yc − zc)(1 − zc)
. (B.10)

Both representations in (B.10) are only valid when the imaginary 
part of the difference (yc − zc) is well-defined.

For the Feynman integrals studied here, we have to take into 
account that xc, yc and zc may have, in general, uncorrelated in-
finitesimal imaginary parts, and so their difference may be not
well-defined. Let us remind that xc = R1/R4, and yc = R1/(R1 −
R3), and zc = R1/(R1 − R2). Here, all the Rn have, according to (2), 
identical imaginary parts −iε. This leads to different infinitesimal 
imaginary parts −εx, −εy, −εz , with potentially different signs. So, 
one has basically two equivalent options. Either one treats εx, εy

and εz as independent quantities and avoids the appearance of 
terms like (xc − yc) and (yc − zc). Or one uses the exact knowledge 
of the imaginary parts of the Rn from their definitions and arrives 
at well-defined imaginary parts of these (xc − yc) and (yc − zc).
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Appendix B.2. Numerical calculation of F v
1 (d)

For xc = x − i X and yc = y − iY , Eqn. (B.2) may be used for nu-
merics if (X, Y ) ≥ const. > 0 or if (x, y) < 1. The remaining cases 
(X = −εx, Y = −εy) → +0 deserve a closer inspection. They ap-
pear from Feynman integrals. We exemplify here the first one of 
the two more involved cases: 1 < x < y and 1 < y < x and intro-
duce an auxiliary split parameter

um = 1

2

(
1

y
+ 1

x

)
with 0 <

1

y
< um <

1

x
< 1. (B.11)

In the integrand of F1 there will a cut begin at u = 1
y and a pole 

arise at u = 1
x for infinitesimal εx, εy . A split of the integral at um ,

1∫
0

du =
um∫

0

du +
1∫

um

du ≡ iL + iR , (B.12)

will lead to a separation of the singularities. In both integrals at 
the right hand side, the integrand is regular with one exclusion. 
We discuss now several opportunities of calculations, all of them 
with an accuracy of six to eight safe digits or better.

Our most careful approach persued the following ansatz with 
additional splittings:

F v
1 (d) = I A + I0 + IC + I D + I B + I E

= lim
R→+0

[ 1
y −R∫
0

+
1
y +R∫

1
y −R

+
um∫

1
y +R

+
1
x −R∫

um

+
1
x +R∫

1
x −R

+
1∫

1
x +R

]
(B.13)

After performing the limit R → 0 wherever possible, the integrals 
A and B will give real contributions, and the others are purely 
imaginary:

F v
1 (d) = [
eF v

1 (d)] + i [�mF v
1 (d)]

= [
A + sign(εx)sign(εy) B

]
+ i

[
sign(εy) (−C + D + E)

]
. (B.14)

It is

I0 = 0, (B.15)

A = d − 2

2

1
y∫

0

du ud/2−2

(1 − xu)
√

1 − yu
, (B.16)

B = d − 2

2
π

1

x
√

y
x − 1 xd/2−2

, (B.17)

C = d − 2

2

um∫
1
y

du ud/2−2

(1 − xu)
√

yu − 1
, (B.18)

D = d − 2

2

1
x∫

um

du

1 − xu

⎛
⎜⎝ ud/2−2

√
yu − 1

− x−d/2+2√
y
x − 1

⎞
⎟⎠

+ d − 2

2

1√
y − 1 xd/2−2

[
ln(R) − ln(

1

2x
− 1

2y
)

]
, (B.19)
x

E = d − 2

2

1∫
1
x

du

1 − xu

⎛
⎜⎝ ud/2−2

√
yu − 1

− x−d/2+2√
y
x − 1

⎞
⎟⎠

+ d − 2

2

1√
y
x − 1 xd/2−2

[
− ln(R) + ln(1 − 1

x
)

]
. (B.20)

The remaining R-dependences in (B.19) and (B.20) drop out in the 
sum of D and E .

Alternatively, with a subtraction in each of the two partial in-
tegrals in (B.12), one may regularize the integrand of F v

1 (d) as 
follows:

iL =
um∫

0

du
gx(u) − gx

(
1
y

)
√

1 − yu
+ iana

L , (B.21)

iR =
1∫

um

du
g y(u) − g y

( 1
x

)
1 − xu

+ iana
R , (B.22)

with

iana
L = − 2

gx

(
1
y

)
yc

[√
1 − ycum − 1

]
(B.23)

→ − 2
gx

(
1
y

)
yc

[
−1 + i sign(εy)

√
yum − 1

]
,

iana
R = − g y

( 1
x

)
xc

ln

(
1 − xc

1 − xcum

)
(B.24)

→ − g y
( 1

x

)
x

[
ln

(
x − 1

1 − xum

)
+ iπ sign (εx)

]
.

Finally, a simplest approach will also do a reasonable numer-
ics: Perform mean value integrals, like e.g. the built-in function of 
Mathematica:

F v
1 (d) = lim

ε→+0

⎡
⎢⎢⎣
⎛
⎜⎜⎝

1
y −ε∫
0

+
um∫

1
y +ε

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

1
x −ε∫

um

+
1∫

1
x −ε

⎞
⎟⎟⎠
⎤
⎥⎥⎦ . (B.25)

Of course, a calculation with, say, more than six to eight safe digits, 
will deserve an explicit control of the algorithmic details.

Numerical examples for F v
1 (d) are collected in Tables B.1 and 

(B.2).

Appendix B.3. Numerical calculation of the box Appell function F b
1(d)

For the calculation of four-point Feynman integrals, one needs 
F b

1(d) as introduced in (B.3), both for d = 4 and for d = 4 + 2m −
2ε. The box F1-function is related to the vertex function F v

1 (d) by 
(B.3). Consequently, the numerics of the foregoing subsections may 
be taken over.

Appendix C. The Lauricella-Saran function Fs

For the calculation of the 4-point Feynman integrals, one needs 
the Lauricella-Saran function F S [19]. Saran defines F S as three-
fold sum (A.3), see Eqn. (2.9) in [19]. He derives a 3-fold integral 
representation in Eqn. (2.15) and a 2-fold integral in Eqn. (2.16). 
We will use the following quite useful representation, derived at p. 
304 of [19]:
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Table B.1
The Appell function F1 of the massive vertex integrals as defined in (B.2). As a proof of principle, only the constant term of the 
expansion in d = 4 − 2ε is shown, F1(1; 1, 12 ; 2; x, y). Upper values: this calculation, (Appendix B.2), lower values: (B.7).

x − iεx y − iεy F1(1;1, 1
2 ;2; x, y)

+11.1 − 10−12 i +12.1 − 10−12 i −0.1750442480735 −0.0542281294732 i
−0.17504424807351877884498289912 −0.054228129473304027882097641167 i

+11.1 − 10−12 i +12.1 + 10−12 i +1.7108545293244 +0.0542281294732 i
+1.71085452932433557134838204175 +0.05422812947148217381589270924 i

+11.1 + 10−12 i +12.1 − 10−12 i +1.7108545304114 −0.0542281294732 i
+1.71085452932433557134838204175 −0.05422812947148217381589270924 i

+11.1 + 10−12 i +12.1 + 10−12 i −0.1750442480735 +0.0542281294733 i
−0.17504424807351877884498289912 +0.054228129473304027882097641167 i

+12.1 − 10−15 i +11.1 − 10−15 i −0.1700827166484 −0.0518684846037 i
+12.1 − 10−10 i +11.1 − 10−15 i −0.17008271664800058101165749279 −0.05186848460465674976556525621 i
+12.1 − 10−15 i +11.1 + 10−15 i −0.1700827166484 −1.7544202909955 i

−0.17008271664844025647268817399 −1.75442029099557688735842562038 i
+12.1 + 10−15 i +11.1 − 10−15 i −0.1700827166484 +1.7544202909955 i

−0.17008271664844025647268817399 +1.75442029099557688735842562038 i
+12.1 + 10−15 i +11.1 + 10−15 i −0.1700827166484 +0.0518684846037 i
+12.1 − 10−10 i +11.1 − 10−15 i −0.17008271664800058101165749279 +0.05186848460465674976556525621 i

+11.1 − 10−15 i −12.1 −0.0533705146518 −0.1957692111557 i
−0.05337051465189944473349401152 −0.195769211155733985388920833693 i

+11.1 + 10−15 i −12.1 −0.0533705146518 +0.1957692111557 i
−0.05337051465189944473349401152 +0.195769211155733985388920833693 i

−11.1 +12.1 − 10−12 i +0.1060864084662 −0.1447440700082i
+0.10608640847651064287133527599 −0.144744070021333407167349619088 i

−11.1 +12.1 + 10−12 i +0.1060864084662 +0.1447440700082i
+0.10608640847651064287133527599 +0.144744070021333407167349619088 i

−12.1 −11.1 +0.122456767687224028
+0.12245676768722402506513395161
Table B.2
The Appell function F1(1 − ε; 1, 12 ; 2 − ε; xc , yc) as defined 
in (B.2), needed for d = 4 − 2ε at xc = 11.1 − 10−12 i, yc =
12.1 − 10−12 i.

F1(1 − ε;1, 1
2 ;2 − ε; xc , yc)

+(−0.1750442480735 −0.05422812947328 i)
+(− 0.0086188585913 −0.39051763820462 i)ε
+(+0.37518853545319 −0.34047477405516 i)ε2

+(+0.49765461883470 −0.00717399489427 i)ε3

+(+0.32835724868237 +0.23005850008124 i)ε4

+(+0.11199125312340 +0.25409725390712 i)ε5

+(−0.00954795237038 +0.17050760870656 i)ε6

+(−0.04217861994524 +0.08576862780838 i)ε7

F S(a1,a2,a2;b1,b2,b3; c, c, c, x, y, z) (C.1)

= �(c)

�(a1)�(c − a1)

1∫
0

dt
tc−a1−1(1 − t)a1−1

(1 − x + tx)b1
F1(a2;b2,b3; c − a1; ty, tz).

In our case, this becomes

F b
S(d) = F S

(
d − 3

2
,1,1;1,1,

1

2
; d

2
,

d

2
,

d

2
, xc, yc, zc

)

= �( d
2 )

�(d−3
2 )�( 3

2 )
(C.2)

×
1∫

0

dt

√
t(1 − t)

d−5
2

(1 − xc + xct)
F1(1;1,

1

2
; 3

2
; yct, zct)

Eqn. (C.2) is valid if 
e(d) > 3. With a grain of care one may often 
use (B.10) for F S

1 . Because the F1 under the t-integral is finite and 
smooth, we have to concentrate only on the term 1/(1 − xc + xct), 
which develops a pole in the integration region at tx = (1 − x)/x if 

e(xc) = x > 1 and if �m(xc) = −εx is infinitesimal.

Appendix C.1. Case (i) F b
S (d) at x ≤ 1

For x = 1, the integral (C.2) is not well-defined. If x < 1, a direct, 
stable numerical integration of F S is trivial once F1 is known.

Appendix C.2. Case (ii) F b
S (d) at x > 1

If x > 1, one has to apply a regularization procedure to F b
S(d), 

as it is described in (Appendix B.2), and will get a stable result for 
F S . The calculation of the F1 in the integrand in (C.2) is discussed 
in Appendix B.1.

One now has to study the singularity structure of the t-integral 
as a function of xc with regular F S

1 . Introduce

F b
S(d) =

1∫
0

dt
gS(t) − gS(tx)

1 − x + xt
+ gS(tx) Ireg

S (xc), (C.3)

with

gS(t) = √
t (1 − t)(d−5)/2 F S

1 (yct, zct) (C.4)

and

tx = 1 − 1

x
. (C.5)

The first integral in (C.3) is numerically stable, and what remains 
is to calculate analytically the integral

Ireg
S (xc) = + 1

xc

1∫
0

dt

t − txc

= 1

xc
ln

(
1 − 1

txc

)
. (C.6)

For infinitesimal εx , we get

Ireg
S (xc) → 1

x
[− ln(x − 1) + iπ sign(εx)] . (C.7)
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