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Singular values provide a method to study mixing matrices in parti-
cle physics. The methods of unitary dilations and the cosine–sine matrix
decomposition are discussed in the framework of the Standard Model neu-
trinos mixing with one non-standard neutrino. We show that the mixings
are continuous functions of singular values. It implies that the magnitude
of non-standard mixing can be estimated from below and above unambigu-
ously from the experimentally determined interval PMNS mixing matrix.
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1. Introduction

Singular values emerged in mathematics at the end of the 19th century
and the name appeared for the first time in 1910 in the context of integral
equations [1]. Presently, they are used in many branches of science, e.g.,
data science [2], image processing [3], mechanics [4]. However, in particle
physics, they have not been receiving too much attention so far. We present
the survey of a recently developed approach [5] to study properties of interval
matrices that emerge in the particle mixing phenomenon with the help of
singular values. However, the methodology may equally well be applicable
to the quark sector.

Since the discovery of neutrino oscillations, the massive neutrinos have
become a fact. However, there are still many unsolved puzzles concern-
ing neutrino physics. Among them is the problem of a number of neutrino
states. The existence of neutrinos beyond three standard flavor states is not
forbidden. They can be identified at the level of the neutrinos mixing matrix
by deviations from unitarity of the so-called PMNS 3-dimensional matrix.

∗ Presented by W. Flieger at the XLIII International Conference of Theoretical Physics
“Matter to the Deepest”, Chorzów, Poland, September 1–6, 2019.
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So far, such signals have been studied with the help of two decompositions
known as α and η parametrizations [6–12]. Our approach to this issue in-
volves only singular values and connects in the uniform way the Standard
Model (SM) mixing and its extensions.

In the next chapter, we introduce all necessary terminology borrowed
from the matrix theory. In the third chapter, “light–heavy” neutrino mix-
ings are connected with singular values in the 3+1 scenario. The work is
concluded with a summary and outlook.

2. Terminology and tools

Let A denotes an n×n-dimensional matrix with elements from the field
of complex numbers. Singular values (σi) are well-defined for general rectan-
gular matrices, however, for our purpose, we consider only square matrices.
They are defined as the positive square root of the product of a matrix and
its Hermitian conjugation, that is

σi(A) =
√
λ (AA†) . (1)

The convention is that we consider singular values in the decreasing order,
i.e., σ1 ≥ σ2 ≥ · · · ≥ σn. Another important notion is that of matrix norms.
A matrix norm is a function ‖ · ‖ from the set of all complex matrices into
R that for any A,B ∈Mn×n satisfies the following properties:

‖A‖ ≥ 0 and ‖A‖ = 0⇔ A = 0 ,

‖αA‖ = |α|‖A‖ , α ∈ C ,
‖A+B‖ ≤ ‖A‖+ ‖B‖ ,
‖AB‖ ≤ ‖A‖‖B‖ . (2)

In our approach, of a special importance is the operator (or spectral) norm,
defined as

‖A‖ = max
‖x‖2=1

‖Ax‖2 , (3)

where x ∈ Cn and ‖ · ‖2 stands for the Euclidean norm. In this way, we can
introduce the notion of contractions, i.e., matrices with the spectral norm
less or equal to one

‖A‖ ≤ 1 . (4)

To apply the spectral norm from Eq. (3) properly to our needs, we express
it via singular values in the following way

‖A‖ = σ1(A) , (5)
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so the spectral norm is equal to the largest singular value of a matrix. The
next concept which we need is that of a unitary dilation. It allows us to
extend matrices in a proper way to a larger unitary matrices. Moreover,
only matrices that can be extended is such a way are contractions. Thus,
we are interested in the following situation:

‖A‖ ≤ 1⇒ V =

(
A B
C D

)
, V V † = V †V = I . (6)

The construction of full unitary matrices from the contraction can be done
by the cosine–sine decomposition (CS decomposition) [13].

Theorem 2.1 Let the unitary matrix U ∈M(n+m)×(n+m) be partitioned as

U =

n m( )
U11 U12 n
U21 U22 m

. (7)

If m ≥ n, then there are unitary matrices W1, Q1 ∈ Mn×n and unitary
matrices W2, Q2 ∈Mm×m such that(

U11 U12

U21 U22

)
=

(
W1 0
0 W2

) C −S 0
S C 0
0 0 Im−n

( Q†1 0

0 Q†2

)
,

(8)
where C ≥ 0 and S ≥ 0 are diagonal matrices satisfying C2 + S2 = In.

If n ≥ m, then it is possible to parametrize a unitary dilation of the
smallest size(

U11 U12

U21 U22

)
=

(
W1 0
0 W2

) Ir 0 0
0 C −S
0 S C

( Q†1 0

0 Q†2

)
, (9)

where r = n − m is the number of singular values equal to 1 and C =
diag(cos θ1, . . . , cos θm) with | cos θi| < 1 for i = 1, . . . ,m.

In addition, it is useful to create contractions with a given set of singular
values. Such an approach is known as an inverse singular values problem
[14]. The method is based on the Horn–Weyl majorization relation between
eigenvalues and singular values [15, 16]

k∏
i=1

|λi| ≤
k∏
i=1

σi , (10)

with equality when k = n, where n is the dimension of the matrix.
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3. Application of singular values to the neutrino mixing

3.1. 3-dimensional mixing basis

At the moment, due to imperfect experimental data, the neutrino mixing
cannot be decisively concluded by the standard 3 × 3 unitary PMNS mix-
ing matrix. The issue is how to grasp on the level of 3-dimensional mixing
matrices traces of possible BSM scenarios. As mentioned before, all ma-
trices which can be extended to a larger unitary matrix are characterized
as contractions (4). For matrices representing physical mixings, the con-
traction property is necessary but it is not sufficient due to just mentioned
restrictions on mixing elements imposed by experimental data. However, a
workaround of the problem can be in constructing mixing matrices as the
convex combination of unitary matrices which allows to define the space of
physically admissible matrices in the following way [5]:

Ω := conv(UPMNS) =

{ m∑
i=1

αiUi | Ui ∈ U(3), α1, . . . , αm ≥ 0,

m∑
i=1

αi = 1 ,

θ12, θ13, θ23 and δ given by experimental values

}
. (11)

Moreover, as suggested in Eq. (9), the minimal extension of contraction to a
larger unitary matrix is not arbitrary. Dimension of such a minimal unitary
dilation is encoded in the number of singular values strictly less than one of
a considered contraction. From the physical point of view, this fact can be
used to reflect the number of possible additional neutrinos. In the case of
3-dimensional mixing matrices, this gives us three possible minimal unitary
extensions, by one, two and three sterile neutrinos. This characteristics
provides a structure to the region Ω, i.e., the region can be split into four
disjoint subsets, according to the minimal number of additional neutrinos

V1, Σ = {1, 1, σ3 < 1} : one additional neutrino ,

V2, Σ = {1, σ2 < 1, σ3 < 1} : two additional neutrinos ,

V2, Σ = {σ3 < 1, σ2 < 1, σ3 < 1} : three additional neutrinos ,

V4, Σ = {1, 1, 1} : only unitary matrices . (12)

The subset V4 is not interesting from the BSM perspective since it provides
only unitary extensions with a decoupled “light–heavy” sector. Recently, we
developed a method which allows to construct from the beginning physically
admissible mixing matrices with elements within experimental ranges and
the prescribed set of singular values. We use an algorithm proposed in [17]
by which matrices with a prescribed set of singular values are produced as
lower triangular matrices. They can be easily compared with a widely used
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in global analysis α parametrization. Such an approach allows to control a
structure of the 3-dimensional mixing matrix and the corresponding physical
properties.

Quantitative results of mixing matrix analysis by singular values can
be found in [5, 18, 19]. In these works, the estimation of allowed space for
additional neutrinos is discussed, along with statistical analysis of physically
admissible mixing matrices within experimental bounds, and the possibility
to distinguish sets in (12).

The global analysis allows to estimate the lower and upper bounds for
each mixing element which results in an interval matrix data presentation.
However, if one would like to consider particular examples of physical mixing
matrices, then things get more complicated since in such a representation the
correlation between elements is lost. On the other hand, physical matrices
are controlled properly by singular values.

3.2. Complete unitary mixing

As singular values control the minimal number of additional neutrinos,
3-dimensional mixing matrices can be enlarged to a complete unitary matrix
of some BSM scenario. In order to obtain a complete mixing matrix of the
minimal allowed dimension, we need first to construct a contraction from
the region Ω and then invoke the CS decomposition in the form of Eq. (9).
In this way, the mixing between three known active neutrino states can be
maintained. However, if instead of the construction of particular complete
mixing matrices, we are only interested in the estimation of the mixing
between standard and non-standard neutrinos, it is also possible to do so
with the help of singular values and the CS decomposition [19]. In this
situation, we are interested in estimation of the top right block U12 of the
complete mixing matrix. This block is given by

U12 =W1(0,−S)TQ†2 . (13)

The matrix W1 comes from the singular value decomposition of the
3-dimensional mixing matrix. Elements of the matrix S are obtained from
the singular values as si =

√
1− σ2i , where σi are singular values strictly

less than one. Let us consider the case with one additional neutrino. For a
review of experimental and global fits in the 3+1 case, see [20]. In such a sce-
nario, the complete matrix is a 4× 4 unitary matrix and the 3-dimensional
contractions belong to the subset V1 (12), i.e., only one singular value is
strictly less than unity. Thus, the set of singular values is Σ = {1, 1, σ3}
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and the CS decomposition in this case takes the form of

(
W1 0
0 W2

)
1 0 0 0
0 1 0 0
0 0 c −s
0 0 s c


(

Q†1 0

0 Q†2

)
. (14)

The “light–heavy” sector is given by

U12 =W1V12Q
†
2 , (15)

where W1 ∈ C3×3 is unitary, V12 = (0, 0,−s)T and Q2 = eiθ, θ ∈ (0, 2π].
Due to the structure of the CS-matrix for the 3+1 scenario, only the third
column of W1 takes part in U12, so we get

U12 = −(w13, w23, w33)
T se−iθ . (16)

As we are interested in the estimation of the absolute values of the “light–
heavy” mixing, we obtain

|Ue4| = |w13s| =
∣∣∣w13

√
1− c2

∣∣∣ = ∣∣∣∣w13

√
1− σ23

∣∣∣∣ ,
|Uµ4| =

∣∣∣∣w23

√
1− σ23

∣∣∣∣ ,
|Uτ4| =

∣∣∣∣w33

√
1− σ23

∣∣∣∣ . (17)

Numerical estimation of these bounds for different mass scenario splittings
can be found in [19]. The upper bounds have been obtained by looking
for the largest absolute value of wi3, i = 1, 2, 3, corresponding to allowed
singular values for each massive scenario. The behavior of |w13|,

√
1− σ3 and

|Ue4| in the case of light sterile neutrino is presented in Fig. 1. It shows that
both |w13| and

√
1− σ3 are continuous functions of σ3. This implies that

|Ue4| behaves in a controllable way. As a consequence, numerical estimations
of |Ui4|, i = e, µ, τ given in [19] are stable.
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Fig. 1. The top figure presents the behavior of upper bounds of |Ue4|. We can see
that it approaches the maximal value for middle values of σ3. The bottom figure
shows the behavior of particular constituents of |Ue4|.

4. Summary

In this work, we discussed the application of singular values to the anal-
ysis of the three dimensional mixing matrices. Singular values allow to grasp
in a uniform way many important physical properties. First of all, they are
used to determine physically admissible mixing matrices, i.e., matrices that
are unitary or can be extended to a larger unitary mixing matrix. These
matrices are classified as contractions. Moreover, singular values encode the
minimal number of additional neutrinos. Any contraction can be extended
via the unitary dilation procedure to a complete mixing matrix. To do this,
we can use the CS decomposition which also allows us to establish bounds
for the “light–heavy” sector.

For now, we have done only analysis of the 3+1 scenario. Analysis of
scenarios with two and three additional neutrinos is in progress.
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