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Mercury geochemistry is emerging recently as a hot topic in chemostratigraphical and facies research, owing to the 
diagnostic character of Hg enrichments as a proxy of volcanic activity (crucial in the context of assumed causal links between 
volcanic cataclysms and mass extinctions). Thus, as a prerequisite to such far-reaching interpretations, reliable analytical 
determinations of Hg concentrations are necessary. In conventionally performed analyses in sedimentary geochemistry, In­
ductively Coupled Plasma - Mass Spectrometry (ICP-MS) is usually applied, as an analytical standard for trace elements, in­
cluding Hg. However, with a detection limit (DL) of 10 ppb, such measured values have been questioned as a conclusive 
geochemical indicator of Hg anomalies, and, instead, far more accurate techniques, such as Atomic Absorption Spectrome­
try (AAS; DL = 0.2 ppb), are requested. As a preliminary test of this view, we present comparative analysis of 91 samples 
from three sections encompassing the key Frasnian-Famennian and Famennian-Tournaisian boundary intervals in Morocco 
(Lahmida), Germany (Kahlleite) and Uzbekistan (Novchomok), for which Hg concentrations were determined by both meth­
ods in the same samples. Despite some differences, especially at low Hg concentrations, both analytical methods reveal the 
same 12 extraordinarily enriched samples in excess of 1 ppm (with one exception, the determination error is <20%), as well 
as similar overall chemostratigraphic patterns characterized by a few prominent Hg spikes, with a top value of 5.8 ppm. The 
Hg concentrations determined by ICP-MS and AAS are significantly correlated, as high as r = 0.98 (Novchomok), even if the 
first method reveals a general tendency toward slightly heightened values (by ~15 to 30% for medians). Therefore, ICP-MS 
results can conclusively be used in mercury chemostratigraphy in order to recognize extraordinary volcanic (or other) sig­
nals, at least in the Devonian geological record. False Hg anomalies were not generated by these conventional ICP-MS de­
terminations.

Key words: Mercury anomalies, analytical methods, geochemistry, Frasnian-Famennian boundary, Devonian-Carboniferous 
boundary, volcanism.

INTRODUCTION

Despite great advances in sedimentary elemental geo­
chemistry in the last few decades, focused on the use of trace 
elements to refine palaeoenvironmental reconstruction (e.g., 
Sagemann and Lyons, 2003; Tribovillard et al., 2006; Calvert 
and Pedersen, 2007; Ramkumar, 2015), mercury, in contrast to 
iridium, molybdenum, uranium, vanadium, barium and zirco - 
nium, used to be largely ignored in event chemostratigraphy 
and facies analysis. However, already Hildebrand and Boynton 
(1989) discovered “sub-ppm” Hg anomalies at three non-ma­
rine North American localities of the Cretaceous-Paleogene 
(K-Pg) boundary, and considered them as evi dence for acid 
rain caused by a large meteorite impact (see similar data from 
Slovenia in Palinkas et al., 1996).

The overlooked, seemingly trivial geochemical theme of ex­
traordinarily concentrated levels of this chalcophile trace metal 
unexpectedly returned several years ago. The essential contri - 
bution of volcanic gaseous expulsions to the modern global 
mercury cycle is well-established (e.g., Pyle and Mather, 2003). 
Volcanogenic Hg is contained mainly in gaseous emissions, not 
in pyroclastic ash. Prior to deposition of oxygenated reactive Hg 
via rain, it can be distributed worldwide in the atmosphere be­
cause of the Hg res idence time of ~0.5-2 years. Hg is scav­
enged during depositional processes by sedimentary organic 
matter, and also by absorption on clay minerals, sulphides (in 
oxygen-deficient conditions), and hydrous iron oxides (see 
Sanei et al., 2012; Percival et al., 2015; Sial et al., 2016; 
Bergquist, 2017; Sabatino et al., 2018). In the stratigraphical re­
cord, Nascimento-Silva et al. (2011) and Sanei et al. (2012) 
concur rently highlighted Hg anomalies as a record of cata­
strophic volcanic eruptions during the end-Cretaceous and 
end-Permian mass extinctions, respectively, while Hg was used 
as a marker of Neoproterozoic volcanism in Cryogenian depos­
its by Sial et al. (2010).

Since this discovery, a milestone in the debate on volcanism 
versus impact - mass extinction causal links (see a recentmost 
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pro-impact synopsis in Rampino, 2017), many papers on an­
oma lously enriched Hg concentrations have been published. 
Anomalies have been reported from ma jor and second-order 
global events, including the end-Ordovician, end-Permian, 
end-Triassic, and end-Cretaceous extinctions, as well as-the 
Toarcian and Aptian-Albian oceanic anoxic events (for review 
see Bergquist, 2017; also Grasby et al., 2015; Percival et al., 
2015, 2017; Sial et al., 2016; Bond and Grasby, 2017; Jones et 
al., 2017; Sabatino et al., 2018). Only the Late Devonian global 
events have remained unreported in this respect. Therefore, 
the occurrence and concentration of Hg in sedimentary rocks 
now appears to be a hot topic in event/chemostratigraphical re­
search. In addition, mercury isotopes recorded as a marker of 
massive volcanism of Large Igneous Provinces (LIPs) remains 
an associated theme (Thibodeau and Bergquist, 2017). On the 
other hand, the di rect role of toxic Hg contami nation in bio­
sphere devastation, originally stressed by Sanei et al. (2012), 
has shifted to a rather subordinate level (“has yet to be fully 
evaluated” - Bond and Grasby, 2017: p. 18).

Consequently, reliable analytical determinations of Hg 
abundances are a precondition for substantive geological inter­
pretations. In sedimentary geochemistry, Inductively Coupled 
Plasma - Mass Spectrometry (ICP-MS) is applied as a stan­
dard analytical tool for a broad set of trace elements, including 
mercury. However, such conventionally measured Hg values, 
with a detection limit (DL) of 10 ppb, are questioned as a trust­
worthy proxy of volcanic paroxysms. Therefore, other refined 
techniques, such as Atomic Absorption Spectrometry (AAS; DL 
= 0.2 ppb), are commonly preferred. Furthermore, the “suspect 
quality” of Hg analytical data provided by ICP-MS might be a 
reason for reject ing manuscripts including this kind of data.

To test this view, we provide herein comparative ICP-MS and 
AAS analyses of 91 samples from three sections encompassing 
the key Frasnian-Famennian (F-F) and Devonian-Carboniferous 
(D-C) boundary interval in Morocco, Germany and Uzbekistan 
(Fig. 1) for which Hg concen tra tions were determined by both 

methods. This should help understand of analytical constraints 
on Hg applicability in sedimentary geochemistry, especially as a 
potential volcanogenic fingerprint. Detailed analysis and interpre­
tation of the worldwide anomalous Hg spikes associated with the 
Upper Devonian biodiversity crises, first reported here for D-C 
transi tion, will be given elsewhere. However, at least the most 
distinctive Hg signal just below the F-F boundary is shown as a 
probable signature of cataclysmic volcanism that led to the global 
biodiversity collapse (Racki et al., 2018).

SAMPLES AND METHODS

We have analysed samples from three deep-water marly 
limestone successions (Figs. 1 and 2): Lahmida (Morocco; 43 
samples), Kahlleite (Germany; 16 samples from the F-F bound­
ary beds and 7 from the Devonian-Carboniferous transition), 
and Novchomok (Uzbekistan; 25 samples).

In palaeogeographic terms, the natural Lahmida section 
represents the deep-water Rheris shelf basin, on the southern 
periphery of the Rheic Ocean. The exposure is located ~12 km 
to the north-west from Erfoud in the eastern part of the Anti-At­
las (Wendt and Belka, 1991; Dopieralska, 2003, 2009). The 
Moroccan succession consists mainly of monotonous shales 
with numerous marly interbeds and concretion horizons as well 
as dark grey limestones, which together with dark grey shales 
correspond to the expanded Kellwasser facies of the Rheris Ba­
sin (see Dopieralska, 2003). The thickness of the interval sam­
pled is ~36 m. This succession was dated by conodonts but 
apart from zonal assignments (Fig. 2), faunal details have not 
yet been published. The succession shown includes the interval 
from the Middle Frasnian (MN Zone 5) to the top of the lower 
Famennian (rhomboidea Zone; Dopieralska, 2003).

The inactive (from 2013 on) Kahlleite Quarry is located 1 km 
south-west of Rüdersdorf near Gera, Thuringia, cen tral Ger-
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Fig. 1. Geographic and palaeogeographic locations of the Late Devonian sites studied for Hg abundances (Fig. 2), 
compared to inferred proximity to the coeval Siberian large igneous province (after Kravchinsky, 2012;

Late Devonian palaeogeography after Golonka et al., 1994)
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many, at the north-west flank of the Berga Anticline (Gereke, 
2004, 2007; Weyer, 2016; see also fig. 18 in Hartenfels, 2011) 
in the Saxothuringian Zone (Eckelmann et al., 2014, Franke et 
al., 2017). The succession stretched from the Mid-Upper 
Frasnian to the Mid-Upper Tournaisian (Weyer, 2016). Two in­
tervals were sampled, that encompass marker Upper Devonian 
black shale levels: the Upper Kellwasser (3.5 cm thick) and 
Hangenberg (30 cm thick). The beds consist largely of grey 
nodular-micritic limestones, deposited on a deep submarine 
rise belonging to the outer southern shelf of the clos ing Rheic 
Ocean (Gereke and Schindler, 2012; Eckelkmann et al., 2014; 
Saupe et al., 2016; Franke et al., 2017).

The Novchomok (22) site is located in the eastern part of 
the Kitab Geologi cal Reserve Area, lying in the Zeravshan- 
-Gissar Mountains area (western part of Tian-Shan, south 
Uzbekistan; see Narkiewicz et al., 2017). The Devonian-Car­
boniferous boundary interval sampled, ~17 m thick, comprises 
the top part of the Yatavluk Formation and the basal slice of the 
Novchomok Formation. The lower part (Yatavluk Fm.) consists 
mostly of dark grey micritic limestones with crinoid detritus and 
corals, and includes also cherry-coloured and grey marly 
shales and marls. The upper portion (Novchomok Fm.) is com­
posed of dark grey, mostly micritic limestones and brown marly 
shales, locally with crinoids. The D-C boundary, based on cono­
donts, was tentatively traced just below the top of the Yatavluk 
Formation by Narkiewicz et al. (2017). The Devonian and Car­
boniferous strata were deposited on the passive margin of the 

Tarim plate, as ter ranes of Perigondwana then approached 
Kazakh terranes with closing of the South Tianshan Ocean 
(Golonka, 2012; Han and Zhao 2018; see also Stampfli and 
Borel, 2002).

MERCURY DETERMINATION

The Hg concentration of bulk rock samples from the three 
sections studied were analysed using two independent geo­
chemical methods (Fig. 2; Tables 1-3). Conventional ICP-MS 
analyses were provided commercially by Bureau Veritas 
AcmeLabs, Vancouver, Canada. STD DS10 standard material 
was the principal reference, with a certified Hg abundance of 
289 ppb. The mercury concentration of the reference analysed 
in the laboratory was within 13% of its expected Hg value. How­
ever, when another STD, OREAS45EA, was considered, with a 
low certified Hg value of 30 ppb (registered in our 2011 analy­
ses), i.e., near the method's detection limit (10 ppb), the accu­
racy error is far greater, reaching >60%. Selected samples 
were measured in duplicates, showing reproducibility better 
than ±5%.

For atomic absorption spectrometry (AAS), a two-cell, 
pyrolyzer-type Milestone DMA-80 Direct Mercury Analyzer was 
used, with a detection limit of 0.2 ppb. Analyses were performed 
at the Faculty of Earth Sciences, University of Silesia (Poland).
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Table 1

Hg abundances in 43 samples from the Lahmida section using ICP-MS 
and AAS methods (Hg enrichments > 0.5 ppm in AAS values are highlighted)

Taken as 8 ppb in calculation of correlation coefficients

Stage
Sample Hg Hg
Method ICP-MS AAS

Method detection limit (MDL) 10 ppb 0.2 ppb

FAMENNIAN

LA 44 80 54.5
LA 43/44 40 31.2

LA 42 270 250.0
LA 41/42 270 276.6
LA 40T 50 44.8
LA 38 100 99.8

LA 35/36B 250 283.2
LA 34 250 260.0

LA 32/33 150 207.0
LA 32M 140 153.2
LA 30 400 333.8
LH 29 170 137.5
LH 28 110 114.0

LH 27A2 420 569.1
LA 27/28 260 338.4

LH 27 120 126.4
LA 26/27 360 481.2

LH 26 60 57.3
LA 25/26 190 232.5
LH 25T 180 180.1
LH 25B 210 189.3

FRASNIAN

LA 24/25S 110 36.9
LA 24/25N 1530 1136.4

LH 24T 110 113.2
LH 24B 190 153.7
LH 23T 250 219.0
LH 23B 90 90.0
LH 22 490 464.2
LH 21 120 90.3
LH 20 90 45.7
LH 19 230 123.0
LH 18 250 187.7

LA 17/18T 260 183.2
LA 17/18B 170 147.8

LA 17M 70 99.9
LA 14 1050 1144.9

LA 13T 200 233.1
LA 12 50 68.8
LA 10 <10* 6.8
LA 8 <10* 9.9
LA 6 30 25.9
LA 5 320 312.3

LA 4A 30 36.9

Median/mean value 175/226 153.2/217.4
Linear correlation coefficient 0.96
Spearman's rs correlation coefficient 0.95
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Hg abundances in samples from the Kahlleite section using ICP-MS and AAS 
methods (Hg enrichments >0.5 ppm in AAS values are highlighted)

Table 2

Stage
Sample Hg Hg
Method ICP-MS AAS

Method detection limit (MDL) 10 ppb 0.2 ppb

FAMENNIAN

K-HANG 7 110 92.9
K-HANG 6 60 58.4
K-HANG 5 1300 1504.9
K-HANG 4 1350 1529.0
K-HANG 3 790 753.3
K-HANG 2 1280 1456.4
K-HANG 1 1380 1438.3

K 8 20 16.2
K 7 <10* 6.9
K 6 20 11.0
K 5 <10* 5.2
K 4 20 8.5
K 3 <10* 9.3
K 2 30 18.9
K 1 <10* 22.5

FRASNIAN

K 0 CH 2380 2517.3
K 01 110 93.0
K 02 30 22.7
K 03 50 23.6
K 05 10 10.6
K 06 40 36.4
K 07 Sx 120 63.3
K 08 60 42.1

Median/mean value 50/400 36.4/423.5
Linear correlation coefficient 1.00
Spearman's rs correlation coefficient 0.96

*Taken as 8 ppb in calculation of correlation coefficients

The DMA analytical curves were prepared with the dilution of a 
1 mg L-1 standard solution (Merck Darmstadt, Germany). Mea­
surements of each sample were duplicated, and analyses were 
repeated when the coefficient of variability of samples ex­
ceeded 5%. The instrument was calibrated using certified refer­
ence material INCT-OBTL-5 (tobacco leaves) prior to the mea­
surement, with Hg content = 20.9 ppb. The accuracy did not ex­
ceed 2%.

In another Hg study, with the use of the same analyser type, 
the accuracy and precision of the determinations were esti - 
mated as ~8 and 6.5%, respectively (Sabatino et al., 2018; see 
also Sanei et al., 2012). In other papers, these quality indicators 
of Hg analyses, frequently partly only reported, are <10% (e.g., 
4 and 9.5%, respectively - Nascimento-Silva et al., 2011; Sial 
et al., 2016; see also Grasby et al., 2015; Jones et al., 2017). 
Thus, the Hg contents from the Polish laboratory, considered 
herein, show similar levels of analytical relatability.

RESULTS

Comparative analysis of the Hg values series from the three 
localities, shown in Tables 1-3 and Figure 2, reveal a close re­
semblance of ICP-MS and AAS determinations. Unsurprisingly 

in statistical terms, therefore, covariation of both data sets is very 
significant, and the Spearman's correlation coefficient is not 
<0.95. Even if background (= median) values vary widely be­
tween the successions, from 36.4 ppb at Kahlleite to 263.5 ppb at 
Novchomok, they display simi larly low error levels. Comparing 
the median abundances, the ICP-MS values are notably con­
stantly heightened by 12.5% at Lahmida, 17.2% at Kahlleite, and 
29.0% at the most Hg-enriched Uzbek succession. Mean Hg val­
ues characterize a decreased dispersion, but this estimate is ran­
domly biased by unusually high concentrations.

It is especially significant that the same extraordinarily en­
riched values of >1000 ppb, are revealed in both data sets, with 
top value of 5825.3 ppb at Novchomok (if we grant that AAS val­
ues approximately reflect real Hg abundances in the samples 
analysed). In more detail, for 17 large-scale enrichments 
(>500 ppb), the relative determination errors by ICP-MS method 
are randomly distributed and, with one exception, <20%. In fact, 
the increased Hg values locate in the AAS analysis error field in 
the case of >70% enriched samples (Fig. 3).

When comparing particular samples, some divergences are 
very distinctive. As exemplified by sample K 1, the very low 
ICP-MS value be low the DL (10 ppb) is not confirmed by AAS 
determination (22.5 ppb). By contrast, a fabricated “enrichment” 
is noted for sample K 4 (20 instead of 8.5 ppb), and simi larly
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Hg abundances in samples from the Novchomok section using ICP-MS and AAS 
methods (Hg enrichments >0.5 ppm in AAS values are highlighted)

Table 3

Stage
Sample Hg Hg
Method ICP-MS AAS

Method detection limit (MDL) 10 ppb 0.2 ppb

TOURNAISIAN

NOV 22 /9 120 102.6
NOV 22 /6 340 294.7
NOV 22 /5 490 373.3
NOV 22 /3 130 80.4
NOV 22 /2 140 94.6
NOV 22 /1 160 119.9
NOV 22 /0 130 83.7

NOV 22 /01 230 173.4

FAMENNIAN

NOV 22 /02 630 756.2
NOV 22 /03 190 100.9
NOV 22 /04 250 127.9
NOV 22 /05 1320 1512.5
NOV 22 /06 280 179.9
NOV 22 07 310 151.9
NOV 22 /08 2430 2068.4

NOV 22 /09A 2430 1186.6
NOV 22 09 B 3970 4331.5
NOV 22 /010 4810 5825.3
NOV 22 011 360 263.5
NOV 22 /012 550 352.9
NOV 22 013 680 595.0
NOV 22 /014 260 200.1
NOV 22 015 610 457.7
NOV 22 /016 900 730.3
NOV 22 /020 300 238.7

Median/mean value 340/860 263.5/794.8

Linear correlation coefficient 0.97

Spearman's rs correlation coefficient 0.98

large differences are found for the sub-background abun­
dances of the samples NOV 22 /04 and 07 at Novchomok. Like­
wise, the Hg content of the near F-F boundary sample from 
Lahmida is shown as three times higher in the ICP-MS mea­
surement (110 ppb ver sus 36.9 ppb). Among truly enriched 
samples, the only noteworthy deviation is in an Uzbek sample 
NOV 22 /09A, for which Hg values are doubled in the ICP-MS 
measurements (2430 ver sus 1186.6 ppb). On the other hand, a 
maxi mal “impoverishment” by 17.4% is noted for the extreme 
value in sample NOV 22 /010 in the same section (4810 ver sus 
5825.3 ppb).

DISCUSSION

Since 2011 we have estab lished a database for Hg abun­
dances, determined largely by ICP-MS, for 17 F-F sections and 
11 D-C localities in different regions of the world, revealing sev­
eral vari ously recorded anomalous Hg spikes, up to 8 ppm in 
the F-F boundary beds (Psie Górki, Holy Cross Mts., Poland) 
and 18.5 ppm in the D-C boundary beds (Kronhofgraben, 
Carnic Alps, Austria). However, only the refined AAS values are 

commonly accepted and widely regarded as reliable in the dis­
cussion of potential volcanic signals. Therefore, we have tested 
the Hg chemostratigraphic pattern arising from less reliable 
ICP-MS results. Both analytical methods clearly reveal a similar 
Hg chemostratigraphic pattern in the successions studied (see 
Fig. 2), as well as showing high correlation values of the mea­
sured values, even for the lowest Hg abundances (<40 ppb; 
Fig. 3A). With one exception (Fig. 3B), the largest analytical er­
rors occur notably in values below or at most near the Hg base­
lines in the sec tions we studied. So, proportionally large dis­
crepancies may be influenced not only by the analytical proce­
dure weakness of the ICP-MS standard, but also by insufficient 
homogenization of the rock powders of the samples analysed, 
among other factors.

Six samples under study display concentrations below the 
DL of the ICP-MS method (10 ppb). For the purpose of calcula­
tion, half of the DL value is commonly adopted (e.g., Riboulleau 
et al., 2018), i.e., 5 ppb in the case of Hg (Fig. 3A). However, ex­
cluding the abnormally inconsistent sample K 1, dispersion of 
the remaining values (from 5.2 to 9.9 ppb) suggests that Hg val­
ues between 7 and 8 ppb are far more representative.

Both methods characterize the successions as including 
prominent Hg excursions, for 12 samples >1000 ppb (1 ppm),
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Hg ('suspected') abundances after AAS (ppb)

Fig. 3. Correlation of low, less than 40 ppb (A), and high, 
>500 ppb (B), mercury abundances provided by ICP-MS 

and ASS for three Upper Devonian sections (Fig. 2)

Note the generally highly coherent covariation of both Hg data sets, 
with the most significant exception of the sample NOV 22 /09A from 
the D-C transition in Uzbekistan. The dark grey field shows a maxi­
mum error range in the AAS measurements (taken as 10% after 
Sabatino et al., 2018; includes 70.6 % ICP-MS values), and the light 
grey field indicates a 20% determination error range, that encom­
passes 94% ICP-MS determinations. Values below the detection 
level were approximated after Riboulleau et al. (2018)

in particular directly below the F-F and D-C boundaries (Fig. 
2). Notably, Wedepohl's (1991) averaged Phanerozoic Hg 
concentrations range from 30 ppb (limestone) to 450 ppb (ar­
gillaceous shale). Also, Ketris and Yudovich (2009) calculated 
the diverse shale-averaged abundances as between 180 
±30 ppb (cherty shales) and 290 ±30 ppb (calcareous shale), 
and an averaged Hg abundance of 270 ±30 ppb for black 
shales. Therefore, the Hg anomalies recognized for the first 
time in Upper Devonian strata are approximately one 
(Lahmida, Novchomok) to two (Kahlleite) orders of magnitude 
higher compared to the baselines for those successions, as 
well as to the expected world averages. This status is main­
tained even for the most abnormally biased ICP-MS value of 
the highly enriched sample NOV 22/09 (Figs. 2 and 3).

The association of anomalous Hg excursions with a cata - 
clysmic LIP trigger at the F-F and D-C global events is an attrac­
tive hypothesis (Racki et al., 2018), especially in the light of 
some recent views on a causal role of the Siberian Viluy LIP 
(e.g., Kravchinsky, 2012; Ricci et al., 2013; see also Winter, 
2015; Fig. 1), but other alternatives need to be considered. En­
richments of a sim ilar order (1570 ppb), determined from ICP- 
-MS values, have already been reported from the supposed Up­
per Kellwasser level in coastal facies of Catalonia, Spain, by 
Moreno et al. (2018), but interpreted exclusively as a signature 
of local hydrothermal activity, notably intense in the closing, 
north-subducting Rheic Ocean (Winter, 2015; Raumer et al., 
2017; see Fig. 1). In fact, an occurrence of regional and local Hg 
spikes is probable, especially in the palaeogeographic domain 
strongly affected by Eovariscan volcanism, widespread also in 
the Saxothuringian zone (Timmerman, 2008) and other regions 
studied (Simancas et al., 2005; Michard et al., 2010; Han and 
Zhao, 2018).

Hg anomalies may indeed have multiple or igins, and also 
record “increased preservation of Hg within sediments either 
through increases in deposition via scavenging/absorption onto 
particles or post-depositional migration of Hg within the sedi - 
ments” (Bergquist, 2017: p. 8675). In case of the K-Pg enrich­
ments of Hg at Bidart (France), a hypothesis of “postdepo- 
sitional geochemical leaching and reduction processes” has 
been proposed by Smit et al. (2016) in place of a Deccan LIP - 
derived Hg delivery. In addition, as shown by Zheng et al. 
(2018) in coal basins, Hg concentration patterns are signifi - 
cantly affected by secondary magmatic phenomena, such as 
flows of magmatic-hydrothermal and low-temperature hydro­
thermal fluids, and by elevated heat and pressure due to intrud­
ing magmas. Therefore, the distinction between global (= 
widely distributed and synchronously recorded) signals and di­
versity of regional noise is a novel chal lenge in Hg chemo­
stratigraphy (Racki et al., 2018).

CONCLUSIONS

A preliminary test of two analytical methods of Hg determina­
tion negates the view that ICP-MS values are unreliable, and 
generate of false signals. Despite some differences between the 
Hg data sets, especially at low Hg levels (sporadically even two 
to three times overstated by ICP-MS), both analytical methods 
reveal the same extraordinarily enriched samples in the F-F and 
D-C boundary beds under study. The overall chemostratigraphic 
pattern is also similar, characterized by a few promi nent Hg ex­
cursions in excess of 1 ppm. The values of Hg de termined by 
ICP-MS and AAS are, therefore, significantly correlated, even if 
the first method reveals a general tendency towards slightly 
heightened values (by ~15 to 30% for medians).

In summary, conventional ICP-MS results can conclusively 
be used in mercury chemostratigraphy in order to recognize ex­
traordinary volcanic (or other) signals, undoubtedly related to 
the geological record of Devonian global events. False anoma­
lies are not generated by the Hg determinations.
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