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The use of broom to produce fibers has ancient roots. The Greeks appreciated its resistance to water and
for this reason they used it to manufacture sailing ropes. But broom fiber was also appreciated for its
sound absorption qualities. In this study, a new methodology was developed for the numerical modeling
of the acoustic behavior of broom fibers. First, the characteristics of the different varieties of broom were
examined and the procedures for processing the samples to be analyzed were described. Subsequently,
the results of the measurements of the following acoustic properties of the material were analyzed: air
flow resistance, porosity, and sound absorption coefficient. Finally, the results of the numerical modeling
of the acoustic coefficient were reported using an algorithm based on artificial neural networks. The
results obtained are compared with a model based on linear regression. The model based on neural net-
works showed high values of the Pearson correlation coefficient (0.989), indicating a high number of cor-
rect predictions.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

In the construction of a building, the choice of materials repre-
sents an important challenge that influences the entire production
process. Over the centuries, to reduce energy and environmental
costs, as well as to better adapt the building to the climatic condi-
tions of the place, the materials for the construction of the build-
ings were chosen according to the abundant availability in the
construction area. Today this choice is imposed by the need to
use natural materials for sustainable and environmentally friendly
construction. The high recyclability of natural materials, which can
be used in low-cost constructions, combined with simple and tra-
ditional construction techniques capable of exploiting the biocli-
matic principles for energy needs, allow us to create ecologically
aware and responsible constructions, capable of responding to
the different needs of the users [1,2].

If in the past the choice of a material derived from the experi-
ence of the master builder, today every construction material is
first studied to characterize its properties. Some natural materials
are characterized by excellent performance properties both from a
thermal and acoustic point of view. This is due to the good
mechanical properties they possess despite being characterized
by low density [3]. Furthermore, they are easy to work with and
once prepared they have a high stability. Another feature that dis-
tinguishes them is the minimal impact on health and the environ-
ment, both in the manufacturing process and in that of use during
the entire life cycle [4].

The natural materials of interest from the point of view of
acoustic properties are the porous ones: The sound enters the
pores and is then dissipated. The large family of natural porous
materials includes diversified characteristics that allow us to clas-
sify them based on microscopic structures. In this way we can
identify three large groups as follows: cellular, fibrous, and granu-
lar [5,6].

Natural fibers can be classified according to their origin which
can be animal, vegetable or mineral. Animal fibers, such as silk
and linen are used mainly in the textile sector. The vegetable fibers
are mainly formed by cellulose, hemicellulose and lignin. Their ori-
gin is varied in that they come from many plants, even different
from each other, and from different plant organs. Pineapple,
banana and sisal fibers are extracted from the leaves; from the
stem the broom, kenaf, hemp, jute, bamboo; from the fruit the
coconut and from the seed the cotton. Finally, there are mineral
fibers characterized by a limited length [7].

In the past, several studies have tried to model the acoustic
properties of natural fibers. Delany and Bazley [8] have developed
a model for absorbent fibrous materials that calculates the
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coefficient of sound absorption based on the following parameters:
characteristic impedance, angular frequency, sound speed, and
flow resistivity. These authors, based on experimental measure-
ments carried out on high porosity fibrous materials, provide sim-
ple relationships for the calculation of characteristic quantities.
The model assumes that the flow resistivity is enough to determine
the characteristic wave impedance and the characteristic propaga-
tion constant in the porous material. Subsequently, Miki [9]
derived new regression models based on experimental data deriv-
ing from the work of Delany and Bazley. The changes concerned
the impedance function that now satisfies the positive-real prop-
erty and the propagation constant written in terms of complex
variables that becomes a regular function. In the work of Allard
[10] new empirical expressions are elaborated based on the phe-
nomenological equations of Delany and Bazley. The Allard equa-
tions work better at low frequencies than those of Delany and
Bazley. Based on the general frequency dependence of viscous
forces on porous materials, this model suggests that the propaga-
tion of sound in fibrous materials depends on both the diameter
of the fibers and the density of the material.

A new empirical model was then introduced by Garai et al. [11]
which, through reasoning like that followed by Miki, allowed
Denaly and Bazley’s model to be expanded to include a new class
of polyester fiber material. This model is better suited to textile
fibers than the coefficients originally proposed by Delany–Bazley.
Other authors have developed empirical models for specific fibrous
materials (kenaf, juta, fique) by adapting the empirical formulas of
Delany and Bazley and developing new coefficients that better
approximate the acoustic properties of individual materials [12–
15]. Berardi et al. [16] measured absorption coefficient and flow
resistance for different natural fibrous materials: Kenaf, wood,
hemp, coconut, cork, dog, cardboard, and sheep wool. The authors
then applied the existing empirical models for the prediction of the
acoustic behavior of these materials. From the comparison with the
measured values they highlighted the limits of the theoretical
models defined for porous materials with homogeneous fibers,
when applied to natural materials. They applied an inverse opti-
mization method to estimate the coefficients that best describe
the acoustic impedance and the propagation constant for several
natural fibers.

The microscopic structure of natural fibers is characterized by
an irregular shape which represents the main limit of theoretical
models in predicting the coefficient of sound absorption of these
materials. In the present work, a new methodology is elaborated
for the numerical modeling of the acoustic behavior of broom
fibers. First the characteristics of the different varieties of broom
are examined and the procedures for processing the samples to
be analyzed are described. Subsequently, the results of the mea-
surements of the following acoustic properties of the material
are reported: sound absorption coefficient, air flow resistance
and porosity. Finally, the results of the numerical modeling of
the acoustic coefficient are reported using an algorithm based on
artificial neural networks. The results obtained are compared with
a model based on linear regression.
Fig. 1. A field of brooms in hilly terrain.
2. Methodology

2.1. Broom fibers characterization

The brooms are perennial woody shrubs with a height ranging
from half a meter up to 5 m, belonging to the Fabaceae family.
The stem is erect and very branched. The branches are like those
of the rush and are green. The leaves are sessile, small, linear in
shape and fall very early, so that they are almost completely absent
at flowering. Therefore, the green branches replace the leaves in
chlorophyll photosynthesis. The flowers are collected in terminal
racemes, they are papilionaceous, of an intense yellow color and
very fragrant. The fruit is a green pod covered with hair that turns
black and hairless when ripe. The seeds are dark brown and are
very toxic but appreciated by birds.

The wild variety grows on hills and mountains of the Mediter-
ranean countries. The broom prefers very poor soils and has a long
life (Fig. 1).

Two types of brooms have been studied: Spartium junceum,
and Cytisus scoparius. The Spartium junceum has a cylindrical, hol-
low and fibrous stem, with strong green branches characterized
by an extreme elasticity. The Cytisus scoparius has a striped and
angular stem, with green and straight branches, which become
dark brown after drying. This plant assumes an industrial impor-
tance in the textile sector where the fiber obtained from steam is
used to produce ropes and fabrics. In the past it was used for the
consolidation of embankments and slopes along the railways and
highways thanks to its roots that develop deep into the ground
[17,18].

The broom is a legume that also lives in arid climates and
bears winter frost. It has ecological virtues, because it fixes the
atmospheric nitrogen directly without the need for synthetic fer-
tilizers. The textile fibers, obtained from the youngest branches,
called vermene, and worked with procedures similar to those of
linen and hemp, were already used by the ancient populations
to make ropes, baskets, fishing nets and fabrics for the sails, for
his sturdy and salt-resistant fiber. Recently, the fibers obtained
from the broom have been used as a substitute for glass fiber
in the automotive field and in green building, because it is hardly
flammable and reduces the toxicity of the fumes in case of fire.
These uses suggest deepening the characteristics of broom fibers
[19,20].

In order to study the acoustic characteristics, the branches of
the brooms were cut in the summer after losing the leaves. The
obtained branches were placed on grids for drying in a well venti-
lated and warm place for about 6 months. The drying process was
monitored to avoid decomposition and mold growth problems.
Subsequently the branches of the brooms were cut into pieces
200 mm long on average and were divided according to the fiber
diameter. In particular, the pieces of broom were grouped for a
diameter of 1.5 mm, 3 mm and 4 mm, as shown in Fig. 2.

The dried broom pieces were subsequently assembled with a
random distribution in samples held together by an acoustically
transparent mesh.



Fig. 2. Detail of the pieces of broom branches after drying, grouped by diameter. On the left with a diameter of 1.5 mm, in the center with a diameter of 3 mm, on the right
with a diameter of 4 mm.
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2.2. Measurements of acoustic features

Three acoustic properties were measured: airflow resistance,
porosity, and sound absorption coefficient. The air flow resistance
is a measure of the resistance that air encounters when passing
through the material. The procedure to be followed for its mea-
surement is described in the international standard ISO 9053:
1991 [21]. The standard provides two methods for determining
the resistance to air flow. A first method uses a direct air flow, cre-
ated by conveying a unidirectional air flow through the material
and measuring the pressure difference between the two faces of
the sample. A second method uses an alternating air flow, with a
frequency of 2 Hz and measuring the effective pressure difference
on the two sides of the sample placed inside a measurement cham-
ber [22]. In this study the method with alternating air flow was
used. In the Fig. 3 is shown the system used for the measurement
of the air flow resistivity.

The device in Fig. 3 consists of a closed cylindrical tube which
presents the sample of the tested material at one end. At the other
end a piston system, moved by a rotating cam, creates the alternat-
ing air flow inside the tube. A pressure microphone placed inside
the tube measures the pressure disturbance.

Porosity is defined as the ratio between the volume of the fluid
contained in the pores and the total volume occupied by the sam-
ple, thus providing the fraction of air volume inside the material.
When determining porosity, closed pores must not be included
in the total volume of air since they are not involved in the propa-
gation of sound waves within the material. In the literature differ-
ent methods for the measurement of porosity are described. They
difference are based on the medium used to saturate the pores of
the material, which can be air or water, usually. Moreover, for
Fig. 3. Measuring equipment used for air flow resistance measurements with the
alternating air flow method.
the method of calculating the volume of air inside the sample. In
this case we used water and the porosity was calculated using
the following formula:

porosity ¼ 1� qm

qsolid

Here,

� qm (kg/m3) is the apparent density of the material
� qsolid (kg/m3) is the density of the material

Density is the ratio between mass and volume of the sample.
The apparent density is calculated by first weighing the sample
and subsequently immersing the sample in a graduated glass tube
containing water. By reading how much the water level rises we
can derive the total volume of the sample. The density of the solid
is calculated by a similar procedure only that this time after weigh-
ing it the sample is ground and subsequently immersed in water.

The normal incidence sound absorption coefficient was mea-
sured in accordance with ISO 10534-2: 1998 [23,24]. The standard
describes the procedure for measuring acoustic parameters
through small samples that are easy to assemble: the measure-
ments were performed using a Kundt test tube. This device con-
sists of a 56 cm long tube with an internal diameter of 10 cm.
The tube diameter corresponds to a higher frequency limit of
2000 Hz. The dimensions of the Kundt tube and the two ¼00 mea-
surement microphones placed at 5 cm allow an accurate measure-
ment of the sound absorption with a lower frequency limit of
200 Hz (Fig. 4).

As already anticipated, to carry out the measurements of the
acoustic parameters with the Kundt tube, the dried broom pieces
were assembled with a random distribution in samples held
together by an acoustically transparent mesh. Three types of
broom pieces were used: 1.5 mm, 3 mm and 4 mm diameter size.
Fig. 4. Tube of Kundt, for the absorption coefficient measurements.
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The pieces of broom grouped by diameter were then assembled
into specimens with a thickness of 60 mm, 80 mm, and 120 mm.

2.3. Artificial neural network model

Machine learning is a sector of artificial intelligence that gathers
a set of methods, developed starting from the last decades of the
twentieth century in various scientific communities. Machine
learning algorithms have been widely used in various fields of
use [25–37]. In this work, we will use an algorithm based on arti-
ficial neural networks for predicting the sound absorption coeffi-
cient of the broom fibers. Neural networks represent a very
powerful set of tools that allows solving problems in the field of
classification, regression and non-linear control. In addition to hav-
ing a high processing speed, neural networks can learn the solution
from a certain set of examples. In many applications this allows us
to overcome the need to develop a model of the physical processes
underlying the problem, which can often be difficult, if not impos-
sible, to find [38].

The fundamental element of a neural network is the artificial
neuron. A neuron is a device capable, based on a certain number
of input signals, of producing an output signal. The input signals,
coming from other neurons, are processed through the so-called
activation function. Positive signals are excitatory, negative ones
are inhibitory. The activation function operates in this way: a
weight is assigned to each of the input signals; therefore, the sig-
nals are added together. In some more complex models, the activa-
tion function also uses the value of the signal that the neuron
presented at the output before the new signals were applied. In
this way the neuron is a degree of self-excitement so that, in the
presence of excitation signals, the passage from the inactive to
the excited state is accelerated, while in the absence of new exci-
tation signals, the passage from the excited state to the state inac-
tive is slowed down. The value obtained by the activation function
is then passed to the transfer function, which has the purpose of
generating the output signal. In a neural network the individual
neurons are organized in layers. There are three types of layers:
the entry layer, the exit layer, and the hidden layer. The neurons
of the entrance layer receive data from the outside world. The out-
put layer neurons present the result of data processing by the neu-
ral network. Fig. 5 shows the architecture of a three-layer artificial
neural network [39,40].

The transformation of the input x into the weighted output y
takes place according to the following equation

y ¼
X
i

wi � xi
Fig. 5. Architecture of a generic Artificial Neural Network. The nodes and their
weighted connections are shown.
Here:

� xi is the ith input
� wi is the ith weight
� y is the output

The weights are adjusted based on the experience acquired by
the network during the training phase. Training is the process by
which we reach the determination of weights and can be a very
intense computational action. However, once the weights have
been defined, new inputs can be processed very quickly. To train
a network we need a set of examples, called a training set, whose
elements are input-target pairs. The training consists in searching
for the values for the parameters that minimize an appropriate
error function [41,42].

The prediction model developed is based on the construction of
a multilevel artificial neural network, feed-forward type, with 1
hidden layer (with 10 neurons) and an output that represents the
sound absorption coefficient of the material. To estimate the mod-
el’s generalization capability, the data was divided into two groups,
the selection was randomly performed. This selection split the data
into two sub-sets:

� 70% of the available observations were used to create a training
set. This subset is used by the network during training in which
the connection weights are adjusted based on the error made on
the output production. This set contains 5720 observations.

� The remaining 30% of the available observations are used to cre-
ate a test set. This subset has no effect on training and therefore
gives us the possibility to check the prediction capability of the
network when it receives an input never seen before. This set
contains 2452 observations.

In the training phase, the network is used to predict the sound
absorption coefficient based on input data. In this phase the data
already available are used to compare them with those predicted
by the model in order to calculate the forecast error. This error is
then used to adjust the weights of the connections. To do this an
iterative procedure is followed in order to minimize the error func-
tion, with the determination of the weight values made in subse-
quent steps.

At each step two different phases can be distinguished: In the
first phase, the derivatives of the error function with respect to
the weights are calculated. In the second phase, the derivatives
are used to calculate the new net weights. The Backpropagation
algorithm is based on the gradient descent method to find the min-
imum of the error function with respect to the weights [43]. The
gradient descent technique is since the gradient indicates the
direction of maximum growth/decrease.

We used a variant of the conjugate gradient methods, the SCG
algorithm (Scaled Conjugate Gradient Backpropagation) [44]. SCG
returns a super linear convergence in most problems. It provides
high performance resulting in at least an order of magnitude faster
than the Backpropagation algorithm. Using a step size resizing
mechanism, SCG avoids a long search by row for learning iteration,
which makes the algorithm faster than other recently proposed
second order algorithms.

2.4. Linear regression model

To appreciate the results obtained with the model based on
neural networks, we will compare them with those obtained with
a model based on multiple linear regression. The regression model
serves to establish the relationship between a dependent variable
and one or more independent or explanatory variables. In a regres-
sion model, the independent variables, called regressors, explain
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the dependent variable and allow to understand if there is a trend
that allows to make predictions. The dependent variable in the
regression equation is modeled as a function of the independent
variables plus an error term. The latter is a random variable and
represents an uncontrollable and unpredictable variation in the
dependent variable. The parameters are estimated in order to bet-
ter describe the data [45].

Generalized linear models [46] are models that include linear
ones and are a natural extension of them. We consider the case
in which the response function is not linear, and the variables
are not normal. This new class of models is not very wide from a
strictly mathematical point of view, but it is flexible enough to
incorporate many situations relevant to practical applications.
The glm() function of the R software [47] was used to construct
the model. The model is set up by providing a symbolic represen-
tation of the linear predictor and a description of the error distribu-
tion. The distribution of the response as Gaussian and the linking
function from the expected value of the distribution to its param-
eter as identity have been specified.

Several metrics were used to verify the model results. First, we
used the root mean square error (RMSE) [48]. The RMSE is the
square root of the mean square error, it is the standard deviation
of the residual between the values of the observed data and the
values of the estimated data. The RMSE varies between zero and
+1 and indicates a deterioration in performance as the value
increases. To calculate RMSE, the following equation was used:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

y� y0ð Þ2

n

vuuut

Here,

� y is the actual value
� y0 is the predicted value
� n is the number of observations.

The secondmetric used was the Mean absolute error (MAE). The
MAE represents an average of the absolute values of the differences
between actual values expected. This is a linear score that fairly
balances all individual differences. In fact, it measures the average
entity of the errors without considering their direction [48]. To cal-
culate MAE, the following equation was used:

MAE ¼ 1
n
�
Xn
i¼1

jy� y
0 j

Here,

� y is the actual value
� y0 is the predicted value
� n is the number of observations.

Finally, to have a direct measure of the correlation between real
values and values predicted by the model, we used the Pearson
correlation algorithm [46]. The values of this index vary between
�1 and +1, both extreme values represent perfect relations
between the variables, while 0 represents the absence of
relationship.

2.5. Data preparation

Modeling procedures depend heavily on the quality of input
data. Data extracted from various sources and collected in datasets
may present anomalies that must be identified and corrected. In
our case the dataset contains the results of the measurements so
possible attributes or missing records, records without values of
certain attributes, values available only in aggregate form, are to
be excluded. Since predictors contain very different characteristics,
what is needed is data scaling. In fact, the input variables are char-
acterized by different units of measurement which make the
ranges of values very different.

A procedure of fundamental importance in statistics and data
analysis is the standardization of variables. Through this statistical
procedure it is possible to make identical variables belonging to
different distributions, but also different variables, or variables
expressed in different units of measurement comparable. Stan-
dardization is a double normalization. In the first normalization
every datum is transformed into its deviation from the mean, in
the second normalization this gap is transformed by the unit of
measurement or account of that variable in units of its standard
deviation.

In this way, each point of the starting distribution corresponds
to one and only one point of the new one and retains its relative
distances from any other point. Since the original data have been
transformed into deviations from the mean, and the algebraic
sum of the deviations from the mean is equal to zero, all the stan-
dardized variables have an average of zero. Moreover, since each
gap from the average is then divided by the standard deviation
of the starting variable, the standard deviation of any standardized
variable is equal to 1. In this article we used the z score standard-
ization. With this standardization, we subtract the average of the
column for each value in a column and then divide the result by
the standard deviation of the column. To do this, just apply the fol-
lowing formula:

xscaled ¼ x�meanðxÞ
sdðxÞ

Here,

� mean(x) is the mean of the x
� sd(x) is the standard deviation of the x

As a result, we get features resized to have the properties of a
standard normal distribution as follows:

� mean = 0
� standard deviation = 1

Finally, we will have that the values above the mean will be
transformed into positive z scores, while the values below the
mean will be transformed into negative z scores. The z score is a
dimensionless quantity, obtained by subtracting the population
average from a single approximate score and then dividing the dif-
ference by the population standard deviation [45].

After standardizing the data, it is necessary to proceed with
data splitting. Our goal is to develop an algorithm based on neural
networks to predict the sound absorption coefficient from some
material characteristics. When using a machine learning model,
it is necessary to perform model validation. This procedure verifies
the model’s prediction capability if input data that has never been
seen by the network is used. One of the problems that can occur
with these models is the excess of adaptation, which means that
the model adapts to the observed data because it has an excessive
number of parameters with respect to the number of observations.
In this case it is necessary to divide the entire data set into two
subsets: the training set and the test set. The training set will con-
tain the data that will be used to train the model, while the test set
will contain the data that has not been seen so far by the model.
The test data set as the data set that the model will probably see
in the future. Therefore, the precision we see on the test data set
is probably the accuracy of the model on the future data set [42].
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In our case, we divided the data into two sets: a training set equal
to 70% of the data, and a test set equal to the remaining 30% of the
data. The subdivision of the observations in both was carried out
randomly.

3. Results and discussion

3.1. Measurements results

As already anticipated, the pieces of broomwere grouped corre-
sponding to three types of diameters: 1.5, 3, and 4 mm. For each
diameter, the resistivity and porosity were measured according
to the methodology already described in the previous section.
Table 1 shows the results of the measurements.

Table 1 shows resistivity and porosity values which decrease
with increasing diameter. This is since the arrangement of the
pieces of broom in the sample becomes increasingly chaotic as
the diameter of the pieces increases, thus leaving more pores
between the pieces. Furthermore, the random positioning of the
pieces gave particularly low values of the air flow resistivity. For
the same reason, also the measured porosity was generally low,
with a value between 0.76 and 0.65 for increasing diameters.
Table 1
Resistivity and porosity values for each diameter of the broom fibers.

Diameter
[mm]

Resistivity
[Rayl/m]

Porosity

1.5 762 0.76
3 543 0.67
4 430 0.65

Fig. 6. Sound absorption coefficient values of 60 mm, 80 mm, and 120 m
The pieces of broom were subsequently assembled, for each
diameter, obtaining three samples with thicknesses of 6 cm,
8 cm and 12 cm respectively. To measure the sound absorption
coefficient, the pieces of broom were inserted into the Kundt tube
and blocked by an acoustically transparent grid with large meshes.
Fig. 6 shows the results of the sound absorption measurements on
broom samples of different thickness and with pieces of diameter.

Analyzing the results of the measurement of the acoustic
absorption coefficient shown in Fig. 6, it is possible to notice that
for each diameter the samples of diameter 60 and 80 mm have
returned comparable values. In fact, the curves are similar with
only one maximum at a frequency that decreases with increasing
sample thickness. Furthermore, the coefficient values move
towards lower frequencies for thicker samples. Something differ-
ent happens for the 120 mm thickness, in this case the curve has
two maxima, of which the first occurs at a lower frequency than
the lower thicknesses. This behavior is typical of granular materials
[49].

Let us now analyze the results obtained for the three types of
diameter individually. Samples composed of fragments with a
diameter of 1.5 mm generally have values below 0.6. Only the sam-
ple with a thickness of 12 cm shows values higher than 0.6, and
this happens starting from the frequency of 1500 Hz onwards, with
a maximum value around the frequency of 1700 Hz. Samples com-
posed of fragments with a diameter of 3 mm, have slightly higher
values than the previous one, however generally the values do not
exceed 0.7, if not for the greater thickness (120 mm). This happens
both around the first maximum around the 500 Hz frequency and
for the second maximum starting from the 1500 Hz frequency. In
this case, around the second maximum, the value of the sound
absorption coefficient reaches 0.9. Finally, samples composed of
fragments with a 3 mm diameter showed significantly lower
m thick samples and for 1.5 mm to 4 mm diameter broom fibers.
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absorption for frequencies below 800 Hz for samples 60 mm thick
and below 650 Hz for 80 mm thick samples.
3.2. Modelling the sound absorption coefficients using linear regression
and artificial neural network

To appreciate the results obtained modelling the sound absorp-
tion coefficients, two algorithms were used. One based on neural
networks, another based on multiple linear regression. Let’s start
with the model based on linear regression. Regression analysis
was performed using generalized linear models (GLM).

In Table 2 are shown the RMSE, MAE and the Person’s correla-
tion coefficient for the multiple regression model.

The values in Table 2 will then be used to compare them with
those obtained from the model based on neural networks.

Then a model based on artificial neural network was imple-
mented. Fig. 7 shows the architecture of the model based on neural
networks.

From the analysis of Fig. 7 it is possible to notice that five data
inputs are presented to the network, respectively: thickness of the
samples, diameter of the pieces of broom, resistivity, porosity, and
frequency. Then a hidden layer with ten neurons is added. Finally,
an output level with only one output is returned. The lines
between neurons of different levels give an idea of the weight of
the connection: the greater the thickness of the line, the greater
the weight. While the colors of the lines indicate the sign of the
connection: black means positive; gray means negative. In this
way, it is possible to understand how the weights of the connec-
tions contribute to the output even in the case of layers with many
neurons [50,51]. Tables 3 and 4 show the values of the best weights
and biases obtained from the model.
Table 2
RMSE, MAE and the Person’s correlation coefficient for the regression model.

RMSE MAE Person’s Correlation Coefficient

0.147 0.130 0.571

Fig. 7. Artificial neural network mode
In Table 5 are shown the RMSE, MAE and the Person’s correla-
tion coefficient for the artificial neural network model.

From the comparison between the two models, multiple regres-
sion and artificial neural network, we can obtain useful informa-
tion on performance. From the comparison of the data reported
in Tables 2 and 5, we can see that the model based on the artificial
neural network shows better results: artificial neural network Per-
son’s correlation coefficient equal to 0.989 compared to 0.571
obtained with Generalized Linear Model. Furthermore, the artificial
neural network model has a decidedly lower error with 0.026 com-
pared to 0.147, with an order of magnitude less. The same goes for
the MAE, 0.017 against 0.130, even in this case we have an order of
magnitude less.

To appreciate the results obtained we can compare the trend of
the acoustic absorption coefficient with the frequency between the
measured values and those simulated with the model we have
elaborated.

The trends of the simulated values are in good agreement with
the absorption coefficient data measured with the impedance tube
for normal incidence as reported in Fig. 8. Some small differences
can be found at low frequencies, due to small irregularities due
to the measurement: The very small sound absorption value
(0.1–0.2) is influenced by the inter-reflections of the sound waves
that affect the specimen during the acoustic measurements.

For specimens 60 mm thick, the curves of the simulated data fit
almost perfectly on those of the measured values: At low frequen-
cies they adapt better, due to the anomalies due to the uncertain-
ties of the measurements already discussed previously. The same
can be said for specimens 80 mm thick.

For specimens with a thickness of 120 mm and a diameter of
1.5 mm there are appreciable differences between the measured
and simulated values in the frequency range between 500 Hz–70
0 Hz: The measured value of the absorption coefficient is more flat-
tened due to the measurement conditions suboptimal probably
resulting from a suboptimal position of the specimen during the
measurement.

For specimens with a thickness of 120 mm and a diameter of
fibers 3 and 4 mm at frequencies around 1800 Hz, at the second
l architecture with three layers.



Table 3
Best weights and biases returned by the model (Input layer to Hidden layer).

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

B1 0.675 1.3 �3.358 �0.018 0.704 1.756 �0.76 �1.498 �0.554 0.862
I1 �1.948 1.949 �1.029 1.169 �1.663 3.309 1.974 �1.453 �0.118 1.542
I2 0.181 0.258 0.324 0.098 0.257 0.236 0.142 �0.21 0.099 �0.196
I3 0.085 �0.026 �0.032 0.126 �0.102 0.011 0.001 0.004 �0.297 0.004
I4 0.751 0.556 0.703 0.688 0.29 0.628 0.357 �0.515 �0.793 �0.48
I5 1.156 �4.096 �3.518 �0.368 �2.637 �3.863 1.315 �4.287 �1.437 0.639

Table 4
Best weights and biases returned by the model (Hidden layer to Output layer).

B2–O1 H1–O1 H2–O1 H3–O1 H4–O1 H5–O1 H6–O1 H7–O1 H8–O1 H9–O1 H10–O1

0.859 �1.345 �3.618 �4.388 �1.302 2.024 3.001 1.952 2.887 �1.815 �1.204

Table 5
RMSE, MAE and the Person’s correlation coefficient for the artificial neural network
model.

RMSE MAE Person’s Correlation Coefficient

0.026 0.017 0.989
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maximum of the distribution, the measured value slightly overes-
timates the simulated value: This may be due to the upper limit of
the measuring frequency imposed by the hypothesis of plane
waves in the measuring tube and at the distance between the
two microphones.
Fig. 8. Measured versus simulated trend of the acoustic absorption coefficient with freq
those simulated. (For interpretation of the references to colour in this figure legend, the
4. Conclusions

In this study, a newmethodology was developed for the numer-
ical modeling of the acoustic behavior of broom fibers. First, the
characteristics of the different varieties of broom were examined
and the procedures for processing the samples to be analyzed were
described. Subsequently, the results of the measurements of the
following acoustic properties of the material were analyzed: air
flow resistance, porosity, and sound absorption coefficient. Finally,
the results of the numerical modeling of the acoustic coefficient
were reported using an algorithm based on artificial neural net-
uency variation. The curve in blue represents the measured values, the curve in red
reader is referred to the web version of this article.)
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works. The results obtained are compared with a model based on
linear regression.

The model based on neural networks showed high values of the
Pearson correlation coefficient (0.989), indicating a high number of
correct predictions. A model for predicting the sound absorption
coefficient can be extremely useful. Through the results of the
model, it will be possible to evaluate the acoustic performance of
a material for different configurations without the need to perform
acoustic measurements.
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