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Abstract

There is a progressive digitization in many medical fields, such as digital microscopy, which
leads to an increase in data volume and processing demands for the underlying computing
infrastructure. This paper explores scaling behaviours of a Ki–67 analysis application, which
processes medical image tiles, originating from a WSI (Whole Slide Image) file format. Fur-
thermore, it describes how the software is transformed from a Windows PC to a distributed
Linux cluster environment. A test for platform independence revealed a non-deterministic be-
haviour of the application, which has been fixed successfully. The speedup of the application
is determined. The slope of the increase is quite close to 1, i.e. there is almost no loss due to
a parallelization overhead. Beyond the cluster’s hardware limit (72 cores, 144 threads, 216 GB
RAM) the speedup saturates to a value around 64. This is a strong improvement of the original
software, whose speedup is limited to two.

Keywords: distributed computing, big data, virtual microscopy, virtual microscopy, biomarker, whole

slide imaging

1 Introduction

In the area of digital pathology, digital microscopy offers promising potentials such as 3D tissue
reconstruction [2]. In contrast to conventional microscopy, pathologist will perform diagnoses
by investigating images on computer screens. These images are generated by high-resolution
scanning of tissue slides [5]. To aid diagnoses, pathologists typically use a single workstation
to run various applications and analyses. To handle image data, whole slide imaging (WSI)
offers a standard for digital slides [6]. It allows to save and retrieve image data at different file
sizes using a single file. By resolutions of more than 20 GigaPixels per file, current analysis
applications are confronted with hardware limitations, though. Such enormous resolutions are
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producing data in Gigabyte or Terabyte ranges. The layout of a whole slide image stack is
illustrated in Figure 1.

Processing a digital slide already requires many gigabytes of memory before any kind of
analysis on these data can run. Today, due to limited memory resources of a single workstation
a digital slide is often processed only at a reduced resolution. In addition, a single image is split
into equally sized tiles, which afterwards are processed in batch jobs on Windows workstations.

A main drawback of these two workarounds is their limited scaling property. They will
always be affected by the performance limits of a single desktop and the steady increasing
computing demands of virtual slides.

Figure 1: Layout of a whole slide image stack according to the DICOM Standards Commitee
(Supplement 145).

2 Distributed Computing and Image Tiling

A well-established way to overcome the bottlenecks of image-processing on single workstations
is provided by the methods of parallel and distributed computing. For example, a problem
domain can be reduced by dividing it into smaller parts and then handling the parts separately.
Each part is processed by a single or many computing nodes and a single node processes one or
many parts depending on the design. A speedup can be expected if an algorithm is adapted in a
way that it benefits from the underlying design. Speedup is given by the ratio of the execution
time without parallelization divided by the execution time on a parallel environment.

Splitting a single image into many tiles is a common approach to enable a parallel processing
[14, 11]. This often creates boundary problems. In Figure 2, the centre of a single cell nucleus
is located at the edge of two neighbouring tiles. For example, a cell segmentation on those two
images tiles needs to consider overlapping cell nuclei appropriately. A new component has to
be introduced into the algorithm which is able to handle this particular case. Solving boundary
problems is not part of this paper though. Instead, the focus is set to present first results on
how a selected locally running medical image analysis software can be executed on a distributed
cluster. Boundary problems will be explored in subsequent investigations.
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producing data in Gigabyte or Terabyte ranges. The layout of a whole slide image stack is
illustrated in Figure 1.

Processing a digital slide already requires many gigabytes of memory before any kind of
analysis on these data can run. Today, due to limited memory resources of a single workstation
a digital slide is often processed only at a reduced resolution. In addition, a single image is split
into equally sized tiles, which afterwards are processed in batch jobs on Windows workstations.

A main drawback of these two workarounds is their limited scaling property. They will
always be affected by the performance limits of a single desktop and the steady increasing
computing demands of virtual slides.

Figure 1: Layout of a whole slide image stack according to the DICOM Standards Commitee
(Supplement 145).

2 Distributed Computing and Image Tiling

A well-established way to overcome the bottlenecks of image-processing on single workstations
is provided by the methods of parallel and distributed computing. For example, a problem
domain can be reduced by dividing it into smaller parts and then handling the parts separately.
Each part is processed by a single or many computing nodes and a single node processes one or
many parts depending on the design. A speedup can be expected if an algorithm is adapted in a
way that it benefits from the underlying design. Speedup is given by the ratio of the execution
time without parallelization divided by the execution time on a parallel environment.

Splitting a single image into many tiles is a common approach to enable a parallel processing
[14, 11]. This often creates boundary problems. In Figure 2, the centre of a single cell nucleus
is located at the edge of two neighbouring tiles. For example, a cell segmentation on those two
images tiles needs to consider overlapping cell nuclei appropriately. A new component has to
be introduced into the algorithm which is able to handle this particular case. Solving boundary
problems is not part of this paper though. Instead, the focus is set to present first results on
how a selected locally running medical image analysis software can be executed on a distributed
cluster. Boundary problems will be explored in subsequent investigations.
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There are various software frameworks and engines supporting a distributed processing. Of-
ten, they require a setup of homogeneous hardware components to operate such as Thrill [3]
(”High-Performance Algorithmic Distributed Batch Data Processing with C++”). However,
not every computing cluster is exclusively equipped with homogeneous hardware. Rather het-
erogeneous components are available or a mix of both setups. This poses a problem as the
selection of appropriate systems and software components is limited by the mix of available
hardware. Therefore a solution for those heterogeneous layouts is needed which cannot be
converted to homogeneous components but still want to benefit from novel parallel processing
concepts such as Map Reduce [7] or Resilient Distributed Datasets [13].

Figure 2: The shown tile images are originated from a WSI with Ki67–DAB and Hematoxylin
background stain. At the edge of both tiles a cell nucleus overlaps. This is a typical boundary
problem and needs to be taken into account when parallelizing segmentation algorithms.

3 Ki–67 Analysis

The protein Ki–67 has been established as one of the most important biomarkers for cell prolif-
eration in breast cancer [8, 9]. High Ki–67 values indicate high tumor growth and have direct
impact on the patient’s treatment. Several automated image analysis methods for identifying
Ki–67-positive and negative tumor cells have been developed [4]. There are various software
frameworks which implement a Ki–67 analysis. They differ in speed, accuracy, and correctness
of their computed output scores. Only a few of them were validated with respect to their out-
put results. For example, the computed results of a cell segmentation can be compared with a
manual segmentation performed by a pathologist. The application used in this work to perform
Ki–67 analyses is developed by VMScope GmbH. It is used at Charité – Universitätsmedizin
Berlin (Germany). See [10] for more details on this application’s validation. The software itself
is optimized for running on a single workstation and, in particular, not designed to run on a
distributed environment. Furthermore, it is developed to run on Microsoft Windows, is written
in C# and uses .NET build-in methods of concurrency such as Parallel.For instructions. The
Ki–67 analysis software takes an image as input data and outputs a score which represents
the rate of cell proliferation for tumor cells. The score ranges between 0 to 1 and spans three
classes: class A (low tumor growth) with values < 0.15, class B (medium tumor growth) with
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values of 0.15 to 0.35 and class C (high tumor growth) with values ≥ 0.35. At runtime, the
software detects the available number of CPU cores and uses multiple threads for execution if
more than a single core is present, i.e. the available CPU cores can be utilized during execution,
in principle. The efficiency is analyzed in the following section.

3.1 Identifying the Parallel Ratio

Profiling thread states allows to identify how many threads are being used during the execution
of an application and how the computing load is distributed among these threads. Microsoft
Visual Studio [1] has been gathering the average core utilization from the analysis of randomly
picked image tiles. The patterns of thread usage look similar for all pre-selected image tiles.
Figure 3 displays such a pattern based on metrics gathered for a Ki–67 analysis of a single
image tile. The portion of parallely executed threads (≥ 2) is not exceeding half of the total
runtime. In addition, the application is running single threaded for the second half of execution
time. Consequently, the application is most of the time not utilizing all available CPU cores.

Figure 3: The average core utilization (green) of the analyzed Ki–67 process is shown by the
y-axis. The x-axis represents the relative execution time line of the traced application. The
Utilization View of Microsoft VisualStudio has been used as profiling utility.

3.2 Determining Memory Consumption

Analysing the memory consumption of an application reveals potential bottlenecks and may
help to develop optimization strategies for a parallel execution. A Ki–67 analysis was run on a
set of image tiles on a Linux workstation using Mono [12] as execution framework. The memory
consumption during execution was recorded for each tile and VmRSS (Virtual Memory Resident
Set Size) values are collected at a sampling rate of one second. A graphical representation of
all measured values is presented in Figure 4. It displays the memory consumption of every
image tile for a WSI (comprising 3639 tiles in total). The relative execution time is plotted
on the x-axis. For example, if an execution takes four minutes then fifty percent equals two
minutes. The y-axis represents all tiles by number and are mapped to a unique image tile.
These values are also sorted in ascending order based on values of the z-axis. The relative
deviation of memory consumption in percent is plotted on the z-axis. Zero represents the mean
value during execution for a single tile. Each tile has a different mean value. For example,
a deviation of 100 % indicates the memory consumption for the corresponding x-value. As
shown in Figure 5, the average memory consumption of all tiles is 618 MBytes. We observe a
similar pattern of memory consumption for all tiles. At the beginning of runtime, the memory
consumption rises and saturates at its maximum value. Then it keeps a threshold and finally
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Figure 4: Memory consumption of a typical Ki–67 analysis. The x-axis represents the relative
execution time in percent. The z-axis represents the relative memory consumption (VmRSS)
compared to the mean consumption of the according tile. The y-axis represents the ID of a
single tile.

at the end of runtime memory is released again. Also, the peak value deviates across all image
tiles. The quantity memory consumption may be helpful in determining the Ki–67 score of an
image tile, in particular of those images tile that show a long plateau.

Figure 5: In absolute values, the average memory consumption of the Ki–67 analysis software
for our dataset is 618 MByte per tile, with a minimum deviation of 80 % (equals 121 MByte)
and a maximum deviation of 224 % (equals 1387 MByte). The average of the maximum memory
consumption of all tiles is 982 MByte, with a minimum deviation of 85 % (equals 149 MByte)
and a maximum deviation of 221 % (equals 2176 MByte). The variation in memory occupation
is mainly a result of how the analysis program is handling image contents and qualities of
various input files.
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Figure 6: An example for non-deterministic results produced by the Ki–67 analysis software.
The same image is processed with 1, 2, 3 and 4 threads and with 10 iterations for each thread.
In total, 40 runs are performed. In 95 % of all iterations, the Ki–67 analysis results in a score of
0.083 [green background] representing the class ’low tumor growth’. In 5 % of all iterations, the
score 0.214 [yellow background] is computed and represents the class ’medium tumor growth’.

3.3 Testing For Platform Independence

When executing an application on heterogeneous platforms one has to verify for correctness of
results. Even computation across different CPU architectures may differ. After running first
tests with the Ki–67 application we observed a discrepancy between Windows and Linux for
the same set of input images. A detailed study of the source code showed that this is due
to the handling of intermediate computations which creates time-bound results. For further
computations, a reference set of image tiles is created. Half of this set contains randomly
selected of image tiles based of a WSI. The other half is based of the same WSI as well, but
contains image tiles satisfying specific conditions. Such a condition can be an image having
just a single cell nucleus and hardly no other textures. Then, the Ki–67 application processes
both images sets on Windows and Linux. Afterwards, the obtained scores are compared for
both platforms. Analysing the results has revealed non-matching scores. By examining the
source code of the application three functions could be identified which caused non-deterministic
results as illustrated by Figure 6. The classification of a very same image changes by varying
the number of processing threads and also when not changing any execution parameter at all.
Indicators to look at are parallel statements of .NET such as lock and Parallel.For. These are
the main structures which are used by the application for achieving a local parallel processing.
The way by which the Parallel.For code block is handling intermediate computations produces
time-bound results. These results vary by the number of threads the Parallel.For code block
is using. To fix the issue all three functions were restricted to use a single thread. It is a
valid method to reduce any impact of changing the underlying algorithm. First benchmarks
indicates a performance loss of less then five percent. Modifying the underlying algorithms of
the three affected functions could have introduced other side effects which may not be intended
by the original author of the software. To summarize, the modified Ki–67 application is now
producing identical results on both operating systems Windows and Linux.

3.4 Benchmarking

The benchmark is used to examine how the Ki–67 applications performs when running on a
distributed environment as shown in Figure 7. The overall processing time of an image set
is measured. In preparation, a typical WSI is split into equally sized image tiles. These tiles
results in a total dataset of 5 GB. Each tile has a dimension of 1024×1024 pixels and is encoded
as PNG file format. The original application sequentially processes all images as illustrated in
Figure 8..
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Figure 4: Memory consumption of a typical Ki–67 analysis. The x-axis represents the relative
execution time in percent. The z-axis represents the relative memory consumption (VmRSS)
compared to the mean consumption of the according tile. The y-axis represents the ID of a
single tile.

at the end of runtime memory is released again. Also, the peak value deviates across all image
tiles. The quantity memory consumption may be helpful in determining the Ki–67 score of an
image tile, in particular of those images tile that show a long plateau.

Figure 5: In absolute values, the average memory consumption of the Ki–67 analysis software
for our dataset is 618 MByte per tile, with a minimum deviation of 80 % (equals 121 MByte)
and a maximum deviation of 224 % (equals 1387 MByte). The average of the maximum memory
consumption of all tiles is 982 MByte, with a minimum deviation of 85 % (equals 149 MByte)
and a maximum deviation of 221 % (equals 2176 MByte). The variation in memory occupation
is mainly a result of how the analysis program is handling image contents and qualities of
various input files.
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Figure 6: An example for non-deterministic results produced by the Ki–67 analysis software.
The same image is processed with 1, 2, 3 and 4 threads and with 10 iterations for each thread.
In total, 40 runs are performed. In 95 % of all iterations, the Ki–67 analysis results in a score of
0.083 [green background] representing the class ’low tumor growth’. In 5 % of all iterations, the
score 0.214 [yellow background] is computed and represents the class ’medium tumor growth’.
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Figure 7: Cluster set-up used for benchmarking. It illustrates an example for job allocation and
processing of a nine image tile dataset (I1 to I9) running in parallel across six nodes (N1 to N6).
A CPU core (C) is assigned to each job slot. Each job slot spawns a new Ki–67 application
and sequentially processes image tiles from its task queue.

Figure 8: Schema of a Ki–67 analysis running on a single Windows PC. It processes single
image tiles by using all available CPU cores provided by the execution environment.

Figure 9 shows the schema how image tiles are being processed by running Ki–67 processes
in parallel. The image tiles are subdivided into two sets. Each set is now executed by a
separate Ki–67 instance. Afterwards both sets are subdivided again and four parallel running
instances of the Ki–67 application sequentially processing their assigned image batches. This
schema is continued till 512 separate data sets are processed. The number of parallel running
Ki–67 instances is determined by the underlying scheduling software. A cluster of six nodes
is used, providing 72 CPUs (144 Threads) and 216 GByte of memory (3 GB per core). The

7

Transforming a Local Medical Image Analysis Towards a Distributed Execution Strutz, Heßling, Streit

Figure 9: Cluster execution schema of a parallel Ki–67 analysis. Each process uses a single
CPU core. In contrast to Figure 8, many tiles are processed in parallel across their assigned
cluster nodes.

job scheduling is managed by YARN2 of Apache Hadoop and all datasets are stored within the
distributed filesystem HDFS (Hadoop Distributed File System). Several test runs are conducted
while changing the number of requested container available to process all image tiles. After a
test run is committed, YARN2 provisions resources accordingly. Within a single container a Ki–
67 application is instantiated and sequentially processes its assigned image tiles. Afterwards, the
YARN2 scheduler detects completed jobs and collects its return values. We are using specifically
prepared input files to influence the parallel ratio within Hadoop. Each file comprises an equally
sized sub-set of 3639 images where each element represents a HDFS encoded file-location path.
The number of input files reflects the number of partitions Hadoop is using for a test run.
For example, two input files result in the provisioning of two job-container as long as sufficient
resources are available. Both running in parallel and each container sequentially processes about
1820 image tiles. Four input files result in four job-container, and so on. Only for a single input
file our Hadoop environment behaves differently. Instead of a single one, two job-container are
created. This produces similar measurements for a single and for two input files. Due to this
anomaly, the processing times for one and two job-containers are equivalent. A determination
of the speedup has to take this anomaly properly into account. This is most easily done by
effectively doubling the processing time for one container, i.e. we calculate the speedup from
the formula

S(n) =
2T (1)

T (n)

where T (n) denotes the total time for processing all tiles using n containers. The results of
our speedup measurements are shown in Figure 10. At low degrees of parallelization, the
speedup evolves parallel to the boundary of the regime of super-linear speedup. The speedup
for the number of requested container saturates for values greater than 64. This is related to
the cluster’s hardware limit and the way of Hadoops job provisioning. By assigning 3 GB of
memory for a job, Hadoop divides the total available memory (216 GB) by three which leads
to a upper limit of 72 containers. Exceeding this values leads to an over-provisioning of image
tiles. A decline in speedup for n = 64 requested container is observed. This seems to be a
systematic effect as the error (standard deviation) is systematically smaller than the observed
effect.
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The number of input files reflects the number of partitions Hadoop is using for a test run.
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1820 image tiles. Four input files result in four job-container, and so on. Only for a single input
file our Hadoop environment behaves differently. Instead of a single one, two job-container are
created. This produces similar measurements for a single and for two input files. Due to this
anomaly, the processing times for one and two job-containers are equivalent. A determination
of the speedup has to take this anomaly properly into account. This is most easily done by
effectively doubling the processing time for one container, i.e. we calculate the speedup from
the formula
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where T (n) denotes the total time for processing all tiles using n containers. The results of
our speedup measurements are shown in Figure 10. At low degrees of parallelization, the
speedup evolves parallel to the boundary of the regime of super-linear speedup. The speedup
for the number of requested container saturates for values greater than 64. This is related to
the cluster’s hardware limit and the way of Hadoops job provisioning. By assigning 3 GB of
memory for a job, Hadoop divides the total available memory (216 GB) by three which leads
to a upper limit of 72 containers. Exceeding this values leads to an over-provisioning of image
tiles. A decline in speedup for n = 64 requested container is observed. This seems to be a
systematic effect as the error (standard deviation) is systematically smaller than the observed
effect.
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Figure 10: Runtime measurements of the Ki–67 application which is executed in parallel across a
six node Hadoop cluster. In total, 96 container are being used at maximum load in parallel where
each container is sequentially processing a stack of image tiles. For reference, the boundary of
the region of super-linear speedup is indicated. The speedup anomaly at n = 1 is set out in the
text.

4 Conclusion

A reference framework for Ki–67 analyses is explored in detail. It is shown that more than
50 % of the time it is running as a single threaded process, i.e. its maximum speedup is smaller
than 2. Although the application is being developed to run on a Microsoft .Net platform it is
now able to be executed on a Linux environment and shown to produce the same results. To
verify this assertion, the source code was analyzed in detail. It turned out that by changing
the platform from Windows to Linux the original algorithms were affected by non-deterministic
behaviours. The root of this flaw is identified and fixed. This fix has only a minor impact on the
performance. The speedup of the modified Ki–67 software is determined by performing several
benchmarks in a distributed environment. It is shown that the speed increases linearly with
the degree of parallelization and that the slope of the increase is nearly one, i.e. the efficiency
of the parallelization is almost unaffected. However, the speedup saturates above the cluster’s
hardware limit of 72 cores. There may be a relation between the content of image tiles and
the memory consumption during processing a Ki–67 application. In conclusion, due to various
runtime analyses and precise source code optimizations, the selected Ki–67 application is now
able to run in a distributed environment and a strong improvement in speedup from 2 to 64
is obtained. It should be noted that the observed upper limit in speedup is merely due to the
available hardware. The methods presented in this work allow to improve the speedup even
more by using a more powerful cluster. So far, fixed sizes for image tile are used. Next steps
are to investigate, how various tiling strategies influencing the Ki–67 analysis scores and its
performance figures. Working on different image tiles often creates boundary problems which
also can lead to a misclassification. This issue will also be explored in an upcoming investigation.
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