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Abstract
Given the expected high penetration of renewable energy production in future
electricity systems, it is common to consider buildings as a valuable source for the
provisioning of flexibility to support the power grids. Motivated by this concept, a
wide variety of control strategies for building energy management has been
proposed throughout the last decades. However, these algorithms are usually
implemented and evaluated for very specific settings and considerations. Thus, a
neutral comparison, especially of performance measures, is nearly impossible.
Inspired by recent developments in reinforcement learning research, we suggest
the use of common environments (i.e. benchmarks) for filling this gap and finally
propose a general concept for standardized benchmarks for the evaluation of
control strategies for building energy management.
Keywords: building energy management; building control; environment;
benchmark; evaluation; reinforcement learning

Introduction
In order to limit the unpredictable and potentially devastating effects of global
warming, the governments of most countries have committed themselves to drasti-
cally cut CO2 emissions by 2050 [1]. Consequently, the federal government of Ger-
many has enacted the ”Klimaschutzplan” [2] (literally ”climate protection plan”)
defining concrete measures to achieve this ambitious target, including a complete
decarbonisation of the German electricity production and an extensive electrifica-
tion of the heat and mobility sector (”Sektorenkopplung”). While it seems to be
consensus that high shares of renewable energy production will lead to an increased
demand for energy flexibility [3, 4, 5], it also appears that buildings, in particu-
lar the heating, ventilation and air conditioning (HVAC) components of these, are
especially suited to provide such energy flexibility [2, 6].

Thus, it is not very surprising that the optimization of energy consumption pat-
terns of buildings is a common research topic. A review on control systems for
building energy management [7] lists 121 publications, of which the vast majority
optimize HVAC components. Albeit these control strategies appear unrelated to the
provisioning of energy flexibility at first glance, both concepts can be connected by
dynamic pricing strategies, as suggested, for example, in [8, 9].

Given the need for energy flexibility and the vast and diverse set of potential
control strategies to provide such with buildings, the question arises how to evalu-
ate which approach is best suited for a particular task. Following up we will thus
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investigate the current state of the art regarding the comparison and evaluation of
control approaches for building energy management.

State of the Art
While reviewing the existing literature, it was possible to identify qualitative and
quantitative approaches for the comparison of control strategies for building energy
management. General reviews like [7, 10, 11] use rather qualitative measures and
thus focus on a meta level. The contrasting of control strategies is carried out using
general topics, such as the implemented algorithms, the applied control schemas, the
utilized simulation tools, and/or the considered devices. Albeit these publications
are very useful in general, they provide no objective comparison of the achieved
performance of the reviewed control strategies.

On the other hand, in publications following the second approach, it is common
that the authors evaluate one or more control strategies in a very specific setting
using rather quantitative metrics. For example, Salpakari & Lund [12] developed
a complex model consisting of a heat pump with storage, photovoltaic panels, a
battery and smart appliances inspired by an existing low energy house. Using that
model, the authors compared a rule based based control (RBC) strategy to cost
optimal behavior with respect to energy costs and self-consumption rates. Both
Lösch et al. [13] and Faßnacht et al. [14] developed an algorithm for the scheduling
of heat pumps based on a dynamic electricity tariff. The algorithms have been
compared against the default hysteresis control strategy in a simulation with energy
cost as performance measure. Oldewurtel et al. [15] compared RBC with two MPC
approaches utilizing a custom developed simulation model on 1280 test cases with
respect to energy usage, thermal comfort and temperature dynamics.

We were able to identify numerous publications following a similar schema to the
ones introduced above. However we refrain from giving a more extensive review at
this point, as it is out of this paper’s scope. Concerning the main topic of this work,
the evaluation of control strategies for building energy management, we identify
two major issues. First and although many publications use similar metrics like
energy usage or energy costs, it is not feasible to compare different approaches in
a quantitative manner. This is due to the usual procedure of not reusing the sim-
ulation models of others, which may also be caused by the uncommonness of open
source publications of these. The second issue arises if one considers the provision-
ing of electric flexibility through buildings on larger scales, which obviously leads to
the utilization of numerous, potentially very diverse, buildings. However, the cur-
rent procedure of evaluating control approaches against one simulation model alone
leaves no indication how well the evaluated strategies generalize to other buildings.

Standardized Benchmarks in Reinforcement Learning
In reinforcement learning, a field closely related to control theory [16], several bench-
marks have been published for the development, evaluation and comparison of al-
gorithms. These benchmarks, commonly referred to as environments, have been
widely adopted, which allows the direct performance comparison of newly devel-
oped algorithms with existing approaches, e.g. in [17, 18, 19]. Popular examples
are often based on computer games, like the Arcade Learning Environment [20]
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while other environments focus on the control of robots [21] or implement ”classic
control” problems like balancing a pole on a cart [22]. It appears especially notewor-
thy that the Arcade Learning Environment in fact consists of 57 games and that
reinforcement learning algorithms, e.g. [17, 18, 19], are often routinely evaluated
against all of those. The distribution of scores is thereby considered a measure for
the generalization abilities of the proposed algorithms, that is, an indication of the
expected performance on related tasks.

The interaction with the environments follows the schema of observations, actions
and rewards, which is generally well suited for control problems [16] and has been
applied successfully to challenging domains, like e.g. aerobatic helicopter flight [23].
Consider the Atari game of space invaders as an example, in which the player can
control a space ship at the lower end of the screen and receives points for shooting
alien space ships approaching from the top, which is actually part of the Arcade
Learning Environment. As common in reinforcement learning, the environment is
processed in discrete time steps. In every time step, the environment emits a frame
of the gameplay, called observation, as well as the current score referred to as reward.
Observation and reward are then passed to the evaluated algorithm, which is usually
named agent in reinforcement learning. The agent is queried for the next action,
i.e. the control input to the environment, like e.g. move left, move right, shoot or
do nothing. Once the action is passed to the environment, it will advance one time
step, emitting a new observation and reward. These steps are usually run as a loop
until a terminal state is reached, i.e. game over, while the accumulated reward is
commonly used as metric to evaluate the performance of the algorithm.

Proposal
In order to overcome the issues identified in the current State of the Art, we pro-
pose the establishment of standardized and shared benchmarks for the evaluation
of control strategies for building energy management following the example of en-
vironments used in reinforcement learning. We propose the following:

• To allow the development of building energy management approaches that
can be applied to large number of diverse buildings, the benchmarks should
be a collection of distinct building simulation models. These should focus on
different optimization targets, e.g. heating, cooling or appliances, as well as
varying objectives like e.g. own consumption or energy costs.

• All benchmarks should be published as open source projects to allow
widespread usage and verification.

• The communication between algorithm and benchmarks should be standard-
ized in order to limit the effort to execute a benchmark to the necessary min-
imum. The interface should follow the schema of observations, rewards and
actions, as it is well established and allows the usage of available reinforcement
learning algorithms for comparison.
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