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Abstract: The rising atmospheric CO2 concentrations have effects on the worldwide ecosystems such
as an increase in biomass production as well as changing soil processes and conditions. Since this
affects the ecosystem’s net balance of greenhouse gas emissions, reliable projections about the CO2

impact are required. Deterministic models can capture the interrelated biological, hydrological,
and biogeochemical processes under changing CO2 concentrations if long-term observations for model
testing are provided. We used 13 years of data on above-ground biomass production, soil moisture,
and emissions of CO2 and N2O from the Free Air Carbon dioxide Enrichment (FACE) grassland
experiment in Giessen, Germany. Then, the LandscapeDNDC ecosystem model was calibrated with
data measured under current CO2 concentrations and validated under elevated CO2. Depending on
the hydrological conditions, different CO2 effects were observed and captured well for all ecosystem
variables but N2O emissions. Confidence intervals of ensemble simulations covered up to 96% of
measured biomass and CO2 emission values, while soil water content was well simulated in terms
of annual cycle and location-specific CO2 effects. N2O emissions under elevated CO2 could not
be reproduced, presumably due to a rarely considered mineralization process of organic nitrogen,
which is not yet included in LandscapeDNDC.

Keywords: FACE; grassland; biogeochemical ecosystem model; soil moisture; greenhouse gas
emissions; plant biomass

1. Introduction

To date, biogeochemical cycles all over the world are undergoing fundamental adjustments as a
response to rising atmospheric greenhouse gas (GHG) concentrations and related climatic and plant
physiological consequences [1]. Especially carbon dioxide (CO2) has received widespread attention
due to its role in the global radiation budget, making its increasing concentrations the main driver for
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climatic changes such as rising temperatures, shifting precipitation patterns, and unpredictable extreme
events [2]. To assess the interaction of elevated CO2 with the carbon (C) cycle outside of controlled
laboratory environments, Free Air Carbon dioxide Enrichment (FACE) experiments were established
to observe the reaction of whole ecosystems to enhanced CO2 levels. During these FACE experiments,
elevated CO2 was found to fertilize plant primary production, leading, for example, to yield increases
for cereals [3] and grapevine [4] as well as increased litter production in forests [5]. Due to the usually
short duration of FACE experiments, it remains unclear whether these effects are permanent. Nutrients
such as nitrogen (N), for example, have been hypothesized to become progressively limited in relation
to increased C input via CO2 fertilization [6]. Reliable predictions are made difficult both by a lack of
process understanding of the C–N interactions [7] and by the low general validity of hypotheses on the
effect of increased CO2 [8]. Process-based ecosystem models used for hypothesis testing are therefore
required to include a range of effects, e.g., on decomposition by soil bacteria [9], soil respiration and
root biomass [10], root exudation [11], and root-associated mycorrhizal fungi [12].

However, translating these processes into a reliable projection of the ecosystem response to
enhanced CO2 by means of a set of mathematical equations is challenging. The various approaches
include models that concentrate, for example, on the factors directly relevant to greenhouse gas
emissions [13–15] or track the dependencies for the entire ecosystem (see, for example, the LPJ model
family [16,17]). Such ecosystem models are predestined for mapping the manifold effects of elevated
CO2 concentrations but require correspondingly long observation series from FACE experiments for
validation [18,19]. In a comprehensive study, several complex ecosystem models were calibrated and
tested against measurements from two Forest-FACE experiments [20,21] showing that all models
lacked the capability to simulate long-term effects of enhanced CO2 adequately. The authors argue that
shortcomings of the model simulations are connected to deficits either in the representation of the N
cycle or its link to the C cycle [20,22,23]. Especially the model examination at ambient CO2 [22] showed
how fallibilities of the CO2 reaction can be deduced a priori from inconsistencies in the combined
cycles of carbon, nitrogen, and water.

For this study, we utilized 13 years of observation data from the grassland FACE experiment in
Giessen (Germany), which has already been used for several simulation studies [24–26]. By employing
the process-based ecosystem model LandscapeDNDC [27], simulations were calibrated against
observations collected at ambient CO2 concentrations and validated with measurements collected at
elevated atmospheric CO2 concentrations. Multivariate ensemble simulations of biomass production,
soil moisture, and greenhouse gas emissions were evaluated with special attention to the interactions
between the cycles of C, N, and water. The aim of this study is to find out whether process-based
models such as LandscapeDNDC can be used to adequately simulate the long-term behavior of an
ecosystem under increased atmospheric CO2 concentrations.

2. Materials and Methods

2.1. Study Site

The investigated temperate, permanent grassland is part of the “Environmental Monitoring and
Climate Impact Research Station Linden” near Giessen, Germany (50◦32′ N, 8◦41.3′ E, 172 m a.s.l.).
Local climatic conditions are characterized by annual precipitation of 563 mm and an average air
temperature of 9.5 ◦C in the period from April 1995 to December 2011. The grassland was cultivated
while the soil remained undisturbed for over 100 years and was not irrigated during the investigated
period. The vegetation has been described as an Arrhenatheretum elatioris Br.-Bl. Filipendula ulmaria
sub-community with up to 35 different plant species dominated by tall oat grass, yellow oat grass,
meadow soft grass, meadow geranium, and white beadstraw on a stagnofluvic gleysol on loamy-sandy
sediments over clay [28]. The top soil layers (A-horizon 0–12 cm) show a partially low bulk density
(0.63–1.01 g cm−3), which, however, increases rapidly with soil depth (up to 1.52 g cm−3 at 15 cm,
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see [29]). The grassland has been managed extensively with mineral fertilizer application (ammonium
nitrate, NH4NO3) of 40 kg ha−1 yr−1 in mid-April and two cuts per year.

The grassland research area was established in 1993/94, and in May 1998, the Giessen Free
Air Carbon dioxide Enrichment (GiFACE) experiment started to investigate the effects of rising
atmospheric CO2 concentrations [29]. We used data collected from a total of six plots, each surrounded
by a fumigation ring. The three plots E1, E2, and E3 were fumigated with additional CO2 (=elevated
CO2, eCO2), while the remaining three plots A1, A2, and A3 were not fumigated for control purposes
(=ambient CO2, aCO2). The experiment is designed in such a way that the fumigation is dynamically
adjusted to about 20% above the ambient concentration. In reality, the average CO2 concentrations
were 22.3% higher for E1–E3 (annual means: 458 ppm in 1999 up to 484 ppm in 2011) compared to
A1–A3 (386 ppm/401 ppm) in the evaluation period. The evaluation period started in August 1998
with the onset of CO2 emission measurements and ended in December 2011. In addition, data about
weather conditions (global radiation, air temperature, relative humidity, precipitation), N deposition,
groundwater level and nitrate (NO3) concentrations, vertically resolved soil properties (texture, bulk
density, pH, organic C and N content), soil water content (SWC, measured at soil depth 0–15 cm with
TDR (time domain reflectometry) probes [30]), plant harvest (aboveground biomass, C/N ratio, cutting
schedule), and CO2 and nitrous oxide (N2O) emissions (both measured at dusk) are used for this
study. Emissions were measured with opaque static chambers placed on permanently installed frames
(10 cm deep) and analyzed on a gas chromatograph (for details, see [31]). Since the opacity impedes
photosynthesis related carbon fluxes during emission measurements, we considered the measured
CO2 emissions to be total ecosystem respiration minus growth respiration.

The plots were paired in three blocks A1/E1, A2/E2, and A3/E3 with different hydrological
characteristics. We described the plots according to their respective average groundwater levels (agl) as
driest (A1/E1, agl = −1.02 m), medium (A3/E3, agl = −0.76 m), and wettest (A2/E2, agl = −0.66 m) pairs.
Groundwater is generally shallow and highly variable in this area, rising close to the surface in most
winter periods. A slight north facing slope (ca. 2%) indicates potential lateral inflow of groundwater
from the upslope croplands. Regular measurement of groundwater NO3

− concentrations was started in
2016 with several measurements per month at seven different points on the test site, with the exception
of January. No such data are available for the observation period of this study. Hence, the annual cycle
from 2016 was used, interpolated and averaged over all seven measuring points of the test site as a proxy.

More about relevant measurement data can be found at http://www.face2face.center (last access
on 11 November 2019) and Table A1.

2.2. Data Implementation

All measured data used for model simulations (see Table A1) are classified according to four different
categories: model initialization, model forcing data, model calibration data, and model parameters.
Initialization uses data to set up initial values of organic C and N content of the soil at the beginning
of the simulation. Forcing data determine the boundary conditions of the simulation. They include
management events (cutting, fertilizer application), weather data, N deposition, atmospheric CO2

concentrations, groundwater NO3
− concentrations, and groundwater levels (interpolated to daily time

resolution). Calibration data are measured data belonging to five target variables that are used for
sensitivity analysis, calibration, and/or validation. They include harvested plant biomass, plant C–N
ratio (only sensitivity analysis and calibration), SWC, and emissions of CO2 and N2O. Parameters
are ecosystem properties whose values are either fixed or calibrated within predefined ranges. Fixed
parameters were derived from literature (soil texture, pH, and bulk density). Calibrated parameters
include only soil hydraulic properties (field capacity, wilting point, hydraulic conductivity, vanGenuchten
α and n) whose ranges were derived from literature (field capacity, wilting point), expert knowledge
(α, n), and ad hoc infiltration experiments (sks).

It should be noted that the behavioral simulations were performed for both aCO2 and eCO2 with
a steeper gradient in saturated hydraulic conductivity sks in the uppermost soil layers. The gradient

http://www.face2face.center
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corresponds to sks values obtained during recent ad hoc infiltration measurements, which were ignored
only during the sensitivity analysis to prevent unintended false positive selection of sks as a sensitive
parameter. Ranges to calibrate field capacity and wilting point for each of the three blocks A1/E1,
A2/E2, and A3/E3 were derived from water retention curves (see [32]).

2.3. Model Setup

LandscapeDNDC [27,33] is an ecosystem model framework that provides an exchangeable pool of
submodels for the description of various compartments. We selected canopyECM [34], PlaMox, MeTrx,
and EcHy according to their suitability with regard to the CO2 effect. PlaMox [35] is based on the
Farquhar model [36] and is used for plant physiology and photosynthesis, which allows the simulation
of the CO2 effect on biomass production. MeTrx [37] was selected to model the biogeochemistry, making
it possible to simulate the (indirect) effect of eCO2 on soil microbiology and associated greenhouse gas
emissions. EcHy ([38], under review) was implemented to simulate both hydrology and its relationship
to plant development, making ecohydrological effects of eCO2 on soil water content visible. MeTrx

and EcHy were supplemented by additional algorithms that simulate the influence of groundwater,
including NO3

− dissolved in groundwater, on soil hydrology and chemistry [26].
The runtime of the simulations began in April 1995, whereby the three years before the start of

the evaluation period in August 1998 were used as spin-up. All submodels ran consecutively with a
two-hourly resolution. Since we considered a grassland ecosystem on a plot scale, we used a laterally
homogeneous LandscapeDNDC setup. Vertical resolution was set to 50 mm for the upper soil layers
(0–20 cm), increasing to 150–200 mm for the lower layers (50–100 cm). While the layers were different
in respect of their respective soil properties, each layer was divided into several sublayers sharing the
same characteristics.

2.4. Sensitivity Analysis and Calibration

The LandscapeDNDC setup we used contains a subset of more than 100 indefinite parameters,
i.e., parameters whose values are uncertain within limits chosen by expert knowledge and literature.
For these parameters, a set of values had to be estimated to give the best possible agreement between
simulation and measurement data under aCO2. In this context, aCO2 measurement data were used
exclusively for calibration, while validation was based only on eCO2 data. The agreement was
quantified by using Root Mean Squared Error (RMSE) as a target function.

As the number of necessary model runs grows exponentially with the number of parameters,
a sensitivity analysis was performed at the beginning to reduce the number of parameters to the
most sensitive. We used the Fourier Amplitude Sensitivity Test (FAST, see [39,40]) to determine the
most sensitive parameters under aCO2 conditions on the basis of 250,000 simulations each (for details,
see Figure A1 and Table A2).

For the remaining sensitive parameters (n = 16), 250,000 parameter sets for A1, A2, and A3
were calculated and simulated again using Latin Hypercube Sampling (LHS, see [41]), while all other
parameters were left at their initial values. From the simulations generated by LHS, a selection of the
“best” (which we call behavioral from here on) simulations based on General Likelihood Uncertainty
Estimation (GLUE, see [42]) was made. GLUE allows the calibration of LandscapeDNDC to an
ensemble of suitable (that is, behavioral) simulations that meet previously defined threshold objective
function criteria (see Houska et al. [24]). These thresholds were chosen as upper limits for the RMSE of
the behavioral simulations, meaning that each behavioral simulation must have an RMSE for each
target variable less than or equal to the set value. Starting with the values by Houska et al., a further
lowering was carried out, during which the subsequent threshold values (Table 1) were determined by
simultaneous manual adjustment at all target variables and aCO2 plots.
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Table 1. Maximum acceptable Root Mean Squared Error (RMSE) for the target variables during
model calibration.

Target Variables Threshold Unit Evaluated for Plots

Plant Biomass 1300 kg DW ha−1

A1, A2, A3
C–N ratio 4.10 -

CO2 emissions 200 mg CO2 m−2 h−1

N2O emissions 26.0 µg N2O-N m−2 h−1

Soil Water Content (SWC) 9.0 vol.-%

These simulations selected as behavioral under aCO2 were then repeated for validation under
eCO2 while retaining the associated parameter sets. Only the input values for atmospheric CO2

concentrations and soil properties were replaced by the measured values of the eCO2 plots. The free
open source software SPOTPY (Statistical Parameter Optimization Tool for Python, [43]) was used for
all sensitivity analyses and calibration runs.

2.5. Evaluation

For the assessment of the CO2 effect in the ensemble simulations, it had to be determined to what
extent such an effect could also be proven in observation data. Statistical tests were performed to
determine whether significant differences between aCO2 and eCO2 were present in the respective
measurement data. Since the measurements were not normally distributed, we chose the nonparametric
Mann–Whitney U-test to assess the probability of whether the data from aCO2 and eCO2 plots could
belong to the same distribution.

The model ensembles of the behavioral simulations both for aCO2 and eCO2 were summarized as
cumulative diagrams (except SWC) and compared with the measured data. The ensemble simulations
were aggregated into confidence intervals with a confidence coefficient of 95%. For a better quantitative
evaluation, the RMSE values of the behavioral (non-cumulative) simulations for aCO2 and eCO2 (see
Table A3) were averaged and compared. Non-cumulative measured data were used for statistical
significance tests (see Table A4) and assessed on a significance level of α = 0.05.

3. Results

We evaluated the target variables of plant biomass, SWC, CO2, and N2O emissions. The plant
C/N ratio was only used for calibration and is therefore not evaluated in detail here. Average values of
the simulated C/N ratios were between 24.7 and 27.6, which is about the same range as the average
measured values (25.0–28.3).

3.1. Cumulative Plant Biomass

Limits of the confidence intervals increased from aCO2 to eCO2 for all blocks, including almost all
(96%) cumulative measured biomass values for A2, E2, A3, and E3 (Figure 1). However, significantly
increased biomass due to eCO2 was only measured for the driest block (A1/E1, see Tables A4 and A5)
but not for the wetter blocks (A2/E2 and A3/E3). For block A1/E1, percentage of cumulative measured
values within the confidence intervals remained stable (37%/41%), even though average RMSE increased
moderately (+18%, Table A3) under eCO2. Since all measured values of A1 and E1 were close to
the upper edge of their respective confidence intervals, a slight underestimation by the simulations
remained at this block both for aCO2 and eCO2.
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the simulations as well as in the measurements but at a higher level for the latter, which is why peak 
values of the SWC in these periods were often underestimated. This applied to both aCO2 and eCO2, 
even though the measurement curves diverged strongly in some cases, with SWC being up to twice 
as high under eCO2 as under aCO2. 

The reaction of the measured SWC to elevated CO2 varied between the plots; based on average 
values, the SWC increased significantly (Table A4 and Table A5) under eCO2 at A1/E1 (+3.6 vol.-%, 
on average) and at A3/E3 (+1.1 vol.-%). However, at block A2/E2, SWC also decreased significantly 
under eCO2 (−2.3 vol.-%). Confidence intervals showed a qualitatively similar eCO2 reaction as the 
simulated SWC increased from A1 to E1 but decreased from A2 to E2. Furthermore, average RMSE 
(Table A3) was consistently lower during validation (E1–E3) than during calibration (A1–A3). 

Figure 1. Cumulative measured and simulated values of harvested plant biomass for ambient (aCO2)
and elevated CO2 (eCO2) Free Air Carbon dioxide Enrichment (FACE) rings. Plots are arranged
according to increasing soil moisture from driest (top, A1/E1) to medium (middle, A3/E3) and wettest
(bottom, A2/E2) rings. Measurements are depicted in dots; confidence intervals of simulations are
depicted as colored areas.

3.2. Soil Water Content

The simulations generally followed the dynamics of the observations, though the confidence
intervals did not include the majority of the measured SWC values (see Figure 2). Short-term
fluctuations of the SWC as well as drying phases were well captured by the simulations. Longer
periods in which the soil was saturated were primarily seen in the winter months. This occurred in
the simulations as well as in the measurements but at a higher level for the latter, which is why peak
values of the SWC in these periods were often underestimated. This applied to both aCO2 and eCO2,
even though the measurement curves diverged strongly in some cases, with SWC being up to twice as
high under eCO2 as under aCO2.

The reaction of the measured SWC to elevated CO2 varied between the plots; based on average
values, the SWC increased significantly (Tables A4 and A5) under eCO2 at A1/E1 (+3.6 vol.-%,
on average) and at A3/E3 (+1.1 vol.-%). However, at block A2/E2, SWC also decreased significantly
under eCO2 (−2.3 vol.-%). Confidence intervals showed a qualitatively similar eCO2 reaction as the
simulated SWC increased from A1 to E1 but decreased from A2 to E2. Furthermore, average RMSE
(Table A3) was consistently lower during validation (E1–E3) than during calibration (A1–A3).
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indicating an underestimation of LandscapeDNDC during the first half of the simulation period. No 
deviations occurred after 2007. Average RMSE values increased under eCO2, with a moderate 
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Figure 2. Time series of soil water content in 0–15 cm soil depths from ambient (aCO2) and elevated
CO2 (eCO2) FACE rings. Plots are arranged according to increasing soil moisture from driest (top,
A1/E1) to medium (middle, A3/E3) and wettest (bottom, A2/E2) rings. Measurements are depicted in
lines, and confidence intervals of simulations are depicted as colored areas.

3.3. Cumulative CO2 Emissions

As can be seen in Figure 3, measured and simulated CO2 emissions were higher in all blocks under
eCO2 than under aCO2. The increase was significant for A1/E1 and A3/E3 but not for A2/E2 (Tables A4
and A5). Confidence intervals included fewer cumulative measured values under eCO2 than under
aCO2 treatment. The proportions ranged from 94% to 44% at block A1/E1, from 79% to 65% at A2/E2,
and from 70% to 69% at A3/E3. Outliers almost exclusively occurred before 2004, with the exception of
E1, where the confidence interval was below the measurements until 2007. For both aCO2 and eCO2,
all outliers were close to the upper edge of the confidence range, indicating an underestimation of
LandscapeDNDC during the first half of the simulation period. No deviations occurred after 2007.
Average RMSE values increased under eCO2, with a moderate increase from A1 to E1 (about 20%)
and a slight increase from A3 to E3 (about 9%). However, RMSE (Table A3) at E2 remained virtually
unchanged compared to A2 (increase of about 1%).
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Figure 3. Cumulative measured and simulated CO2 emissions from ambient (aCO2) and elevated CO2

(eCO2) FACE rings. Plots are arranged according to increasing soil moisture from driest (top, A1/E1)
to medium (middle, A3/E3) and wettest (bottom, A2/E2) rings. Measurements are depicted in lines,
and confidence intervals of simulations are depicted as colored areas.
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3.4. Cumulative N2O Emissions

The measured N2O emissions for eCO2 increased significantly compared to aCO2 at all blocks
(Table A4), while the associated confidence intervals of the LandscapeDNDC simulations remained largely
unchanged (Figure 4). For aCO2 plots, confidence intervals included 39.2% (A1), 27.8% (A2), and 38.3%
(A3) of the cumulative measured N2O emissions, thereby underestimating the measurements, especially
in the early years up to 2007/08. A very contrasting picture appeared for eCO2, where confidence
intervals were completely underestimating measurements, including none of the cumulative measured
values for E1, E2, and E3. The extent of the underestimation depended strongly on the plot under
consideration. If we compared the last cumulative values of measurements and the upper limit of the
confidence intervals, we found a relative deviation of only 9% for E2 but of 282% for E1. For E1 in
particular, a sequence of several sudden increases in cumulative N2O emissions in the years 1998–2001
could be observed. Consequently, the RMSE (Table A3) of N2O emissions increased for all eCO2 plots
but much more for E1 (+190% compared to A1) than for E2 (+28%) and E3 (+57%).
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and confidence intervals of simulations are depicted as colored areas.

4. Discussion

The study presented here aimed at simulating long-term effects of atmospheric CO2 enrichment on
various environmental target variables of a grassland ecosystem. The CO2 fumigation was performed
as part of a long-term FACE experiment, from which the measured data of plant biomass, SWC, CO2,
and N2O emissions collected continuously for more than 13 years were taken and used for calibration
and validation. With the exception of N2O emissions, it was possible to satisfactorily simulate the
long-term effects of the CO2 enrichment for all target variables.

4.1. Biomass

Agreement between simulation and measurement of biomass, especially with regard to the eCO2

effect, varied depending on the location. For block A1/E1, agreement with measured values remained
essentially the same, suggesting that the eCO2-induced increase in biomass production was correctly
simulated by the model, although biomass production itself was slightly underestimated. The opposite
was observed for A2/E2, where the agreement between confidence intervals and measured values was
almost perfect for both A2 and E2, although the simulations showed an increase due to elevated CO
not given by the data. In context, this indicated (at least) two growth factors that were not correctly
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captured in the LandscapeDNDC setup used. One of these factors strengthened the CO2-independent
growth for A1/E1, while the other factor negated the CO2 growth effect for A2/E2.

The eCO2 reaction of the biomass differentiated according to the blocks could thus be assumed to
be closely related to the respective soil hydrological conditions, which were very different for A1/E1
and A2/E2 with regard to both the mean groundwater levels and the SWC values. Previous research by
Andresen et al. [44] found significant correlations of biomass with respect to CO2 treatment and SWC
on this study site, explicitly leaving open whether, in this case, a higher biomass was caused by higher
SWC or vice versa. Kellner et al. [25] used a coupled hydrological plant model with physics-based soil
hydraulics and performed multivariate simulations over the same period as this study. They obtained
a RMSE of 1400–1500 kg DM ha−1 (dry matter per hectare), which is higher than the corresponding
RMSE values in this study (1000–1250 kg DM ha−1). We argue that this was due to a major difference
in the model setups, since Kellner et al. did not incorporate a possible N limitation for plant growth.
This assumption is backed up by a previous study using an N-limited model approach, which found a
massive drop in simulated biomass production if N uptake from the groundwater was ignored [26].
The same process of N uptake was also used in this study, showing that biomass production at the
field site depends on groundwater-borne N supply, reflecting more N limited conditions at the driest
block A1/E1 compared to the wettest block A2/E2.

4.2. SWC

Agreement between SWC simulations and measurements was satisfactory in terms of RMSE
(6.2–7.6%), which is comparable to results by Kellner et al. [25] who achieved an RMSE of 6–10% using a
physically-based hydrological modeling framework for the same period and field site. The confidence
intervals of the simulations did not capture most of the observations but were much narrower than the
fluctuation range of the measurement data. Furthermore, simulated SWC values followed the dynamic
development of the observed SWC for both the annual cycle and most of the short term fluctuations.
The recurrent underestimation of observed SWC peaks in winter was presumably due to the lower
saturation level in the simulations, although it is not possible to clearly state to what extent this was
due to the model setup or measurement errors (e.g., measured SWC values were partly higher than
the pore volume and had to be cut off). Despite this, simulations captured the mean effect of CO2

fumigation and were qualitatively correct at all blocks, even though measured SWC at A1/E1 and
A2/E2 showed opposite eCO2 reactions, while at A3/E3, almost no change occurred on average.

The reason that the eCO2 effect turned from an increase at the driest plot E1 to a decrease at the
wettest plot E2 could have been the more frequent exceedances of field capacity at E2. Niklaus et al. [45]
found a similar increase of the SWC under elevated CO2 in a grassland experiment until the effect
was reversed when the field capacity was exceeded. Qi et al. [46] reported reduced transpiration
and increased SWC in both simulations and observations when investigating the effect of eCO2 on a
semi-arid rangeland.

4.3. Cumulative CO2 Emissions

The confidence intervals of the simulated cumulative CO2 emissions generally covered the
measured values well (RMSE of 199–239 mg CO2 m−2 h−1). Only in the first years, the measured CO2

emissions were partially underestimated, especially under eCO2. Since the difference between measured
data and simulations built up, especially in the years 1998–2001, we suspected an initial adaptation
effect to CO2 fumigation as a possible cause. This agrees with results reported by Kammann [47],
who showed that there was an increase in ecosystem respiration in the first two years under eCO2 but
that it declined again in the third year. Kammann deduced that a likely cause of increased respiration
was either increased rhizodeposition or increased fine root turnover.

However, even long after the initialization of the experiment (e.g., in summer 2010), emission
peaks occurred that were underestimated by simulations (see Figure A2), indicating that acclimatization
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to eCO2 is an ongoing process and single weather events, e.g., drying and rewetting, can mask the CO2

effect [48].

4.4. Cumulative N2O Emissions

The underestimation of the observed N2O emissions by the simulation suggested that essential
processes of N2O formation were not correctly mapped in the model setup used. The regular
underestimation of the SWC in winter, for example, could have led to an underestimation of anaerobic
denitrification. However, since almost all N2O peaks occurred at times outside winter when SWC
was not underestimated, shortcomings in peak SWC simulation could not be mainly responsible for
the underestimation of N2O emissions (see Figures 2 and A3). This would be consistent with the
previous assumption that saturated soil conditions are present in periods of high SWC, leading to
complete anaerobic denitrification to N2 instead of N2O. N2O emission peaks during periods of lower
SWC that may still arise from denitrification but do not necessarily require anaerobic conditions in
the GiFACE meadow soil [49]. In principle, there is also the possibility that N2O emissions resulted
from the time-delayed aerobic denitrification of NO3, which reached the root zone as a result of high
groundwater levels or capillary rise.

Since N2O emissions were highest under eCO2 at the driest A1 plot, the question arises as to why
aerobic denitrification was strongest at the plot with the lowest presumed NO3 supply. An explanation
could be that increased N2O emissions arose from nitrite (NO2

−), as suggested by a recently published
study by Moser et al. [50] on the field site. Moser et al. conducted a 15N tracing experiment, suggesting
that about 90% of the additional N2O emitted under eCO2 originates from soil organic N, which is first
oxidized to NO2

− and subsequently reduced to N2O. The trigger for this could be a priming effect that,
in the early years of CO2 fumigation, resulted in increased turnover of soil organic matter (SOM). Root
exudation [50] and fine root degradation [51] were already assumed as organic N sources for increased
N2O emissions under eCO2 and are possibly related to increased turnover processes due to fungal
activity [31,51–53].

It should be noted that neither priming effects nor fungal decomposition processes or even oxidation
of organic N are currently implemented in LandscapeDNDC. If one or more of these processes is
substantially involved in N2O production in GiFACE, this could explain the underestimation of N2O
emissions under eCO2.

5. Conclusions

The simulations under aCO2 showed a satisfactory agreement with measurements for all target
variables, while under eCO2, this could be achieved for biomass, SWC, and CO2 emissions but not
for N2O emissions. The underlying problem is that N2O emissions result from a large number of
processes and factors that cannot be monitored at the ecosystem level or only for very short time frames.
The consequence of this is that N2O emission peaks are often the result of several possible causes,
not all of which are necessarily known. In our case, conclusions can be drawn from the interplay of
earlier investigations, long-term measurements, and simulations.

The increase in harvest biomass and CO2 emissions under eCO2 speaks for increased production
of SOM and soil respiration. Although the increase in respiration could be attributed in part to the
increased SWC under eCO2, this did not apply to A2/E2. Here, emissions increased for both CO2 and
N2O despite generally lower SWC at E2. This suggests that the measured increase in greenhouse
gas emissions was largely due to the oxidation of SOM. If this was the case, it can be assumed that
NO3 from groundwater is also a rather indirect contributor to the increase in N2O emissions. N2O
production could thus be explained less by anaerobic denitrification of (groundwater) NO3 than by
oxidation of labile SOM, the formation of which is forced by the combination of increased CO2 and
groundwater NO3. Since LandscapeDNDC is currently unable to capture this, and the simulation
quality of the N2O emissions under eCO2 differs radically from that of the other target variables,
we consider the above explanation approach to be promising.
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The example of N2O emissions shows that the assessment of the complex impacts of increased
CO2 benefits from the inclusion of several interrelated environmental variables. However, this also
implies that weak points in the simulation, e.g., peak SWC values, can impair the simulation quality
of the other target variables and must be catered to. For the further use of LandscapeDNDC in
groundwater-impacted meadows, we therefore recommend the oxidation of labile organic N to
be included in the next model setup. The same applies to a better implementation of the special
hydrological conditions in GiFACE. In this regard, we also recommend further studies on the influence
of long-term changes in groundwater levels and nitrate concentrations in groundwater. Finally, research
on the mineralization of organic material by mycorrhiza could help to improve projections about
greenhouse gas emissions for grasslands under future atmospheric CO2 conditions.
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Appendix A

Table A1. Measured data implemented in LandscapeDNDC: FSM = field site measurements (see
Section 2.1); WD = weather data [54]; variable = soil moisture, CO2 and N2O emissions measurements
ranged from several per week to several per month.

Name Value/Unit Start/End Temporal
Resolution Usage Source

Air temperature (mean, min, max) ◦C 1995/2011 daily Driver data WD
Global radiation W m−2 1995/2011 daily Driver data WD

Precipitation mm day−1 1995/2011 daily Driver data WD
Relative humidity % 1995/2011 daily Driver data WD
Groundwater level m 1995/2011 daily *1 Driver data FSM

Fertilizer application (ammonium nitrate) 40 kg N ha−1 yr−1 1995/2011 yearly Driver data [31]
N deposition 14 kg N ha−1 yr−1 1993/1995 mean Driver data [55]

Field capacity mm m−1 - - Calibrated
parameter [32]

Wilting point mm m−1 - - Calibrated
parameter [32]

Van Genuchten α cm−1 - - Calibrated
parameter [32]

Van Genuchten n - - - Calibrated
parameter [32]

Hydraulic Conductivity cm min−1 2017 - Calibrated
parameter FSM

Fraction of soil org. N 0.08–0.37% 2001/2002 - Initialization [29]
Fraction of soil org. C 0.69–3.96% 2001/2002 - Initialization [29]

Soil pH 5.4–6.0 - - Fixed parameter [29]
Cutting height 4 cm - constant Fixed parameter FSM

Bulk density profile 0.63–1.66 g cm−3 - - Fixed parameter [29,32]
Texture (clay, silt, sand) - - constant Fixed parameter [32]

CO2 concentration ppm 1998/2011 daily Fixed parameter FSM
Groundwater NO3

− concentration 0.05–23.32 mg L−1 2016 daily Fixed parameter FSM
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Table A1. Cont.

Name Value/Unit Start/End Temporal
Resolution Usage Source

Plant C-N ratio - 1998/2011 2 cuts/year Calibration data FSM
Biomass kg ha−1 yr−1 1998/2011 2 cuts/year Calibration data FSM

Soil water content vol.-% 1998/2011 variable *2 Calibration data FSM
CO2 emissions mg CO2 m−2 h−1 1998/2011 variable Calibration data FSM
N2O emissions µg N m−2 h−1 1998/2011 variable Calibration data FSM

*1 = groundwater levels have been recorded several times a week; missing values were linearly interpolated to
provide daily data for model initialization; *2 = soil moisture data have been recorded several times per week, and
removed of values that either (a) have been measured on days with air temperature below 0 ◦C, including the two
subsequent days, or (b) exceeded the pore volume of the soil.

Table A2. Most sensitive LandscapeDNDC parameters. From left: parameters associated module,
internal LandscapeDNDC parameter name, initial value, lower and upper limits of the parameter
range, process-related description.

Module Name Int Min Max Description

PLAMOX AEJM 46,270 37,000 86,900 Activation energy for electron transport
(J mol−1)

PLAMOX AEVO 37,530 37,530 60,110 Activation energy for RubP
oxygenation (J mol−1)

PLAMOX GSMIN 21.9 5.0 60.0 Minimum stomata conductivity (mmol
H2O m−2 s−1)

PLAMOX H2OREF_A 0.5 0.2 1.0 Relative available soil water content at
which stomata conductance is affected

PLAMOX H2OREF_GS 1.0 0.2 1.0 Relative available soil water content at
which stomata are fully closed

PLAMOX NFIX_RATE 2.0 0.01 5.0
Potential nitrogen fixation rate per
plant dry matter tissue and day
(kg N kg−1 DM d−1)

PLAMOX N_DEF_FACTOR 1.0 0.5 3.0 Factor defines nitrogen deficiency

PLAMOX ROOT 0.45 0.3 0.65 Plant root fraction

PLAMOX SLAMAX 15.0 13.0 25.0 Specific leaf area in the shade (m2 kg−1)

PLAMOX SLAMIN 15.0 10.0 25.0 Specific leaf area in under full light
(m2 kg−1)

PLAMOX SLOPE_GSA 10.4 4.0 12.0
Slope of foliage conductivity in
response to assimilation in
BERRY-BALL model

site sks_upper 1.0 0.357 3.57 Saturated hydraulic conductivity for
the uppermost layer

site vangenuchten_n_upper 1.1 1.1 1.2 VanGenuchten parameter n
(uppermost layer)

METRX METRX_F_DECOMP_T_EXP_1 2 0.5 5 Factor for temperature dependency of
decomposition

METRX METRX_KF_NIT_N2O 0.003 0.001 0.2 Maximum fraction of nitrified NH4 that
goes to N2O

METRX METRX_MIC_EFF 0.848 0.1 2 Microbial carbon use efficiency

Table A3. Average RMSE of the behavioral simulation runs.

Target Value A1 E1 A2 E2 A3 E3

Biomass (kg DW ha−1) 1056 1242 1017 1076 1114 1010
CO2 (mg CO2 m−2 h−1) 199.3 238.9 206.0 208.8 212.22 231.6

N2O (µg N2O-N m−2 h−1) 23.85 69.12 25.71 32.83 21.71 34.00
SWC (%) 6.90 6.65 7.61 6.76 6.83 6.26
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Table A4. p-Values (Mann-Whitney U Test) of aCO2/eCO2 measurements.

Target Value A1/E1 A2/E2 A3/E3

Biomass 0.0433 0.431 0.110
CO2 emissions 3.992 × 10−9 0.0692 0.000293
N2O emissions 8.946 × 10−48 0.00240 1.536 × 10−22

SWC 1.255 × 10−32 2.671 × 10−8 0.00138

Table A5. Measurement averages and number of measured data points per plot.

Target Value A1 E1 A2 E2 A3 E3 Data Points

Biomass (kg DW ha−1) 2940 3373 3411 3400 3302 3593 27
CO2 (mg CO2 m−2 h−1) 384.8 462.1 393.5 407.3 358.8 415.1 966

N2O (µg N2O-N m−2 h−1) 8.80 32.25 10.42 13.02 9.48 16.25 1077
SWC (%) 34.8 38.4 44.4 42.1 38.4 39.5 2034Agronomy 2020, 10, x FOR PEER REVIEW 13 of 17 
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Figure A1. Sensitivity analysis diagram: calculation of the most sensitive parameters where 750,000
parameter sets were sampled in 3 FAST runs, one for each plot (= measuring site). For each run, the
12 most sensitive parameters were calculated separately for 5 objective functions: RMSE of biomass,
C-N ratio, CO2 emissions, N2O emissions, and soil water content. After that, the sensitive parameters
were unified within each FAST run. Finally, an intersection of the unified parameters was made among
the FAST runs, creating the choice of sensitive parameters that was used for calibration.



Agronomy 2020, 10, 50 14 of 17

Agronomy 2020, 10, x FOR PEER REVIEW 13 of 17 

 

 
Figure A1. Sensitivity analysis diagram: calculation of the most sensitive parameters where 750,000 
parameter sets were sampled in 3 FAST runs, one for each plot (= measuring site). For each run, the 
12 most sensitive parameters were calculated separately for 5 objective functions: RMSE of biomass, 
C-N ratio, CO2 emissions, N2O emissions, and soil water content. After that, the sensitive parameters 
were unified within each FAST run. Finally, an intersection of the unified parameters was made 
among the FAST runs, creating the choice of sensitive parameters that was used for calibration. 

 
Figure A2. Time series of CO2 emissions. Measurements are depicted in lines, and confidence intervals
of simulations are depicted as colored areas.

Agronomy 2020, 10, x FOR PEER REVIEW 14 of 17 

 

Figure A2. Time series of CO2 emissions. Measurements are depicted in lines, and confidence 
intervals of simulations are depicted as colored areas. 

. 

Figure A3. Time series of N2O emissions. Measurements are depicted in lines, and confidence 
intervals of simulations are depicted as colored areas. 

References 

1. World Meteorological Organization. The State of Greenhouse Gases in the Atmosphere Based on Global 
Observations through 2017; WMO: Geneva, Switzerland, 2018. 

2. Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; 
Buchmann, N.; Frank, D.C.; et al. Climate extremes and the carbon cycle. Nature 2013, 500, 287–295. 

3. Weigel, H.-J.; Manderscheid, R. Crop growth responses to free air CO2 enrichment and nitrogen 
fertilization: Rotating barley, ryegrass, sugar beet and wheat. Eur. J. Agron. 2012, 43, 97–107. 

4. Bindi, M.; Fibbi, L.; Miglietta, F. Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. 
Growth and quality of grape and wine in response to elevated CO2 concentrations. Eur. J. Agron. 2001, 14, 
145–155. 

5. Zak, D.R.; Holmes, W.E.; Finzi, A.C.; Norby, R.J.; Schlesinger, W.H. Soil Nitrogen Cycling Under Elevated 
Co2: A Synthesis of Forest Face Experiments. Ecol. Appl. 2003, 13, 1508–1514. 

6. Luo, Y.; Su, B.; Currie, W.S.; Dukes, J.S.; Finzi, A.C.; Hartwig, U.; Hungate, B.; McMurtrie, R.E.; Oren, R.; 
Parton, W.J.; et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon 
dioxide. Bioscience 2004, 54, 731–739. 

7. Gärdenäs, A.I.; Ågren, G.I.; Bird, J.A.; Clarholm, M.; Hallin, S.; Ineson, P.; Kätterer, T.; Knicker, H.; 
Nilsson, S.I.; Näsholm, T.; et al. Knowledge gaps in soil carbon and nitrogen interactions—From molecular 
to global scale. Soil Biol. Biochem. 2011, 43, 702–717. 

8. Feng, Z.; Rütting, T.; Pleijel, H.; Wallin, G.; Reich, P.B.; Kammann, C.I.; Newton, P.C.D.; Kobayashi, K.; 
Luo, Y.; Uddling, J. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob. 
Chang. Biol. 2015, 21, 3152–3168. 

9. Van Groenigen, K.J.; Qi, X.; Osenberg, C.W.; Luo, Y.; Hungate, B.A. Faster Decomposition Under 
Increased Atmospheric CO2 Limits Soil Carbon Storage. Science 2014, 344, 508–509. 

10. Cheng, W.; Johnson, D.W. Elevated CO2, rhizosphere processes, and soil organic matter decomposition. 
Plant Soil 1998, 202, 167–174. 

Figure A3. Time series of N2O emissions. Measurements are depicted in lines, and confidence intervals
of simulations are depicted as colored areas.

References

1. World Meteorological Organization. The State of Greenhouse Gases in the Atmosphere Based on Global Observations
through 2017; WMO: Geneva, Switzerland, 2018.



Agronomy 2020, 10, 50 15 of 17

2. Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.;
Buchmann, N.; Frank, D.C.; et al. Climate extremes and the carbon cycle. Nature 2013, 500, 287–295.
[CrossRef] [PubMed]

3. Weigel, H.-J.; Manderscheid, R. Crop growth responses to free air CO2 enrichment and nitrogen fertilization:
Rotating barley, ryegrass, sugar beet and wheat. Eur. J. Agron. 2012, 43, 97–107. [CrossRef]

4. Bindi, M.; Fibbi, L.; Miglietta, F. Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth
and quality of grape and wine in response to elevated CO2 concentrations. Eur. J. Agron. 2001, 14, 145–155.
[CrossRef]

5. Zak, D.R.; Holmes, W.E.; Finzi, A.C.; Norby, R.J.; Schlesinger, W.H. Soil Nitrogen Cycling Under Elevated
Co2: A Synthesis of Forest Face Experiments. Ecol. Appl. 2003, 13, 1508–1514. [CrossRef]

6. Luo, Y.; Su, B.; Currie, W.S.; Dukes, J.S.; Finzi, A.C.; Hartwig, U.; Hungate, B.; McMurtrie, R.E.; Oren, R.;
Parton, W.J.; et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon
dioxide. Bioscience 2004, 54, 731–739. [CrossRef]

7. Gärdenäs, A.I.; Ågren, G.I.; Bird, J.A.; Clarholm, M.; Hallin, S.; Ineson, P.; Kätterer, T.; Knicker, H.; Nilsson, S.I.;
Näsholm, T.; et al. Knowledge gaps in soil carbon and nitrogen interactions—From molecular to global scale.
Soil Biol. Biochem. 2011, 43, 702–717. [CrossRef]

8. Feng, Z.; Rütting, T.; Pleijel, H.; Wallin, G.; Reich, P.B.; Kammann, C.I.; Newton, P.C.D.; Kobayashi, K.; Luo, Y.;
Uddling, J. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob. Chang. Biol.
2015, 21, 3152–3168. [CrossRef]

9. Van Groenigen, K.J.; Qi, X.; Osenberg, C.W.; Luo, Y.; Hungate, B.A. Faster Decomposition Under Increased
Atmospheric CO2 Limits Soil Carbon Storage. Science 2014, 344, 508–509. [CrossRef]

10. Cheng, W.; Johnson, D.W. Elevated CO2, rhizosphere processes, and soil organic matter decomposition.
Plant Soil 1998, 202, 167–174. [CrossRef]

11. Phillips, D.A.; Fox, T.C.; Six, J. Root exudation (net efflux of amino acids) may increase rhizodeposition under
elevated CO2. Glob. Chang. Biol. 2006, 12, 561–567. [CrossRef]

12. Terrer, C.; Vicca, S.; Hungate, B.A.; Phillips, R.P.; Prentice, I.C. Mycorrhizal association as a primary control
of the CO2 fertilization effect. Science 2016, 353, 72–74. [CrossRef]

13. Müller, C.; Sherlock, R.R.; Williams, P.H. Mechanistic model for nitrous oxide emission via nitrification and
denitrification. Biol. Fertil. Soils 1997, 24, 231–238. [CrossRef]

14. Ryan, M.; Müller, C.; Di, H.J.; Cameron, K.C. The use of artificial neural networks (ANNs) to simulate N2O
emissions from a temperate grassland ecosystem. Ecol. Model. 2004, 175, 189–194. [CrossRef]

15. Zhang, X.; Niu, G.-Y.; Elshall, A.S.; Ye, M.; Barron-Gafford, G.A.; Pavao-Zuckerman, M. Assessing five
evolving microbial enzyme models against field measurements from a semiarid savannah—What are the
mechanisms of soil respiration pulses? Geophys. Res. Lett. 2014, 41, 6428–6434. [CrossRef]

16. Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.;
Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the
LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [CrossRef]

17. Xu-Ri; Prentice, I.C.; Spahni, R.; Niu, H.S. Modelling terrestrial nitrous oxide emissions and implications for
climate feedback. New Phytol. 2012, 196, 472–488. [CrossRef] [PubMed]

18. Cheng, L.; Zhang, L.; Wang, Y.-P.; Yu, Q.; Eamus, D. Quantifying the effects of elevated CO2 on water budgets
by combining FACE data with an ecohydrological model. Ecohydrology 2014, 7, 1574–1588. [CrossRef]

19. Li, F.Y.; Newton, P.C.D.; Lieffering, M. Testing simulations of intra- and inter-annual variation in the plant
production response to elevated CO2 against measurements from an 11-year FACE experiment on grazed
pasture. Glob. Chang. Biol. 2014, 20, 228–239. [CrossRef]

20. De Kauwe, M.G.; Medlyn, B.E.; Zaehle, S.; Walker, A.P.; Dietze, M.C.; Wang, Y.-P.; Luo, Y.; Jain, A.K.;
El-Masri, B.; Hickler, T.; et al. Where does the carbon go? A model—Data intercomparison of vegetation
carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol.
2014, 203, 883–899. [CrossRef]

21. Zaehle, S.; Medlyn, B.E.; De Kauwe, M.G.; Walker, A.P.; Dietze, M.C.; Hickler, T.; Luo, Y.; Wang, Y.-P.;
El-Masri, B.; Thornton, P.; et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations
from two temperate Free-Air CO2 Enrichment studies. New Phytol. 2014, 202, 803–822. [CrossRef]

http://dx.doi.org/10.1038/nature12350
http://www.ncbi.nlm.nih.gov/pubmed/23955228
http://dx.doi.org/10.1016/j.eja.2012.05.011
http://dx.doi.org/10.1016/S1161-0301(00)00093-9
http://dx.doi.org/10.1890/03-5055
http://dx.doi.org/10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2
http://dx.doi.org/10.1016/j.soilbio.2010.04.006
http://dx.doi.org/10.1111/gcb.12938
http://dx.doi.org/10.1126/science.1249534
http://dx.doi.org/10.1023/A:1004315321332
http://dx.doi.org/10.1111/j.1365-2486.2006.01100.x
http://dx.doi.org/10.1126/science.aaf4610
http://dx.doi.org/10.1007/s003740050236
http://dx.doi.org/10.1016/j.ecolmodel.2003.10.010
http://dx.doi.org/10.1002/2014GL061399
http://dx.doi.org/10.1046/j.1365-2486.2003.00569.x
http://dx.doi.org/10.1111/j.1469-8137.2012.04269.x
http://www.ncbi.nlm.nih.gov/pubmed/22924469
http://dx.doi.org/10.1002/eco.1478
http://dx.doi.org/10.1111/gcb.12358
http://dx.doi.org/10.1111/nph.12847
http://dx.doi.org/10.1111/nph.12697


Agronomy 2020, 10, 50 16 of 17

22. Walker, A.P.; Hanson, P.J.; De Kauwe, M.G.; Medlyn, B.E.; Zaehle, S.; Asao, S.; Dietze, M.; Hickler, T.;
Huntingford, C.; Iversen, C.M.; et al. Comprehensive ecosystem model-data synthesis using multiple data
sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2

concentration. J. Geophys. Res. Biogeosci. 2014, 119, 2013JG002553. [CrossRef]
23. Walker, A.P.; Zaehle, S.; Medlyn, B.E.; De Kauwe, M.G.; Asao, S.; Hickler, T.; Parton, W.; Ricciuto, D.M.;

Wang, Y.-P.; Wårlind, D.; et al. Predicting long-term carbon sequestration in response to CO2 enrichment:
How and why do current ecosystem models differ? Glob. Biogeochem. Cycles 2015, 29, 2014GB004995.
[CrossRef]

24. Houska, T.; Kraft, P.; Liebermann, R.; Klatt, S.; Kraus, D.; Haas, E.; Santabarbara, I.; Kiese, R.;
Butterbach-Bahl, K.; Müller, C.; et al. Rejecting hydro-biogeochemical model structures by multi-criteria
evaluation. Environ. Model. Softw. 2017, 93, 1–12. [CrossRef]

25. Kellner, J.; Multsch, S.; Houska, T.; Kraft, P.; Müller, C.; Breuer, L. A coupled hydrological-plant growth
model for simulating the effect of elevated CO2 on a temperate grassland. Agric. For. Meteorol. 2017, 246,
42–50. [CrossRef]

26. Liebermann, R.; Breuer, L.; Houska, T.; Klatt, S.; Kraus, D.; Haas, E.; Müller, C.; Kraft, P. Closing the N-Budget:
How Simulated Groundwater-Borne Nitrate Supply Affects Plant Growth and Greenhouse Gas Emissions
on Temperate Grassland. Atmosphere 2018, 9, 407. [CrossRef]

27. Haas, E.; Klatt, S.; Fröhlich, A.; Kraft, P.; Werner, C.; Kiese, R.; Grote, R.; Breuer, L.; Butterbach-Bahl, K.
LandscapeDNDC: A process model for simulation of biosphere–atmosphere–hydrosphere exchange processes
at site and regional scale. Landsc. Ecol. 2013, 28, 615–636. [CrossRef]

28. Grünhage, L.; Schmitt, J.; Hertstein, U.; Janze, S.; Peter, M.; Jäger, H.-J., III. Beschreibung der Versuchsfläche.
In Auswirkungen Dynamischer Veränderungen der Luftzusammensetzung und des Klimas auf Terrestrische Ökosysteme
in Hessen-II-Umweltbeobachtungs- und Klimafolgenforschungsstation Linden, Jahresbericht 1995; Schriftenreihe
der Hessischen Landesanstalt für Umwelt 220; Umweltplanung, Arbeits- und Umweltschutz: Wiesbaden,
Germany, 1996; ISBN 3-89026-236-8.

29. Jäger, H.-J.; Schmidt, S.W.; Kammann, C.; Grünhage, L.; Müller, C.; Hanewald, K. The University of Giessen
Free-Air Carbon dioxide Enrichment study: Description of the experimental site and of a new enrichment
system. J. Appl. Bot. 2003, 77, 117–127.

30. Patterson, D.E.; Smith, M.W. The use of time domain reflectometry for the measurement of unfrozen water
content in frozen soils. Cold Reg. Sci. Technol. 1980, 3, 205–210. [CrossRef]

31. Kammann, C.; Müller, C.; Grünhage, L.; Jäger, H.-J. Elevated CO2 stimulates N2O emissions in permanent
grassland. Soil Biol. Biochem. 2008, 40, 2194–2205. [CrossRef]

32. Kammann, C.; Grünhage, L.; Jäger, H.-J., II. N2O- und CH4-Flüsse in der bodennahen Atmosphäre
eines extensiv genutzten Grünlandökosystems. In Auswirkungen Dynamischer Veränderungen der
Luftzusammensetzung und des Klimas auf Terrestrische Ökosysteme in Hessen-III-Umweltbeobachtungs- und
Klimafolgenforschungsstation Linden, Berichtszeitraum 1996–1999; Schriftenreihe der Hessischen Landesanstalt
für Umwelt; Umweltplanung, Arbeits- und Umweltschutz: Wiesbaden, Germany, 2000; Volume 274, ISBN
3-89026-311-9.

33. Grote, R.; Lehmann, E.; Brümmer, C.; Brüggemann, N.; Szarzynski, J.; Kunstmann, H. Modelling and
observation of biosphere–atmosphere interactions in natural savannah in Burkina Faso, West Africa.
Phys. Chem. Earth Parts ABC 2009, 34, 251–260. [CrossRef]

34. Grote, R.; Lavoir, A.-V.; Rambal, S.; Staudt, M.; Zimmer, I.; Schnitzler, J.-P. Modelling the drought impact on
monoterpene fluxes from an evergreen Mediterranean forest canopy. Oecologia 2009, 160, 213–223. [CrossRef]
[PubMed]

35. Kraus, D.; Weller, S.; Klatt, S.; Santabárbara, I.; Haas, E.; Wassmann, R.; Werner, C.; Kiese, R.;
Butterbach-Bahl, K. How well can we assess impacts of agricultural land management changes on the total
greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with a biogeochemical model?
Agric. Ecosyst. Environ. 2016, 224, 104–115. [CrossRef]

36. Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in
leaves of C3 species. Planta 1980, 149, 78–90. [CrossRef] [PubMed]

37. Kraus, D.; Weller, S.; Klatt, S.; Haas, E.; Wassmann, R.; Kiese, R.; Butterbach-Bahl, K. A new LandscapeDNDC
biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems.
Plant Soil 2014, 386, 125–149. [CrossRef]

http://dx.doi.org/10.1002/2013JG002553
http://dx.doi.org/10.1002/2014GB004995
http://dx.doi.org/10.1016/j.envsoft.2017.03.005
http://dx.doi.org/10.1016/j.agrformet.2017.05.017
http://dx.doi.org/10.3390/atmos9100407
http://dx.doi.org/10.1007/s10980-012-9772-x
http://dx.doi.org/10.1016/0165-232X(80)90026-9
http://dx.doi.org/10.1016/j.soilbio.2008.04.012
http://dx.doi.org/10.1016/j.pce.2008.05.003
http://dx.doi.org/10.1007/s00442-009-1298-9
http://www.ncbi.nlm.nih.gov/pubmed/19219456
http://dx.doi.org/10.1016/j.agee.2016.03.037
http://dx.doi.org/10.1007/BF00386231
http://www.ncbi.nlm.nih.gov/pubmed/24306196
http://dx.doi.org/10.1007/s11104-014-2255-x


Agronomy 2020, 10, 50 17 of 17

38. Dirnböck, T.; Kraus, D.; Grote, R.; Klatt, S.; Kobler, J.; Schindlbacher, A.; Seidl, R.; Thom, D.; Kiese, R.
Substantial understory contribution to the C sink of a European temperate mountain forest landscape.
Landsc. Ecol. under review.

39. Cukier, R.I.; Fortuin, C.M.; Shuler, K.E.; Petschek, A.G.; Schaibly, J.H. Study of the sensitivity of coupled
reaction systems to uncertainties in rate coefficients. I Theory. J. Chem. Phys. 1973, 59, 3873–3878. [CrossRef]

40. Saltelli, A.; Tarantola, S.; Chan, K.P.-S. A Quantitative Model-Independent Method for Global Sensitivity
Analysis of Model Output. Technometrics 1999, 41, 39–56. [CrossRef]

41. McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input
Variables in the Analysis of Output from a Computer Code. Technometrics 1979, 21, 239–245.

42. Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of
complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [CrossRef]

43. Houska, T.; Kraft, P.; Chamorro-Chavez, A.; Breuer, L. SPOTting Model Parameters Using a Ready-Made
Python Package. PLoS ONE 2015, 10, e0145180. [CrossRef]

44. Andresen, L.C.; Yuan, N.; Seibert, R.; Moser, G.; Kammann, C.I.; Luterbacher, J.; Erbs, M.; Müller, C. Biomass
responses in a temperate European grassland through 17 years of elevated CO2. Glob. Chang. Biol. 2017, 24,
3875–3885. [CrossRef] [PubMed]

45. Niklaus, P.A.; Spinnler, D.; Körner, C. Soil moisture dynamics of calcareous grassland under elevated CO2.
Oecologia 1998, 117, 201–208. [CrossRef] [PubMed]

46. Qi, Z.; Morgan, J.A.; McMaster, G.S.; Ahuja, L.R.; Derner, J.D. Simulating Carbon Dioxide Effects on Range
Plant Growth and Water Use with GPFARM-Range Model. Rangel. Ecol. Manag. 2015, 68, 423–431. [CrossRef]

47. Kammann, C. Die Auswirkung Steigender Atmosphärischer CO2-Konzentrationen auf die Flüsse der
Klimaspurengase N2O und CH4 in Einem Grünland-Ökosystem. Available online: http://geb.uni-giessen.
de/geb/volltexte/2001/491/ (accessed on 7 March 2019).

48. Xiang, S.-R.; Doyle, A.; Holden, P.A.; Schimel, J.P. Drying and rewetting effects on C and N mineralization
and microbial activity in surface and subsurface California grassland soils. Soil Biol. Biochem. 2008, 40,
2281–2289. [CrossRef]

49. Müller, C.; Stevens, R.J.; Laughlin, R.J.; Jäger, H.-J. Microbial processes and the site of N2O production in a
temperate grassland soil. Soil Biol. Biochem. 2004, 36, 453–461. [CrossRef]

50. Moser, G.; Gorenflo, A.; Brenzinger, K.; Keidel, L.; Braker, G.; Marhan, S.; Clough, T.J.; Müller, C. Explaining the
doubling of N2O emissions under elevated CO2 in the Giessen FACE via in-field 15N tracing. Glob. Chang. Biol.
2018, 24, 3897–3910. [CrossRef]

51. Kammann, C.; Grünhage, L.; Grüters, U.; Janze, S.; Jäger, H.-J. Response of aboveground grassland biomass
and soil moisture to moderate long-term CO2 enrichment. Basic Appl. Ecol. 2005, 6, 351–365. [CrossRef]

52. Denef, K.; Bubenheim, H.; Lenhart, K.; Vermeulen, J.; Van Cleemput, O.; Boeckx, P.; Müller, C. Community
shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under
elevated CO2. Biogeosciences 2007, 4, 769–779. [CrossRef]

53. Guenet, B.; Lenhart, K.; Leloup, J.; Giusti-Miller, S.; Pouteau, V.; Mora, P.; Nunan, N.; Abbadie, L. The impact
of long-term CO2 enrichment and moisture levels on soil microbial community structure and enzyme
activities. Geoderma 2012, 170, 331–336. [CrossRef]

54. Dämmgen, U.; Grünhage, L.; Schaaf, S. The precision and spatial variability of some meteorological parameters
needed to determine vertical fluxes of air constituents. Landbauforschung Volkenrode 2005, 55, 29–37.

55. Scholz-Seidel, C.D. UV 2 Messungen der Bulk-Depositionen sedimentierender anorganischer Spezies
(September 1993 bis Dezember 1995). In Auswirkungen Dynamischer Veränderungen der Luftzusammensetzung
und des Klimas auf Terrestrische Ökosysteme in Hessen-II-Umweltbeobachtungs- und Klimafolgenforschungsstation
Linden, Jahresbericht 1995; Schriftenreihe der Hessischen Landesanstalt für Umwelt 220; Umweltplanung,
Arbeits- und Umweltschutz: Wiesbaden, Germany, 1996.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.1680571
http://dx.doi.org/10.1080/00401706.1999.10485594
http://dx.doi.org/10.1016/S0022-1694(01)00421-8
http://dx.doi.org/10.1371/journal.pone.0145180
http://dx.doi.org/10.1111/gcb.13705
http://www.ncbi.nlm.nih.gov/pubmed/28370878
http://dx.doi.org/10.1007/s004420050649
http://www.ncbi.nlm.nih.gov/pubmed/28308488
http://dx.doi.org/10.1016/j.rama.2015.07.007
http://geb.uni-giessen.de/geb/volltexte/2001/491/
http://geb.uni-giessen.de/geb/volltexte/2001/491/
http://dx.doi.org/10.1016/j.soilbio.2008.05.004
http://dx.doi.org/10.1016/j.soilbio.2003.08.027
http://dx.doi.org/10.1111/gcb.14136
http://dx.doi.org/10.1016/j.baae.2005.01.011
http://dx.doi.org/10.5194/bg-4-769-2007
http://dx.doi.org/10.1016/j.geoderma.2011.12.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site 
	Data Implementation 
	Model Setup 
	Sensitivity Analysis and Calibration 
	Evaluation 

	Results 
	Cumulative Plant Biomass 
	Soil Water Content 
	Cumulative CO2 Emissions 
	Cumulative N2O Emissions 

	Discussion 
	Biomass 
	SWC 
	Cumulative CO2 Emissions 
	Cumulative N2O Emissions 

	Conclusions 
	
	References

