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Abstract

Our information-driven docking approach HADDOCK has demonstrated a sustained

performance since the start of its participation to CAPRI. This is due, in part, to its

ability to integrate data into the modeling process, and to the robustness of its scor-

ing function. We participated in CAPRI both as server and manual predictors. In

CAPRI rounds 38-45, we have used various strategies depending on the available

information. These ranged from imposing restraints to a few residues identified from

literature as being important for the interaction, to binding pockets identified from

homologous complexes or template-based refinement/CA-CA restraint-guided dock-

ing from identified templates. When relevant, symmetry restraints were used to limit

the conformational sampling. We also tested for a large decamer target a new imple-

mentation of the MARTINI coarse-grained force field in HADDOCK. Overall, we

obtained acceptable or better predictions for 13 and 11 server and manual submis-

sions, respectively, out of the 22 interfaces. Our server performance (acceptable or

higher-quality models when considering the top 10) was better (59%) than the manual

(50%) one, in which we typically experiment with various combinations of protocols

and data sources. Again, our simple scoring function based on a linear combination of

intermolecular van der Waals and electrostatic energies and an empirical desolvation

term demonstrated a good performance in the scoring experiment with a 63% success

rate across all 22 interfaces. An analysis of model quality indicates that, while we are

consistently performing well in generating acceptable models, there is room for

improvement for generating/identifying higher quality models.
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1 | INTRODUCTION

In recent years, molecular simulation techniques have been gaining

traction as alternative methods for the elucidation of structural details

underpinning cellular mechanisms.1 Methods like molecular docking

can complement experimental techniques such as X-RAY crystallogra-

phy, NMR and cryo-electron microscopy and allow us to gain insight

into the structural machinery of the cell. Understanding the structural

elements at the core of interacting biomolecules in atomic detail is the

first step toward understanding the nature of those interactions and

being able to mechanistically explain what goes awry when they are

disturbed (eg, in disease phenotypes).2-4

Initiatives like those of the D3R consortium5,6 test the ability of

various modeling software to predict 3D structure and relative bind-

ing affinities of pharmaceutically interesting protein receptors bound

to drug-like molecules. For protein-protein complexes, and to a lesser

extent protein-peptide ones, the performance of various docking

codes has been continuously evaluated over a period spanning almost

20 years in the worldwide CAPRI experiment.7-13 We participated in

all three experiments (server, manual, and scoring) for all targets of

rounds 38-45 with HADDOCK—our data-driven integrative modeling

platform.14,15 HADDOCK (High Ambiguity Driven DOCKing) makes

use of biochemical/biophysical experimental information which is

translated into distance restraints that drive the docking toward con-

formations that satisfy the experimentally available data. This cuts

down on the need to exhaustively sample the conformational space

and instead allows focusing on flexibly refining a subset of the models

generated. Data-driven approaches have, of course, downsides as

well, most prominently the fact that if the information that is provided

to HADDOCK is incorrect, it will likely not sample the region of the

conformational landscape close to the native state.

Our strategies for rounds 38-45 of CAPRI can be grouped in four

categories depending on the nature of the target and the availability

of information we could use to drive the docking. The first category

concerns targets 121, 134, and 135 which featured protein-peptide

complexes. Our approach for these targets boils down to variations of

our protein-peptide protocol16 or threading on available templates

and refining. The second category concerns targets 122 and 136 for

which we could identify good template structures in the PDB.17 Our

main strategy here was to either superimpose the models we gener-

ated on the template structures and refine them or extract Cα-Cα

interface distance restraints18 from the available templates, map them

to the target sequence numbering and use those to drive the docking.

The third—and most populated category—concerns targets for which

no good templates were available but some experimental information

was, mainly in the form of evolutionarily conserved residues or muta-

genesis data. Targets 123-125 and 131-133 were modeled in this

way. The last category concerns the protein-saccharide complexes

(targets 126-130). For these targets, we identified structures of the

receptors of interest bound to oligosaccharide molecules of varying

lengths and extracted binding site information in the form of the

hydrogen bonds between the sugars and the residues of the pocket.

We then used those restraints to dock conformers of the sugars we

had generated from their SMILES strings.

In the following, we describe the various strategies in more

details, and present and discuss our results in light of the official

CAPRI evaluation results, since not all reference structures of the

complexes are yet available.

2 | METHODS

Here, we summarize the approaches we followed for the various tar-

gets of CAPRI rounds 38-45. Due to the diverse nature of the targets,

it is impossible to describe details of our protocols that hold true for

all of them. Instead, we will first describe our high-level strategy and

then list the details on a per-target basis. Additional details about the

nature of the targets and the modeling process for all can be found in

the Supporting Information.

Owing to the data-driven nature of HADDOCK, our first step after

receiving the target sequences was to search structural databases like

the PDB as well as make use of tools like HHPRED19 to identify close

and remote structural homologues, respectively. Whenever high-quality

templates that necessitated no mutations relative to our target

sequences were available in the PDB we used those for the docking.

Often though, differences in the sequences between the identified

template structures and our targets meant that we needed to model

the target sequence onto the template structure and to that end we

used MODELLER20 and ROSETTA.21 When a high-quality template of

the full complex was available, we followed a template-based strategy

such as modeling of the components, superimposition and refinement

or extraction of interface Cα-Cα carbon distance restraints from the

template followed by distance-restrained docking. If we could not iden-

tify any usable templates then we turned to protein structure predic-

tion servers such as RAPTOR-X22,23 or iTasser.24-26

After identifying or generating input models for the docking we

searched the literature for putative interface information that might

be available from (among others) bioinformatics predictions, mutagen-

esis or NMR titration experiments or even homologous complexes.

For the targets where we could not identify any experimental infor-

mation to assist in the modeling process, we made use of ab initio

docking mode of HADDOCK, which defines restraints between the

centers of mass of the various molecules and identified from an analy-

sis of all generated models the most contacted residues.

After assembling all input structures and identifying all relevant

interface information, we docked the individual molecules using
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HADDOCK. A typical HADDOCK run consists of the following three

stages:

1. Random orientation of all molecules followed by energy minimization-

driven rigid body docking—it0.

2. Semi-flexible refinement in torsion angle space during which flexi-

bility is introduced to the system starting with the interface

(defined at a 5 Å cut-off) sidechains before expanding to the inter-

face backbone atoms as well—it1.

3. Short flexible refinement in explicit solvent—itw.

After every stage, the generated models are scored with the sim-

ple yet robust HADDOCK scoring function (HS)27,28 which is a linear

weighted sum of energetic and structural terms:

HSit0 = 0:01Evdw + 1:0Eelec + 1:0Edesolv−0:01BSA+0:01EAIR

HSit1 = 1:0Evdw + 1:0Eelec + 1:0Edesolv−0:01BSA+0:1EAIR

HSitw = 1:0Evdw + 0:2Eelec + 1:0Edesolv + 0:1EAIR

where Evdw, Eelec, Edesolv, and EAIR stand for van der Waals, Coulomb

electrostatics, desolvation and restraint energies, respectively, and BSA

for Buried Surface Area upon complex formation (in Å2). The non-

bonded components of the score (Evdw, Eelec) were calculated with the

OPLS forcefield,29 the desolvation energy is a solvent accessible sur-

face area-dependent empirical term30 which estimates the energetic

gain or penalty of burying specific sidechains upon complex formation.

For our participation in the server category, all models came from

a single run that was submitted to the HADDOCK2.2 webserver,

whereas for the manual category our submission usually consisted of

a combined analysis of the various strategies that we tried out for

each individual target. That combined analysis consists of clustering of

all generated models using the Fraction of Common Contacts (FCC)

metric with a cut-off of 0.75, meaning all models for which 75% of

their interface residue contacts are shared would end up in the same

cluster. The models are then scored according to the HSitw function

shown above (minus the restraint term). The top clusters and models

are then visually inspected, and the top 10 models that make up the

submission are selected, typically selecting more models from the top

ranked cluster and then spreading the remaining models over other

good ranking clusters when more than one cluster are generated. Spe-

cifically, when the best scoring cluster stands out from the remaining

clusters (in a statistically significant way, according to its HADDOCK

score), we selected the top four models of that cluster and selected

the top two models from each remaining cluster for the prediction

experiments. If the cluster-based scores were overlapping, we

selected the top two models from each cluster. For the remaining

90 models that are only considered for the scoring experiment, we

simply submitted the best-scoring models of a single run or combina-

tion of runs that were not already present in the selected top

10 models. Figure 1 provides a visual summary of the strategies we

followed for some of our successful predictions.

For the scoring experiment, we first identify the largest meaning-

ful common subset of residue contacts across all models as a way of

standardizing the set on which we score. That sometimes involves

excluding models which are not docked or have very small/peculiar

interfaces. Then, all missing atoms are rebuilt according to OPLS

topologies. Finally, all models underwent a short energy minimization

(50 steps of steepest descent EM) and are scored according to the

HSitw function shown above (minus the restraint term) when dealing

with protein-protein systems. The scoring term weights are adjusted

accordingly for different systems (see below for details).

2.1 | Targets involving peptides

2.1.1 | Target 121 (round 38)

We modeled the protein (TolA) on PDB entry 1lr0, renumbering

the residues as required to match the target sequence. For the

peptide, we created an ensemble of three models: the first and sec-

ond models were created in PyMOL31 using the known sequence

of the peptide and ideal backbone angles that corresponded to

beta and polyproline-II conformations; the third was obtained from

the PEPFOLD webserver.32

For the server submission, we performed ensemble docking with

increased sampling using restraints we identified in the literature33 to

drive the docking. For the manual submission, we performed the joint

analysis mentioned previously (see second to last paragraph of the

Methods section) over a plethora of runs, which centered around the

concept of specifying restraints that would mimic hydrogen bonds

between the peptide and the protein.

2.1.2 | Targets 134 and 135 (round 44)

For the server submission of target 134, we modeled the protein on

PDB entry 4d07 and the peptide on 4d07 and 4qh8, threading the

target sequence on the peptide structure of the templates. For the

manual submission, we defined restraints to dock instead of threading

and refining.

For target 135, we used the same templates for the peptide as

target 134 (4d07 & 4qh8) and added 5el0 and followed similar strate-

gies as for target 134.

2.2 | Template-based targets

2.2.1 | Target 122 (round 39)

We modeled the IL23R receptor using MODELLER and the RAPTOR-

X webserver creating an ensemble of two models, IL12B using

FATCAT34,35 in addition to the model that was provided by the orga-

nizers. For IL23A, we used the unbound structure that was provided

by the organizers.
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For the server submission, we superimposed the models of IL12B

and IL23A onto PDB structure 5e4e and then, using the IL23A sub-

unit, which is shared between PDB entries 5e4e and 2d9q, we sup-

erimposed all models onto 2d9q to create a model of the entire

complex which was then refined in HADDOCK. For the manual sub-

mission, we extracted interface Cα-Cα restraints18 from multiple tem-

plates and used those to drive the docking instead of superimposing

and refining.

2.2.2 | Target 136 (round 36)

Our main strategy for this target was to model the monomers based

on available templates and then recreate the full decamer using sym-

metry restraints. For the manual round, we extracted interface infor-

mation from the top model (according to the HADDOCK score) of the

server submission and turned them into restraints to drive the dock-

ing. These runs were performed using our new MARTINI36,37 coarse

grain implementation.38

2.3 | Information-driven targets

2.3.1 | Targets 123 and 124(round 39)

For the server submission of target 123, we generated an ensemble of

models for the PorM protein using the Raptor-X and Robetta39

webservers and an ensemble of models for the nanobody using MOD-

ELLER and PDB entries 5imo and 4qlr as templates. We docked using

the CDR residues of the nanobody as active residues and the surface

residues of PorM as passive residues with increased sampling

(10 000/400/400 instead of the default 1000/200/200 models). For

the manual submission, we repeated the same run, but we replaced

the nanobody ensemble with one kindly provided to us by Dr. Jeff

Gray (Johns Hopkins Medical School, Baltimore) (based on PDB entry

5lmw). We submitted the top model of the top 10 clusters for the

server and the top 10 models (irrespective of clustering) for the man-

ual prediction.

We could not identify any usable information for target 124,

either in the form of template structures or interaction data. Instead,

(B) (C)(A)
Targets 134 & 135 Target 136 Targets 126-130

Thread & Refine Superimpose & Refine Extract distances & Dock

F IGURE 1 Visual summary for some of our successful predictions. A, Concerns the strategy for the peptide targets, and specifically
targets 134 and 135, which centered on threading and refinement. Our top-ranking model for the manual submission (medium quality) is
shown. The receptor is depicted as cartoon and colored blue with the binding site residues shown as lines, whereas the peptide is
depicted as cartoon and sticks and colored dark green. The bottom figure shows a sequence logo of all the peptides we identified in the
literature which highlights a conserved TQT motif. B, Concerns target 136 for which we generated models based on available templates,
superimposed the models on respective templates and refined them. It depicts the dimer models we generated based on template 2vyc
(only the top half of the decameric ring is shown to simplify the figure), superimposed on the template structure chains and refined in
HADDOCK. The template structure is shown as black ribbon with the superimposed models colored red, green, orange, blue, and pale
gold and represented as ribbons. C, Depicts the two main strategies for the sugar targets. The top figure concerns target 130 and shows
the restraints extracted from structure (among others) 2uvj. The receptor is shown as blue cartoons with the binding site residues
depicted as lines too. The sugar is shown as sticks with the carbon and oxygen atoms being colored dark green and red, respectively. The
bottom figure concerns the remaining sugar targets and shows our top-ranking model for target 128 (medium quality). The consensus
binding site that was defined based on the available templates is colored orange, whereas the rest of the receptor is shown as transparent
surface and cartoon and colored blue
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we defined custom restraints in order to generate models with the

global shape of a H (for Haddock, or Hopeless) in order to provide

some unrealistic but well optimized interfaces for scoring.

2.3.2 | Target 125 (round 40)

For the server round, we used available structures for the LLT1 dimer

(PDB entries 4qkh, 4qki, 4qkj, and 4wco) after renumbering them so they

matched the target numbering to create a dimer ensemble. We modeled

the NKR-P1 dimer on PDB entries 3m9z and 3t3a using MODELLER to

cover all possible combinations of types of interfaces and interacting

loops that were available in the literature.40,41 We drove the docking

using interface information extracted from the available complexes42-44

and the literature.40,41,45 For the manual submission, we repeated the

same runs as for the server submission but with a filtered list of residues.

2.3.3 | Targets 131 and 132 (round 42)

A structure of CEACAM1 available in the PDB (entry 2gk2) was used for

the docking of both targets. For the modeling of HopQ1, we used tem-

plate chain A of PDB entry 5lp2 which has an almost perfect sequence

identity with our target sequence but does not cover the entire target

sequence. To model those gaps, we used MODELLER and selected the

top 10 models based on the DOPE score. For HopQ2, we created an

ensemble of three models, in which the first came from the RAPTOR-X

webserver, the second from iTasser and the last was created in MODEL-

LER after manually curating the alignment between our target sequence

and chain A of 5lp2. For the docking, we made use of information avail-

able in the literature,46 which suggested that a beta strand of HopQ is

crucial for the CEACAM1-HopQ interaction and two mutations of

CEACAM1 almost knocked out the interaction altogether.

2.3.4 | Target 133 (round 43)

For the server round, to drive the docking, we mapped the sequence

differences between target and template proteins to the sequence of

the target and defined those restraints as active. For the manual round,

we performed a plethora of runs, trying different ways of specifying

the restraints (with or without random removal), using single models

instead of ensembles, using ROSETTA and molecular dynamics (with

GROMACS47,48) to sample alternative conformations of the proteins.

2.4 | Targets involving glycans

2.4.1 | Targets 126-130 (round 41)

We modeled the receptors with ROSETTA-CM protocol49 using the

templates 2xd3, 2xd3, 3k00, 2uvj for targets 126-129, respectively,

and template 3cu9 for target 130. In addition to the already

mentioned templates, we identified many more with HHPRED using

the sequence of the target and filtering for the presence of saccha-

rides in the binding pocket. We used those templates to define both

interfaces and more specific ambiguous restraints between the sugar

molecules and the receptors. For the manual round, we further refined

the list of templates that we were using as well as expand the selec-

tion of residues specified as active. No other settings were changed

compared to the server submission.

For the ligands, we generated up to 500 conformers using OpenEye

OMEGA,50,51 clustered them and selected representative structures that

resulted in the creation of ensembles with 6, 9, 6, 4, and 4 conformations

for targets 126-130, respectively.

3 | RESULTS AND DISCUSSION

Table 1 summarizes the results we obtained for the server and manual

predictions and for the scoring experiments. In total, we generated

acceptable- or higher-quality models for 13 and 11 interfaces for the

server and manual submissions, respectively, which corresponds to suc-

cess rates of 59 and 50% when considering the top 10 models submit-

ted for evaluation. If we consider targets instead of interfaces, and

consider successful any target for which at least one interface was cor-

rectly predicted, then our success rates jump to 63% and 56%, respec-

tively. Our performance in the scoring experiment is even better, with

14 (63%) interfaces and 11 (69%) targets successfully predicted.

Breaking down our performance by target category, we gener-

ated medium- and acceptable quality models for two (targets 134 and

135) of the three peptide targets (targets 121, 134, and 135), with tar-

get 121 being a challenging target for which only six acceptable or

higher quality models could be found among all submissions. For tar-

get 134, we correctly predicted the binding 12mer sequence out of

the 50-residue long peptide for both manual and server submissions

making good use of the information available in the literature, but

failed to generate higher quality models for target 135 for which the

binding residues were known, although we did generate more models of

the same quality in the top 10. Targets 134 and 135 serve as a good

example of the difficulty we are facing in scoring good models in the top

10 as can be seen in Table S1, where for the manual submission of target

135 we only generated four medium- and one acceptable-quality model

but when considering 43 models instead of 10 we are generating

11/23/4 high-/medium-/acceptable-quality models instead. This pattern

holds true for almost all targets for which more than the top 10 models

were evaluated indicating there is plenty of room for improvement in the

scoring of our models.

Despite the fact targets 122 and 136 were template-based, we only

achieved good performance for the latter, generating acceptable models

for all three interfaces and medium quality ones for two of the three for

the server submission. Target 136 is particularly interesting as its struc-

ture was determined with cryo-EM and it is the largest complex featured

so far in CAPRI. Therefore, it was an excellent test case for our imple-

mentation of the MARTINI coarse grain forcefield into HADDOCK.38

Using less than ideal information (interface restraints extracted from the
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top model of the all-atom, server submission), we were able to accurately

recreate the full decamer using five dimers with interface restraints spec-

ified only between the first two adjacent ones (ie, simultaneous five-

body docking) and symmetry restraints to recreate the rest of the com-

plex, while at the same time massively reducing the computational cost

from approximately 10-12 to 2 hours per model (5-6-fold speedup).

For the majority of the targets, we followed an information-driven

strategy as we were able to identify some information about the puta-

tive interfaces of the target complexes that could aid the modeling pro-

cess. Unfortunately, the information we uncovered was not enough to

overcome the challenging nature of most of these targets (considering

submissions from all participants, one acceptable-quality model for tar-

get 123, no acceptable-quality models for 124, one medium-quality

model for 131, and one medium- and four acceptable-quality models

for 132 when considering the top 10 models). We successfully modeled

two of the four interfaces of target 125 (1 and 2), generating accept-

able quality models for the first as well as high and medium quality for

the second. We were not able to generate acceptable models for the

other two interfaces which proved too challenging for all the partici-

pants as only one acceptable model was generated for the third inter-

face and none for the fourth. We were able to generate good models

for the last of the information-driven targets, 133, achieving the same

performance for server and manual predictions. Preliminary analysis of

these targets (the crystal structures were not yet available at the time

of writing) indicates that the limiting factor for these targets was poor

modeling of the individual components of the complex rather than the

docking itself.

The last targets were those of round 41 which featured glycans.

These targets represent the first protein-small molecule complexes to

be featured in CAPRI and HADDOCK performed well across all of

them, generating acceptable models for all but the manual submission

of target 126, and even generating highly accurate models for both

the manual and server submission of target 130. The topologies and

parameters for describing the glycans were automatically obtained

from PRODRG,52 after modifying their numbering and naming to

make them look as one single heteroatom residue.

Our scoring performance ranks us as one of the best performers of

the scoring experiment when considering the number of targets for

which acceptable models were identified with acceptable- or higher qual-

ity models in 14 of 22 interfaces. The robustness of our scoring protocol

and function is also demonstrated in targets such as 132 for which we

were able to pick out one of the 27 acceptable models in a pool of over

2000 models as well as the fact we could identify near-native models in

all target categories. One limitation of our scoring protocol, which also

TABLE 1 Summary of the prediction and scoring results obtained by the HADDOCK server and manual team

Target Target Category Modeling strategy Server ***/**/* Manual ***/**/* Scoring ***/**/*

121 Protein-Peptide Information-driven 0/0/0 0/0/0 0/0/0

122 Protein-Protein Template-based 0/0/0 0/0/0 0/1/0

123 Protein-Protein Information-driven 0/0/0 0/0/0 0/0/0

124.1 Protein-Protein Information-driven 0/0/0 0/0/0 0/0/0

124.2 0/0/0 0/0/0 0/0/0

125.1 Protein-Protein Information-driven 0/0/4 0/0/0 0/4/0

125.2 10/0/0 7/1/2 7/3/0

125.3 0/0/0 0/0/0 0/0/0

125.4 0/0/0 0/0/0 0/0/0

126 Protein-Glycans Information-driven 0/0/1 0/0/0 0/0/3

127 0/1/1 0/0/4 0/0/5

128 0/0/10 0/2/7 0/2/8

129 0/0/5 0/0/6 0/0/7

130 1/5/4 2/4/3 1/5/2

131 Protein-Protein Information-driven 0/0/0 0/0/0 0/0/0

132 Protein-Protein Information-driven 0/0/0 0/0/0 0/0/1

133 Protein-Protein Information-driven 0/3/3 0/3/3 0/1/5

134 Protein-Peptide Information-driven/Threading 0/0/1 0/1/1 0/2/0

135 0/0/5 0/4/1 0/0/0

136.1 Protein-Protein Template-based 0/5/5 0/9/1 0/4/5

136.2 0/4/1 0/0/8 0/1/3

136.3 0/0/8 0/0/1 0/1/5

Note: The first column is the target and interface number as reported by CAPRI and the fourth through sixth columns refer to the number of high-

(***)/medium-(**)/acceptable-(*)quality models generated during the server, manual and scoring experiments, respectively, when considering the top 10

models submitted for evaluation.
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affects our CAPRI ranking, is the difficulty in distinguishing medium- or

higher qualitymodels from acceptable-quality ones.

4 | CONCLUSIONS

CAPRI rounds 38-45 featured many firsts such as the inclusion of a

cryo-EM determined target in target 136 of round 45 and protein-

small molecule (glycans) complexes in targets 126-130 of round 41.

HADDOCK was able to generate near-native models for these sys-

tems as well as most of the traditional protein-protein systems that

featured in the remaining targets, including the peptide ones. While it

is evidently clear the entire docking community still has difficulties in

dealing with systems for which no good templates are available, this is

an issue that seems to be affecting our efforts in CAPRI for the

remaining targets as well: as it appears poor initial modeling of the

components rather than the docking itself is affecting our perfor-

mance. The second limiting factor is our scoring performance during

the docking experiments (manual and server). As can be seen in

Table S1, for every target for which more than the top 10 models have

been evaluated, there are many higher quality models that we are failing

to rank in the top 10. This creates a contradiction with our performance

in the scoring experiment for which we can reliably identify near-native

models in a pool of thousands and indicates that there is room to re-

optimize our scoring function. Development and testing of the next

major version of HADDOCK (v2.4) is currently ongoing and we expect

that many new features and small improvements will allow us to both

generate higher quality models as well as rank them more accurately.
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