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1. Introduction

A mere decade ago, distributed applications for science and commercial use cases were
executed on dedicated compute clusters. These clusters were owned and operated by
large research facilities and companies and provided a stable hardware platform for sev-
eral years. For instance, the Sequoia Blue Gene/Q supercomputer is in service since
2011 [128] without major modifications. On this platform, applications are exclusively
assigned static partitions with nodes that are almost fully separated from nodes of other
partitions [20]. This provided an environment for applications to execute in a predictable
manner and thus allowed for simple application scheduling.

Cloud computing has quickly and dramatically changed this situation. Cluster re-
sources, once considered physical objects, are nowadays seen as utilities, i.e., virtual
objects that can be acquired when needed and released once the need has ceased. Cloud
providers, such as Amazon, Microsoft, Google and IBM, offer shared, virtualized access
to their compute infrastructure to anybody, at any time. However, the sharing and virtu-
alization of hardware resources has also impaired the stability and predictability of the
environment. Hardware is upgraded regularly, without control or notification of the user.
Even within the same instance type, multiple hardware models from different vendors
with varying performance characteristics can be found [27]. Additionally, interference
due to sharing of hardware resources with other users can cause additional performance
variations. This means that distributed applications have to use resources with varying
performance characteristics at the same time.

But not only hardware resources are heterogeneous, applications are too. Distributed
application frameworks, such as Spark [18], Flink [52] or Tez [59] use directed acyclic
graphs (DAGs) to represent applications. DAGs can have multiple diverging and converg-
ing paths. On each path, tasks execute different functions on different data with varying
resource demands and task runtimes. Other application frameworks, such as those used
for distributed machine learning (ML) training, restrict the flexibility of the scheduler
due to the properties of the algorithms they are mainly used for.

1.1 Problem statement

Resource utilization efficiency and fast application execution are highly desirable goals
in cloud computing. The more efficient resources are used, the lower the cost and the
energy consumption of application execution becomes, which is a major concern for cloud
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operators. Fast application execution, on the other hand, is beneficial for users, as it
reduces their bill and allows them to get results quicker. However, heterogeneity of DAGs,
tasks, hardware and accumulated state (due to data and Just-In-Time (JIT) compiler
caches) can cause stalls in application execution: Each stall, however, leaves allocated
resources idle and reduces utilization efficiency and application performance.

In consequence, distributed application frameworks use approaches to cope with het-
erogeneity. Several approaches based on user-provided or automatically generated re-
source requirement estimates exist [75, 64, 33, 44] to cope with hardware heterogeneity.
Many approaches, however, consider only applications as a whole, and ignore hetero-
geneity within applications, such as DAG- and task-heterogeneity.

The most common approach to address DAG-, task-, hardware- and state-heterogeneity
is to ignore it. In micro-tasks [6, 18, 37, 36, 59], work is instead split up into a large
number of short-running tasks. This enables natural load balancing on heterogeneous
clusters: Faster resources execute tasks in a shorter amount of time than slower resources
and are thus assigned more tasks. However, micro-tasks have two important issues:

(1) Increasing the number of tasks also increases task management (start, initial-
ization, communication and coordination) and scheduling overheads. In conse-
quence, the fraction of time that resources spend on executing application code
decreases. However, the purpose of a system is to efficiently execute application
code, while reducing the time spent managing the execution as much as possible.

(2) Arbitrarily increasing the number of tasks is incompatible with an important class
of applications: ML training, which uses iterative-convergent algorithms, such as
mini-batch Stochastic Gradient Descent (SGD) for the training of neural networks
(NNs). Doing so impairs their efficiency on an algorithmic level and can increase
the total amount of work that needs to be performed to achieve the same result.

1.2 Research questions and contributions

The overarching goals of this thesis are to increase resource utilization efficiency and
to decrease application runtime at the same time, in face of DAG, task and hardware-
heterogeneity. Resource utilization efficiency refers to the amount of time that is needed
to perform a certain amount of work on a resource, e.g., execute a task on a CPU. Hence,
if the same resource performs the same amount of work in less (more) time, resource
utilization efficiency increases (decreases). This is in contrast to resource utilization,
which just refers to fraction of time a resource is busy to perform any work while it is
allocated.

The following research questions are addressed in support of these goals:

(1) How can scheduling of individual applications of distributed, DAG-based data-
analytics frameworks on heterogeneous clusters be improved?
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(2) How can resources be shared efficiently across applications of these frameworks,
at small, sub-second time-scales?

(3) How can resources be utilized efficiently for distributed iterative-convergent ML
training algorithms in heterogeneous, elastic environments?

The following research contributions are made in this thesis:

(1) Executor-state-aware scheduling on heterogeneous clusters. The main chal-
lenge addressed is the identification and exploitation of factors that influence task
runtime. A detailed analysis of task runtime behavior of Apache Spark applica-
tions lead to the recognition of executor state, i.e., the state of the process that
executes a task, as a major factor. The main contribution is stage packing, a novel
scheduling technique that exploits executor state to speed up task and application
execution. Stage packing itself is agnostic to hardware-heterogeneity. Using task
runtime predictions and simple rules, the execution selection process has been im-
proved further on heterogeneous clusters. Both have been implemented in HCL-SP
and integrated into Apache Spark. Compared to vanilla Spark, HCL-SP reduces ap-
plication runtime by≈1.4× on average and increases resource utilization efficiency
by the same factor. At the same time, resource utilization was tripled to ≈30%.

(2) Efficient resource sharing across applications at small time-scales. The work
on HCL-SP has shown the importance of executor state and that despite improve-
ments in resource utilization, executors still idle for most of the time. To reduce
the latter, executors – or the resources they allocate – need to be shared efficiently.
Current systems, however, need to shut down and restart executors, which is a
time-consuming process and loses their valuable state. The main contribution is
the design and implementation of Mira, a resource manager and elastic applica-
tion scheduler that treats executors as shareable resource which can be reassigned
across applications within milliseconds instead of seconds. Mira is based on HCL-SP
and integrated into Spark. The evaluation of Mira shows that resource utilization
quadrupled to more than 95% on a shared cluster compared to vanilla Spark. At
the same time, average application runtime is almost cut in half.

(3) Elastic and hardware-heterogeneity-aware scheduling and execution of state-
of-the-art distributed iterative-convergent machine learning algorithms. Mira
has shown that with elastic execution, resource utilization can be increased signifi-
cantly. For one important class of applications, however, elastic execution is a chal-
lenge: Distributed iterative-convergent ML training algorithms that are needed to
process vast amounts of data for today’s digital economy. These algorithms can be-
come less efficient when executed with a large number of tasks and therefore need
to perform more work to achieve the same result. This makes micro-task-based
system inept for this class of algorithms. In consequence, only few elastic [82, 114,
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112] and no hardware-heterogeneity-aware distributed ML training framework ex-
ist. The main issue addressed in this contribution is to enable elastic, load-balanced
execution of distributed iterative-convergent ML training algorithms without im-
pairing their performance. To that end, a new execution model, uni-tasks, has
been devised. In uni-tasks, not tasks, but small chunks of data are scheduled. Data
chunks can be moved freely across nodes and, at the same time, be processed by
only a single task on each node. It is this property that allows elastic scaling and
load balancing in heterogeneous clusters without performance impairments. Uni-
tasks has been implemented in Chicle, a new distributed ML training framework
and scheduler. The evaluation with two state-of-the-art distributed ML training al-
gorithms – Communication-efficient distributed dual Coordinate Ascent (CoCoA)
and Local SGD (lSGD) – shows that both algorithms can benefit from uni-tasks
on heterogeneous clusters, in elastic scenarios and in face of stragglers (intermit-
tently and unpredictably long-running tasks): The total number of epochs needed
to converge decreases by up to one order of magnitude compared to a micro-task
approach. Chicle is one of the first elastic ML training framework [82, 114, 112]
and – to the best of my knowledge – the first one that also supports hardware-
heterogeneity-aware load balancing.

1.3 Publications and patents

Work presented in this thesis is based on four publications and one presentation. Addi-
tionally, one patent has been filed.1

1.3.1 Publications

1.3.1.1 Conferences

� Michael Kaufmann, Kornilios Kourtis, Adrian Schuepbach and Martina Zitterbart.
“Mira: Sharing Resources for Distributed Analytics at Small Timescales”. In: 2018
IEEE International Conference on Big Data. Seattle, WA, USA (December 2018).

� Michael Kaufmann, Kornilios Kourtis, Adrian Schuepbach and Martina Zitterbart.
“Mira: Sharing Resources for Distributed Analytics at Small Timescales”. In: GI
INFORMATIK 2019: Best of data science made in DACH. Kassel, DE (September
2019).

1Further patent applications are in preparation at the time of writing.
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1.3.1.2 Workshops

� Michael Kaufmann and Kornilios Kourtis. “The HCl Scheduler: Going all-in on
Heterogeneity”. In: 9th USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud17). Santa Clara, CA, USA (July 2017).

� Michael Kaufmann, Thomas Parnell, and Kornilios Kourtis. “Elastic CoCoA: Scaling
In to Improve Convergence”. In: NeurIPS 2018 Systems for ML workshop. Montreal,
Canada (December 2018).

1.3.1.3 Presentations

� Patrick Stuedi, Michael Kaufmann and Adrian Schuepbach. “Serverless Machine
Learning on Modern Hardware Using Apache Spark”. In: Spark + AI Summit, San
Fransisco, CA, USA (June 2018).

1.3.2 Patents

� Michael Kaufmann, Thomas Parnell, Kornilios Kourtis. “Elastic training of gener-
alized linear models via re-partitioning based on feedback from the training algo-
rithm.” (filed)

1.4 Structure of this thesis

Chapter 2 provides general background information and defines important terms that
are used throughout this dissertation. Specific concepts and issues are introduced in
each main chapter.

Subsequently, three chapters with original work are presented. Chapter 3 presents
HCL-SP and the work on the optimization of individual application schedules on het-
erogeneous clusters. Chapter 4 presents Mira and covers the work related to efficient
resource sharing across multiple applications at small time-scales. Chapter 5 presents
uni-tasks and Chile and describes the work on elastic scheduling and execution of dis-
tributed ML algorithms.

Chapter 6 reviews and concludes the work presented in this thesis and gives an outlook
on open questions and potential future research directions. Supplemental material is
provided in the appendix (Chapter A).





2. Background

This chapter provides relevant general background information for the work presented
in this thesis and complements background sections of main chapters.

2.1 Heterogeneity

The different types of heterogeneity which are considered in this thesis are listed in Ta-
ble 2.1.

Term Definition

Hardware heterogeneity Refers to different capabilities and performance
characteristics of hardware, e.g., CPUs.

State heterogeneity Refers to heterogeneity of resources due to different
states, e.g., data and JIT caches.

Application heterogeneity Refers applications with heterogeneous DAGs and
tasks, as well as different resource and runtime re-
quirements across applications.

DAG heterogeneity Refers to different resource and runtime require-
ments of stages and their tasks in a DAG and paths
through the DAG.

Task heterogeneity Refers to different resource and runtime require-
ments of tasks.

Table 2.1: Definitions of types of heterogeneity considered in this thesis.

The following sections elaborate on each type of heterogeneity.

2.1.1 Hardware heterogeneity

This section describes two major sources of hardware heterogeneity in large-scale clusters
that back the cloud.

7
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2.1.1.1 Multiple hardware generations and configurations

In many clusters, hardware heterogeneity occurs due to the deployment of multiple gen-
erations and configurations of hardware. The reason is the frequent but partial upgrade
and replacement of old or failing hardware [33]. It can be observed in small clusters,
e.g., as the 17 node test cluster with three hardware generations and configurations, that
was used for most experiments in this dissertation, to large clusters, e.g., operated by
Google [28] and Amazon [27].

Different generations and configurations of hardware resources are largely1 compatible
with each other and applications can often be executed on any resource without changes
(especially for interpreted languages such as Java and Python). Execution speed of ap-
plications and tasks can vary, though. Sources for execution speed variations are, for
instance, different clock rates, cache sizes or memory capacities and speed. This is an
issue as even within cloud instance types, e.g., on Amazon, hardware resources are not
identical [27].

In order to prevent stalls and reduce application runtimes in such environments, sched-
ulers need to be aware of these performance variations. While most application frame-
works (AFs) and application schedulers (ASs) can deal with different hardware capaci-
ties, such as core counts and memory sizes, they are oblivious to different performance
characteristics [18, 55, 66, 36, 42]. The most common approach to deal with differently
fast hardware resources are micro-tasks (see Section 2.2.3.2 for details).

2.1.1.2 Accelerators

The most obvious form of heterogeneity is the use of hardware accelerators, most notably
Graphics Processing Units (GPUs) [63, 130] that have gained lots of traction, e.g., with
ML applications. The deployment of accelerators in data centers that back the cloud is
motivated by shrinking performance gains of new generations of general-purpose com-
pute hardware and the relatively higher performance and energy efficiency of special-
purpose accelerators for certain workloads [76]. Aside from GPUs, other special-purpose
compute accelerators, such as Google’s Tensor Processing Unit (TPU) [83] and Field-
Programmable Gate Arrays (FPGAs) [79] are being deployed.

The fundamental difference between most compute accelerators and general purpose
CPUs is that they provide a higher level of hardware parallelism. For instance, a 2019
Intel Xeon CPU provides up to 36 hardware threads [121], while an Nvidia Turing based
GPU scales up to 3072 hardware threads [123]. For algorithms that can exploit these
levels of parallelism, e.g., matrix multiplication and other embarrassingly parallel algo-
rithms, compute accelerators can be beneficial.

Applications, however, need to be adapted and optimized for such accelerators. While
some frameworks, such as TensorFlow [62] and PyTorch [85] provide optimized imple-
mentations of some algorithms for CPUs and GPUs, and therefore allow applications to

1If no CPU-model specific optimizations, e.g., during compilation, are used.
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use either, they often still require some application code changes to utilize GPUs2. More-
over, as soon as algorithms provided by the framework or libraries are insufficient, custom
application-specific code has to be written, which is less likely to support both, CPUs and
accelerators, as doing so implies additional development effort. For schedulers, this of-
ten means that they have no choice but to schedule tasks on either accelerators or CPUs,
which simplifies scheduling decisions as no alternatives have to be considered.

Another, albeit less common in cloud environments, type of accelerators are network
and storage accelerators, e.g., remote direct memory access (RDMA) and NVMe over Fab-
rics (NVMeF), which enable high-throughput and low-latency access to remote memory
or storage while freeing up the CPU for other tasks. Abstraction layers, such as MPI [2],
that allow applications to use these types of accelerators transparently exist. Where these
are not applicable, applications need to be written specifically with these accelerators in
mind, in order to make use of them. Moreover, with few exceptions [11, 126], communi-
cation is generally limited to peers that feature the same type of accelerator, thus limiting
the freedom of schedulers for applications that can use these accelerators.

The use of accelerators is supported by many resource managers (RMs) and AFs.
YARN [39], Mesos [21], Kubernetes [64] and Borg [60] allow the assignment of labels
to nodes. Labels are strings, e.g., nvidia-turing-gpu, without inherent meaning, that
can be used to specify the presence of a GPU or another accelerator in a node. During
resource acquisition, the AS can specify node labels to control on which type of node
the RM will allocate resources on its behalf. The problem is, however, that AFs, such as
Spark, do not understand these labels nor do they know which tasks of the application
can make use of them. In consequence, user-provided labels are applied to the entire
application. If, for instance, only few tasks of an application can make use of a GPU, all
tasks are necessarily executed on GPU nodes, blocking this presumably rare and expen-
sive resource for other applications to use. Moreover, due to power-envelope constraints,
nodes with accelerators may not feature the highest-performing CPUs and therefore may
impair runtime of tasks that cannot make use of GPUs.

2.1.2 State heterogeneity

State, e.g., due to data or JIT caches can impact performance of resources and thus make
otherwise identical resources appear heterogeneous.

� JIT-compilers translate interpreted code into native (machine) code such that sub-
sequent executions of the same code is accelerated.

� Data caches can reduce the access time.

State is considered with delay scheduling [17], where the scheduler waits for a period
of time for the availability of a resource where a large fraction of input data (either cached

2In PyTorch, for instance, some function names are suffixed with CPU or GPU, depending on which one is
used.
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or stored) is located in order to reduce data transfer overheads. This assumes that data
transfer impairs performance more than the added delay. Schedulers of serverless frame-
works retain and reuse running containers [95, 91, 111, 69] to accelerate the execution
of future instances of an application and to reduce resource allocation overheads.

2.1.3 Application heterogeneity

Different applications have different resource requirements. For instance, distributed ML
training applications often require multiple GPUs or CPUs for several minutes or hours,
whereas some data analytics applications (e.g., SQL queries) can run as short as a few
seconds and, due to their often non-linear DAGs, have fluctuating resource demands.

2.1.3.1 DAG heterogeneity

Application DAGs can be heterogeneous [67], in that they are comprised of a diverse
set of stages, that each perform different functions. Moreover, stages are split up into
multiple tasks that each perform the same function on different (amounts of) data, as
depicted in Figures 2.1a and 2.1b for two queries of the TPC-DS benchmark [88, 116].
In this figure, a node corresponds to a stage and edges correspond to data dependencies.
The size of a node represents the accumulated task runtime of the corresponding stage
and the thickness of an edge the amount of data that is transferred between two stages.

(a) TPC-DS query 41 (b) TPC-DS query 44

Figure 2.1: Example of the heterogeneity of application DAGs for two TPC-DS queries. Based
on data from Section 4.4.3.

2.1.3.2 Task heterogeneity

Tasks execute functions on partitions of the input data. These functions transform input
data into output data. Tasks of different stages can execute different functions, thus their
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runtime behavior is naturally different from each other. Figures 2.2a and 2.2b show his-
tograms of the task runtime distribution for the same applications as in Figures 2.1a and
2.1b. The histograms show the different task runtime distributions of both applications
and thus the heterogeneity across applications. The spread of task runtimes within each
histogram also shows the heterogeneity within each application: The longest tasks run
475× and 326× longer than the shortest tasks for query 41 and 44 respectively.

Even within the same stage, where all tasks execute the same function on different
data partitions, task runtimes can vary greatly. In query 41, for instance the longest
task within one stage is on average 60× longer than the shortest task. In query 44, the
spread is 176× (the spread is visible by comparing minimal and maximal task runtimes
for same-colored bars in both figures).
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(a) TPC-DS query 41 with 4 stages and 145 tasks
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(b) TPC-DS query 44 with 8 stages and 686 tasks

Figure 2.2: Example of relative task runtime distributions for two TPC-DS queries. The
histograms show two aspects: The runtime distribution across all tasks and the
runtime distribution within each stage. Stages are color-coded. Based on data
from Section 4.4.3.

Many application frameworks and their schedulers, such as Spark and its DAG and task
scheduler, ignore DAG and task heterogeneity. Instead, these frameworks [6, 18, 37, 36,
114] use the micro-tasks concept to address DAG- and task-heterogeneity. Splitting up
the computation into many small (micro-)tasks allows the scheduler to reduce wait times
in front of barriers (as those depend on the longest running task) without the need to be
aware of DAG nor task heterogeneity (see Sections 2.2.3.2 and 2.2.4.2 for details).
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2.1.4 Cluster topology

Cluster topology is a further type of heterogeneity that makes otherwise homogeneous
resources appear heterogeneous, in that the runtime of applications can vary depending
on the relative location of used resources. The main reason therefore is network I/O and
interference thereof between applications. Moreover, the cluster topology often corre-
lates to failure domains. For instance, all servers in a rack, connected to a top-of-rack
switch, can be considered one such failure domain, as they all communicate via a single
switch. Topology-awareness is supported by many RMs and AF such as YARN, Mesos,
Kubernetes and Spark, which know several locality levels, e.g., rack, node and process.

Cluster topology is not considered in this thesis.

2.2 Scheduling

A schedule, or execution plan, defines when and where n tasks of m applications are
executed on j machines. Scheduling is the decision problem of finding a schedule, such
that a set of constraints are fulfilled. Constraints can be hard (requirement) or soft (pref-
erence) and include:

� data and control dependencies among tasks

� hardware resource requirements or preferences

� resource location requirements or preferences

� Service-Level Objectives (SLOs)

Scheduling is also an optimization problem of finding a schedule where the value of
an objective is minimized or maximized. Common objectives include:

� task/application runtime (shorter is better)

� task/application throughput (higher is better)

� task/application execution cost (lower is better)

� resource utilization efficiency (higher is better)

� scheduling latency (lower is better)

Objectives are often contradictory such that a single schedule cannot minimize/max-
imize two or more objectives the same time. For instance, minimizing execution cost is
typically not compatible with minimizing application runtime, as the latter may require
using more resources, which increases the execution cost. It is therefore generally not
possible to find the optimal schedule, as trade-offs between objectives have to be made.

In order to compute a schedule the scheduler also requires:
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� A resource model that represents hardware resources and determines the under-
standing of the scheduler of the hardware resources.

� An application model that represents the application and determines the under-
standing of the scheduler of the application.

� An execution model that defines how work is partitioned and distributed across
resources and determines the freedom of the scheduler when making scheduling
decisions.

2.2.1 Resource model

Hardware resources contain countless aspects that are irrelevant to solve the scheduling
problem. Therefore, abstract resource models are used that represent the actual hard-
ware at varying levels of detail, depending on the scheduling objectives.

For instance, the Completely Fair Scheduling (CFS) scheduler of the Linux kernel sched-
ules individual tasks on CPU cores on a single node. It represents the CPUs of a node in
a hierarchical model that resembles the physical cache and memory hierarchy [73]. The
Spark task scheduler, on the other hand, uses virtual resources (executors), which rep-
resent a tuple of CPU cores and an amount of memory. Executors are only distinguished
by the location of task input data as executor-local, node-local and rack-local, which
resembles the hierarchy of cluster network fabric.

In general, the model used to represent hardware resources needs to be detailed
enough to provide the scheduler with all information it needs to make a scheduling de-
cision but should not contain additional information to avoid overheads during sched-
ule computation. For instance, the resource model for a hardware-heterogeneity-aware
scheduler needs to contain, at the very least, information about the hardware class (mod-
el/configuration), while a scheduler intended solely for homogeneous clusters does not
need this information.

2.2.2 Application model

Similar to resources, application frameworks and their schedulers also use abstract mod-
els to represent applications they execute. Application models are closely tied to schedul-
ing challenges. Two of them are relevant here and are introduced in the following.

2.2.2.1 Linear model

Linear models execute one or more instances of a function at a time without branches
(on the model level). A widely used linear model is bulk synchronous parallel (BSP).
BSP [1] is used to implement many distributed ML training algorithms, such as CoCoA
and mini-batch SGD. In BSP, an application with a level of parallelism p is executed
on v ≤ p (virtual) resources (e.g., CPUs, nodes, executors). The application consists
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of multiple supersteps (henceforth referred to as stages) during which resources execute
tasks independently. The completion of a stage is checked periodically and the application
proceeds to the next stage if it has. Stages of an application may perform different or,
in case of iterative applications, the same function. BSP provides strong consistency
guarantees, i.e., results of tasks of stage i can be seen by all tasks of stages> i. Figure 2.3b
shows an excerpt of a BSP-based application execution. Here, four nodes execute three
stages with four tasks each.

(a) Graph

resource 4
resource 3
resource 2
resource 1

time

stage i
︷ ︸︸ ︷

stage i+1
︷ ︸︸ ︷

stage i+2
︷ ︸︸ ︷

(b) Execution

stage dependency task barrier

Figure 2.3: Depiction of a linear model graph (a) and an idealized execution thereof (b) on
v = 4 resources. Stages (here: p = 4) and tasks are color-coded.

A drawback of BSP is, that it is susceptible to stalls in heterogeneous environments and
in the face of stragglers if p 6� v . Stragglers are intermittently and unpredictably long-
running tasks (see Section 2.2.4.1 for details on stragglers). This can reduce resource
utilization efficiency and slow down the application execution.

2.2.2.2 Directed acyclic graph (DAG)

The DAG model is a generalization of the linear model. It allows to represent more
complex program flows with divergence and convergence of multiple paths within the
model, instead of only a single path. DAG is used to represent applications in many
distributed application frameworks [18, 59, 52, 55, 96, 99, 67, 5, 48].

Each path consists of one or more stages with data or control dependencies to prior
stages on the same path. Each stage s is itself comprised of ps independent tasks. Barriers
exist at the end of each stage and at convergence points. In contrast to linear models, bar-
riers only affect individual stages and converging paths. Figure 2.4 shows an exemplary
depiction of a DAG and its execution. As DAGs also contain barriers, they suffer from
similar issues and consequences thereof as linear models: If ps 6� v, they are susceptible
to stalls in heterogeneous environments and in the face of stragglers. In addition to that,
stalls can occur in front of convergence points, if stages pass their respective barriers at
different points in time, as depicted in Figure 2.4b in front of the blue stage.
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(a) DAG

resource 4
resource 3
resource 2
resource 1

time

(b) Execution

stage dependency task barrier

Figure 2.4: Depiction of DAG (a) and an idealized execution thereof (b) on v = 4 resources.
Stages may have a different number of tasks. Stages and tasks are color-coded.

2.2.3 Execution model

The execution model defines how work is split up and distributed across resources. A
continuous spectrum w.r.t. the size and number of splits exists. On one side, there are
execution models with only a single process per node for the entire application execution.
On the other size, there are micro-tasks, where an arbitrary number of small tasks are
scheduled across all available nodes.

2.2.3.1 Single process

In this model, a single (or fixed number) of process(es) are executed on each node. This
model is used by many Message Passing Interface (MPI) applications, for instance by
Snap ML [103] and PyTorch [85]. The main advantage of this model are neglectable
scheduling overheads, as processes only need to be scheduled once, at the beginning of
the application. However, it does not inherently allow balancing load, elastically scale ex-
ecution or mitigate stragglers. Instead, applications need to implement these capabilities
themselves within the constraints of a fixed number of processes.

2.2.3.2 Micro-tasks

The micro-tasks3 model is central to many distributed application frameworks, such as
MapReduce [6], Spark [18] and others [37, 36, 114, 6]. Each stage s is split up into a
large number ps of small, independently executable tasks, such that ps � v. The size
of a task is defined by the fraction of the total work it performs, i.e., the fraction of the
input data it processes. The size of a task also correlates to its runtime. This enables the
scheduler to make fine-grained scheduling decisions in order to address the following
scheduling challenges:

� Load balancing: As ps� v, the scheduler can balance task load across all available
resources by assigning tasks to resources as soon as they have finished executing

3Also referred to as tiny-tasks in related work [37, 36, 87].
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the previous task. Moreover, in a heterogeneous cluster, the scheduler can assign
more tasks to faster resources than to slower resources using the same mechanism.

� Elastic scaling: As long as ps > v, the scheduler can use additional resources that
become available during execution. Conversely, if resources are removed during
execution, the scheduler can reschedule pending tasks on the remaining resources.

� Straggler mitigation: Stragglers are unpredictably and intermittently slow run-
ning tasks. As tasks are shorter in general, the assumption is that stragglers be-
come shorter as well. Furthermore, the scheduler can execute pending tasks on
other resources (than where the straggler is executed) such that the delay of the
stage finish is reduced.

� Fair resource sharing: The large number of tasks gives the scheduler ample op-
portunity to intervene and reassign resources if it detects unfair resource sharing.

� Error recovery: As each task is small, the work that is lost in case of an error and
needs to be repeated is equally small.

Overheads. The scheduling flexibility of micro-tasks also comes at a cost: Due to the
increased number of tasks and constant per-task overheads, the fraction of overheads
to the actual work performed increases. These constant overheads include: scheduling
overheads, task launch and initialization overheads, coordination and synchronization
overheads.

To quantify this overhead, a set of 90 TPC-DS queries [116, 88] were executed on
Spark on using the test setup described in Section A.2.2, except for two parameters
(spark.default.parallelism and spark.sql.shuffle.partitions). These parameters
control the maximal number of tasks that are used by Spark for each stage. Not all stages
can be split up into an arbitrary number of stages, hence some stages use fewer tasks.4

For both parameters, values between 64 and 2048 have been evaluated (with the same
values for both each time). A higher value increases scheduling flexibility.

For each value, the accumulated runtime of all tasks of each query was measured.
This time includes task launch, initialization, data retrieval, execution and storage of
results data. It does not include scheduling overheads, as the scheduling functionality
of Spark is scattered across multiple classes and components which did not allow for
reliable measurements. Each query was executed three times for each value.5

Figure 2.5a shows the results of this evaluation with the number of tasks per stage
on the x-axis and the relative accumulated task runtime, i.e., the relative amount of
work necessary, on the y-axis. A lower y-value indicates a more efficient utilization of
resources. It shows that with an increasing number of tasks, more total time is spent
executing tasks. As the same effective work (executing the application) is performed in

4On average, a setting of 2048 uses ≈20× as many tasks as a setting of 64.
5One iteration over all queries takes approximately 22 hours on the test cluster.
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all cases, resources perform this work less efficiently. Moreover, the increasing scheduling
flexibility cannot compensate for the additional work that needs to be performed and
application runtime actually increases slightly, as shown in Figure 2.5b.
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Figure 2.5: Overheads (lower is better) and change in application runtime (lower is better)
of micro-tasks on Spark for a set of 90 TPC-DS queries relative to 64 tasks per
stage.

Additionally, a smaller experiment has been performed using the test setup described
in Section A.1.2 where four nodes are slowed down to increase the heterogeneity of
the test cluster. Here, only two values for the number of tasks per stage, 56 (used for
Spark experiments in this thesis) and 200 (the default), have been evaluated. Similar to
the previous experiments, the accumulated task runtime increased by 1.3× on average
when increasing the number of tasks from 56 to 200. However, application runtime was
reduced slightly, by 3.6%, showing that micro-tasks can improve application runtime in
some scenarios.

Limitations. Apart from overheads, some algorithms, such as mini-batch SGD for dis-
tributed ML training of NNs and other distributed ML algorithms, are not compatible
with the micro-task approach, as they become less efficient on an algorithmic level when
the number of tasks increases (see Chapter 5 for details) and therefore require more total
work to be performed to achieve a certain result.

2.2.4 Scheduling challenges

This section introduces the three scheduling challenges which this work focuses on, as
well as methods to address them. The general assumption is that the scheduler cannot
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suspend or move a task once it has started. As DAGs and linear models are effected sim-
ilarly, the simpler linear model is used to exemplify the effects and mitigation strategies
for each scheduling challenge. Differences to the DAG model are noted where necessary.
Table 2.2 lists currently used methods to address each scheduling challenges, which are
elaborated on in the following sections.

Stragglers micro-tasks, worker replication, speculative execution,
relaxed consistency

Heterogeneity micro-tasks, resource requirement
specification/prediction

Elasticity micro-tasks, checkpoint & restart

Table 2.2: Concepts and strategies to address scheduling challenges.

2.2.4.1 Stragglers

Stragglers are tasks that occur intermittently, unpredictably and run exceptionally long
without any apparent reason. Typical causes for stragglers are interference between tasks
on the same node, I/O and networking contention as well as garbage collection (e.g., for
JVM-based applications). The probability of any of these causes occurring increases with
the number of used resources, hence the further an application scales out, the higher the
risk for any single task is to become a straggler. A single straggler, however, is enough
to stall progress of an application, as a barrier can only be passed once the last task has
reached it.

Figure 2.6 shows an example of this issue: A single tasks per stage becomes a straggler
and delays the completion of each stage, while resources of other tasks idle.
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normal task straggler task barrier

Figure 2.6: Example of the impact of stragglers on the duration of a stage. Stages are color-
coded.

Individual paths of a DAG behave like a linear model. For the former, the scheduler
can schedule tasks from other paths on resources that become idle due to stragglers.
Multiple mitigation and prevention strategies have been developed, which are presented
in the following:
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Micro-tasks

The scheduler can adjust the execution plan for all pending tasks. Once a task is running,
its execution plan is set. The defining characteristic of the micro-tasks (Section 2.2.3.2) is
the large number of small tasks, hence the fraction of tasks that is running at any point in
time is relatively smaller than with a small number of large tasks. This has two benefits:

(1) As tasks get smaller in general, so do stragglers.

(2) With a large fraction of pending tasks, the scheduler can adjust the execution plan
to execute tasks on idle resources instead of waiting for a straggler to finish.

This allows the scheduler to hide stragglers that occur early in the execution of a stage
but not those that occur late, as here, the fraction of pending tasks becomes smaller.
Figure 2.7 depicts the impact of stragglers on the finish time of stages: In stages i and
i + 1 the straggler can be hidden, whereas in stage i + 2, no further tasks remain to hide
the straggler and resources 2 – 4 become idle.
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Figure 2.7: Example of straggler mitigation using micro-tasks. Stages are color-coded.

Speculative execution and task replication

Another class of straggler mitigation techniques execute copies of tasks. These techniques
can be further subdivided into reactive and proactive.

� Reactive approaches [6, 8, 13, 32] monitor task progress and start copies of sus-
pected stragglers with the expectation that copies will finish before the originals.
This reduces stalls in the application and tail latencies, at the cost of extra resource
utilization.

� Proactive approaches [30, 62, 122] start copies of certain tasks from the beginning
and use the first available result. This also comes at the cost of extra resource
utilization, even if no stragglers occur and can therefore reduce resource utilization
efficiency.

TensorFlow [62] implements a proactive approach for distributed ML training applica-
tions based on worker replication. Instead of executing only K tasks, m additional tasks
are executed during each iteration. Each task performs the training process on a disjunct
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set of training samples. The barrier at the end of the iteration can be passed as soon as
K out of K + m tasks have finished, hence up to m stragglers can be tolerated without
increasing the runtime of an iteration. A similar approach is proposed by Karakus et al.
[122]. TensorFlow’s approach exploits the stochastic nature of ML training algorithms
where training samples can be processed in any order. It is not applicable in other cases.

Relaxed consistency models

Relaxed consistency models such as stale synchronous parallel (SSP) [31] work by al-
lowing stage i + n to start before all tasks of stage i have finished, thus allowing tasks
of up to n+ 1 subsequent stages to run in parallel. For n = 0, SSP degrades to BSP. It
is the most common approach to address stragglers in iterative distributed ML training
frameworks. Several variations of SSP exist and are used in (or can be used with) many
distributed ML frameworks [23, 19, 25, 34, 43, 47, 82, 114, 104]. Figure 2.8 shows an
exemplary comparison between a BSP and a SSP-based training process with staleness
n= 1.
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Figure 2.8: Exemplary comparison of a BSP and SSP (with n= 1) schedule with stragglers
and identical task runtimes in both cases. Iterations are color-coded.

The relaxed consistency guarantees of SSP introduce bounded errors in the computa-
tion of f∆ (the model update function) by omitting updates from slow nodes (e.g. node 2
in iteration i in Figure 2.8b) in the current iteration, which have to be corrected in subse-
quent iterations. As Ho et al. [34] show, this increases the total number of iterations (and
therefore epochs) needed to converge. This is compensated by the reduced time per iter-
ation up until a certain point after which the increase in number of epochs outweighs the
per-iteration runtime savings. Furthermore, SSP assumes that stragglers are intermittent
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and occur on random nodes, hence this approach cannot compensate for static perfor-
mance differences encountered in heterogeneous systems. Relaxed consistency models,
such as SSP, are only applicable if bounded errors can be tolerated.

Other approaches

Wrangler [50] builds a prediction model based on application logs and node utilization
metrics. Monitoring these node utilization metrics during runtime, Wrangler predicts
whether a node would become overloaded if a specific task were to be executed on it
immediately. If that is the case, task execution is delayed until node load has decreased
to prevent the task from becoming a straggler.

2.2.4.2 Hardware heterogeneity

Hardware heterogeneity across resources used within the same application, causes per-
manent, predictable runtime differences in tasks, as depicted in Figure 2.9. Figure 2.9
depicts a BSP schedule on a heterogeneous cluster and shows the steady task runtimes
on each node and scheduling gaps that emerge in such a scenario.

resource 4
resource 3
resource 2
resource 1

time

stage i
︷ ︸︸ ︷

stage i+1
︷ ︸︸ ︷

stage i+2
︷ ︸︸ ︷

normal task slow task barrier

Figure 2.9: Exemplary depiction of a BSP schedule on a heterogeneous cluster where two re-
sources (3 and 4) are slower than the others (1 and 2). In contrast to stragglers
(Figure 2.8), slowdowns due to heterogeneity are steady and predictable.

Micro-tasks

Micro-tasks is a common approach to address heterogeneity. Due to the large number of
small tasks, the scheduler can balance load in a hardware-heterogeneous cluster with-
out needing to be aware of hardware-heterogeneity, simply by assigning tasks to idle
resources. Faster resources execute tasks quicker than slower resources and thus become
idle sooner, such that more tasks will be scheduled on them. Figures 2.10a through 2.10d
depict load balancing with varying number of tasks and shows how an increased number
of tasks can reduce idle times.
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time
(d) 16 tasks per stage (4× as many tasks as resources)

normal task slow task barrier

Figure 2.10: Exemplary depiction of micro-task schedules for 3 stages with 1-4× as many
tasks as nodes, on a system where slow nodes (3 and 4) require 50% more
time to execute a task than fast nodes (1 and 2).

Other approaches

Other approaches based on the specification or automatic prediction of hardware re-
source requirements exist to address hardware-heterogeneity. These methods are dis-
cussed in Chapter 3.

2.2.4.3 Elasticity

Elasticity refers to the addition of removal of resources during the execution of an applica-
tion and the ability of the scheduler and application to gracefully, i.e., without failing the
entire application, adjust to that. Elasticity is important in shared environments where
applications start and finish at random points in time and the (fair) resource share of
each application changes over the course of their execution.
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Micro-tasks

Similar to load balancing in heterogeneous clusters, micro-tasks can also be used to elas-
tically scale in and out by moving pending tasks from nodes that need to be removed to
nodes that remain and from existing nodes to newly added nodes. Figure 2.11 depicts
an elastic scale-out of a BSP application.

resource 4
resource 3
resource 2
resource 1

time

stage i
︷ ︸︸ ︷

stage i+1
︷ ︸︸ ︷

stage i+2
︷ ︸︸ ︷

task barrier node availability

Figure 2.11: Exemplary depiction of an elastic micro-task schedule for 3 stages with 8 tasks
each.

Checkpoint & restart

Application state can be stored (checkpointed) to a persistent storage after which the
application is shut down and restarted using the new resource assignment. This method
is used in the Optimus elastic ML training framework [112].

2.2.4.4 Others

Other scheduling challenges exist but are not addressed in this work. They include re-
siliency and fairness, both of which can also be addressed using micro-tasks.

2.3 Apache Spark

This section presents an overview of Apache Spark [18, 78] and concepts it is based
on. This description is based on Spark 2.2.1. Spark is a Java Virtual Machine (JVM)-
based distributed data analytics framework, focused on iterative and interactive data
analysis, such as Structured Query Language (SQL) processing. Its main abstraction is the
Resilient Distributed Dataset (RDD), a read-only collection of objects (e.g., numbers,
strings, tuples) that are partitioned and distributed across one or more nodes. RDDs are
created by loading data from an external source, e.g., a file system, or by applying a set
of transformations on existing RDDs.

Figure 2.12 shows an overview of Spark’s driver/worker architecture with its most
relevant modules. The driver executes the sequential part of an application and controls
the distributed execution of its parallel parts. The worker executes long-running task
executor processes. In the following, the function of all modules and their interactions
are described.
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Figure 2.12: Spark architecture overview.

� Spark application: Spark applications describe transformations on data. A
set of transformations with a result is called an action. For instance, c =

a.zip(b).collect is an action that transforms RDD a with I values ai and RDD
b with I values bi into RDD c with value pairs (ai, bi) for 0 ≤ i < I . The exe-
cution of the zip transformation and materialization of RDD a is triggered by the
call to collect. Spark applications consist of multiple actions that can be executed
sequentially or in parallel.

� JobScheduler: The job scheduler compiles an action into a logical execution plan,
called lineage graph. A lineage graph is a directed acyclic graph (DAG) with RDDs
as nodes and dependencies as edges, represents the logical execution plan of an
action. The lineage graph for the above stated action is shown in Figure 2.13. The
type of RDD specifies the type of operation that is performed on the input data.
For instance, the ZippedPartitionsRDD2 constructs tuples from each value of two
equally large input RDDs. Any (user-specified) function that performs the type of
operation defined by an RDD can be used to compute a RDD.
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HadoopRDD

HadoopRDD

ZippedPartitionsRDD2

Figure 2.13: Logical execution plan (lineage graph) for c = a.zip(b).collect.

� DAGScheduler: The DAG scheduler compiles the logical execution plan into a phys-
ical execution plan. The physical execution plan for Figure 2.13 is shown in Fig-
ure 2.14. This plan contains stages with executable functions that perform the
(user-)specified transformation on the input RDDs. Each stage is further split up
into a configurable number of tasks, one per RDD partition. Each task indepen-
dently executes the specified function on one partition. This is Spark’s way to
parallelize execution.

load a

load b

c = f (a, b)

Figure 2.14: Physical execution plan for c = a.zip(b).collect. Here, f (a, b) →
((ai, bi)), with 0≤ i < I

To execute the physical plan, the DAG scheduler traverses it in reverse order until
it finds a stage without any missing dependencies. All tasks of stage are sent to
the task scheduler. Stages are executed in sequence unless more executors than
executable task of a single stage exist in which case another stage can be executed
at the same time. The DAG scheduler also emits status events, such as stage ready
for execution and task finished.

� TaskScheduler: The task scheduler schedules tasks of a stage on available execu-
tors. It tries to find executors that are as close to the input data as possible in order
to reduce data transfer overheads.

� CoarseGrainedSchedulerBackend: The local relay that forwards commands and
events to and from an executor.

� CoarseGrainedExecutorBackend: The main class of the long-running executors.
It is exclusively associated with a CoarseGrainedSchedulerBackend of a specific
application from which it receives commands and task descriptions (task binary
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and closure, i.e., global variables and call arguments) and returns task results and
events. CoarseGrainedExecutorBackend can execute multiple tasks concurrently.
CoarseGrainedExecutorBackends are started and stopped by the resource manager.

� ExecutorAllocationManager: The interface between Spark and an external re-
source manager, such as YARN or Mesos. The executor allocation manager lis-
tens to stage and task status updates to determine the current task load. If more
executable tasks than executors exist, it asks the resource manager to start more
CoarseGrainedExecutorBackend instances until a configurable limit is reached. It
does so in multiple rounds which last a configurable number of seconds (1s per
default). During each round, it doubles the number of requested executors com-
pared to the previous round, until the number of executable tasks is larger than or
equal the number of executors. If the number of executors exceeds the number of
executable tasks for a configurable amount of time (60s per default), executors are
released.

2.4 Definitions

This section provides definitions to important terms used throughout this work. Defini-
tions are grouped into categories: General (Table 2.3), execution (Table 2.4), scheduling
(Table 2.5) and ML (Table 2.6). Terms related to heterogeneity have been defined in
Table 2.1.

Term Definition

Work Execution of an algorithm to solve a problem.

Physical resource Physical components of a computer system, such as
CPU, memory and I/O attached devices (disks, net-
work adapters). Physical resources are of fixed quan-
tity and can be shared across and allocated by pro-
cesses.

Virtual resource An entity that allocates quantities of one or more phys-
ical resource and can itself be allocated. Virtual re-
sources can be created and destroyed.

Executor An executor E = (C , M) is a long-running process that
allocates C compute and M memory resources for the
execution of tasks. Executors are virtual resources. Ex-
ecutors may use an additional, unspecific amounts of
resources to manage the execution of tasks.

Resource allocation time Amount of time talloc a resource is allocated.
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Term Definition

Resource busy time Amount of time tbus y ≤ talloc a resource is executing a
task while allocated.

Resource idle time Amount of time t idle = talloc − tbus y a resource is allo-
cated but not busy. It does not include time resources
are not allocated.

Resource utilization The resource utilization rutil is the fraction of time tbus y

a resource is busy relative to the time it is allocated
talloc, i.e., rutil = tbus y/talloc.

Resource utilization
efficiency

The resource utilization efficiency re f f is the ratio of
work w performed to the resources allocated ralloc for
a given amount of time talloc, i.e., re f f = w/(ralloc ×
talloc). re f f cannot be measured in absolute terms, as
w is abstract, but only relative to another r ′e f f :

∆re f f =
re f f

r ′e f f

=
w

ralloc×talloc

w
r ′alloc×t ′alloc

=
r ′alloc × t ′alloc

ralloc × talloc

re f f utilizes resources ∆re f f as efficient as r ′e f f .

Task A task executes a function on input data and produces
output data.

Stage A stage is a set of tasks that all execute the same func-
tion on different partitions of a dataset. A stage is part
of a job.

Job A DAG of stages that can be executed independently.
An application consists of one or more jobs. Note: This
definition of the term job is not used consistently in re-
lated work. A job can also refer to an application. Here,
the Spark terminology is used.

Data parallelism The parallel processing of disjunct partitions of a
dataset on parallel or distributed systems.

Task wave A set of tasks of the same stage that run concurrently.
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Term Definition

Node performance profile A vector that specifies the performance of nodes rela-
tive to a reference.

Node availability profile A list of tuples. Each tuple contains a node, a times-
tamp and event (add or remove). It specifies the avail-
ability of nodes over a period of time.

Table 2.3: General definitions.

Term Definition

Ready, Executable A task, stage or application is ready or executable if all
of its control and data dependencies are met.

Pending A task, stage or application is waiting to be executed.

Executing A task, stage or application is currently being executed.

Finished A task, stage or application has finished execution.

Table 2.4: Execution-state-related definitions.

Term Definition

Task scheduler A scheduler that schedules individual tasks

DAG scheduler A scheduler that schedules DAGs and uses a task sched-
uler to schedule individual tasks.

Application scheduler A scheduler that schedules entire applications, that
consist of one or more DAGs and tasks. It uses a DAG
and task scheduler to schedule DAGs and tasks.

Global scheduler A scheduler that schedules all applications running on
a cluster at the same time. A global scheduler may only
provide resources to applications or directly schedule
applications, DAGs and tasks on resources.

Resource manager A software that controls access to resources of a cluster
and assigns them to applications using a set of policies.

Table 2.5: Scheduler-related definitions.
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Term Definition

Training The process of finding parameters of a ML model such
that an objective function is minimized or maximized.

Iteration Round of global communication across all tasks. In
each round, training samples are processed indepen-
dently by tasks.

Epoch One pass over all training data.

Feature Measurable property of a phenomenon.

Label Output data for a given set of feature values.

Test/training/validation
accuracy

The fraction of test/training/validation set samples for
which the model predicted the correct label.

Convergence rate The rate with which the training algorithm converges
towards an optimum. Convergence rate can be mea-
sured over epochs or time.

Training dataset Set of samples that is used to train the model.

Validation dataset Set of samples to validate the model during hyper-
parameter tuning and to monitor training progress.

Test dataset Set of samples to validate the final model.

(Local) solver An algorithm that is executed by each task to compute
a model update during each training iteration.

Table 2.6: ML-related definitions.

2.5 Explanation of diagrams

This section explains types of diagrams used throughout this thesis.

2.5.1 Mira

2.5.1.1 Executor allocation diagrams

Figure 2.15 shows an example of an executor allocation diagram. It shows number of
tasks and executors on the y-axis and time on the x-axis.
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Figure 2.15: Task load and executor allocation diagram.

The diagram shows three plot lines:

� The blue task load line shows the number of tasks that are executable or executing.
Once a task has finished, it does not count towards the task load anymore.

� The green line shows the number of executors that are requested from the resource
manager. A request is kept active until the executor is not needed anymore, hence
once an executor has been acquired, it still counts towards the number of requested
executors.

� The red line shows the number of executors that have been acquired and can exe-
cute tasks.

The y-axis is scaled to fit the maximal task load. The black vertical bar towards the
right end of the diagram represents the application end.

2.5.2 Chicle

2.5.2.1 Swimlane diagrams

Swimlane diagrams are used to visualize task execution and workload balance on nodes.
Figure 2.16 shows an example of a swimlane diagram with three separate plots. Each
plot consists of 16 rows - one for each node.
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Figure 2.16: Example of swimlane diagram used in Chapter 5. Here, it depicts the load
balancing process on a heterogeneous cluster. The first three iterations are
highlighted in each plot.

The top two plots depict the task execution with (first plot) and without (second plot)
a certain feature (here: load balancing). The x-axis shows the time in seconds and the
y-axis the nodes. Black horizontal bars in each row represent the time a task is busy.
Horizontal space in-between black bars represents the time a task is idle, i.e., waiting or
communicating. One iteration lasts from the beginning of one black bar to the beginning
of the next. The first three iterations are highlighted with red, blue and green boxes.
For instance, during the first iteration (red box) tasks on the top four nodes run about
twice as long as tasks on all other nodes, as depicted by the relative length of the bars.
In the first plot, this difference remains across all iterations. In the second plot, the task
runtimes are aligned during the second (blue box) and third (green box) iteration, as
depicted by the equalization of the length of the bars.

The third plot shows the relative workload of tasks (in number of data chunks) on
each node on the x-axis and not time per iteration for the second plot. For instance,
during the first iteration (red box), the relative workload for all tasks is the same, as
depicted by the equally long bars for the first iteration in the third plot. For the same
iteration, the task runtimes vary across nodes (second plot). During the second (blue
box) and third (green box) iteration, workload is shifted between nodes: As task runtimes
get shorter (longer), the corresponding workload decreases (increases) as depicted by
the changing lengths of bars in the both plots. The lengths of each bar in the third
plot accurately represents the number of data chunks of a task on a node for a specific
iteration, relative to all other tasks on all other nodes for all other iterations.

The third plot is only present for load balancing experiments.
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2.5.2.2 Convergence plots

Convergence plots are used to visualize the convergence of ML training algorithms with
a convergence metric (duality-gap or test accuracy) on the y-axis and time or number of
epochs on the x-axis.

For each dataset, a target duality-gap or test accuracy is defined. In general, plots are
scaled such that:

� The x-axis covers the range until the last plot line has reached the target.

� The y-axis range covers the range until after the target.

In some cases, interesting parts are not clearly visible with this scaling and plots are
zoomed in.
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Figure 2.17: Example of a convergence plot for (a) CoCoA, where a lower duality-gap is
better and (b) mini-batch SGD, where a higher test accuracy is better. Here,
it depicts the load balancing process on a heterogeneous cluster.

Each plot line represents the average convergence over multiple runs for a single type
of experiment. If convergence is plotted over the number of epochs, values of all runs
are directly averaged. If convergence is plotted over time, this is not possible, as the time
the convergence metric is measured varies. Here, the value of the convergence metric
is interpolated at fixed points across the plotted time range. 100 points are used per
second. The interpolation method used is R approx function with method=’’constant’’.
Values for each run are subsequently averaged at said fixed points and plotted.

Tests were typically executed for a fixed period of time, hence if the x-axis shows the
number of epochs, plot lines may end at different points, as the time per epoch differs
across experiments.



3. Efficient resource utilization within
applications

This chapter presents work on the scheduling of distributed heterogeneous applications
on heterogeneous clusters.1 Heterogeneous applications contain heterogeneous directed
acyclic graphs (DAGs) and tasks that exhibit varying resource demands throughout the
execution. Heterogeneous clusters contain nodes with different types of hardware re-
sources. When ignoring heterogeneity in applications or hardware, scheduling decisions
can lead to prolonged application execution and inefficient resource utilization.

Heterogeneity in clusters is not a new phenomenon. Owned and operated by large
companies and research organizations, large clusters have always been used for the exe-
cution of large scale, distributed applications. Over time, clusters were partially updated
and extended with newer, faster nodes, or such with different capabilities, e.g., GPUs.
This introduced heterogeneity into clusters. Cluster managers and schedulers, such as
LSF [120], often use separate queues for different types of nodes to hide heterogene-
ity from applications. This has changed with the advent of the cloud. A study from
2012 [27] has shown that instance types (e.g., m1.large) on the Amazon cloud may be
backed by as many as five different generations and models of CPUs, even with CPUs
from different manufacturers. As the user has no influence over the specific hardware
model, distributed application frameworks that run in such cloud environments need to
be aware of or even exploit hardware heterogeneity in order to efficiently utilize these
resources.

Furthermore, many recent distributed application frameworks, such as Spark [18],
Flink [52] and Tez [59], internally represent applications as DAGs. Each path of the
DAG executes different functions on different data, resulting in heterogeneous resource
requirements and execution durations. Most of these frameworks, though, focus on scal-
ability [57], ignoring either kind of heterogeneity, at the cost of resource utilization ef-
ficiency. At the current scale of the cloud, this approach is not sustainable anymore in
terms of total cost, energy consumption and the impact on the environment. For this
reason, it is important to address heterogeneity-awareness shortcomings of these frame-
works and their schedulers. The goal of the work presented in this chapter is therefore
to devise, implement and evaluate methods to improve schedules of applications, such

1The work presented in this chapter is based on the publications “The HCl Scheduler: Going all-in
on Heterogeneity” [84] and in part on “Mira: Sharing Resources for Distributed Analytics at Small
Timescales” [107].

33
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that they utilize heterogeneous hardware resources more efficiently, without prolonging
application runtimes.

Work presented in this chapter shows the benefits of DAG-, task-, hardware-
heterogeneity-aware scheduling strategies for DAG-based distributed application frame-
works at the example of Spark. Due to the complexity of distributed application frame-
works, initial experiments with HCL have been performed in simulation, which demon-
strated general benefits. For the simulation, it was assumed that task runtime is inde-
pendent of which tasks were previously executed on the same resource (executor state).
This is a commonly made assumption (see Section 3.5 for details). The subsequent task
runtime analysis on a real cluster has shown, however, that due optimization strategies
employed by distributed application frameworks, executor state significantly impacts
task runtime, hence this assumption does not hold. In consequence, a new schedul-
ing algorithm, stage packing (SP), has been devised which shows the benefits of state-
heterogeneity-aware scheduling. SP is based on insights gained from the task runtime
analysis and implemented in HCL-SP and integrated into Spark.

The main contributions of this chapter are summarized as follows:

(1) A detailed analysis of task runtime behavior and the predictability thereof, for a set
of benchmarks (TPC-DS [88]) executed on Spark [18]. It resulted in the insight
that executor state is a main determinator of task runtime, next to the node class.

(2) A novel scheduling technique, stage packing, that exploits insights gained from the
prior analysis. The evaluation of stage packing using the TPC-DS benchmark suite
on a heterogeneous 15 node test cluster showed that application runtime can be
reduced by≈1.4× on average, while resource utilization efficiency increases by the
same factor.

This chapter is structured as follows: A brief introduction into the problem of schedul-
ing heterogeneous applications on heterogeneous clusters is introduced in Section 3.1,
followed by three main sections:

(1) The HCL scheduler and a simulative evaluation of heterogeneity-aware scheduling
of Spark application is presented in Section 3.2.

(2) A detailed analysis of task runtime behavior of Spark applications on a real hetero-
geneous test cluster and the predictability thereof is presented in Section 3.3.

(3) The stage-packing scheduling technique and its implementation in the HCL-SP
scheduler is described and evaluated in Section 3.4.

Subsequently, related work (Section 3.5) is presented and the chapter is concluded
(Section 3.6). Section A.1 accompanies this chapter with additional information.
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3.1 Introduction

A major issue for the efficient execution of distributed applications is how to allocate
hardware resources to applications and their tasks. This issue has drawn lots of research
efforts over the last years [9, 17, 21, 39, 38, 36, 37, 60, 54, 56, 65, 67, 66]. Many
schedulers for distributed systems have been built under the simplifying assumptions of
DAG, task and hardware homogeneity. These assumptions do not hold anymore. How-
ever, giving up on these assumptions increases the complexity of the scheduling problem
a trade-off between the overhead of making scheduling decisions and the cost of mak-
ing sub-optimal scheduling decisions has to be made. In the face of DAG-, task- and
hardware-heterogeneity, the latter increases.

Figure 3.1 shows a simple example of an DAG-, task- and hardware-heterogeneity-
oblivious and -aware schedule for a four-stage application DAG2 on a five node cluster
with two fast and three slow nodes.

# tasks = 2
runtime (slow) = 2s
runtime (fast) = 1s

# tasks = 2
runtime (slow) = 2s
runtime (fast) = 1s

# tasks = 3
runtime (slow) = 2s
runtime (fast) = 1s

# tasks = 1
runtime (slow) = 2s
runtime (fast) = 1s

(a) Example DAG
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(c) Heterogeneity-aware schedule

Figure 3.1: Example of DAG-, task- and hardware-heterogeneity-oblivious and -aware
schedules of a simple application with four stages on a cluster with two fast
and three slow nodes (resources). Tasks and stages are color-coded.

A DAG-, task- and hardware-heterogeneity-oblivious scheduler (such as the one in
Spark) (Figure 3.1b) selects resources simply according to the availability of idle re-
sources or according to data-locality where child tasks are scheduled on resources closest
to the input data. It does not recognize that scheduling a three-task stage (green) on two
fast and one slow resource is not beneficial but slows down the other path of the DAG. A
DAG-, task- and hardware-aware scheduler (Figure 3.1c), on the other hand, can recog-
nize this and schedule the three-task stage (green) non-greedily on the three slow nodes,
which allows the other path to use the two fast nodes, reducing the application runtime.

2See Section 2.2.2.2 for details on application representation.
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3.2 HCL

HCL (Heterogeneous CLuster) is a DAG-, task- and hardware-heterogeneity-aware appli-
cation scheduler. In contrast to most related work (Section 3.5), HCL assumes that shar-
ing resources across applications incurs high overheads and should be avoided. Instead,
it schedules individual applications on heterogeneous clusters and improves application
runtime using task runtime predictions.

The main objective of HCL is to evaluate potential gains of DAG-, task- and hardware-
heterogeneity-aware scheduling strategies for distributed applications. Therefore, some
challenges have been excluded intentionally, such as collection of runtime metrics and
task runtime prediction. Moreover, to avoid extensive development efforts that are in-
curred by integration into a real distributed application framework (AF), such as Spark,
HCL uses a simulator to simulate task execution. Figure 3.2 shows an overview of HCL.

Application Scheduler (AS)

First level: List scheduler

Second level: Partition scheduler

Third level: Nodeclass scheduler

DAG partition

task schedule runtime, cost

Simulator (SIM)
events (e.g., task finished)

events (e.g., execute task)

Oracle
<task, nodeclass>

runtime

Figure 3.2: Overview over HCL.

HCL consists of three main components:

(1) An application scheduler (AS) that implements the DAG and task scheduler. The AS
itself consists of three scheduling levels and uses task runtime predictions from the
oracle and a cluster model to compute DAG-, task- and hardware-heterogeneity-
aware schedules for each task.

(2) An oracle, that produces task runtime predictions based on previously recorded
traces of real applications running on Spark.

(3) A simulator (SIM) that mimics a real AF, such as Spark. It sends and receives
events, e.g., task finished, execute task, similar to an AF.

In the following sections, each component is described.

3.2.1 Assumptions

The following assumptions are made:
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� The runtime of a specific task only depends on the used resource, the location of
the input data and the communication bandwidth. It explicitly does not depend
on any state. The latter is a common (albeit often implicit) assumption [3, 14, 18,
40, 65, 67, 66].

� Task runtimes can be predicted accurately.

3.2.2 Application scheduler (AS)

The AS is responsible for scheduling a single application on the simulated cluster. The AS
makes few assumptions on how a good schedule looks like. However, due to the inherent
complexity of DAG scheduling – even simple DAG scheduling problems are NP-hard [7]
– heuristics had to be implemented to compute schedules in a reasonable amount of
time (several minutes) even in simulation. To that end, HCL implements a three level
scheduling algorithm:

(1) A list scheduler [7] (Section 3.2.2.1), similar to Bittencourt et al. [14] reduces the
complexity of the scheduling problem. List schedulers rank tasks according to some
metric (e.g., critical path) and select resources for the highest ranked task. Instead
of tasks, DAG partitions of limited depth are ranked and resources are selected
for an entire partition instead of individual tasks. This constitutes a compromise
between complexity and context that the scheduler can used to make decisions.

(2) A partition scheduler (Section 3.2.2.2) maps all tasks of a partition to node classes.
A node class contains nodes that are hardware-wise identical (homogeneous) and
have pair-wise identical communication cost. Node classes are used to reduce com-
putational complexity. A random-tree-walk algorithm reduces the end time for the
partition. The node class scheduler is used to compute schedules of a mapping.
Tasks are executed according to the schedule with the lowest end time.

(3) A greedy, data-locality-aware node class scheduler (Section 3.2.2.3) places tasks on
executors within a node class and computes the expected end time for each task.
The necessary task runtime predictions are provided by the oracle.

In the following, all three levels are described in detail.

3.2.2.1 First level: list scheduler

The first level list scheduler partitions the application DAG into partitions of limited depth
and ranks them. Partitions are passed to the second level scheduler in ranking order.
Figure 3.3 visualizes both steps.
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(a) Partitioning

1.

2.

3.

(b) Ranking

Figure 3.3: List scheduler: Partitioning and ranking.

Partitioning. Partitions are independently schedulable sub-DAGs, i.e., they cannot have
unmet external dependencies. Their sole purpose is to reduce the search space for the
second level scheduler during schedule computation, while still providing context to each
task, e.g., child, parent and sibling relationships. Tasks in the partition are assumed to
influence each other, either due to data dependencies or because they can be executed
at the same time. Tasks outside the context are assumed to not do so, as they are only
remotely related to tasks inside the partition. Knowing this context allows the second
level scheduler to consider the impact of scheduling decisions on the most affected tasks
while ignoring tasks that are less affected.

The depth of a partition is determined by a configurable range as well as the DAG
structure. The first-level scheduler always attempts to build partitions with at least the
minimum depth, if possible. However, in some cases (for instance for the red and blue
partitions in Figure 3.3), this is not possible as unmet data dependencies would remain
once the maximal depth is reached.

In-between the minimal and maximal depth, the first-level scheduler extends partitions
as long as tasks are convergence points. Convergence points are of particular importance
as paths merge there and waiting times in front of barriers at convergence points can arise
if path end times are not balanced. If all converging paths are part of the partition, the
second level scheduler can balance path end times.

Partitions are constructed incrementally using three properties of DAG nodes (which
are tasks):

� uprank: the length of the longest path from a node to an input node. An uprank
of zero indicates that the node is an input node.

� downrank: the length of the longest path from a node to the output node. A down-
rank of zero indicates that the node is the output node. There can be only one
output node.

� depth: the depth at which it was inserted into the partition.

After sorting nodes with an uprank of zero (input nodes) in descending order of their
downrank, a partition is created for the first node and grown from there on by adding
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child nodes and their ancestors. A child can only be added if the following conditions
are true:

� max(depth, uprank) of a task is smaller or equal the minimum partition depth or
is smaller or equal the maximum partition depth and is a convergence point.

� none of its ancestors is part of another partition.

Listing 3.1 lists the top-level partitioning function of an application, which uses the
grow function in Listing 3.3 to grow the partition to its full size. Tasks are added to a
partition using the addTask function in Listing 3.2.

1 void Application::partition(int min, int max) {

2 list<Task*> sortedInput; // subset of tasks with uprank == 0, sorted in descending

3 // order of their downrank.

4

5 for (task : sortedInput) {

6 if (task->partition != NULL) // Skip tasks that are already part of a partition.

7 continue;

8

9 Partition* p = new Partition();

10 this->addPartition(p); // add partition ’p’ to application

11 p->addTask(task, 0); // add ’task’ to new partition ’p’ at depth 0

12

13 // Grow ’p’ from its frontier, a set of newly added and not fully explored tasks.

14 while (p->frontier.size() > 0) {

15 task = p->frontier.begin();

16 p->grow(task, task->depth(), min, max);

17 p->frontier.erase(task);

18 }

19 }

20 }

Listing 3.1: Simplified C++ code of the DAG partitioning function.
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1 void Partition::addTask(Task* task, int depth) {

2 // There might be other children to add to this partition. Add it to the frontier

3 // for further exploration.

4 if (max(depth, child->uprank()) <= min)

5 this->frontier.push_back(task);

6

7 task->setDepth(depth); // Remember at which depth the task was added to the partition.

8

9 for (parent : task->parents()) {

10 if (parent->partition == NULL) // skip parents that are already in the partition.

11 this->addTask(parent, depth-1);

12 }

13 }

Listing 3.2: Simplified C++ code of the DAG partition addTask function.

1 void Partition::grow(Task* seed, int depth, int min, int max) {

2 for (child : seed->children()) {

3 // Skip children that are already part of a partition (can only be this partition)

4 if (child->partition != NULL)

5 continue;

6 // Don’t consider children if it would extend the partition depth beyond the

7 // maximum.

8 if (max(depth, child->uprank()) > max)

9 continue;

10 // Don’t consider children if it would extend the partition depth beyond the

11 // minimum, except if they are a convergence point.

12 if (max(depth, child->uprank()) > min && child->parents.size() <= 1)

13 continue;

14 // Recursively check partitions of ancestors. Only children whose ancestors are

15 // either in this partition or in no partition can be added.

16 if (!checkAncestorPartitions(child, this))

17 continue;

18

19 // Child has passed all tests and can be added. All ancestors are added as well.

20 this->addTask(child, depth+1);

21 }

22 }

Listing 3.3: Simplified C++ code of the DAG partition grow function.

Whenever a task finishes the partitioning is re-evaluated and partitions are updated if
their depth has changed.
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Ranking. Partitions are ranked according to their priority. The priority ρ of a partition
P is the sum of the average runtime τavg

t of all tasks t ∈ P on all resources, weighted by
the uprank rup

t of a task and computed as follows:

ρ =
∑

t∈P

τ
avg
t

1+ rup
t

(3.1)

The higher the uprank rup
t , the later a task will be executed and the more uncertain

the schedule becomes, which is accounted for by the weight 1/(1+ rup
t ).

Another choice to determine the ranking would be the critical path of the application
DAG. However, the critical path only considers the runtime of individual tasks. This is
inadequate, if partitions contain many small tasks. If not all tasks can run in parallel,
because their number exceeds that of available resources, the necessary runtime of a
partition increases without increasing the critical path length.

3.2.2.2 Second level: partition scheduler

The partition scheduler implements lookahead scheduling by considering future tasks of
a partition as well as the context of tasks (i.e., sibling tasks). Lookahead scheduling can
improve schedules in the following conditions:

� If a large amount of data is transferred between a parent and child task, the parent
task can either be scheduled on or near the preferred resource of the child task
(e.g., if the child requires a GPU and the parents doesn’t) or the resource of the
parent task can be reserved for its child task and not used by other tasks to reduce
data transfer overheads.

� In case where the number of fast resources is not sufficient to reduce the time of
all tasks to each a barrier, the scheduler can decide to schedule all tasks on slower
resources and use fast resources for other tasks, as shown in Figure 3.1.

The scheduling algorithm implemented here maps tasks to node classes using a random
walk across a tree, which contains all possible mappings for all tasks to all node classes.
The tree for a partition DAG with n levels (i.e., of depth n) has n+ 1 levels. Levels 1 to
n in the tree correspond to levels 1 to n of the partition DAG. An additional root node is
placed at level 0 of the tree. A partition depth of n results in a lookahead value of n−1. A
path from the root node to any leaf node contains mappings for all tasks of a partition to
node classes. These mappings are translated into a schedule by the node class scheduler.
Schedules for N randomly selected paths are computed and compared w.r.t. their length.
The shortest schedule is executed. N is configurable.

Listing 3.4 shows the code of the random tree walk function. It traverses the mapping
tree in a depth-first manner, generates mappings and computes schedules for them level
by level. Once a leaf has been reached, the length of the best schedule is compared to
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that of the latest schedule, which replaces it, if it is shorter. After mappings have been
explored, the first ready task on each executor is executed. The schedule is recomputed
when partitions are updated by the first level scheduler.
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1 // The shortest best (shortest) schedule and its end time, the latter is initialized

2 // with infinity.

3 Schedule bestSchedule(∞);

4

5 void Partition::walk(Partition* p, Cluster* c, int level, int N) {

6 vector<Task*> tasks = p->getTasksOnLevel(level);

7 vector<NodeClass*> nodeclasses = c->getNodeclasses();

8

9 int maxIndex = pow(nodeclasses.size(), tasks.size()); // # of node classes ^ # of tasks.

10

11 for (int step = 0; step < min(N, maxIndex); step++) {

12 // Randomly select a tasks-to-nodeclasses mapping (for function see Listing 3.5) for

13 // all tasks on the current level. A mapping corresponds to a node in the tree.

14 // If, however, the number of possible indices is smaller than the maximal number

15 // of steps ’N’, then iterate over all mappings sequentially.

16 int index = (N < maxIndex) ? random() % maxIndex : step;

17 map<NodeClass*, list<Task*>> mapping = getMapping(index, tasks, nodeclasses);

18

19 int endTime = 0;

20 // Generate schedules for that mapping

21 for (pair<NodeClass*, list<Task*>> m : mapping) {

22 NodeClass* nc = m.first;

23 list<Task*> tasks = m.second;

24 // Ask the node class scheduler to compute a schedule for the current path

25 // section. This call changes the internal state of the node class scheduler as

26 // it needs to remember the schedule to correctly schedule subsequent levels. It

27 // returns the end time of the schedule.

28 endTime = max(endTime, nc->schedule(level, tasks));

29 }

30

31 if (level < p->depth()) {

32 walk(p, c, level+1, N); // Explore mappings for the next level

33 } else {

34 // This is the last level, i.e., the schedule is complete. Check if it is

35 // shorter than the current best schedule.

36 if (endTime < bestSchedule.endTime()) {

37 bestSchedule.resetSchedule(); // discard old schedule

38 // Save schedules of all node classes in the ’bestSchedule’. ’getSchedule()’

39 // returns the internal state of the node class schedule.

40 for(NodeClass* nc : nodeclasses) {

41 bestSchedule.addSchedule(nc->getSchedule()); // add new best schedule

42 }}}

43

44 // Remove schedules for tasks of this level as a different mapping for the same

45 // level will be explored next.

46 for (pair<NodeClass*, list<Task*>> m : mapping) { nc->resetSchedule(level); }

47 }

48 }

Listing 3.4: Simplified C++ code of the partition scheduler random-tree-walk function.
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1 map<NodeClass*, list<Task*>> Partition::getMapping(size_t index, vector<Task*> tasks,

2 vector<NodeClass*>nodeclasses) {

3 map<NodeClass*, list<Task*>> mapping;

4

5 for (Task* task : tasks) {

6 size_t ncIndex = index % nodeclasses.count();

7

8 // Some tasks may already be scheduled. In that case, the node class cannot change

9 // from what was selected previously. ’isScheduled()’ remains true when the task is

10 // being executed.

11 if (task->isScheduled()) {

12 ncIndex = task->nodeclass()->index(); // get index of node class it was scheduled on.

13 }

14

15 mapping[nodeclasses[ncIndex]].push_back(task);

16 index /= nodeclass.count();

17 }

18

19 return mapping;

20 }

Listing 3.5: Simplified C++ code of the partition scheduler tasks to node class mapping
function.

3.2.2.3 Third level: node class scheduler

The node class scheduler is a homogeneous, I/O-cost-aware task scheduler. As all nodes
within a node class are hardware-wise identical, no hardware-heterogeneity-awareness
is required here. It is further assumed that all executors are configured identically.

The node class scheduler schedules tasks on executors. To find the best executor for a
task, it computes the earliest start time on each executor. The earliest start time depends
on:

� The maximal actual or estimated finish time of any of its parents.

� The estimated I/O time to transfer input data from its origin to the selected ex-
ecutor. This depends on the size of the input data as well as the network link
bandwidth.

The executor with the earliest start time is allocated. Listing 3.6 shows the task schedul-
ing code.
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1 void NodeClass::schedule(int level, list<Task*> tasks) {

2 for (Task* task : tasks) {

3 Executor* best;

4 long earliestStartTime = MAX_LONG;

5

6 for (Executor* exec : executors) {

7 // Determine latest finish time + data transfer times for each parent. Each task

8 // has a list of input edges ’in’. Each input edge is a pair with a parent task and

9 // the amount of data that it reads from the parent.

10 list<pair<Task*, long>> predecessors = task->in();

11 for (pair<Task*, long> p : predecessors) {

12 Task* parent = p.first;

13 long dataSize = p.second;

14

15 // Determine end time of the parent (actual, if the parent has already

16 // finished or estimated, otherwise).

17 long t0 = parent->endTime();

18 // Determine data transfer time w.r.t.\ minimal bandwidth of any link between

19 // the parent executor and the current executor.

20 long t1 = dataSize / getMinBandwidth(parent->executor(), exec);

21

22 if (t0+t1 < earliestStartTime) {

23 earliestStartTime = t0+t1;

24 best = exec;

25 }

26 }

27 }

28

29 // Allocate executor from the estimated earliest runtime for the predicted runtime.

30 long runtime = oracle->predictRuntime(task, best);

31 Allocation* alloc = allocate(task, best, earliestStartTime, runtime);

32

33 // Remember this allocation and the corresponding level to be able to remove all

34 // allocations for a level later.

35 this->allocations[level].insert(alloc);

36 }

37 }

Listing 3.6: Simplified C++ code of the node class scheduling function.

3.2.3 Oracle

The oracle uses pre-recorded application traces and produces exact task runtimes upon
request via the long Oracle::predictRuntime(Task* task, Nodeclass* nodeclass);

Application traces have been collected on a fast node class node and augmented with
a slow node class by scaling fast runtime values by 1.5×. Task runtimes are identified by
task and nodeclass, hence the oracle is a simple database.
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3.2.4 Simulator

The simulator minics an AF and receives/sends events from/to the AS. Each event con-
tains a time stamp at which it is executed. The simulator executes events in ascending
order of their time stamp. Upon execution, a response event is generated. Once all events
for a time stamp have been executed, a virtual clock is advanced to this time stamp. The
only events are execute task and the only response is task executed, which is received by
the AS. The virtual clock is used by the AS as lower bound for the earliest start time of a
task.

3.2.5 Evaluation

The evaluation of HCL addresses the question of whether Spark applications could ben-
efit from DAG-, task- and hardware-heterogeneity-aware scheduling. The experiments
presented here show simulative results of a subset of TPC-DS queries [116], which have
been scheduled using three different scheduling strategies:

(1) As baseline, a data-locality-aware but DAG-, task- and hardware-heterogeneity-
oblivious scheduling strategy was used (H/W oblivious). Child tasks are placed on
the same node as their parent tasks if free executors are available. This scheduling
strategy is modelled after Spark’s scheduler.

(2) Data-locality-, hardware- and task-heterogeneity-aware, but not DAG-aware
scheduling (no lookahead). This scheduling strategy is modeled after that of
Paragon [33] and Quasar [44], except without task-interference-awareness, as
there is no interference in the simulation.

(3) Data-locality, hardware-, task- and DAG-heterogeneity-aware. This is HCL’s
scheduling approach . Minimal lookahead was always set to 1. Maximal looka-
head set to 1, 2 and 3 to evaluate in how far lookahead scheduling can improve
upon the previous, DAG-oblivious method (lookahead 1–3).

The traces that served as input to the scheduler were captured in advance, by executing
the corresponding query on Spark on a single node with 8 executors. DAG models, task
runtimes and I/O volumes were extracted from those traces and used by the oracle during
the simulation. This setup was chosen to reduce the impact of data transfer on task
runtimes, as HCL models data transfer time using the cluster model. Furthermore, the
in the captured traces, data transfer times cannot be distinguished from data processing
times, hence an attempt was made to reduce its impact on the task runtime. Spark version
2.2.1 was configured to use 8 shuffle partitions3, which results in 8 tasks for most stages.
Total number of tasks per application range from 40 to 132 (85 on average).

3
spark.sql.shuffle.partitions=8, spark.default.parallelism=8
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Application models were executed on a simulated cluster with 8 nodes and 4 executors
each. 6 nodes were slow, while 2 were fast. Slow nodes take 1.5× as long to execute
a task as fast nodes. All nodes are connected by a 1GBps connection. This represents a
simple cluster where faster resources (e.g., high-end CPUs, GPUs, FPGAs), due to their
higher cost and limited applicability (for accelerators), are only available in a limited
number of nodes. Two node classes were used, one for fast and one for slow nodes.
As reference for each schedule, a theoretical critical path of each DAG was computed,
based on task runtimes on the fast nodes and ignoring I/O data transfer time. Hence,
this constitutes a lower bound for the schedule length. Each run was repeated five times.
The partition scheduling algorithm was configured to explore 50 nodes on each level of
the mapping tree.

3.2.5.1 Results

Results in Figure 3.4 show that HCL is able to reduce the schedule length on average
from 1.48× of the critical path, when using a heterogeneity-oblivious scheduler (base-
line) to 1.10×, when using a maximal lookahead of three. The largest reduction in sched-
ule length is achieved, however, by simply being hardware-heterogeneity-aware without
looking ahead. Here, the schedule length is reduced to 1.20× of the critical path. While
lookahead scheduling reduces this further, results are not consistently better. This is
caused by the limited subset of explored schedules, which is necessary due to the time
complexity of the scheduling algorithm.

This indicates that the benefit of looking ahead does not justify the effort that is needed
to compute lookahead schedules. Nevertheless, results also show that there is potential
for optimizing schedules of Spark applications by using a DAG-, task- and hardware-
heterogeneity-aware scheduling strategy.
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Figure 3.4: Execution time of different scheduling algorithms relative to the execution time
of the critical path. All values are mean values relative to the critical path length
with min/max error bars.
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3.3 Task runtime prediction

The initial simulative results have shown that schedules can be improved using task run-
time predictions. Hence the next step is to accurately predict task runtimes. This is a
two-step process. First, metrics that correlate with the task runtime need to be identi-
fied and collected (Section 3.3.1) and second, a prediction model needs to be trained
(Section 3.3.2) on said data.

Multiple methods exist to generate prediction models, e.g., closed-form analytical mod-
els can be created for each application and stage. Parameters can be used to model the
magnitude that each metric impacts the task runtime. The problem is, however, to find
parameters, such that the prediction error is minimized. Moreover, the type of function
that represents the correlation of a metric to the task runtime may vary across applica-
tions and stages, for instance from a linear, to a quadratic or a step function. Machine
learning (ML) offers a solution here, as ML training algorithms can find parameters for
a model automatically, during the training process. Implementations of many training
algorithms exist, which allows to change the type of function that represents these cor-
relations with little effort, to generate prediction models for a variety of applications and
stages. For instance, linear and quadratic models can represent linear and quadratic func-
tions, whereas Classification and Regression Tree (CART) can represent step functions.
For this reason, ML has been chosen to create prediction models.

The basic idea is that task runtimes are observed over application runs and, over time,
the prediction model is improved based on these observations. The underlying assump-
tion here is that many applications are recurring. Agrawal et al. [24] has shown that
this is indeed the case for ≈40% of all applications in a data-center. In contrast to some
prior work, no explicit benchmark runs [33, 44] or ahead-of-time simulations [26] are
considered, as those can delay the execution of applications.

3.3.1 Identification of metrics and collection of data

In order to predict task runtimes, metrics, e.g., input data size, that correlate with the task
runtime have to be identified and collected. Ideally, given the same values for all selected
metrics across multiple measurements, the task runtime is the same as well. Furthermore,
as values for these metrics are needed at scheduling time, for task runtime prediction,
they need to be measurable (or computable) at scheduling time as well. Once identified,
metrics need to be measured and values correlated across multiple runs without incurring
high overheads.

The metrics listed in Table 3.1 have been identified for runtime characterization and
later prediction. These metrics have been chosen as their value can be determined during
scheduling time and due to their obvious impact on runtime (apart from the first two
metrics). While not explicitly stated in related work [26, 45, 66], all but the first two
metrics are common choices.
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Metric Type Description

First task of a
stage on an
executor

categorical Whether the current task is the first task of a stage
that is executed on a certain executor. The first task
needs to transfer data that is shared across all tasks
of the same stage (e.g., broadcast variables, task
binaries) and cannot benefit from a warm Just-In-
Time (JIT) cache. Known by HCL.

First task on an
executor

categorical Whether the current task is the first task ever ex-
ecuted on an executor. The first task may trig-
ger some initialization as well as the loading of
additional libraries. Moreover, the JIT cache is
still cold, thus even AF-provided functions have not
been compiled yet. Known by HCL.

Application ID categorical Runtime behavior of tasks varies across applica-
tions. Provided by Spark.

Stage ID categorical A stage defines the function that tasks of a stage ex-
ecute. Task runtime varies depending on the func-
tion they execute. The stage ID is provided by
Spark, however, some modifications were required
to make them stable across application runs (see
Section 3.3.1.1).

Node class ID categorical The node class impacts the speed with which tasks
are executed. Known by HCL.

Total input size numerical The total input size determines how often a function
needs to be executed and therefore determines the
task runtime. Provided by Spark.

Local node input
size

numerical The fraction of the total input size that is on the
local node but in another executor and can be ac-
cessed without network I/O but still requires dese-
rialization. Provided by Spark.

Local executor
input size

numerical The fraction of the total input size that is on the
local executor and can be accessed without network
I/O nor deserialization. Provided by Spark.

Remote input
size

numerical The fraction of the total input size that needs to be
transferred across the network and therefore incurs
network I/O overheads. Provided by Spark.

Task runtime numerical Time from start to end of task execution on Spark
executors. Provided by Spark.

Table 3.1: Metrics used for task runtime prediction.
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Prior experiments with various micro-benchmarks (e.g., word count, word filter) and
TPC-DS queries have shown that the state of an executor can have a significant impact
on the task runtime: Freshly started (cold) executors require significantly more time to
execute a task than previously used (warm) executors. Additionally, once an executor
has executed a task of a stage, the second and subsequent tasks of the same stage on
the same (hot) executor can also see significant runtime benefits. As consequence, the
first two metrics have been added to represent the executor state (cold, warm and hot).
Wang et al. [61] makes a similar observation about the executor state. As noted before,
most related work optimizes schedules across applications but assumes no resource re-
assignment costs across applications. Both metrics also reflect parts of this reassignment
cost, next to the cost of shutting down and restarting an executor.

Additional parameters considered in related work relate to interference and to memory
consumption tasks or applications. As Spark tasks are executed on uniformly configured
executors, no memory consumption metrics are used. Since HCL is not interference-
aware, no interference-related metrics have been collected either.

An important consideration when selecting metrics is that adding metrics comes at a
cost. Every metric translates into one or more features of an ML model, which increases
the complexity of the model. A more complex model requires more training samples and
increases training as well as inference time.

3.3.1.1 Data collection

In order to improve the prediction model over time, the selected metrics need to be
collected during every run and correlated to previous runs. Correlating metrics across
runs requires that stages can be matched across runs, as they define the function that is
executed by their tasks. Spark DAGs contain stages as nodes and data dependencies as
edges. They are isomorphic across runs of the same application but not identical. This is
because stage IDs in Spark are not guaranteed to be stable across runs.

A method had to be implemented in Spark4 to compute stable IDs for each stage, by
computing hashes over:

� Call site string, e.g., count_words at example.scala:42, which represents the line
of code that initiated the creation of the stage.

� A list of hashes of all input sources (Resilient Distributed Datasets (RDDs), file
paths) of a stage in order of their appearance.

This ID is not unique. Multiple stages may have the same ID if they are called from
within a loop, on the same input data, but with different call parameters. The assumption
is that stages with the same stable ID exhibit a similar runtime behavior, as they execute

4The corresponding changes had to be made in many places across the Spark source code. However,
some changes were omitted due to their complexity, which is why only 90 out of 100 TPC-DS queries
will be used for the evaluation, as the remaining 10 queries relied on the omitted changes.
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the same function. Moreover, in cases where the same source file name exists multiple
times, the call site string has to be extended by the full path of a file.

For the data collection, applications have been executed on Spark with HCL-SP as
scheduler. During each execution, the above listed metrics are collected for each task and
transmitted to HCL-SP via its REST API. Stages are identified by the stable ID. Metrics are
recorded by HCL-SP’s oracle component and stored in a comma separated values (CSV)
file. This file is read by an external ML training application to train and update the task
runtime prediction model.

3.3.1.2 Data analysis

For an initial analysis, the metrics listed in Table 3.1 have been collected for ten runs of
each test application. For the analysis, the test cluster was divided into four node classes,
one for each CPU model and clock frequency. Node classes and corresponding hardware
descriptions are listed in Table 3.2.

Subsequently, the collected data has been analyzed w.r.t. the correlation between the
collected metrics and the task runtime. Ideally, task runtimes would be the same across
multiple runs w.r.t. to values of the collected metrics. As the task runtime is influenced by
a multitude of factors, some variation is expected. However, a high degree of stability of
task runtimes across multiple measurements is necessary, as the prediction model, that
is trained on this data, can only be as good as the training data.

Test setup. All experiments use the test setup described in Section A.1.2.

Node class CPU Memory OS

1 Intel Xeon E5-2650v2, 2.60GHz 160GiB RHEL 7.5

2 Intel Xeon E5-2630v3, 2.40GHz 160GiB RHEL 7.5

3 Intel Xeon E5-2640v3, 2.60GHz 256GiB Fedora 26

4 Intel Xeon E5-2640v3, 1.20GHz 256GiB CentOS 7.5

Table 3.2: Node class to hardware translation.

Test applications. For these experiments a Spark implementation of the TPC-DS bench-
mark suite is used. A description of this benchmark is in Section A.1.4.

Results. Plots in Figure 3.5 show the correlation between node classes (see Table 3.2
for a mapping to hardware), total input data size and executor state to the task runtime
for a single stage. The selected seven examples represent frequently observed patterns
among all 909 stages across all 90 TPC-DS queries.
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Data for each of the four node classes is plotted separately side by side. Executor
state is marked by differently colored circles, the size of which represents the relative
number of measurements with a certain (total input size, task runtime) coordinate. Not
every stage uses executors in all three states. Cold executors, for instance, can only be
used by early stages5 of an application, as they will have been used before (and thus
be warm) once later stages get scheduled. Furthermore, depending on the number of
executable tasks, some stages rarely use executors that have already executed a task of
the same stage before, i.e., are hot. This is can be the case for stages with less tasks than
available executors (here: 112), hence the plots show a non-uniform usage of executors
in different states. Due to the heterogeneity across stages in the selected samples, input
data and task runtime ranges vary to a degree that does not allow the presentation with
uniformly scaled axes, hence both axes are scaled to the respective value ranges that have
been measured for the shown stage.

For instance, in Figure 3.5a, a data loading stage of query 14a is depicted. The figure
shows various aspects of the data:

� X-axis: Tasks load between zero and 379MiB of data with four main size values
of approximately zero, 126, 252 and 379MiB. Two additional size values exist just
below 126 and 252MiB, albeit for fewer tasks. The latter can be seen by smaller
circles for the corresponding size values.

� Y-axis: For each node class plot, the task runtime spread is similar for all size
values, with the exception of a total input size of zero. This indicates that there
is no linear correlation between total input size and task runtime. The plot shows
that the only influence on task runtime is whether total input size is zero or not
zero.

� Node class plots: Tasks run for up to≈1200ms on node classes 1 – 3 and≈2400ms
on node class 4 (right most plot). On node class 4, which corresponds to the slowest
hardware, tasks run generally longer than on node classes 1 – 3. The input data
sizes are similar across all four node classes.

� Color of circles: Tasks run on warm (green circles) and on hot (red circles) ex-
ecutors. No task of this stage runs on cold executors (blue circles), hence no blue
circles are shown in the plot.

� Size of circles: Green circles are larger on the upper end of the runtime range
than the lower end, whereas red circles are larger on the lower end of the runtime
range, indicating that tasks on warm executors generally run longer than those on
hot executors.

5Early stages refers to stages that are executed before an application reaches its peak level of parallelism.
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Figure 3.5: Examples of task runtime correlation w.r.t. total input data size and executor
state for a selection of queries and stages. The type of function of a stage is given
in parentheses. Load indicates that the main function of the stage is to load data
from an HDFS file system, whereas compute indicates that its main function
is to process/transform data. The size of each circle indicates the relative (to
other measurements in the same sub-plot) frequency of a measurement.

The data shown in Figure 3.5 provides insight into several aspects of task runtime
behavior and the execution of Spark applications:

(1) As expected, the node class has a noticeable impact on task runtime. The
slowed down CPUs take ≈2.3× longer to execute tasks than on the ones running
at their regular frequency. However, even among nodes that run at their regular
frequency, a performance variation of ≈10% has been observed.

(2) The impact of the executor state on task runtime is significant (Figures 3.5b,
3.5d, 3.5e, 3.5f and 3.5g). On average, tasks running on cold executors needed
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≈2.1× longer than on warm executors and ≈15.4× longer than on hot executors.
An analysis of this effect has unveiled that tasks of the same stage can share input
data, which is only transferred and deserialized upon first access. Subsequent tasks
can access the same stage without additional delay. Furthermore, the Java Virtual
Machine (JVM) relies on JIT compilation to accelerate the execution of often used
code. By executing the same function (i.e., tasks of the same stage) on an executor
repeatedly, the JIT compiler is more likely to compile a function into native code.
This accelerates execution of subsequent tasks of the same stage.

(3) For stages that process a wide spectrum of input data sizes by individual tasks
(Figure 3.5c), a clear correlation between total input data size and task runtime can
be observed. For stages that load data, no such correlation can be observed, even in
cases with a wide spectrum of input data sizes (Figure 3.5a). However, a noticeable
runtime drop for tasks that load zero bytes, hence don’t actually access the file
system, can be observed, indicating a high constant overhead when accessing data
from the HDFS file system.

(4) The spectrum of input data sizes varies between stages and can be continuous (Fig-
ures 3.5c and 3.5h), discrete (Figures 3.5b and 3.5a) or very narrow (Figures 3.5d,
3.5e, 3.5f and 3.5g)

(5) Task runtime does not reliably depend on the selected parameters but can vary
significantly (Figures 3.5b, 3.5a, 3.5f and 3.5g), even when accounting for node
class, total input data size, executor state, stage and application. However, there
are some cases that are close to ideal (Figures 3.5c, 3.5d and 3.5e). Here, task
runtime is highly predictable, as can be seen by the small spread of task runtimes
for each node class, category and input data size.

(6) The relative standard deviation w.r.t. the mean task runtime is shown in Figure 3.6
for all evaluated queries. While the average relative standard deviation is ≈26%,
there are extreme outliers, as can be seen by the error bars. Outliers are stages
with mostly (but not exclusively) short tasks (tens to lower hundreds of millisec-
onds). Here, system noise has a large relative impact. These plots, however, do
not differentiate between local and remote data, which the ML model does (see
Section 3.3).

The analysis has shown that task runtime, as expected, strongly depends on the CPU
model and frequency. However, task runtimes can vary significantly even when the col-
lected metrics are identical (categorical) or similar (numerical). In order to quantify the
variance, recorded metrics for each application and stage were grouped according to the
executor state and node class. Within each group, data was sorted according to the total
input data size into at most ten bins of at least 0.5MiB in size. For each group and bin,
the mean m and the standard deviation d as well as relative standard deviation to the
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Figure 3.6: Relative task runtime standard deviation w.r.t. mean runtime of each stage.

mean m/d was computed. The latter is shown, summarized per query, in Figure 3.6. The
relative standard deviation is ≈26% on average, but outliers as large as ≈450% occur.
This poses a serious issue for accurate task runtime predictions, as any ML model can
only be as good as the data it was trained on. The analysis has also resulted in valuable
insights, namely that the executor state is an important factor for the task runtime, in
parts even more so than the node class.

3.3.2 Model training

The task runtime analysis has shown that, given the same (or similar) values for measured
metrics can result in large task runtime variations. As any model can always only predict
a single output value for a set of input values, this variation will necessarily reduce the
accuracy of the prediction, independently of the used prediction method. However, the
task runtime analysis did not differentiate between local and remote input data, which is
partially responsible for the variation. The amount of local and remote data is recorded
separately, such that the ML model can differentiate between them. This can improve the
accuracy of the prediction. In order to evaluate this, three ML training algorithms have
been used to train models (from simple to complex) on the collected data. The recorded
runtime metrics (except for the task runtime) are used as features (input data) for the ML
training algorithms and the corresponding task runtime is used as label (output data).

(1) Linear Regression (LR) algorithm from the scikit-learn project [22]. A LR model is
able to model linear relationships between features and labels. Using a LR implies
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the assumption that the features and labels are linearly correlated. For instance,
each input data item contributes a fixed amount of time to the task runtime. Sim-
ilarly, the node class impacts task runtime by a linear factor.

(2) Classification and Regression Tree (CART) algorithm from the scikit-learn project.
CART models can model arbitrary relationships between input and output data
and are thus not limited to linear correlations. They are well suited for categorical
features, such as the hardware resource class or executor state, and labels. For
instance Figure 3.5a shows that input data sizes are not always linear but can be
categorized or, as in Figure 3.5h, have no impact on task runtime.

(3) Gradient Boosted Decision Tree (GBDT) algorithm from Catboost [113]. GBDTs
are based on an ensemble of CARTs and can improve accuracy. During inference,
the prediction of each CART is added up to the final prediction. The potentially
higher accuracy comes at the cost of increased training and inference time.

The use of ML algorithms requires the selection of features and preprocessing of the
training data. The necessary steps depend on the selected algorithm. In all cases, how-
ever, separate ML models are trained per application and stage, as no correlation between
stages or applications can be expected.

The following seven features have been selected:

� Executor state, i.e., first task of a stage on an executor and first task on an executor.

� Node class id

� Total input size

� Local node and executor input size

� Remote input size

The following preprocessing steps were performed.

� Training data outliers were filtered out, as training on outliers impairs the accuracy
of the model. Outliers are training data records with the same or similar features
but vastly different label values. In order to identify outliers, training data records
for each stage were grouped according to the executor state and node class. Within
each group, data was sorted according to the total input data size into at most ten
bins of at least 0.5MiB in size. Each bin contains training data records with the
same categorical and similar numerical feature values. For each group and bin, the
mean m and the standard deviation d of all task runtimes were computed. Training
data records with a task runtime > m+ s or < m− s were assumed to be outliers
and filtered out.
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� Numerical values were scaled to a value between 0 and 1 by dividing each value by
the maximal value. This step was only performed for the LR algorithm and ensures
that features with large a value range have the same impact on the prediction as
features with a smaller value range.

� Categorical features (node class id and executor state) were one-hot encoded. This
step was only performed for the LR algorithm, as otherwise categories are inter-
preted as numerical values.

3.3.2.1 Model training and testing

For the model training, the collected data was randomly shuffled and split into a training
and a test data set using a 70/30 split. The random shuffle is necessary to ensure that
both, training and test data, contain a representative set of records, e.g., records with all
executor states.

For both tree algorithms, the maximal tree depth was varied between one and ten.
Choosing the right tree depth is important, because a shallow tree may not be able to
capture all relevant facets of the training data, while a deep tree may simply remember
the training data (overfit). The tree depth which resulted into the model with the smallest
mean square error (MSE) on the test set was selected. For all other training algorithm
parameters, default values were used.

Figure 3.7 and Table 3.3 summarize the results of the task runtime prediction for each
ML model.

absolute mean signed mean absolute median signed median

LR 37.7% -9.8% 23.0% 3.0%

CART 37.9% -10.2% 23.0% 3.0%

GBDT 42.8% -14.8% 23.0% 2.0%

Table 3.3: Mean and median task runtime prediction error. A negative (positive) value
indicates underestimation (overestimation) of the task runtime.
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Figure 3.7: Histogram of the overall task runtime prediction error (excerpt from -100% to
+100%) for all three ML models. Colored regions correspond to the relative
number of predictions within a given prediction error range.

3.3.2.2 Prediction accuracy

As expected, given the task runtime variance in the training data, the task runtime pre-
diction error is high. For lookahead schedule as used in HCL, the absolute, not the signed
error is important, as errors in both directions impair accuracy of the planned schedule.
The absolute mean error is 38% across all applications for LR and CART, and 43% for
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GBDT. While absolute median error values are lower (23%) for all algorithms, this is
not sufficient to compute schedules based on individual task runtimes. The evaluation
of HCL (Section 3.2.5.1) has shown that the potential gain from lookahead scheduling is
small, compared to that of simply choosing the fastest node class for each task. However,
this small gain was achieved assuming a prediction error of 0%. Even a single task that
runs longer than expected can stall an entire stage, and therefore an application. Hence,
while the absolute median error is only 23%, 50% of predictions are less accurate, which
will further reduce benefits of lookahead scheduling as used in HCL.

The achieved prediction error is also higher than in related work: Wang et al. [61]
achieved a absolute mean task runtime prediction error for four Spark applications of
12.8%. However, the applications that are used by Wang et al. execute simple, iterative
algorithms (page rank, k-means, logistic regression and word count), with strictly linear
DAGs. The TPC-DS queries used here contain a large variety of heterogeneous, non-linear
DAGs. While no systematic tests with simpler applications have been performed as part
of this work, singular experiments with micro-benchmarks (e.g., word filter and count)
also showed lower prediction errors.

Another source of the prediction error is that the collected metrics do not include
interference-related information. While the number of executors per node (eight) that
were used during the data collection runs is low compared to the number of CPUs (16
cores, 32 threads) and the available memory (160GiB – 256GiB) per node, interference
cannot be completely ruled out. I/O interference seems unlikely, as the HDFS file system
resided on RAM-disks and all nodes were connected by a 56Gbps Infiniband network.

Per-stage prediction accuracy. Table 3.4 and Figure 3.8 show the task runtime pre-
diction error, averaged over all tasks per stage. Here, the prediction error decreases
significantly, to a signed median of -4.0% – -5.0%. While this is not sufficient for the
approach chosen in HCL, it is for stage packing, which is presented in Section 3.4.

absolute mean signed mean absolute median signed median

LR 11.1% -8.5% 6.0% -4.0%

CART 11.0% -8.8% 6.0% -4.0%

GBDT 11.9% -9.7% 6.0% -5.0%

Table 3.4: Mean and median task runtime prediction error averaged per stage. A negative
(positive) value indicates underestimation (overestimation) of the task runtime.
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Figure 3.8: Histogram of per stage task runtime prediction error (excerpt from -100% to
+100%) for all three ML models. Colored regions correspond to the relative
number of predictions within a given prediction error range. A negative (posi-
tive) value indicates underestimation (overestimation) of the task runtime.

3.3.3 Summary

The results of the task runtime analysis and accuracy of the prediction model allows two
courses of action:
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(1) Improve the simulation used for HCL such that it accurately reflects the observed
task runtime behavior and continue to improve the scheduling algorithm of HCL
in simulation. In order for the simulator to accurately reflect the observed task
runtime patterns, task runtime prediction needs to be improved. This, in turn, re-
quires the identification and collection of additional metrics that correlate with the
task runtime. Given the achieved results and the complexity of current distributed
application frameworks, it is unclear, whether this can succeed. Furthermore, the
goal of this work is not to build a simulator, but to devise scheduling techniques
that work in practice, where the simulator is just a means to an end. Hence, this
course of action does not support this goal.

(2) Proceed with real-world experiments. Devise scheduling techniques that reduce
application runtime and increase resource utilization efficiency in practice, using
the insight gained from the task runtime analysis and the achieved accuracy of the
prediction model.

The latter course of action does support the goal of this work and has therefore been
chosen and described in the next section.

3.4 HCL-SP (stage packing)

HCL-SP is a DAG-, task, hardware- and state-heterogeneity-aware application scheduler,
based on insights gained from the task runtime analysis and the achieved task runtime
prediction accuracy (Section 3.3). The main factors that influenced the scheduling algo-
rithm of HCL-SP are:

(1) The impact of the executor state on task runtime is significant (up to ≈15.4× on
average) and can exceed that of the node class (2.3× on average).

(2) Given the high computational complexity and the inability to compute accurate
runtime predictions for individual tasks, an approach similar to that chosen in HCL
would unlikely be beneficial in non-simulated environments.

(3) Averaged per stage, task runtime predictions are more accurate than individually.

For these reasons, a novel scheduling technique, stage packing, was devised that ex-
ploits the impact of the executor state on task runtimes by packing tasks of the same stage
on as few executors as possible without reducing overall parallelism. This increases the
chance of using hot executors. Task runtime predictions, averaged per stage and rela-
tive to that of other stages are used to determine the number of executors to assign to
each stage and from which node class to select them. Furthermore, by packing tasks of
stages on fewer executors, more tasks run back-to-back, which increases the chance that
stragglers can be hidden and reduces their impact on the stage finish time.
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3.4.1 Assumptions

The following assumptions are made:

� Executor sharing across applications incurs significant overhead compared to the
application runtime and should to be avoided. This assumption justifies the ap-
proach to improve schedules of individual applications instead of across applica-
tions.

� Task runtimes on hot executors are lower than those on warm and cold executors.
This assumption needs to hold in order for stage packing to be beneficial.

� Task runtimes depend on the node class of the executor they’re running on. Tasks
have a preference order of node classes. This order is the same for all tasks of
a stage. The task runtime prediction per node class accurately reflects this order,
otherwise less preferred node classes are selected even if preferred node classes are
available.

� If the average actual task runtime of stage s1 is t1 and that of stage s2 is t2 = a× t1,
then the average predicted task runtime t ′1 and t ′2 have the same ratio, i.e., t ′2 =
a′× t ′1 with a = a′. The larger the difference between a and a′, the less accurate is
the path weight.

� Applications are recurrent such that the task runtime prediction model can be
trained on multiple runs of the same application.

3.4.2 Application scheduler

This section describes the stage packing algorithm of HCL-SP. The main idea of stage
packing is to pack tasks of a stage on as few executors as possible, without reducing
overall parallelism, and therefore to increase the usage of hot executors. Stage packing
is not specific to heterogeneous clusters. To the best of my knowledge, no prior work
explicitly considers the state of executors when computing DAG schedules.6

3.4.2.1 Stage packing

Figure 3.9b shows a schedule for the DAG in Figure 3.9a as it would be computed by
Spark’s native scheduler. Stages, even those that could run in parallel, are executed back-
to-back. This strategy is oblivious to the impact of the executor state on task runtimes.
Hot executors are only used if the number of tasks of a single stage exceeds the number
of executors. On the other hand, a stage packing schedule (Figure 3.9c) schedules stages
in parallel, which increases the usage of hot executors and decreases task runtimes.

6Serverless frameworks [69, 91] reuse warm containers to accelerate the execution of event-driven,
(mostly) single-task applications, which are not comparable to distributed applications with complex
DAGs.
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Furthermore, stage packing can help to reduce the impact of stragglers on the finish
time of stages. The impact of a straggler increases, the later in the execution of a stage
it occurs (see Figure 2.6). In the schedule shown in Figure 3.9b, each task is a last task
of a stage on an executor, hence if any task becomes a straggler, the stage finish time is
delayed. In the stage packing schedule (Figure 3.9c), on the other hand, only half the
tasks of the green and red stages are last tasks. This reduces the number of last tasks and
hence the likelihood of a last task to become a straggler.

(a) Example DAG
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Figure 3.9: Example of the stage packing scheduling strategy using the example DAG (a)
with three stages (four tasks each) and vanilla Spark’s scheduling strategy (b)
compared to a stage packing scheduling strategy (c). Stages and tasks are color
coded. Boxes in (b) and (c) represent tasks of stages with the width representing
the task runtime.

3.4.2.2 Sizing of executor pools

Stage packing requires the partitioning of executors into one or more executor pools.
Each pool is assigned exclusively to one stage. As stages on parallel paths of the DAG are
executed at the same time, the problem of how to size the executor pool for each stage
arises.

Ideally, the executor size corresponds to the amount of work that is performed in each
stage, such that stages on converging paths reach the convergence point at the same
time. To determine what this size is, the amount work that needs to be performed to
reach any convergence point in the DAG is computed. At each convergence point, the
input paths are assigned a path weight in the range (0,1], such that all weights add up
to one. The total number of executors is split between all input paths in correspondence
to these weights. This is done recursively, until an input stage has been reached. The
path weight at an input stage represents the fraction of all executors that will be assigned
to a stage.

The path weight is computed in two phases.

(1) In the forward phase, the absolute weight of each path from an input stage to the
final stage is computed. The absolute path weight wP =

∑

S∈P wS is the sum of
all absolute stage weights wS of all stages S ∈ P on path P. wS is the sum of the



3.4 HCL-SP (stage packing) 67

average predicted task runtime τavg of all tasks t ∈ S on all node classes n ∈ N ,
with N being the set of node classes. It is computed as follows:
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wS = |S| ×τavg (3.3)

τc
t,n/τ

w
t,n/τ

h
t,n is the predicted runtime of task t ∈ S on a cold/warm/hot executors

on node class n ∈ N . The simplifying assumption that all executor states occur
with the same likelihood is made here. In reality, this likelihood varies. However,
at the time of computing the path weight, the state of executors on which tasks are
executed are still unknown.

(2) In the backward phase, the relative weight (0,1] of each input paths of a conver-
gence point is computed. The relative path weight at an input stage corresponds
to its executor share.

As the path weight is computed before executors are selected, before tasks are sched-
uled and relies on average task runtime predictions, it is only an approximation of the
actual path weight. Therefore, the path weight is recomputed periodically as tasks finish.
If necessary, executor pool sizes are adjusted accordingly.
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Figure 3.10: Example of the path weights 5-stage DAG. Labels next to nodes (stages) show
absolute values, labels on edges represent the relative path weight.

An example of path weights for a DAG with 5 stages is shown in Figure 3.10. Fig-
ure 3.11b shows the corresponding stage packing schedule on eight homogeneous ex-
ecutors in comparison to Figure 3.11a, which shows a vanilla Spark schedule for the
same DAG. In this example, all executors are assumed to be warm in the beginning.
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Tasks of stage s0 run three times faster on hot executors than on warm executors, tasks
of other stages run twice as fast. Each executable stage is assigned the share of execu-
tors that corresponds to its relative path weight (rounded to the nearest integer). The
executor pool size of stages is computed in descending order of their path weights. In
this example, the order is s0, followed by s1 and s3 (stages s2 and s4 are only considered
once they are executable).

� Stage s0 is assigned b8× 0.5/(0.5+ 0.25+ 0.25)e = 4 executors. 4 executors and
stages s1, s2 remain.

� Stage s1 is assigned b5× 0.25/(0.25+ 0.25)e= 2 executors. 2 executors and stage
s0 remain.

� Stage s2 is assigned b2× 0.25/(0.25)e = 2 executors. No executors and no stages
remain.
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(a) Vanilla Spark

Time

Ex
ec

ut
or

s

0 1 2 3 4 5 6 7 8 9 10 11

(b) Stage packing

Figure 3.11: Exemplary comparison of a vanilla Spark schedule (a) and a stage packing
schedule (b) for the DAG shown in Figure 3.10 on 8 executors on a homoge-
neous cluster (to simplify the example). Application finish times are indicated
by the vertical dotted line. Boxes represent tasks of stages. The width repre-
sents the task runtime. Stages are color coded.

3.4.2.3 Executor selection

Executors are selected by the scheduler in a greedy fashion for each stage. All executable
stages are served in a round robin fashion. During each round, each stage can pick one
executor until it has reached its allowed share. Executors are selected according to two
criteria once a stage becomes executable or when the relative path weight, and therefore
the executor share of a stage, changes:

(1) Select an executor that has already executed a task of the same function before,
i.e., is hot.

(2) If no such executor is available, select an executor from the most preferred node
class. If no such executor is available either, proceed to the next-most preferred
node class, until a free executor has been found.
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The node class preference order is computed by ranking node classes in ascending
order of the average predicted task runtime on each node class n ∈ N . The highest
ranked node class is assumed to execute tasks of a stage the fastest.

Executors are released back into the global pool from which other stages of the same
application can pick once:

� The allowed size of the executor pool of a stage is reduced, because the relative
path weight changed.

� The size of the executor pool is larger than the number of unfinished tasks of a
stage.

If executors have to be released, the next executor that finishes a task is released.

3.4.2.4 Task scheduling

Within a stage’s executor pool, the task-heterogeneity-aware scheduler places tasks. HCL-
SP uses a simple task placement approach where tasks are assigned to free executors
in descending order of their input data size (which is provided by Spark). Similar to
how stages pick executors, tasks are placed on the most preferred executors, if they are
available. This strategy ensures that the longest running tasks of a stage can run on
the most preferred executors. Furthermore, by scheduling shorter running tasks later,
the scheduler can fill gaps in executor utilization. This assumes a positive correlation of
input data size to task runtime. No further optimizations have been implemented.

3.4.3 Oracle

As other heterogeneity-aware schedulers, HCL-SP uses data from previous runs of an
application to compute task runtime predictions [33, 44, 67, 66, 45, 75, 14, 3]. This
is possible as many (≈40% [24]) workloads are recurring. HCL’s oracle uses Catboost’s
GBDT implementation [113] to compute task runtime predictions. Apart from recording
and storing performance metrics (see Table 3.1 for a list of recorded metrics), the oracle
is simply a wrapper for Catboost. Training of the corresponding models is not part of the
oracle itself but implemented in a separate Python script. This training script uses the
recorded performance metrics to train a model offline.

Catboost was chosen due to practical reasons, even though it’s accuracy is not the
highest among the tested algorithms (see Section 3.3.2). It has a native C++ as well as
a Python API and allows to exchange trained models between them. Other ML libraries
with a C++ API, such as Mlpack [101] and Shogun [15] have been evaluated as well.
They have not been chosen due to bugs, e.g., when storing and loading models from files,
or due to the lack of a Python API, which is the preferred method to train models offline.
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Figure 3.12: Depiction of HCL-SP’s Spark integration showing the necessary modifications
of Spark DRV the interplay with the AS. New components are highlighted in
green and dotted components were significantly modified.

3.4.4 Spark integration

HCL-SP has been integrated into Spark and its application driver (DRV) component,
where Spark’s native scheduling functionality resides, had to be adapted. HCL-SP takes
over DAG and task scheduling functionality. In order to do that, Spark communicates the
application DAG with annotations, as well as scheduling-related events (such as stage
ready or task finished) to HCL-SP. In addition, task execution metrics, which are collected
within Spark’s execution environment (EX) and DRV components and are used by the
oracle to refine and compute task runtime predictions, are communicated to HCL-SP.

Figure 3.12 shows the integration of HCL-SP into Spark (Figure 3.12b) and contrasts
it to vanilla Spark (Figure 3.12a). The integration of HCL-SP is limited to Spark’s
DRV component which executes user-written application code as well as Spark sub-
systems, that are responsible for scheduling, task execution and data distribution co-
ordination. HCL-SP’s AS replaces Spark’s native DAG and task scheduling functional-
ity. Merely the DAG construction and the relaying of HCL-SP’s task schedules to the
CoarseGrainedSchedulerBackend, which is responsible for initiating task execution on
long running CoarseGrainedExecutorBackend (executor) processes, remains.

As Spark’s DAGs are isomorphic but not equivalent across application runs, a stable ID
was added to each stage, in the course of the HCL-SP integration, as to make DAGs equiv-
alent across application runs. This was necessary as HCL-SP needs to be able to reliably
identify stages across application runs to select the corresponding prediction model (see
Section 3.3.1.1 for details about the required modifications).
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In HCL-SP, the DAGScheduler constructs a job DAG and forwards it to the newly added
HCLSchedulerClient upon job submission. This new component annotates the DAG with
input data locations and sizes for each task, as well as the stable stage ID and relays
it to HCL-SP via HCL-SP’s REST API (see Section A.1.1 for details). HCL-SP uses this
information to compute a schedule for each task, which it returns to Spark via the same
API. Upon completion of a task, the HCLSchedulerClient relays metrics (see Section 3.3.1
for a description of collected metrics) back to HCL-SP, which it feeds into its oracle. The
oracle stores the data in a CSV file, which is read by the external ML training script to
update the corresponding ML model.

3.4.5 Evaluation

In order to evaluate the potential benefit of stage packing as well as task runtime predic-
tions, 90 TPC-DS queries were executed on Spark+HCL-SP and compared against vanilla
Spark. All experiments use the test setup described in Section A.1.2.

This evaluation answers three questions:

(1) What is the benefit of a state- and DAG- and task-heterogeneity-aware scheduling
strategy (Spark+HCL-SP) compared to an oblivious one (Vanilla Spark)?

(2) What is the benefit of adding hardware-heterogeneity-awareness to stage packing
(Spark+HCL-SP (RP)) compared stage packing alone (Spark+HCL-SP) and an all-
oblivious strategy (Vanilla Spark)?

(3) Can a benefit as in (2) be achieved without task runtime predictions, but with
simply using a fixed node class preference order?

Each experiment was repeated ten times. For task runtime predictions, the ML model
was trained on runtime metrics collected over ten prior runs without task runtime pre-
dictions.

3.4.5.1 Test setup

All experiments use the test setup described in Section A.1.2.

Test applications

For these experiments a Spark implementation of the TPC-DS benchmark suite is used.
A description of this benchmark is in Section A.1.4.

3.4.5.2 Configurations

Table 3.5 lists the configurations that are compared in this evaluation.
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Configuration Description

Vanilla Spark Vanilla Spark without HCL-SP.

Spark+HCL-SP Spark with HCL-SP as application and task scheduler. HCL-
SP assumes the same runtime for all tasks. If available, hot
executors are selected. Otherwise executors are selected
randomly.

Spark+HCL-SP (RP) Spark with HCL-SP as application and task scheduler. HCL-
SP uses the ML model to predict task runtimes. If available,
hot executors are selected. Otherwise executors are selected
from node classes, in preference order predicted by the ML
model.

Spark+HCL-SP (FP) Spark with HCL-SP as application and task scheduler. HCL-
SP assumes the same runtime for all tasks. If available, hot
executors are selected. Otherwise executors are selected
from node classes, in a fixed (configurable) preference or-
der. The fixed node class preference order is<3,2,1,4> (see
Section A.3.3.1 for an explanation of node classes), which
corresponds to the observed speed of node classes from fast
to slow.

Table 3.5: Configurations compared in this evaluation.

3.4.5.3 Results

Figure 3.13 shows results for each query and Figure 3.14a the corresponding CDF. Results
discussed in the text as well as figures do not consider the first 24 stages (0 – 23) of each
query, unless noted otherwise. While part of the application, these stages are not part
of the time the TPC-DS benchmark itself measures [116]. For reference, a CDF with
results for the entire application is provided in Figure 3.14a. HCL-SP is able to shorten
the runtime of these stages by ≈6× compared to vanilla Spark.
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Figure 3.13: Comparison between stage packing schedules and the baseline (Vanilla Spark).
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Figure 3.14: Speedup of Spark+HCL-SP compared to vanilla Spark.

Overall, Spark+HCL achieves runtime parity or speedup compared to vanilla Spark for
94.44% to 97.78% of all queries and a maximal speedup of 1.95× to 3.71×, depending
on the used HCL configuration. Results are summarized in Table 3.6 and discussed for
each HCL configuration separately in the following:
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Vanilla
Spark

Spark+HCL-
SP

Spark+HCL-
SP (RP)

Spark+HCL-
SP (FP)

Fraction of sped up queries 0.00% 95.56% 94.44% 97.78%

Mean execution speedup 1.00× 1.14× 1.23× 1.39×

Median execution speedup 1.00× 1.17× 1.26× 1.33×

Minimal execution speedup 1.00× 0.90× 0.92× 0.98×

Maximal execution speedup 1.00× 1.95× 2.00× 3.71×

Absolute resource executor
busy time increase

1.00× 1.05× 1.09× 1.04×

Mean resource utilization 12.19% 27.79% 30.50% 30.64%

Mean resource utilization
efficiency increase

1.00× 1.14× 1.23× 1.39×

(a) excluding stages 0 – 23

Vanilla
Spark

Spark+HCL-
SP

Spark+HCL-
SP (RP)

Spark+HCL-
SP (FP)

Fraction of sped up queries 0.00% 100.00% 100.00% 100.00%

Mean execution speedup 1.00× 1.99× 2.11× 2.30×

Median execution speedup 1.00× 2.30× 2.34× 2.47×

Minimal execution speedup 1.00× 1.08× 1.10× 1.55×

Maximal execution speedup 1.00× 3.26× 2.95× 4.27×

Absolute resource executor
busy time increase

1.00× 1.02× 1.06× 1.01×

Mean resource utilization 9.56% 23.8% 26.0% 25.9%

Mean resource utilization
efficiency increase

1.00× 1.99× 2.11× 2.30×

(b) entire application

Table 3.6: Summary of performance and efficiency metrics. Relative values are in compar-
ison to vanilla Spark.

3.4.5.4 Results discussion

Spark+HCL-SP. Stage packing alone achieves a mean (median) reduction of applica-
tion runtime of 1.14× (1.17×). This result is within the expected range, given that the
positive effect of stage packing is limited to situations where two or more stages with
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more combined tasks than executors can run in parallel. Mean resource utilization more
than doubles, from 12.19% to 27.79%, which indicates that stalls (due to stragglers) and
executor idle times are reduced significantly. At the same time, absolute executor busy
time, i.e., the accumulated time each executor was executing tasks, increased slightly,
by 1.05×. The latter result was not expected, as with an increased usage of hot execu-
tors, task execution should take less time overall. A possible reason for this increase is
that due to the reduced stalls and executor idle times, the fraction of executors that are
busy at any point in time increases. This can also increase interference across executors,
particularly on the same node, which leads to an increased task execution time. Nev-
ertheless, mean resource utilization efficiency increases by the same factor as the mean
execution speedup. This is because executors cannot be shared across applications, thus
the less time is required to perform the same work (execute the application), the higher
the utilization efficiency is.

Spark+HCL-SP (RP). When adding task runtime predictions to compute path weights
and pick executors from preferred node classes, a mean (median) speedup of 1.23×
(1.26×) over vanilla Spark was achieved. The increased speedup compared Spark+HCL-
SP was expected, as with runtime prediction, the path weight becomes more accurate.
Additionally, executors are less likely to be scattered across node classes as they are cho-
sen in preference order and not at random. Picking executors from the same (or fewer)
node classes is important, as it reduces the risk of any single task to become a straggler
due to the usage of slower nodes.

Similarly to Spark+HCL-SP, mean resource utilization, as well as the absolute executor
busy time, increases to 30.50% and by 1.09× respectively. The reasons for this are the
same. Additionally, with runtime prediction, tasks of the same stage are packed onto
fewer nodes than with stage packing alone, which increases interference further. This is
because the scheduler preferably picks executors from one node class at a time, instead
of randomly from all node classes. Yet, mean resource utilization efficiency increases by
1.23× compared to vanilla Spark, due to the further reduced application runtimes.

Spark+HCL-SP (FP). When using a fixed node class preference order, the mean (me-
dian) speedup compared to vanilla Spark is 1.39× (1.33×) and therefore exceeds that
of both other HCL configurations. This result was not expected, as the assumption was
that the path weight is more accurate with runtime predictions, given that averaged over
a stage, the median prediction error is ≈6% (Table 3.4). A randomly selected sample
of runs were manually compared to Spark (SP+RP). This comparison revealed a differ-
ent node class selection pattern. Spark (SP+RP) chose slow node classes over fast node
classes in some cases. This indicates that the used ML models does not reliably predict
the actual node class preference order for all stages.

Mean resource utilization and absolute executor busy time increase as well to 30.64%
and by 1.04× respectively. The reasons are the same as with Spark+HCL-SP (RP), except
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that due to the better node class selection, absolute executor busy time decreases slightly.
Due to the reduced application runtime, resource utilization efficiency increases by 1.39×
compared to vanilla Spark.

The benefits of Spark (SP+FP) were achieved without the need for model training
and can therefore also be used for non-recurrent applications from the very first run
on. According to these results, task runtime prediction using ML models does not justify
the effort necessary to do so, as the simpler method used here leads to better results.
Furthermore, while the preference order has been configured manually in this evaluation,
simple micro-benchmarks may be used in real-world scenarios to determine the speed of
each node class.

Outliers. The data contains two outliers, queries 67 and 72. Both queries contain sin-
gle tasks that run for ≈70s on the three fast node classes but take up to ≈190s on the
slow node class. Vanilla Spark and Spark+HCL-SP do not know this. For query 72,
Spark+HCL-SP (RP) as well as Spark+HCL-SP (FP) avoid using slow resources. For
query 67, however, the predicted node class preference order is wrong and the slow-
est node class is selected despite the fact that executors on the other node classes were
still available. However, in prior trial runs, this did not happen and Spark+HCL-SP (RP)
was correctly avoiding the slow node class. All tests were performed on the same test
setup and with the same code base but with different training runs. This indicates that
the accuracy of predictions is unstable.

3.4.5.5 Closer look

This section examines schedules for vanilla Spark and Spark+HCL-SP (FP), as fastest
HCL configuration, at the example of TPC-DS query 23a. This query has been chosen
for closer examination, as it is complex enough to show the impact of stage packing and
node class selection but not too complex to understand and not too large to reasonably
visualize schedules.

Figures 3.16a and 3.16b show swimlane diagrams of the schedules of query 23a on
vanilla Spark and on Spark+HCL-SP (FP). Larger versions of both figures and figures for
both other HCL-SP configuations are provided in the appendix (Section A.1.5). Time
is given on the x-axis and executors on the y-axis. Tasks are depicted as colored boxes
with stage and task id labels7. The width represents the runtime of a task. Some tasks
are very short and some stages only have a small number of tasks, such that not every
stage and task can be clearly identified in the figures. Tasks of the same stage are colored
identically. However, colors repeat after eight stages. Both figures have been annotated
with application phases 1 – 5 (top), as well as node classes (n/c) and the preference

7Labels can only be identified in the PDF version of this document. Furthermore, labels are only shown
if they fit inside the box.
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order (p/o) used for Spark+HCL-SP (FP) (right side and with gray shaded swimlanes).
A mapping of node classes to hardware descriptions is provided in Table A.13.
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Figure 3.15: Depiction of the DAG of TPC-DS query 23a. The application consists of five
phases (p1 – p5), each consisting of multiple jobs and stages. Control depen-
dencies between phases and data dependencies between stages are depicted by
arrows. Stages that load data are depicted as empty circles, stages that process
data are depicted as full circles. In total, 1126 tasks are executed across 43
stages.

Figure 3.15 shows the corresponding DAG of query 23a. The application is divided
into five phases with no data dependencies in-between. Each phase consists of one or
more stages.
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Figure 3.16: Schedule of TPC-DS query 23a, executed on the test cluster (Section A.3.3.1)
with phases (top) as well as node classes (n/c) and preference order (p/o)
(right). The bold vertical bar represents the end of the application. Larger
versions of both figures can be found in Section A.1.5.
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In the following, the scheduling strategies and their impact on execution are discussed
for each phase separately.

(1) Phase 1. The application starts by executing 24 stages with a single task each.
Spark schedules tasks randomly across all available executors, thus using a cold
executor for each task. HCL-SP, on the other hand, schedules all tasks of all stages
on the same executor, as they have the same stable ID (see Section 3.3.1.1 for
details), thus maximizing the usage of hot executors. As a result, Spark’s native
scheduler executes the first 24 stages in ≈44s, whereas HCL-SP’s executes them
in ≈8s. This shows the potential benefits of stage packing in apparently trivial
scheduling situations, and an issue with assuming that task runtime is independent
of the executor state.

(2) Phase 2 and 3. Spark schedules tasks of the second phase across all node classes,
whereas HCL-SP only uses the three most preferred ones, which reduces the run-
time of that phase. As phase 3 becomes ready slightly later, the most preferred
node classes have already been split up among stages of phase 2 and thus it has
to use executors on node class 4. Vanilla Spark scatters tasks of phase 4 across
all node classes with the consequence that both phases take equally long, whereas
phase 2 finishes earlier with HCL-SP.

(3) Phase 4 depends on phase 2 but not on phase 3. As phase 2 finishes earlier in
the HCL-SP schedule than in the vanilla Spark schedule, it can start earlier in the
former. The first stage of phase 3, stage 30 (green), has 148 tasks and as no other
stage can run at the same time, it is spread across all executors in both schedules.
However, neither schedule is “optimal” here: Omitting executors from node class
4 would have reduced the stage runtime. This is because it would have used more
hot executors. The impact of hot executors on tasks of stage 30 is visible in the HCL-
SP plot, as each 2nd task of stage 30 on an executor only requires about 1/3rd of
the runtime of the 1st task. HCL-SP is not able to decide not to use an available
executor.

In the vanilla Spark schedule, tasks are scheduled on the slow node class 4, despite
the fact that executors on other, fast, node classes are available as well. This is
due to Spark’s delay scheduling strategy [18]. Per default, Spark waits up to three
seconds for an executor with the most amount of input data to become available,
before it schedules it on any free executor. HCL-SP does not use this strategy, as
it has been shown experimentally [74, 58], that data transfer times on fast net-
works (e.g., 40Gbps) are neglectable compared to time spent in (de-)serialization,
local data copies and object constructions. The latter steps are still necessary when
data is read from HDFS, independently on whether the data originated from the
same node or not. Furthermore, when exchanging intermediate results data, ex-
periments with TPC-DS have shown that input data for the next stage is typically
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scattered across all executors of the previous stage, hence only a small fraction of
input data is local on any given executor anyway.

Hardware heterogeneity-awareness is beneficial for the second stage of phase 4
(blue), hence it finishes in less time in the HCL schedule. The last stage of phase
4 has only a single, sub-second task, hence it does not noticeably impact the end
time of this phase.

(4) Phase 5. In phase 5, several stages are executed in parallel. The fraction of tasks
that run on hot executors increases from 18.75% to 30.77% for Spark+HCL-SP
(FP), compared to vanilla Spark. The maximal possible fraction of tasks on hot
executors can only be estimated, as stages become ready at different points in time,
even without unmet data or control dependencies. However, assuming that all
stages that can run in parallel become ready at the same point in time, a maximum
fraction can be computed. According to the DAG in Figure 3.15, two sets of stages
can run in parallel:

(1) Stages s33, s35, s36, s38. These stages have 456 tasks in total.8

(2) Stages s34, s37, s39. These stages have 168 tasks in total.

Independently of how many tasks belong to which stage, the first 112 tasks of
each set need to heat up executors, while the remaining 344 and 56 tasks can
run on hot executors. This results in a total fraction of tasks on hot executors of
(344+ 56)/(456+ 168) = 64.10%, which is significantly higher than the fraction
that HCL-SP achieves. However, this estimate is idealized and overestimates the
actual possible fraction. Referring to Figure 3.16b:

� The first stage of set one (dark blue) with 148 tasks becomes ready before
all others. As HCL-SP does not know when other stages will become ready,
it does not consider them when assigning executors, hence this stage gets all
112 executors. This reduces the estimate to (344− 112+ 56)/(456+ 168) =
46.15%.

� The first stage (dark red) of set two with 56 tasks also becomes ready before
all others, leaving 112 tasks for the other two stages (pale and dark orange).
This reduces the maximal fraction for the second set to zero and reduces the
estimate to (344− 112+ 0)/(456+ 168) = 37.18%.

The latter number is close to the fraction that HCL-SP achieves. The remainder is
due to inaccurate path weights, which, when updated, adds or removes executors
from stages. This means that some stages were spread across too many executors
in the beginning while other stages spread out towards the end, causing some tasks
in either case to unnecessarily run on non-hot executors, compared to case where
paths weights are always accurate.

8The number of tasks is not shown in Figure 3.15 but extracted from execution logs.
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3.5 Related work

Related work is summarized in Table 3.7 and the most relevant work is discussed in the
following.

� Graphene [67] schedules long tasks and those that it deems difficult to schedule
first, as other (short) tasks can be placed within gaps of the schedule. An offline
component computes optimized schedules for each application on a virtual space
(cluster) in advance. An online component uses these pre-computed schedules to
build a priority list of tasks, which it schedules on an actual cluster. Graphene as-
sumes that resources can be shared (i.e., reassigned from on application to another)
without incurring additional overheads and uses this, e.g., to ensure fairness.

� Paragon [33] and its successor Quasar [44] perform “short” (multiple seconds to
a few minutes) benchmark runs of applications to determine their resource re-
quirements and sensitivity to congestion on those resources (CPU, memory, disk,
network). This information is used during execution to pack applications that are
less likely to interfere with each other on the same nodes.

� TetriSched [75], an improved version of its predecessor AlSched [29], uses a Mixed
Integer Linear Programming (MILP) solver to compute optimized resource sched-
ules. TetriSched considers hardware heterogeneity as well as heterogeneity across
applications when selecting resources, i.e., it is aware that different applications
have different runtimes depending on the node type (e.g., with or without GPUs)
and location (e.g., within the same rack or not) they’re using. It does not con-
sider DAG- or task-heterogeneity but only decides when and where resources for
applications are allocated.

� Firmament [65] is a task scheduler that uses a Min-Cost Max-Flow (MCMF) solver
and models the cluster as flow graph through which tasks flow. It considers task and
hardware heterogeneity but not DAG-heterogeneity. Firmament is a cluster-wide
task scheduler, i.e., it schedules all tasks on a cluster.

� Carbyne [66] is a DAG-heterogeneity-aware application scheduler that follows an
altruistic approach when sharing resources among multiple applications. Based on
knowledge of the DAG and task runtime and resource demands, Carbyne decides
whether it can donate resource to other applications that are in need of them,
without impacting the runtime of the donating application. It does not consider
resource sharing overheads.

� HEFT [3] and CPOP [3] are DAG, task and (to a limited degree) hardware-
heterogeneity-aware list scheduling algorithms, that execute tasks in ascending
order of the mean execution time of the longest path to the last task across avail-
able resources. LHEFT [14] and PHEFT [40] are extensions thereof that look ahead
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in the DAG to assess the impact of current scheduling decisions on upcoming tasks.
A greedy algorithm is used to assign tasks to resources.

� Decima [110] is a recent scheduler that uses reinforcement learning (RL) to learn
the stage execution order and number of executors assigned to a job, such that an
objective, e.g., job completion time, is reduced. In order train its neural network
(NN), it schedules jobs in a simulated environment and learns automatically, based
on feedback by the objective function. While RL is capable of automatically identi-
fying good scheduling patterns, it requires a large number of training runs for each
job to do so. Decima has been integrated in Spark.

Prior work has extensively studied and addressed various aspects of DAG-, task- and
hardware-heterogeneity, albeit not always in combination. Furthermore, most schedulers
are global schedulers, i.e., they schedule all applications at once, instead of only a single
one, and assume that resources can be reassigned (shared) across multiple applications
at no extra cost. This assumption does not always hold. For instance, Apache Spark uses
long-running executor processes that require ≈1.9s to initialize9 and additional time to
start a corresponding JVM process. These executors are tied to individual application
instances and cache application-specific data. In order to share the underlying resources,
executors need to be shut down and restarted for another application. This, however,
impairs amortization of startup and initialization costs over the course of the application
execution10.

Other scheduling strategies such as HEFT and its variants optimize schedules of indi-
vidual applications. However, they have not been integrated and evaluated with cloud
application frameworks, such as Apache Spark. Distributed data-processing frameworks
can exhibit a complex runtime behavior. For instance, the task runtime analysis has
shown the importance of the executor state on task runtimes, which they do not con-
sider.

An important differentiation between related work is also the smallest scheduling unit,
i.e., the unit that the lowest level scheduler of the work considers. This is either applica-
tion (app), stage or task. When computing schedules, no unit smaller than the smallest
scheduling unit is considered. For instance, a scheduler with applications as the small-
est schedulable unit considers requirements and preferences for applications as a whole,
but not for individual stages or tasks. This also impacts which scheduling challenges are
faced. For instance, stragglers are only faced when scheduling individual tasks.

9See Section 4.2.1 for details.
10A detailed analysis of resource reassignment/sharing costs in Apache Spark and YARN is presented in

Section 4.2.
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3.6 Conclusion

This chapter presented HCL and HCL-SP as well as detailed task runtime and predictabil-
ity analyses. HCL has shown that Spark applications can generally benefit from DAG-,
task and hardware-heterogeneity-aware scheduling, assuming accurate task runtime pre-
dictions. An analysis of task runtimes has shown, however, that accurate task runtime
prediction is unlikely to succeed, as task runtimes fluctuate even when the measured
metrics are the same or similar. This also limits the achievable accuracy of any predictive
model. Experiments with three ML algorithms have confirmed this. This makes the ap-
proach chosen by HCL unrealistic in practice. Nevertheless, valuable insights have been
gained, namely the importance of executor state on task runtime.

Based on the gained insights, a simpler scheduling strategy has been devised: Stage
packing. Stage packing exploits executor state to speed up task execution and re-
duce stalls during execution. Based on this new strategy, HCL-SP, a state-, DAG-, task-
and hardware-heterogeneity-aware scheduler has been implemented and integrated into
Spark. The scheduling algorithm of HCL-SP is computationally less complex than that
of HCL, which makes it suitable for use on real systems, as shown in the evaluation.
Compared to vanilla Spark on a 15 node heterogeneous test cluster, a mean execution
speedup of 1.14× was achieved. Mean resource utilization efficiency was improved by
the same factor. Using a simple, preference order-based executor selection strategy, the
speedup was increased to 1.39×, which even surpassed the ML-based. Benefits of stage
packing, as well as stage packing with preference order, can be achieved from the very
first run of an application. This is in contrast to ML-based approaches, such as the ones
chosen in HCL-SP and Decima. The latter requires a large number of training runs for
each application [110]. Furthermore, stage packing is also usable on homogeneous clus-
ters as well as other distributed application frameworks that exploit JIT and shared data
caching on long-running executors.

Several issues remain:

� While HCL-SP’s resource selection method can pick the most preferred executor
from an executor pool, it is not able to determine whether it is beneficial to pick
an additional executor at all, as was pointed out during the closer examination of
a schedule in Section 3.4.5.5.

� Resource utilization has been increased from 12.19% for vanilla Spark, to 30.64%
for Spark+HCL (SP+FP). This, however, still leaves executors idle for 69.36% of
the time, while resource that they allocate (most notably memory), cannot be used
by any other application. Hence, efficient resource sharing across applications is
paramount.





4. Efficient resource sharing across
applications at small time-scales

This chapter presents Mira, a novel resource and elastic application scheduler, that en-
ables efficient resource sharing in homogeneous and heterogeneous clusters across appli-
cations at small, sub-second, time-scales.1 Mira focuses on short running (less than one
minute) applications, e.g., interactive data analytics as well as applications with fluctu-
ating (changing over the course of the execution) resource demands.

Distributed application frameworks, such as Apache Spark, use long-running executors
which allocate memory and compute resources for a specific application to execute short-
running tasks on its behalf. Startup and initialization overheads of these executors are
typically high and expected to amortize over the application runtime. In elastic scenarios,
where executors are added and removed during the application runtime, amortization is
less effective.

Mira allows multiple applications to sequentially share executors. This allows for
startup and initialization overheads to amortize across multiple applications and thus
enables more efficient sharing of resources at small, sub-second, time-scales. Further-
more, Mira adjusts executor assignments instantaneously and uses the directed acyclic
graph (DAG) to estimate immediate-term resource demands. This allows it to share ex-
ecutors in milliseconds, instead of multiple seconds.

The main contributions of this chapter are summarized as follows:

(1) The overhead of resource allocation for Spark on top of YARN is analyzed and
quantified. The resulting problem of resource sharing at small, sub-second time-
scales identified.

(2) Mira, an efficient two-level resource and elastic application scheduler that reduces
resource sharing delays by up to two orders of magnitude compared to Spark on
YARN, and thereby enables efficient resource sharing at time-scales as low as tens
of milliseconds instead of multiple seconds. Mira has been integrated into Spark.
An evaluation with the TPC-DS data-analytics benchmark suite [116, 88], as rep-
resentative for data-analytics workloads, shows that Mira reduces resource sharing
overheads and can accelerate application execution by more than 3× in a shared
environment compared to vanilla Spark on YARN.

1The work presented in this chapter is based on the publication “Mira: Sharing Resources for Distributed
Analytics at Small Timescales” [107].
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This chapter is structured as follows: First, an overview of resource sharing in Spark
and YARN and the core problems is given (Section 4.1), followed by background infor-
mation on the root causes of these problems and the strategies employed to mitigate
their impact (Section 4.2). Subsequently, Mira is introduced (Section 4.3) and evaluated
experimentally in comparison with a vanilla Spark on YARN stack (Section 4.4). Finally,
related work is presented (Section 4.5) and the chapter is concluded (Section 4.7) with
a discussion of Mira’s concepts, the evaluation results and potential future work items
(Section 4.6). Section A.2 accompanies this chapter with additional information.

4.1 Introduction

Distributed data-analytics applications are often written in data-parallel frameworks,
such as MapReduce[6], Spark[18] and others [12, 96, 99, 35, 52]. Resource man-
agers, such as YARN [39] and Mesos [21] allow multiple applications to share resources
and execute at the same time. In the beginning, mostly long-running batch applications
were executed on these frameworks and due to their initial success, other use-cases were
added as well, such as short-running data exploration and real-time data analytics appli-
cations. [52, 99, 92, 35]. These new use-cases exhibit vastly different characteristics than
traditional batch applications. First, their entire runtime can be as short as a few seconds.
Second, their resource demands may fluctuate, e.g., in the case of online data analytics
that need to quickly adjust their processing capacity to changes in input stream volume.
As a result, resource managers are now required to manage resources at time-scales they
were not designed for, i.e., seconds, instead of minutes or hours.

These smaller time-scales pose a significant challenge for resource managers, such as
YARN and Mesos, and application frameworks, such as Spark. To illustrate this issue,
a simple Spark application (Listing A.1), running on a YARN-managed test cluster, is
sufficient (see Section A.2.2.1 and Table A.15 for details on cluster and application con-
figurations).
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Figure 4.1: Execution of a Spark application that spawns 110 tasks, each of which sleeps
for ten seconds. The blue line shows the resource demand of the application
while the red line shows the number of resources (in form of “executors”) that
were allocated by the application for task execution.



4.1 Introduction 89

Figure 4.1 shows the execution of this application. Here, 110 tasks are spawned, each
of which sleeps for ten seconds and then exits. Up to 112 executors can be executed on
the test cluster, hence all 110 tasks can run at the same time and the application should
finish in little over ten seconds. However, as Figure 4.1 shows, its actual runtime extends
to ≈2.5× of that. This highlights two issues:

(1) There is a large delay in executor acquisition, up to ≈15s, which is the reason for
the prolonged execution.

(2) There is also a delay in executor release after tasks finish, despite the fact that
they are idle and not needed anymore.2

While in long-running applications with relatively constant resource demands, both
delays can be amortized, the same is not possible for short running and interactive ap-
plications with fluctuating resource demands. As will be shown later (Section 4.2.1 and
Section 4.2.2), the causes for this behavior are spread across the resource manager (RM)
and application scheduler (AS), hence also need to be addressed in both.

Mira addresses both issues to enable executor acquisition and release at small, sub-
second time-scales. Two strategies are used:

(1) Executors are not treat as ephemeral objects that are tied to a single application, but
as long-lived, shared resources. This allows Mira to amortize executor startup and
initialization costs over all applications instead of just a single one and therefore
to reduce recurring resource acquisition costs. As result, executors can be acquired
faster.

(2) Executors are released as soon as they are not needed anymore. This increases
resource utilization efficiency, as idle executors are not blocked from being used
by other applications. It can also reduce application runtime, as applications can
acquire needed executors quicker.

The effect of both strategies can be seen in Figure 4.2a. where executors are acquired
in little less than 2s (vs. up to 15s for vanilla Spark) and application runtime is reduced
to 17s (vs. 28s for vanilla Spark). Furthermore, executors are released as soon as they
are not needed anymore.

2Spark has already been configured to release executors as quickly as possible, i.e., 1s after becoming
idle. Actual shut-down takes another ≈0.8s.
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(a) Spark+Mira (cold)
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(b) Spark+Mira (warm)

Figure 4.2: Execution of the same Spark application as in Figure 4.1 on Mira, instead of
YARN. The tails in both plots are caused by stragglers.

Application frameworks that are written in interpreted languages, such as Spark, Flink
and Tez, often employ Just-In-Time (JIT) compilation to translate often used sections
into native (machine) code. Native code executes faster than interpreted code. Sharing
executor across applications also allows applications to reuse native (jitted) code. This
further reduces executor acquisition overheads, as parts of the Spark executor and appli-
cation code has been compiled into native code. Moreover, some initialization steps have
to be done only once, during executor startup. The result can be seen in Figure 4.2b.

The next section (§4.2) elaborates on the issues of delayed executor acquisition and
release, and the sources thereof in the Spark and YARN application stack.

4.2 Background

Distributed application frameworks (AFs) allow developers to express algorithms using
high level patterns, such as map/reduce, while the AF handles distributed execution,
data distribution, task scheduling, fault handling, etc.

Figure 4.3 shows a common distributed application stack on shared clusters. Resources
are managed by a resource manager (RM), such as YARN [39], Mesos [21], or others [60,
38, 65, 9, 64]. RMs enable multiple applications to coexist and share resources on the
same cluster.
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Spark Flink other AF

YARN, Mesos, Kubernetes, ...

Applications

Application Frameworks (AF)

Resource Managers (RM)

Figure 4.3: Overview of a common distributed application stack: Applications (often rep-
resented as DAGs) execute on top of AFs that operate on a shared computing
infrastructure managed by a RM.

Generally, there are three approaches in how AFs and RMs collaborate that are defined
by who controls resources and for how long.

(1) Fine-grained resource allocation. In this approach, used in Hadoop MapRe-
duce [94], earlier versions of Spark [18] and others [21], control over resources
stays with the RM at all times. For each application task, the RM allocates suitable
resources, executes a task on behalf of the AF and releases the resources after-
wards. The RM has full insight into the utilization of each resource and can share
them among multiple applications. This comes at the cost of high task execution
overhead, due to resource allocation and release per task, which can be prohibitive
for short-running tasks.

(2) Static coarse-grained resource allocation. Used by Spark [18], Flink [52] and
others [99, 92], this approach statically allocates a set of resources to an application
for its entire runtime, giving the AF full control over them for the entire duration
of the application execution. The application scheduler (AS) of an AF schedules
individual tasks on the allocated resources. As resource allocation overheads can
be amortized across the entire application runtime, per-task execution overheads
are reduced. However, as the RM relinquishes control over these resources, it has
no insight into their utilization and cannot share them with other applications,
even if the owning application does not use them at all times. Consequentially,
coarse-grained resource allocation is not a good fit for shared environments with
fluctuating resource demands of applications.

(3) Dynamic coarse-grained resource allocation. This approach allows elastic ex-
pansion and contraction of the allocated set of resources of each running applica-
tion. Many systems support or plan to support this (e.g., Spark [97], Flink [93],
and others [100, 59]). As load increases, the AF requests additional resources from
the RM and releases them once the load has decreased. Similar as in the coarse-
grained mode, resource allocation costs can be amortized across multiple tasks,
thus reducing the per-task execution overhead. While the RM still has no insight
into resource utilization, it can regain control earlier, as AFs release resources vol-
untarily or upon request.
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Dynamic coarse-grained resource allocation represents a compromise between execu-
tion overheads and efficient resource sharing. Nevertheless, because existing systems are
not built for small time-scales and react too sluggishly to changing resource demands,
they are unable to use this approach efficiently for applications with short (e.g., ten sec-
onds) runtimes or when resource demands fluctuate on a similarly small time-scale. This
is due to two fundamental issues:

(1) The resource acquisition process is time-consuming (see Figure 4.4), thus im-
posing an upper bound on the frequency with which resources can be shared.

(2) In consequence, AFs may delay resource acquisition and hold on to resources
after the need for them has ceased (see Figure 4.4), such that they can miti-
gate the impact of potential future resource re-acquisition. While beneficial for
an individual application, this strategy impairs overall (global) resource utilization
efficiency and application performance.

Both issues have significant impacts on interactive applications with low response time
requirements and those with fluctuating resource demands. In both cases, frequent and
timely executor acquisition and release are essential for high performance and efficiency.
In high load scenarios where free resources are scarce, these problems get exacerbated.

In the following, executor acquisition overheads are quantified and dominating factors
thereof identified. This analysis uses the popular combination of Spark as AF and YARN
as RM.

4.2.1 Executor acquisition overheads

In order to analyze executor acquisition overheads of the application stack, the test appli-
cation from §4.1 is modified such that it spawns N = 2 . . . 110 tasks in a loop to acquire
the same number of executors. After each loop iteration, executors are released. This al-
lows to measure the delay of acquiring N executors at a time. This delay is the overhead.
For each N , the test is executed five times on the test cluster (Section A.2.2.1). The code
of the test application is provided in the appendix (Listing A.2).

Results in Figure 4.4a show the average executor acquisition delay (in milliseconds)
for each N for different percentiles of tasks, when executing this test with YARN as RM.
To show that these overheads are not limited to YARN, the same experiment was re-
peated using Spark’s Standalone mode [98] which uses a simple, Spark-specific resource
manager. Results for the latter are shown in Figure 4.4b.
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(b) Spark Standalone

Figure 4.4: Average executor acquisition delay for different percentiles. Variance is shown
in both plots.

Two results stand out:

(1) There is a base delay of≈3.2s with both RMs to acquire the first executor. ≈1.9s can
be attributed to the Spark executor startup and initialization delay. A breakdown
of the individual delays is shown in Figure 4.5.

(2) There is a variable delay of up to≈12.6s for YARN and≈6.6s for Spark Standalone
to a maximal delay of ≈15.6s and ≈9.6s respectively. The variable delay increases
with N albeit not continuously but in steps. These steps are the result of Spark’s
executor acquisition strategy which will be discussed in the following.

0.0s 0.5s 1.0s 1.5s 1.9s

(1) Logging Subsystem  
(2) Spark configuration  
(3) Hadoop initialization  
(4) Hadoop auth initialization  

(5) Create RPC environment  
(6) Setup/connect driver RPC endpoint  
(7) Fetch Spark config from driver  
(8) Start executor backend  

(9) Register executor  
(10) Misc  

Figure 4.5: Breakdown of Spark executor startup and initialization overheads.



94 4 Efficient resource sharing across applications at small time-scales

To better understand the variable fraction of the acquisition delay, Spark’s executor
acquisition strategy is examined in more detail. Figure 4.6 shows an excerpt of the exe-
cution of the test application for N = 110 executors including the number of executors
Spark is requesting at each point in time (green line). In the beginning, Spark requests
only a single executor. For every second that the number of executable and running tasks
exceeds that of available executors, the number of requested executors is doubled, un-
til the number of requested executors equals or exceeds the number of executable and
running tasks. This strategy is responsible for ≈50% of the variable cost, as all 110 ex-
ecutors are requested only after ≈9s. Furthermore, it is responsible for the steps that are
visible in the plot for Spark Standalone (Figure 4.4b): After each step (at 2, 4, 8, 16, ...
executors), one more round – and therefore one more second – is required until the last
executor has been acquired.

The same is also partially responsible for the delays seen with YARN (Figure 4.4a).
YARN itself also contributes to this delay. With an increasing number of concurrent re-
quests for executors, YARN needs longer to fulfill them. This is visible in Figure 4.6 as
the widening gap between request and acquisition curves as the request curve becomes
steeper, i.e., as the number of executors that are requested at the same time increases.
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Figure 4.6: Resource allocation in Spark+YARN.

The observed delays are negligible for long-running applications with constant re-
source demands but limit the ability to adapt to workload spikes and to operate at small
time-scales.

4.2.2 Resource release strategy considerations

Timely release of idle (not needed) executors is important to enable efficient resource
utilization, as otherwise, resources allocated by idle executors cannot be used by other
applications. When releasing executors, AFs have to make a choice, considering the high
executor acquisition overheads. They can either:

(1) Be altruistic and release executors quickly after they become idle such that other
applications can make use of their resources. This bears the potential risk of slow-
ing down execution of the application that releases idle executors in case they need
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to re-acquire them at a later point in time. Moreover, in case executor demands
of multiple applications fluctuate highly, overall resource utilization efficiency may
decrease as well, as a lot of time is consumed by starting and stopping executors,
during which no tasks can be executed.

(2) Be egoistic and retain executors for a long time after use, thus ensuring fast execu-
tion of the current application. This comes at the cost of lower resource utilization
efficiency, as resources allocated by idle executors cannot be used by other appli-
cations. Moreover, it can starve other applications for resources, thus slow down
their execution.

Indeed, Spark can be configured for either approach: Idle executors can be release
in as little as one second (which is used here). By default, however, they are released
60s after becoming idle, which – for short running applications – corresponds to case
(2). Furthermore, executors shut down ≈0.8s after release has been initiated, hence
resources of idle executors can be used by other applications no earlier than ≈1.8s after
an executor becomes idle.

In order to assess the impact of either release strategy on application runtime and
executor utilization, the application used in §4.2.1 is modified. Instead of spawning
110 tasks only once, it is modified to spawn another 110 tasks after the first 110 tasks
have finished. In between, it waits for ten seconds, to release acquired executors when
configured with a one-second release timeout. Results are shown in Figure 4.7.
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(a) Release idle executors after 1s.
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(b) Release idle executors after 60s.

Figure 4.7: Consecutively allocate N=110 executors on Spark+YARN with and without re-
lease in between. The black bar represents the application end.
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If configured to release executors after one second, the number of acquired executors
decreases shortly (≈1.8s) after the task load decreases, as shown in Figure 4.7a. This
results in an executor utilization of 81% and a runtime of ≈28s for each stage. When
configured to retain executors for 60s after they become idle (Figure 4.7b), the second
stage executes in only ≈15s and therefore ≈1.9× faster than in case (1), as no recurring
resource acquisition cost accrue. At the same time, executor utilization drops to 63% and
the average time resources for executors are allocated, i.e. the time the executor process is
running, increases by 1.22×, hence resource utilization efficiency is also reduced, despite
the fact that the application executes in less time. Hence, one has to decide whether to
increase resource utilization (and efficiency) at the cost of application runtime or vice
versa.

The next section introduces Mira, a resource manager and elastic application scheduler
that employs techniques to reduce overheads described in this chapter and furthermore
implements resource management strategies that are tailored towards sharing executors
at small, sub-second time-scales.

4.3 Mira

Mira is a resource manager (RM) and an application scheduler (AS), which (combined)
enable resource sharing at sub-second time-scales as well as fast application execution
on shared clusters. Mira is built on two key concepts:

(1) Reusing and sequential sharing of task executors across applications. This reduces re-
curring executor acquisition overheads and accelerates application code execution,
by improving the exploitation of JIT compiler techniques and shared data caches.

(2) Executors are acquired and released without delay upon changes in resource demands
of applications. This facilitates efficient executor utilization, as executor idle times
are reduced.

4.3.1 Assumptions and Limitations

The concepts used in Mira are subject to the following assumptions and limitations:

� Tasks are executed on long-running executors.

� Using warm or hot executors does not increase task runtime, e.g., due to extra
garbage collection when using a pre-used executor.

� Executors are stateful, e.g., contain JIT and shared data caches. Restarting an ex-
ecutor loses its state. Losing this state impairs performance and should be avoided.
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� Executors of current AFs are exclusively associated with a single application and
cannot be associated with another application without stopping and restarting the
executor process.

� Executors for all applications are configured identically. Each executor can execute
tasks of any application.

� Executors are started in advance. Resources allocated by executors are not needed
by applications other than those using Mira as RM.

� When sharing executors across applications, data may leak across applications.
Security implications of sequential executor sharing across applications are accept-
able.

4.3.2 Mira system overview

Figure 4.8 shows a high-level overview of Mira’s architecture along with the main com-
munication paths. Mira consists of two major components, a resource manager (RM)
(§4.3.4) and an application scheduler (AS) (§4.3.3). Multiple AS instances can coexist
at the same time, each responsible for scheduling a single application.
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ASASAS
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REST API

DAG/events
task schedule

disconnect EX

executor
demands

executor
allocation

assign DRV
(re-)register
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Figure 4.8: High-level overview of the Mira architecture showing Mira (green) and appli-
cation framework (AF) components (black).

In order to integrate Mira into an AF, two of the AF’s components need to be adapted.

(1) Mira provides application, DAG and task scheduling functionality for AFs. There-
fore, it needs to know about the application DAG as well as scheduling-related
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events (such as stage ready or task finished). This requires integration into the
application driver (DRV) component3 (Section 4.3.5).

(2) Mira provides resource management functionality for AFs and assumes execution
environment (EX) reuse and sharing across applications (of the same AF). There-
fore, it needs to control the EX life-cycle. This requires the AF-native EX to be
managed by Mira, e.g., by wrapping it inside a Mira EX (Section 4.3.6).

Mira is based on HCL-SP (Section 3.4) and shares most its code base. Notable excep-
tions are its executor managing capabilities. It is implemented in ≈8k lines of C++ code,
and is available at https://github.com/zrlkau/mira.

In the remainder of this section, all four Mira components depicted in Figure 4.8 are
described. While Mira’s concepts are not Spark-specific, it has been integrated into Spark
as part of this work. Therefore, the integration of Mira into the DRV and EX components
are described using Spark as example.

4.3.3 Application scheduler (AS)

Mira supports ASes with a strict separation of policy and mechanism. The policy, i.e.,
decision-making process is a component in Mira, whereas the mechanism, i.e., the exe-
cution of these decisions, is integrated into the AF’s DRV component. This architecture
allows Mira to support multiple scheduler implementations to coexist and the sharing
of scheduler policy implementations across multiple AFs. Mira’s AS for Spark is based
on the stage packing scheduler in HCL-SP but does not use task runtime predictions nor
node class preference orders. This scheduler is described in Section 3.4.2.1. It has been
extended for dynamic executor acquisition and release.

4.3.3.1 Executor demand determination

Mira’s AS explicitly requests executors from and releases them to the RM. In order to
determine the executor demand d, it uses the following metrics:

(1) The total number of unfinished tasks tcur r in all executable stages.

(2) The total number of tasks tnex t in stages that immediately follow executable stages.

(3) A multiplicative resource scale-out factor α that reduces the number of requested
executors by a factor in the range (0,1] (default: 1). This factor allows to limit
resource usage while remaining elastic.

3Here it is assumed that this functionality resides in the driver component. If this is not the case for a
specific AF, the respective component needs to be adapted.

https://github.com/zrlkau/mira
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d is computed according to Equation 4.1 using the above listed metrics and the current
number of allocated executors e.

d =

¨

tcur r ×α if tcur r ×α≥ e

max(tnex t , tcur r)×α otherwise
(4.1)

The number of executors requested is therefore determined by the number of currently
executable tasks (tcur r). As soon as the task load (adjusted by α) falls below the number
of allocated executors, Mira looks ahead in the DAG and determines the immediate-term
need for executors (tnex t). All executors that are not needed now nor in the immediate-
term are released. In contrast to vanilla Spark, Mira does not introduce any additional
delay when requesting or releasing executors. Executor demand is recomputed upon
every task/stage ready/finished event. If the executor demand has changed, the RM is
immediately informed about the new demand.

The resource scale-out factor α effectively limits the number of executors that an ap-
plication is allowed to acquire relative to the number of executable tasks. The reasons to
impose such a limit may not be obvious at first glance and are as follows:

(1) Scaling out by a certain factor typically does not reduce the application runtime by
the same factor, hence scaling out maximally, i.e., assigning only a single task per
stage to each executor, is not always desirable. Reasons therefor are manifold and
include increased system overheads (e.g., due to additional communication and
coordination requirements) and the reduced ability to mitigate (hide) stragglers
with fewer tasks per executor (see Section 2.2.4.1 for details).

(2) The task runtime analysis in Section 3.3.1.2 concluded, that the very first task of a
stage that is executed on a cold or warm executor, runs significantly (up to≈15.4×)
slower than subsequent tasks (assuming otherwise comparable tasks) on then-hot
executors. By reducing the number of executors per stage, the number of first tasks
on cold or warm executors is decreased as well, and those running on hot executors
is increased.

An alternative approach, which is possible in Spark (and virtually any other task-based
distributed system), is to simply limit the total number of executors an application can
use at any time, which can also force the AS to schedule more tasks per executor. This
approach has two major disadvantages:

(1) It limits elasticity of the application execution as even when many tasks are exe-
cutable, the number of total executors cannot exceed the limit.

(2) It does not consider that the number of executable tasks can vary greatly during
the execution of an application (e.g., shown in Figures 4.14 and 4.17c). If the set
limit is too low, application performance may be impaired in phases with many
executable tasks. If the limit is set too high, phases with fewer executable tasks
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may spread out across too many executors and reduce fraction of tasks that run on
hot executors.

The resource scale-out factor determines the minimum fraction of tasks that run on
hot executors, independently of the number of executable tasks, and does not set a hard
limit on elasticity.

4.3.4 Resource manager (RM)

The resource manager (RM) determines the executor share of each application accord-
ing to a weighted fair-share policy and assigns and revokes them to and from individual
applications. Mira’s RM schedules only EX instances as resources and not CPU cores and
memory, such as YARN [39] or Mesos [21]. Mira maintains a pool of pre-started execu-
tors, such that application demand can be met without the need to start new executors.

Enabled by executor sharing and the resulting ability to acquire executors with sub-
second delay, Mira’s RM has been designed under the assumption that executors can be
reassigned between applications without imposing significant overheads. Hence, Mira
assigns and reclaims executors to and from applications immediately, without any wait-
ing period, if demands and allowances change. Mira depends on cooperative ASes that
release executors upon request, as soon one is or becomes idle, i.e., has finished execut-
ing a task. This facilitates efficient resource utilization, as idle executors, that are needed
by other applications, are not hogged by applications that don’t need them.

This is in contrast to other RMs. For instance, YARN uses multi-second timeouts be-
fore reclaiming resources from applications. Mesos uses an offer-based approach, where
applications cannot actively request resources but have to wait for an offer from Mesos,
which might not come soon enough when sub-second latency is desired.

4.3.4.1 Resource scheduling policy

Mira does not implement multiple submission queues to determine application priorities
and therefore executor shares, as other RMs, such as YARN, but uses a simple weighted
fair-share policy. Per default, all applications have the same weight (priority), i.e., all
applications are entitled to the same share of available executors.

The fair-share policy distributes a set of executors R across the set of running appli-
cations A. Each application a ∈ A with relative weight wa ∈ (0,1],

∑

a∈A wa = 1 and an
executor demand of da is assigned a subset of executors ra ⊆ R according to Equation 4.2:

|ra|=min
�

da, |R| ×wa

�

(4.2)

|R| × wa represents the fair share of the application, i.e., the number of executors |R|
times the relative weight wa of the application a. In case da < |R| × wa, i.e., the ex-
ecutor demand of an application is smaller than it’s fair share, remaining executors are
redistributed across all other applications by decreasing the relative weight wa of a and
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increasing the weights of all other applications a′ for which the executor demand da′

exceeds the current assignment |ra′ |.
In case application a exceeds its current fair-share (e.g., because a new application

was submitted and its fair share was therefore reduced, or because an application that
has not demanded its fair share so far but does so now), the RM immediately requests
the corresponding AS to release executors, until a does not exceed its fair share any-
more. ASes are expected to be cooperative and release executors upon request. Mira
does not currently implement any methods to enforce the release of executors, such as
task preemption. Listing 4.1 shows simplified C++ code of the RM.

4.3.4.2 Scalability

The scalability of the RM is correlated to the number of concurrently running applica-
tions, as the likelihood of executor demand changes, that need to be processed by the
RM, increases with the number of applications. It does not correlate to the number of
tasks of applications, as no per-task decisions are made by the RM. In order to cope with
a large number of executor demand change requests, simple optimizations have been
implemented:

(1) Executor change events are only generated by the AS if they imply a change in
executor allowance, i.e. only if executor demand crosses (i.e., was equal or higher
and is lower now or was equal or lower and exceeds it now) executor allowance.

(2) Resource change events are only processed by the RM if they imply a change in ex-
ecutor assignments, e.g. an application requests more executors while unassigned
executors remain or its fair share is not yet exhausted.

(3) The RM aggregates multiple events (line 6 in Listing 4.1) for timeout seconds before
re-evaluating resource assignments, ensuring that the RM recomputes executor al-
lowances as events are pending in a high-load scenario, while also ensuring quick
response times in low-load scenarios.

In multi-app benchmarks (§4.4.4) a median delay of executor assignment re-evaluation
of less than 100µs was measured.
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1 void ResourceManager::handle_events() {

2 bool reschedule = false;

3

4 // Process pending events and decide whether they affect executor assignments or not

5 // until all pending events have been processed or ’timeout’ has passed.

6 while (pending_events() && !timeout) {

7 Event ev = get_next_event();

8 if (impacts_executor_assignment(ev))

9 reschedule = true;

10 }

11

12 // Trigger executor assignment recomputation if necessary.

13 if (reschedule)

14 update_executor_assignment();

15 }

16

17 void ResourceManager::update_executor_assignment() {

18 // Instruct application schedulers to release executors if they have more than they are

19 // entitled to.

20 for (Application app : applications) {

21 if (app.actual_share() > app.allowed_share())

22 app.release_executors(app.actual_share() - app.allowed_share());

23 }

24

25 // Assign unassigned (free) executors as long as there are any and as long as

26 // applications demand more executors than are assigned to them.

27 while (!free_executor_pool.empty() && application_demand_exceeds_assignments()) {

28 for (Application app : applications) {

29 // Check if the application is entitled to another executor.

30 if (app.executor_demand() > app.actual_share() &&

31 app.actual_share() < app.allowed_share()) {

32 // Assign a free executor to the application.

33 Executor ex = free_executor_pool.get();

34 app.assign_executor(ex);

35 }

36

37 // Check if more executors are available and stop assignments if no more free

38 // executors are available.

39 if (free_executor_pool.empty())

40 break;

41 }

42 }

43 }

Listing 4.1: Simplified C++ code of Mira’s RM event handling and executor assignment
updates
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4.3.5 Application driver (DRV)

The application driver of an AF executes serial portions of the application and uses AF
provided functionality to distribute execution of parallel portions across available EXes.
DAG and task scheduling functionality are assumed to be part of the driver, resource
demands are determined and communicated to the RM. Mira replaces large parts of this
functionality and therefore needs to be integrated into the DRV. As part of this work, Mira
has been integrated into Spark. For that reason, the remainder of this section describes
the integration at the concrete example of Spark’s application driver.

Figure 4.9 shows a schematic overview of the relevant components of the Spark driver
with (Figure 4.9b) and without (Figure 4.9a) Mira integration. Information about Spark,
DAGs, jobs, stages and tasks are provided in Section 2.3 of the background chapter.
The following is a brief summary: A Spark application consists of a set of DAGs (jobs).
Each DAG consists of one or more stages, which apply a specific function on input data
to produce output data. Each stage consists of one or more tasks, each applying the
specified function on a partition of the input data. The DAGScheduler computes a data-
dependency-satisfying order in which stages are executed. Once all data dependencies
have been met, a stage and all of its tasks are ready to be executed. An executable
stage is submitted to the TaskScheduler, which assigns tasks to individual EX. Each
EX is an instance of the CoarseGrainedExecutorBackend. Each EX is connected to a
CoarseGrainedSchedulerBackend instance inside the driver, which is used to relay com-
mands and events to and from the EX. The ExecutionAllocationManager is notified by
the DAGScheduler about stage/task ready/finished events such that it can determine the
current executor demand. If the executor demand exceeds the current executor alloca-
tion, more executors are requested, if the executor demand is lower than the current
executor allocation, executors are released after a configurable timeout (see Section 4.2
for details). A schematic overview of the Spark driver is shown in Figure 4.9a.

Mira replaces large parts of the above described functionality (shown in Figure 4.9b).
The TaskScheduler and ExecutorAllocationManager were removed and the DAG-

Scheduler modified, such that it only creates and forwards job DAGs as well as stage
status updates to the MiraSchedulerClient. The latter is only a relay and forwards all in-
formation, i.e., job DAGs, stage, task and executor status updates to the external Mira AS.
In return, the Mira AS transmits task schedules to the MiraSchedulerClient, which seri-
alizes the task binary and closure, and sends it to the CoarseGrainedSchedulerBackend

for execution on the selected EX, i.e., it takes over functionality from the original Task-
Scheduler. In contrast to vanilla Spark, where the ExecutorAllocationManager works
transparently in the background to ensure that an appropriate number of executors is
available at all times, in Mira, the AS and RM explicitly negotiate the number of execu-
tors that an application is entitled to. This negotiation process is described in detail in
Section 4.3.3 and Section 4.3.4.
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(a) Vanilla Spark DRV
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Figure 4.9: Overview over Spark driver (DRV) components and the integration of Mira into
Spark’s driver and their interplay and affiliation with RM, AS and EX. New
components are highlighted in green and dotted components were significantly
modified.
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4.3.6 Execution environment (EX)

Mira’s EX does not replace the AF’s native EX but wraps (and extends) it such that it
enables the executor process to be persistent. This avoids the high recurring acquisition
costs shown in §4.2.1 by making certain tasks, e.g., the repeated loading of libraries
and initialization of subsystems, such as the logging subsystem, unnecessary (as shown
in Figure 4.5 for Spark and also analyzed for Python-based frameworks by Oakes et al.
[111]).

CoarseGrainedExecutorBackend::run

1: Launch executor process

2: Connect to driver

3: Wait for task description

4: Execute task

5: Shutdown?

6: Disconnect from driver

7: Terminate executor process

no

yes

(a) Vanilla Spark EX

CoarseGrainedExecutorBackend::run

1: Launch executor process

A: Connect to Mira RM

B: Wait for driver assignment

2: Connect to driver

3: Wait for task description

4: Execute task

5: Shutdown?

6: Disconnect from driver

7: Terminate executor process

no

yes

(b) Mira Spark EX

Figure 4.10: Conceptual difference between a vanilla Spark EX and a Spark EX, wrapped
in a Mira EX. Parts marked green are added by Mira.

For Spark and other JVM-based frameworks, persistence also allows the conservation
of Just-In-Time (JIT) compiler caches. This enables parts of the application to execute
as native (compiled) code earlier, instead of as interpreted code. Applications of the
same AF, e.g., Spark applications, utilize AF-provided functionality, such as data and
execution management as well as implementations of popular algorithms, such as for
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linear algebra, machine learning (ML) and data processing and querying (e.g., Structured
Query Language (SQL)). In consequence, they also share parts of their code and can
therefore benefit from JIT caches that were filled by other applications.

Figure 4.10b shows Mira’s EX integration with the Spark framework and contrasts it
to Spark’s native EX (Figure 4.10a). Mira’s EX wraps Spark’s native CoarseGrained-

ExecutorBackend without modifying its core functionality. The integration is explained
in the following.

� Application assignment and task execution. Upon start (Figure 4.10b, step 1),
Mira’s EX wrapper connects to the Mira RM (step A) and waits until a driver has
been assigned (step B). Only after Mira’s RM has assigned a Spark driver to the EX,
Mira’s EX wrapper calls Sparks’ EX CoarseGrainedExecutorBackend::run function,
which represents the actual EX functionality and connects to the assigned Spark
driver (step 2). In vanilla Spark (Figure 4.10a), said function (step 2) is called right
after the executor process has been launched (step 1). After the CoarseGrained-

ExecutorBackend has connected to Spark’s driver, it waits for a task description
(step 3), which contains all necessary information to execute a task, i.e., the task
executable code as well as its closure, and, upon reception thereof, executes the
task (step 4). Once the task has completed, it confirms its completion with the
Spark driver and waits for another task description, until the Spark driver instructs
the CoarseGrainedExecutorBackend to shut down (step 5).

� Application deassignment and disconnect. Once a shutdown instruction has
been received, the vanilla Spark EX disconnects from the Spark driver (step 6).
Here, the Mira EX wrapper takes back control of the executor process and instead
of terminating it (Figure 4.10a, step 7), waits for another driver assignment from
Mira’s RM (Figure 4.10b, step B).

� Data retention after deassignment. Spark stores input and intermediate results
data in a distributed manner across all EX instances and exchanges data items
between EXes and the DRV on demand. A central registry of the location(s) of data
items (stored in so called blocks and identified by block IDs) is maintained by the
BlockManager in the Spark application DRV. After an EX is removed (deassigned)
from an application, other EXes of the same application lose access to all data
blocks stored on the removed EX. Spark is partially resilient against data loss and
may react in any of the following ways:

(1) In the best case, multiple copies of the same data block exist. As long as a
single copy is still accessible, data blocks can be retrieved, albeit potentially
with a delay (up to 15s, per default4), if the first attempt to retrieve a data
block was from a removed executor.

4
spark.shuffle.io.maxRetries = 3, spark.shuffle.io.retryWait = 5s
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(2) If no copy of a data block is accessible anymore, Spark will attempt to recom-
pute it, which consumes extra time and should therefore be avoided.

(3) After several (3, per default5) failed attempts to retrieve data, Spark will fail
and terminate the application execution.

In order to avoid the latter two cases, Spark on Mira transfers all unique data items
from an EX to the DRV and updates the BlockManager’s registry accordingly, and
only then proceeds with removing an EX from an application.

4.3.7 Component interaction

Figure 4.11 depicts the high level component interaction paths within Mira. Processes
can be (roughly) divided in three categories: resource management (blue), executor life-
cycle (orange) and task execution (green).

� Resource management. For resource management Mira’s RM mainly commu-
nicates with various AS instances to receive resource demands (R1) and update
resource assignments (R2). Resource assignment increases are implicit by assign-
ing unassigned executors to an application (E4), whereas resource assignment de-
creases are done explicitly and rely on a cooperative AS (R3).

� Executor life-cycle. After launching a Mira EX (E1), it registers itself with the RM
(E2) and requests a driver assignment (E3). If there is demand for this executor, the
RM will assign it to an application driver (E4), which the EX will connect tor (E5).
The driver will then register the new driver with the AS (E5) and start requesting
tasks for execution. Once demand has ceased (R1) the RM reduces the executor
share of an application (R2), the executor disconnects from the driver (E6) and
requests a new driver assignment from the RM (E3).

� Task execution. Once an executor has been assigned to an application (E5), the
driver requests tasks on its behalf from the AS (T1). As long tasks are available for
the executor, they are being executed (T2).

5
spark.rpc.numRetries = 3, spark.rpc.retry.wait = 3s
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E1: Launch EX process

E2: EX registers with RM
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E4: RM assigns DRV

E5: EX connects to DRV

E5: DRV registers EX with AS
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T2: EX executes task

E6: EX disconnects from DRV

R2: RM adjusts EX share reduce share?

R3: AS selects EX to release

R1: AS adjusts demands

noyes

no
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Figure 4.11: Interaction of Mira components. Processes inside the green box represent the
normal task execution. The blue box shows resource management processes
and the orange box shows the executor life cycle.

4.3.8 Mira AF Representational State Transfer (REST) interface

Mira’s REST interface for AFs is based on that of HCL-SP and extends it for executor
management. An interface description can be found in Section A.2.

4.4 Evaluation

This evaluation compares vanilla Spark on YARN (Spark+YARN) with the Mira-integrated
version of Spark (Spark+Mira). This evaluation addresses three main questions:

(1) Can Mira reduce the recurring resource acquisition overheads? The experiments pre-
sented in Section 4.4.2 and Section 4.4.3, the impact of reduced system overheads
for executor acquisition on application runtime is evaluated. As these experiments
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show, resource acquisition overheads are reduced by up to two orders of magnitude
when running Spark on Mira instead of on YARN. At the same time, the reduced
overheads allow Spark to execute TPC-DS queries ≈1.5× faster on average (Sec-
tion 4.4.3.3).

(2) What impact does code execution acceleration by reusing warm executors have? In
Section 4.4.3.2 experiments compare application runtimes when using cold and
warm executors. Results indicate a significant execution acceleration and reduction
in application runtime by a factor of ≈2× on average.

(3) What benefits can Mira facilitate in a multi-application setting? In Section 4.4.4, ex-
periments combining effects from all of Mira’s features are combined in a scenario
where TPC-DS queries compete for resources with a background application that
exerts constant load on the cluster, showing that Spark on Mira executes applica-
tions up to 3.1× faster than on YARN (≈1.9× on average). Furthermore, the impact
of immediate executor release on resource utilization efficiency is evaluated.

4.4.1 Test setup

All experiments use the test setup, software and configuration described in Section A.2.2,
unless specifically noted otherwise. Furthermore, each experiment is repeated five times
and average numbers are reported.

4.4.1.1 Applications

Throughout this evaluation, a Spark implementation of the TPC-DS benchmark suite is
used. A description of this benchmark is in Section A.1.4. For single-application ex-
periments and as foreground application in multi-application experiments, 90 TPC-DS
queries are used. As background application in the multi-application experiments, a
simple application that repeatedly executes stages of 8192 tasks, each running for one
second, is used. The tasks sleep for one second and therefore use very little CPU and
memory, nevertheless, they allocate (block) executors. This application generates suffi-
cient task load to utilize all available executors of the cluster for the entire duration of
each experiment. This background application represents a good case for executor shar-
ing, as tasks finish frequently. If a background application had longer running tasks, task
preemption may be necessary to retain a similar level of freedom for the RM to reassign
executors at small time-scales.

4.4.1.2 Configurations

Table 4.1 lists the configurations compared in this evaluation.
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Configuration Description

Spark+YARN (1s) This configuration refers to Spark applications
running on YARN as resource manager using
spark.dynamicAllocation.executorIdleTimeout=1s

(which is the minimal possible value). This corresponds to
a resource sharing optimized setting as Spark is voluntarily
releasing executors only one second after they’ve become
idle.

Spark+YARN (60s) This configuration refers to Spark applications
running on YARN as resource manager using
spark.dynamicAllocation.executorIdleTimeout=60s.
This is the default Spark setting and corresponds to a ego-
istic setting, where applications hold on to idle executors
for 60s in case they are needed again. This configuration
typically increases performance of individual applications
at the cost of resource utilization efficiency.

Spark+Mira (cold) This configuration refers to Spark applications running on
Mira as resource manager and application scheduler using
pre-started, but initially cold executors, i.e., they have never
been connected with any Spark application driver and have
a cold JIT cache.

Spark+Mira (warm) This configuration refers to Spark applications running on
Mira as resource manager and application scheduler using
pre-started and warm executors, i.e., they have already been
connected with one or more Spark application drivers be-
fore and have a warm JIT cache.

Table 4.1: Configurations compared in this evaluation.

4.4.2 Micro-benchmarks

This experiment evaluates the executor acquisition delay of Spark+Mira. It uses the appli-
cation from Listing A.2, which spawns N=2. . . 110 tasks at a time, to acquire N=2. . . 110
executors. The corresponding results for Spark+YARN and Spark+Standalone can be
found in Section 4.2.1. Results are shown in Figure 4.12.



4.4 Evaluation 111

10
25
50

100
250
500

1000

0 10 20 30 40 50 60 70 80 90 100 110
# of executors to be allocated at the same time

ac
qu

isi
tio

n 
de

lay
 (m

s)

first 25% 50% 75% last

Figure 4.12: Executor acquisition delay: Delay from increase of task load to the availability
of the same number of executors, for N=2 . . . 110 tasks. Plot shows availability
of first/last executor and three percentiles. The y-axis is log10 scaled. Ribbons
show the variance.

On average, Spark+Mira acquires the first executor after 21ms compared to 3214ms
and 2884ms for Spark+YARN (Figure 4.4a) and Spark Standalone respectively, which
represents a speedup of 153× and 137× (Figure 4.4b). This increases to 42ms for the
75th percentile, compared to 9408ms for Spark+YARN and 7577ms for Spark Stan-
dalone, or a factor of 224× and 180× respectively.

During each run, N is increased by one, hence a previously unused and therefore cold
executor is added. While this executor has already been started, it hasn’t been fully ini-
tialized yet and needs to perform all but the first initialization step (see Figure 4.5). This
is why it registers later, after 1058ms on average6, compared to 11403ms (Spark+YARN,
Figure 4.4a) and 8080ms (Spark standalone, Figure 4.4b) or a factor of 10.8× and 7.6×
respectively. This reduces the tail latency of executor acquisition, which can be an im-
portant factor to improve overall service performance [32]. The last warm executor is
acquired after ≈100ms on average for Spark+Mira. As the usage of cold executors can
be considered a rare event (each executor is cold only once and warm thereafter), it can
be assumed that in most cases, all executors are warm and that the maximal acquisition
delay is in the order of 100ms, further reducing tail latency.

Furthermore, Mira shows an improved scaling behavior, requiring 1.4× longer to start
101–110 executors at the same time than 2–11 executors7, whereas Spark+YARN re-
quires 2.1× and Spark standalone 1.8× longer.

6The first initialization step does not account for the entire difference between 1058ms and the average
executor initialization duration of 1813ms (see Section 4.2.1 for details). A possible reason for this is
that the JVM process itself performs various initialization tasks during startup, which overlap with the
executor initialization in vanilla Spark and therefore prolong the initialization process. As, in the case
of Mira, the full executor initialization is performed later, these processes do not overlap, hence the
executor initialization can be finished quicker.

7The outlier for starting a single (cold) executor with Mira is not considered, as it does not accurately
reflect the scaling behavior.
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4.4.3 Single application benchmarks

This section presents single-application TPC-DS experiments. The objective of these ex-
periments is to show the impact of the reduced acquisition overhead of Mira on applica-
tion runtime. In a separate experiment, the impact of code execution acceleration (due
to JIT-cache exploitation) is evaluated. Three types of experiments are conducted:

(1) As baseline, TPC-DS queries are executed on Spark+YARN with dynamic resource
allocation enabled. Two configurations are used here: The first one uses the default
resource release timeout (60s), which increases the performance of individual ap-
plications, whereas the second one uses the minimal timeout of one second, which
improves resource sharing at smaller time-scales and fairness among applications.

(2) In order to evaluate the benefits of pre-started executors and Mira’s executor ac-
quisition strategy (Section 4.3.3.1), the same set of TPC-DS queries is executed on
Spark+Mira and compared to the baseline. In-between each run, all Mira EXes are
restarted to avoid warm-up effects across application runs.

(3) In order to evaluate the benefits of execution acceleration with warm executors, the
previous experiment is repeated without restarting Mira’s EXes. Before the actual
benchmark runs, an initial warm-up run is performed to warm up executors. This
scenario constitutes an optimal case, as the same query is executed repeatedly on
warm EXes, maximizing the impact of the JIT-cache. Input data and task binaries
are not cached across application runs.

Results for each query are shown in Figure 4.13 and summarized in Table 4.2.
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Figure 4.13: Comparison of TPC-DS query runtime (shorter is better) between
Spark+YARN and Spark+Mira on cold and warm executors in a single
application setting using the default 60s executor release timeout as well
as 1s. Average results are provided before the vertical line. A missing bar
indicates that all test results were filtered-out due to persistent abnormal
behavior.

Figure 4.13 shows how different configurations affect query execution time. As ex-
pected, Spark+YARN with the default release duration of 60s performs better than with
the sharing-optimized setting of one second, which is 1.05× slower than the former.

However, in the Spark+YARN (1s) configuration, a small number of tasks got stuck and
prolonged the application execution by several tens of seconds before finishing (without
error). This abnormal behavior was observed in ≈35% of all test runs, which were fil-
tered out from the results presented here, as they are not representative of Spark’s re-
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source allocation or release strategy, but indicate the presence of a bug in Spark.8 The
same behavior was also observed in the Spark+Mira (warm) configuration, albeit only
in ≈1.9% of all cases. These results were filtered out as well. All other configurations
were unaffected. Causes are discussed in Section 4.4.3.4.

Impact of stage packing. As Mira’s AS uses the same stage packing approach as HCL-
SP, parts of the runtime prediction with cold executors is due to this approach. However,
vanilla Spark’s slow executor acquisition strategy increases the number of tasks on hot
executors as well. In consequence, the benefit that Mira draws from stage packing com-
pared to Spark+YARN in the elastic setting are lower than those of HCL-SP compared to
vanilla Spark in a non-elastic setting. For instance, the first 24 stages (with one task each)
of each TPC-DS query, which vanilla Spark scattered across all executors, are scheduled
on only a single executor in the elastic setting, as Spark+YARN does not acquire more
than one executor as long as the task load remains at most one. Furthermore, this one
executor is never released, as the minimum number of executors is set to one. A quan-
tification of the impact of stage packing is not possible, as Mira does not implement a
scheduling strategy that resembles Spark’s.

4.4.3.1 Impact of resource allocation strategy

On average, Spark+Mira (cold) is able to accelerate application execution compared to
either Spark+YARN configuration. Compared to Spark+YARN (60s), a speedup of 1.43×
on average can be realized. As executors are initially cold in both cases and no executor
is re-acquired in the Spark+YARN (60s) case (i.e., no JIT cache is ever lost either), this
speedup must be attributed to Mira’s executor acquisition strategy.9 Comparing the same
Mira configuration to Spark+YARN (1s), an average speedup of 1.50× is achieved.

Spark+Mira is able to realize these performance improvements despite the fact that it
acquires and releases executors about 3.0× – 4.0× more often than either Spark+YARN
configuration, as shown in Table 4.2.

Configuration Average runtime Total number of executor acquisitions

Spark+YARN (60s) 52.8s 38815

Spark+YARN (1s) 55.5s 51181

Spark+Mira (cold) 37.0s 155712

Spark+Mira (warm) 27.1s 155197

Table 4.2: Results summary for the single-application benchmarks.

8Including filtered-out results, Spark+YARN (1s) is 1.59× slower than Spark+YARN (60s).
9Aside from a small impact of stage packing, as discussed earlier.
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4.4.3.2 Code execution acceleration

Using Spark+Mira with warm executors, the speedup increases to 1.95× compared to
Spark+YARN (60s) and 2.05× compared to Spark+YARN (1s). The difference in speedup
compared to Spark+Mira (cold) reflects two aspects enabled by warm executors:

(1) Warm executors connect and initialize quicker once assigned to an application, as
shown in the micro-benchmarks (Figure 4.12).

(2) Tasks can benefit from warm JIT caches from the very beginning.

The impact of the latter aspect is maximized here, as the same functions are executed
repeatedly, which represents an optimal case for the JIT cache exploitation. Real-world
results are likely to show a reduced benefit. Unfortunately, it is not possible to attribute
fractions of the achieved speedup to either aspect. Multi-application benchmarks (Sec-
tion 4.4.4) represent a non-optimal case, as here, different queries are executed back-to-
back.

4.4.3.3 Analysis of system overheads (results breakdown)

In the following, results for TPC-DS query 59 are broken down and the impact of Mira’s
executor acquisition strategy, as well as the reuse of warm executors are analyzed. TPC-
DS query 59 has been chosen as example, since it is not too complex for analysis, while
also not being too trivial, such that none of the effects are visible in the breakdown.

Figures 4.14a and 4.14b show the task load as well as requested and acquired execu-
tors throughout the execution of query 59 on Spark+YARN with a one second and 60s
executor release timeout. Figures 4.14c and 4.14d show the same but on Spark+Mira
with cold and warm executors.
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Figure 4.14: Plot of TPC-DS query 59 (complete application execution) on 112 executors.
In plots (c) and (d) the blue and green line coincide. The vertical black bar
indicates the end of the execution.
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A noticeable artifact in the breakdown is that it takes several seconds (≈15s for
Spark+YARN and ≈3s for Spark+Mira) before the first executor is acquired by the ap-
plication driver (which is started at zero seconds). The main culprit for this delay is
the admission process of the RM. While Mira is significantly faster here, it is not due
to improvements within Mira but because Mira’s Spark integration is based on Spark’s
Standalone mode, which is simpler than YARN. Spark Standalone was not considered
as reference in this evaluation, however, as it is limited w.r.t. resource sharing among
multiple applications, i.e., it cannot dynamically reassign allocated resources from one
application to another [127].

Once the first executor has been started, a series of 24 single-task stages are executed,
which requires about six seconds with any configuration. Subsequently, task load in-
creases and runtime differences, due to conceptual differences between Spark+YARN
and Spark+Mira, become apparent.

Most notably, Spark+Mira (warm) requests and acquires executors almost instan-
taneously, whereas Spark+YARN, in line with previous results (Section 4.2), requires
≈13.1s to acquire the maximal number of executors. Moreover, executor release is sim-
ilarly faster with Spark+Mira than with Spark+YARN, even compared to the sharing
optimized settings.

A comparison of Figures 4.14a and 4.14b shows why Spark+YARN with sharing op-
timized executor release settings performs worse than with default settings. After the
second, main task set has been processed (at ≈45s), two more smaller task sets follow.
With sharing optimized settings, however, Spark has already released a majority of its ex-
ecutors and due to its slow acquisition process, fails to increase the number of available
executors in a timely manner, which results in a prolonged execution of these tasks.

In Mira, on the other hand, executor acquisition is very quick and executors can be
acquired quickly with cold (Figure 4.14c) and warm (Figure 4.14d) executors, leading
to an overall faster application execution. Furthermore, it also releases executors faster
than either Spark+YARN configuration, which improves resource sharing with other ap-
plications.

4.4.3.4 Outliers

During the single application experiments, the Spark+YARN (1s) configuration exhibited
an abnormal behavior, in that a small fraction of tasks got stuck for several tens of seconds
and therefore prolonged the execution of the application in ≈35% of test runs. A similar
behavior was observed in the Spark+Mira (warm) configuration, albeit at a much smaller
scale (≈1.9%). Due to the complexity and size of the Spark code base, it was not possible
to identify the root cause with certainty but it could be traced back to Spark and does
not lie within Mira or its Spark-integration code changes.

A closer analysis showed that Spark executors attempts to access a shared data block,
while a connection was being closed, because the remote executor, where the data block
resided, was shut down. Three attempts, each five seconds apart, are made to access
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the data before. However, these three attempts were repeated five times each, which
caused a total delay of ≈75s for each affected task. The task itself finished successfully
afterwards, indicating that Spark was able to retrieve the data from elsewhere (it is not
uncommon that data blocks are replicated across multiple executors). As executors were
not forcefully shut down by the resource manager (YARN), a likely explanation for this
behavior is that Spark failed to reliably update its internal block location registry (which
resides in the driver) or that executors relied on cached, but stale location data.

As the default Spark+YARN configuration with a 60s executor release timeout virtu-
ally never releases executors during these experiments, the issue did not show itself here.
Moreover, the Mira integration modified parts of the Spark code related to this function-
ality and may have, as side effect, reduced the likelihood of this malfunction to occur,
which is why it occurs only rarely in Spark+Mira (warm) and never in Spark+Mira (cold)
experiments.

4.4.4 Multi-application experiments

This section presents the results of multi-application experiments. In said experiments,
two applications are executed concurrently in order to show differences in resource shar-
ing behavior between Spark+YARN and Spark+Mira.

� A background (BG) application (see Section 4.4.1.1 for a description), which is
sufficient to fully utilize all available executors in the cluster was executed on the
cluster.

� As foreground (FG) application, the same TPC-DS queries as in the preceding
single-application experiments are used.

This setup forces the RM to actively balance resource assignments between both appli-
cations and demonstrates the combined effects of different resource/executor allocation
and release strategies as well as the impact of more effective JIT exploitation due to
executor sharing.

For these experiments, two queues, one for FG and one for BG applications, have been
configured in YARN’s capacity scheduler, both with a guaranteed minimum share of 50%
and a maximum share of 99%10 of all resources. Mira’s resource manager uses compa-
rable settings with equal application weights (see Section 4.3.4.1 for details).

As YARN’s default settings can lead to significant delays in resource reassignment, and
therefore inflated runtimes, said settings have been modified according to Table A.15
to allow YARN to react more quickly to changing resource demands. The settings in
Table A.15 have been chosen as they provide the best performance for YARN in empir-
ical tests, improving its performance in the test scenario by ≈1.14× over default YARN
settings (for the Spark+YARN (1s) configuration).
10A maximum queue share of 100% effectively blocked a 2nd application from starting, due to lack of

resources, hence, as a workaround, the limit was set to 99%.
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Figure 4.15: Runtime comparison (shorter is better) between Spark+YARN and
Spark+Mira with constant BG load.
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Figure 4.16: Speedup of Spark+Mira compared to Spark+YARN with constant BG load.

The complete results are shown in Figure 4.15 and a summary Cumulative Distribution
Function (CDF) plot is shown in Figure 4.16. Spark+Mira is able to achieve an average
runtime reduction of ≈1.9× compared to Spark+YARN (1s) and ≈1.8× compared to
Spark+YARN (60s)11 and a maximum speedup of ≈2.9× compared to Spark+YARN (1s)
and ≈3.1× compared to Spark+YARN (60s). In the latter case, minor performance re-
gressions for two queries were observed, which is not surprising, as in some cases, not
releasing executors once they become idle can accelerate individual applications. At the
same time, however, Spark+Mira achieves a higher average BG task throughput of 91
tasks per second vs. 87 for Spark+YARN (1s) and 84 for Spark+YARN (60s).12 Results
are analyzed more closely in the following.

Figures 4.17a and 4.17b as well as Figure 4.17c show the allocation of resources to the
BG and FG applications in a benchmark run on Spark+YARN and Spark+Mira, along with
the task load at any point in time. Areas in green (blue) represent executors allocated to
the BG (FG) application. Red areas represent executors that the RM has not assigned to
any application or are in-between assignments. Light blue (dark green) areas represent
executors that are currently allocated by the FG (BG) application but not used.

11Runs that exhibited the issue described in Section 4.4.3.4 have been filtered out.
12Note that the background tasks’ runtime was fixed at one second, thus they are not able to benefit from

warm-up effects.
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Figure 4.17: Excerpt of Spark+YARN multi-application benchmark run showing the re-
source sharing between BG and FG applications (top) and the corresponding
task load (maximal parallelism) of the FG application (bottom). Submission
of FG applications is indicated by labeled vertical black lines.
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A comparison of all three figures highlights multiple points:

� Spark+Mira is able to execute the same number of queries in 148s compared to
267s and 244s for Spark+YARN (1s) and Spark+YARN (60s) respectively, showing
that it is able to execute these queries faster and, by extension, to utilize resources
more efficiently. This is due to the lower executor acquisition delay for the FG
application (compare delay from query start to increase of executor allocation) as
well as the overall shorter task runtime (compare width of blue areas).

� There are fewer unassigned executors during transition (from BG to FG and vice
versa) periods, as shown by the virtually non-existent red spikes in Figure 4.17c,
compared to both Spark+YARN plots. This shows that executors spend less time
in resource-management-related tasks in Spark+Mira, which increases the relative
time spent executing application tasks. It can be assumed that with more concur-
rently running applications, and therefore a likely higher frequency of executor
reassignments, Spark+YARN will fall behind Spark+Mira even further in this met-
ric.

� Spark+YARN (60s) does not release executors but hogs them (as shown by the size
of light blue areas), compared to either Spark+YARN (1s) and Spark+Mira. This
allows it to execute applications slightly faster than Spark+YARN (1s), but at the
cost less efficiently utilized resources.

� The high delay of executor re-acquisition for Spark+YARN (see also Figure 4.7)
can be seen during the execution of query 4 in Figure 4.17a where Spark releases
executors due to a short dip in task load (at ≈165s) just to reacquire them a few
seconds later, with a multi-second delay.

� Spark+Mira shows a short spike in FG application resource allocation at ≈90s.
As Mira’s RM was configured to assign both, FG and BG applications an equal
share of executors, the reason for this behavior is not obvious at first glance. The
reason is, that the BG application finishes a stage which causes a short drop in
executor demands. This, in turn, is immediately exploited by the FG applica-
tion to acquire more executors until the BG application demands these executors
back, shortly thereafter. In fact, BG application stage ends can also be observed
in both Spark+YARN plots as dark green spikes from the top at ≈95s and ≈210s.
Spark+YARN, however, reacts too slowly to reassign idle executors to the FG ap-
plication.

The efficiency metrics in Table 4.3 show the differences more concretely. Metrics are
shown in units of executor × seconds (ES) which corresponds to accumulated area of the
different colors in Figure 4.17 and shows how many executors are used for what purpose,
e.g., if two executors are idle for five seconds, this results in 2× 5= 10 ES.



4.4 Evaluation 123

Spark+Mira is reducing share of idle and free (unassigned) executors from 13.7% and
12.8% for Spark+YARN (60s) and Spark+YARN (1s) respectively to 3.5% or by a factor
of 3.9× and 3.6×. This demonstrates Mira’s ability to utilize executors more efficiently,
while also executing applications faster, as shown above.

FG Application BG Application

busy idle busy idle free total

Spark+Mira 49226 3243 362217 10758 1052 426496

Spark+YARN (1s) 58754 13944 551069 18506 57167 699440

Spark+YARN (60s) 58138 26415 433855 14403 37605 570416

(a) absolute executor × seconds (ES)

FG Application BG Application

busy idle busy idle free total

Spark+Mira 11.54% 0.76% 84.93% 2.52% 0.25% 100%

Spark+YARN (1s) 8.40% 1.99% 78.79% 2.65% 8.17% 100%

Spark+YARN (60s) 10.19% 4.63% 76.06% 2.52% 6.59% 100%

(b) relative to the total ES

Table 4.3: Efficiency metrics. Values are averaged accumulates over all test runs.

Spark+YARN (1s) Spark+YARN (60s) Spark+Mira

Avg. FG runtime 58.6s 55.0s 31.0s

Avg. FG speedup 1× 1.06× 1.89×

Avg. BG task throughput 86.52 tasks/s 83.76 tasks/s 90.72 tasks/s
Table 4.4: Summary of results for the multi-application experiments. Speedup is relative to

Spark+YARN (1s).

4.4.5 Summary

The conducted experiments show that Spark+Mira can reduce runtime of the tested ap-
plications significantly, while utilizing resources more efficiently. The reason for these
benefits are its reduced executor acquisition overhead, its immediate executor release,
as well as the execution acceleration due to a more effective JIT-cache exploitation on
warm executors. While virtually all tested TPC-DS queries benefited from Mira, shorter
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queries did so to a larger degree than longer queries. This matches expectations as with
the former, executor demand fluctuates on smaller time-scales than with the latter.

4.5 Related work

4.5.1 Resource managers and schedulers

YARN[39] and Mesos[21] are two of the most commonly used resource schedulers, both
operating on a two-level structure (AFs/RM), but they are incapable to work efficiently
on small time-scales. The issues with YARN have been demonstrated throughput this
chapter. Mesos does not allow applications to request resources but makes periodic offers,
which applications can accept or reject. This makes low-latency resource acquisition
difficult, as the application has no control over the timing and frequency of resource
offers.

There are various other approaches to cluster resource management. Kubernetes [64]
is a container orchestration system based upon Google’s internal Borg [60] and Omega
[38] focusing on reliable, scalable and elastic deployment of service oriented workloads.
Resources managers have also been used to solve various optimization problems, such as
workload-specific co-scheduling [44, 33], resource packing [45] and near-term capacity
planning [75] and overall optimization of scheduling decisions at scale [65, 9, 36]. These
works are orthogonal to Mira, which focuses on minimizing recurring resource acquisi-
tion costs and maximizing sharing efficiency. The concept of a persistent EX, however,
could also be applied to them in order to reduce resource sharing overheads and to accel-
erate task execution. Sparrow [36], for instance, assumes that executor acquisition and
sharing among applications does not impose any overhead. Mira can therefore constitute
one step towards their proposed distributed framework [37].

4.5.2 Application frameworks and schedulers

Tez [59] is a meta-framework that focuses on providing common functionality (e.g. a
DAG scheduler), similarly to Mira, for application frameworks, such as Hive [12] and
Pig [96]. In contrast to Mira, Tez requires YARN as resource manager and therefore
suffers from similar resource acquisition and sharing shortcomings as demonstrated in
this chapter.

Storm[99], Flink[52] and Apex[92] are predominantly stream processing frameworks,
though the latter two can also be used for batch processing. Mira’s low-latency resource
sharing could be beneficial here to quickly adapt the application resource pool to changes
in load.
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4.5.3 Execution environment optimizations

Lion et al. [72] have done an extensive study of the impact and sources of JVM cold start
costs across several distributed frameworks and applications, such as Spark, Hive and
HDFS, and conclude that the warm-up time is a common bottleneck for short-running
jobs. They present a transparent client/server JVM replacement that enables a persistent,
warmed-up Java Virtual Machine (JVM) process to be reused repeatedly and offers a large
speedup for certain workloads. Mira applies the same optimizations, but it achieves it by
reusing executors. Both approaches have advantages. While their work promises to not
impair security and is transparent to the AF, the approach Mira chose is potentially more
efficient, as it can also reduce recurring initialization cost. Furthermore, as shown in Sec-
tion 4.2 and Section 4.4, adapting scheduling strategies can further improve performance
and resource utilization efficiency, which is beyond the scope of their work.

Similar optimizations exist for other environments than JVM. Oakes et al. [111] have
studied overheads of Python and containers in serverless frameworks and unveil signifi-
cant overheads for cold-starting Docker containers and the Python runtime. They present
approaches on how to reduce both, e.g. by forking new Python runtimes from existing
ones. A similar approach is used in Sand [91].

These optimization techniques may be combined with Mira’s resource acquisition and
release strategy as alternative to executor sharing. This would partially alleviate security
concerns at the cost of increased executor sharing overheads, as executors would need
to be initialized during resource transfer from on application to another.

4.6 Discussion & future work

This section discusses disadvantages of Mira’s approach, provides potential solutions to
them, and motivates possible future work. Furthermore, an unexpected discovery made
during evaluation is discussed.

4.6.1 Security implications of executor sharing

Executor sharing is a major source of Mira’s performance advantage over other systems,
as it allows Mira to reduce executor acquisition overheads as well as code execution
acceleration. It is, however, also its greatest potential weakness w.r.t. deployment of
Mira in a production environment, as security is a major concern in environments where
resources are shared with potentially untrusted third parties. Strict separation of data is
therefore important.

Mira’s executor sharing, in its current form, weakens this separation, as executor pro-
cesses may be shared with other applications and users. While executors are only shared
sequentially, i.e., there is a temporary, exclusive association of an executor with an appli-
cation, residual state may still exist once an executor is reassigned to another application.
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Upon acquiring an executor, a subsequent application may scan accessible memory, file
descriptors and network sockets, that were not properly closed by the previous applica-
tion, for classified information. Conversely, an application may inject malicious code into
the executor, e.g., by loading a manipulated version of a library, which will then be used
by all subsequent applications on the same executor. Both attack methods have to be pre-
vented in an environment where trust among sharing parties has not been established.

While there are many methods to reduce the attack surface, e.g., by ensuring file de-
scriptors and sockets have been closed before reassigning executors to other applications,
security will most likely not be equivalent to systems where executors are not shared. For
this reason, executor pools, as discussed in §4.6.3 in more detail, provide a viable trade-
off between performance and security. Sharing can be limited to executors from certain
pools. Access to executor pools can be limited using a permission system similar to that
of POSIX file systems, such that only trusted users and applications can share executors
among each other.

Another potential solution is to restrict executor sharing to safe applications, e.g., such
where the user itself is not allowed to execute arbitrary code on an executor but has
to assemble functionality from a predefined set of safe function blocks. This, approach
may be applicable to machine learning training and inference, where a few standardized
function blocks can be used to assemble applications. Another use-case are data-analytics
tasks, similar to those evaluated in this chapter, where users only provide data which they
can query using a higher-level language, such as SQL.

4.6.2 Non-uniform resource demands

The current one-size-fits-all approach, where all applications and tasks share uniformly
configured executors, falls short in cases where applications have non-uniform resource
demands, e.g., w.r.t. the maximal JVM heap size. Using executor pools (§4.6.3) can also
provide a viable solution to this issue, as they allow using differently configured execu-
tors.

As additional optimization that exceeds capabilities of current systems, Mira may se-
lect executors from different pools not only on a per application, but also on a per stage
(or even task) basis. As applications consist of multiple, heterogeneous stages that exe-
cute different functions on different (amounts of) data and may or may not benefit from
accelerators (such as GPUs), tasks of different stages likely have varying ideal resource
preferences, which can be expressed as set of executor parameters.

While the determination of said preferences and the corresponding executor param-
eters is a non-trivial challenge (as the work on HCL has demonstrated), if limited to a
small set of parameters, e.g., only the heap size, it might be possible to learn optimal
parameters over time. Mira already monitors heap utilization of each task, which could
be used to train a simple ML model that predicts the ideal (e.g., minimal) heap size pa-
rameter for executors depending on the executed task (or stage). The benefits from such
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a capability is an increased resource utilization, as more executors can be placed on a
single node and/or the frequency of garbage collection can be reduced, if memory-heavy
tasks can run on executors with larger heaps than memory-light tasks.

4.6.3 Executor pools

Executor pools address issues where executors cannot or should not be shared among dif-
ferent applications or users, or need to be discriminated, e.g., due to different settings or
resource requirements. The basic idea is that each pool can have different access require-
ments and/or properties, which are shared by all executors within a pool. By providing a
limited set of pools, Mira could address the above mentioned issues (Sections 4.6.1 and
4.6.2).

The drawback of executor pools is that they limit the potential for executor sharing and
thus the freedom and flexibility of the RM which narrows the advantage of the executor
sharing concept. However, as mitigation strategy, dynamic executor pools may be used.
As Mira – being based on HCL – is aware of the application DAG and therefore upcoming
stages and tasks, the AS can register near-future demands of an application with the RM
which can then start corresponding executors in advance.

As executors in dynamic pools will be cold initially, a short (system-provided) warm-up
application may be executed on them, such that they connect quickly to actual application
drivers. This can help to reduce tail latencies, as cold executors require significantly
longer to connect than warm executors (see Section 4.2.1 for details).

4.6.4 Lookahead-scheduling benefits

Mira, being based on HCL-SP, has the ability to look ahead in the application DAG and
anticipate near-term resource demands. This ability could be used to pre-acquire and/or
warm-up cold executors ahead of time, such that the acquisition delay and tail latencies,
that the application might experience otherwise, are reduced.

4.6.5 Scale-out performance implications

During the evaluation of Mira, a unexpected behavior was observed, namely, that reduc-
ing the number of executors an application can use, speeds up overall execution. This
behavior has several causes, among them are:

� More effective straggler mitigation. The largest issue with stragglers is, that they
may force an entire application to stall in front of a barrier. This is most likely to
happen, if a straggler occurs within the last wave of tasks that is executed in front
of a barrier. Since with fewer executors, the number of task waves increase while
the number of tasks per wave decrease, the likelihood of a task in the last wave to
become a straggler is smaller too.
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� Shared data caching and JIT-cache exploitation are more effective if fewer execu-
tors are used.

� Peak communication volumes are reduced, as fewer tasks start/finish at the same
time.

Based on this observation, a resource scale-out factor (RSF) αwas added to Mira. α the
number of executors a set of tasks (e.g. a stage) is executed on. Per default, α= 1.0, i.e.,
the AS tries to acquire one executor per executable task. This is also the policy of vanilla
Spark. With a lower value e.g., α = 0.5, the AS only acquires 0.5 as many executors
as executable tasks, hence α constitutes a relative resource usage limit, not an absolute
one. As vanilla Spark does not support a relative resource usage limit, evaluation of
α has been omitted from the main evaluation section of this chapter. As the effort to
evaluate the impacts of the resource scale-out factor is ten times13 as large as for the
single-application experiments presented in the main evaluation section (Section 4.4),
here, only a subset of TPC-DS queries have been evaluated for α = 0.0 . . . 1.0 (with
otherwise identical setup and configuration parameters as in Section 4.4.3) on a small
subset of TPC-DS queries have been conducted in an attempt to quantify this effect. The
results of these experiments are shown in Figure 4.18.
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Figure 4.18: Impact of the resource scale-out factor (RSF) on application runtime using
Spark+Mira (warm). Results for Spark+Mira (cold) are similar.

The results indicate that using the maximal number of executors possible is rarely the
best choice and that a reduced set of executors can deliver better performance, while
also reducing resource usage. Unfortunately, the ideal α (from a runtime perspective)
varies across queries but is typically on the lower end (≈0.3). However, the conducted
experiments are not sufficient to draw firm conclusions. For instance, as the number of
tasks frequently exceeds the number of available executors, a natural upper bound for
parallelism is set.

13For each value of α a complete set of benchmarks had to be performed.
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4.7 Conclusion

This chapter presented Mira, a resource manager and elastic application scheduler that
enables efficient resource sharing for micro-task-based data-analytics frameworks at
small time-scales. The evaluation showed a significant performance and efficiency im-
provements over existing systems, accelerating analytics workloads by up to 3.1× in a
shared environment while reducing executor idle time by up to 3.9× to 3.5%.

Mira is an orthogonal approach to HCL-SP to increase resource utilization efficiency
that works across multiple applications instead of within individual applications. How-
ever, Mira has shortcomings as well, which, along with possible solutions, have been dis-
cussed in §4.6. Furthermore, due to its reliance on micro-tasks, Mira cannot be applied
to some important algorithms, namely distributed iterative-convergent machine learning
algorithms, as discussed in the next chapter.





5. Tackling scheduling challenges for
distributed machine learning

This chapter presents uni-tasks, a novel execution model that enables efficient, elastic
and load balanced execution of iterative-convergent distributed machine learning (ML)
training algorithms in shared heterogeneous environments.1

Uni-tasks addresses a major issue of micro-tasks, the standard method to implement
elasticity and load balancing in distributed systems. Balancing load and scaling elas-
tically with micro-tasks requires the usage of a large number of tasks. This can have
detrimental effects on the convergence behavior of state-of-the-art distributed ML train-
ing algorithms [124]. On the other hand, distributed ML training algorithms have special
properties that allow alternative approaches to tackle these scheduling issues: They itera-
tively converge towards a goal while being resilient to bounded errors in the computation.
These properties enable uni-tasks. In contrast to micro-tasks, uni-tasks schedules small
(stateful) data chunks, not tasks. This allows systems based on uni-tasks to only execute
a single task per node at all times, without impairing its ability to scale elastically and
balance load.

Uni-tasks has been implemented in Chicle, a distributed, elastic ML training framework
and two distributed ML algorithms, Communication-efficient distributed dual Coordinate
Ascent (CoCoA) and local Stochastic Gradient Descent (SGD) (a recent variant of mini-
batch SGD) have been implemented. These algorithms cover the training of generalized
linear models (GLMs), neural networks (NNs), deep neural networks (DNNs) and convo-
lutional neural networks (CNNs). Uni-tasks and Chicle have been evaluated in an elastic,
heterogeneous setup.

The main contributions of this chapter are summarized as follows:

(1) Uni-tasks, a novel execution model that enables fine-granular elastic and load bal-
anced scheduling with only a single task per node. This allows efficient, elastic
execution of distributed iterative-convergent ML training algorithms in shared and
heterogeneous environments, without impairing convergence.

(2) Chicle, a prototypical implementation of a distributed ML training framework
based on the uni-tasks execution model.

1The work presented in this chapter is based on the publication “Elastic CoCoA: Scaling In to Improve
Convergence” [106].
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(3) Novel optimizations techniques for the CoCoA algorithm that are enabled by uni-
tasks and can accelerate training while, at the same time, reduce the resource con-
sumption.

This chapter is structured as follows: The problem of elastic and load-balanced schedul-
ing is introduced in Section 5.1, followed by a brief overview over the workings and
important properties of distributed ML applications (Section 5.2). Section 5.2 elabo-
rates thereon and provides background information on the scheduling challenges that
distributed ML applications face, as well as how they are currently addressed.

Sections 5.3 and 5.4 introduce uni-tasks and the implementation thereof in Chicle. The
following three sections elaborate on the concepts and implementations used to address
the three scheduling challenges that are considered in this chapter: Load balancing in
heterogeneous clusters (Section 5.5), elasticity (Section 5.6) and straggler mitigation
(Section 5.7). Each section also presents an evaluation.

Subsequently, a comparison of Chicle with two state-of-the-art distributed ML training
frameworks is presented (Section 5.8) before two CoCoA-specific optimizations enabled
by uni-tasks are presented (Section 5.9). This chapter is concluded with an overview of
related work (Section 5.10) and a discussion (Section 5.11).

Section A.3 accompanies this chapter with additional information. Test applications
used to evaluate uni-tasks and Chicle are described in Section A.3.1.

5.1 Introduction

Machine learning (ML) has become one of the most important areas of research in recent
years and novel services such as automatic object identification, recommendation sys-
tems, navigation systems, language translation and others have emerged from it. Many
advances in ML have been fueled by ever growing collections of data that ML algorithms
can be trained on and distributed training has become the standard way to do so in a
reasonable amount of time.

As many other distributed applications, distributed ML training often runs on infras-
tructure that is shared among multiple applications and users. As shown in the previous
chapter (Chapter 4), elastic execution is key to efficient resource sharing in such scenar-
ios. In general purpose frameworks, such as Spark [18], elastic, load balanced execution
is usually implemented with micro-tasks. In a micro-tasks system, elastic scaling is done
by distributing a given number of tasks across more or fewer nodes and not by adjusting
the number of tasks. Similarly, load balancing is done by scheduling more or fewer tasks
per node. The number of tasks constitutes an upper bound for the scaling and determines
the granularity with which load can be balanced, hence the number of tasks should be
high (e.g., up to 2–3× as many tasks as CPUs [118]).

Due to the importance of ML and peculiarities of ML training algorithms (Sec-
tion 5.2.2), several specialized distributed ML training frameworks have emerged over
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the last couple of years [62, 85, 103]. Most of them, though, are rigid, i.e., do not
support elasticity nor load balancing. The few that do [114, 90], also follow the basic
micro-task approach. While this approach works well for generic distributed applications,
it is not an ideal fit for many distributed ML training algorithms, such as Mini-batch SGD
(mSGD)/glslsgd and CoCoA.

The reason for this is, that the number of tasks used during each iteration of the train-
ing process constitutes a lower bound for the level of data parallelism, i.e., the number
of independently processed training samples, as each task has to process at least a single
training sample per iteration. The level of data parallelism, however, affects the conver-
gence behavior of training algorithms: The larger it is, the lower the convergence rate
per processed training sample becomes and the more epochs (passes through all training
samples) are needed to converge. Figures 5.1a and 5.1b depict this correlation for the
mSGD and CoCoA training algorithms. An extensive study of this relationship for mSGD
is presented in Shallue et al. [124].
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Figure 5.1: Example of the correlation between data parallelism and the number of epochs
needed to converge (lower is better) for the mSGD and the CoCoA training al-
gorithms. See Sections A.3.2.1 and A.3.2.2 for details about this experiment.

This constitutes a conflict between scheduling efficiency, where more tasks allow the
scheduler to better balance load and elastically scale out further, and training efficiency,
where fewer tasks generally improve convergence rate per training sample.

For instance, in the example from Figure 5.1a, a CNN is trained using the mSGD algo-
rithm on the CIFAR-10 dataset. In mSGD, the batch size corresponds to the level of data
parallelism, i.e., the number of samples that are processed independently.

If this CNN were to be trained on a shared 16 node cluster, at least 16 tasks would be
required to utilize all nodes. If each task trained on one sample per iteration, a batch
size of 16 × 1 = 16 would be required. According to the data from Figure 5.1a, this
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would require approximately four epochs to converge. Due to constant system overheads,
one training sample per task and iteration would most likely incur unacceptable relative
system overheads. To mitigate these overheads, multiple samples, e.g., eight, need to be
processed per task and iteration. With the resulting batch size of 16× 8 = 128 training
samples, approximately eight epochs would be required to converge.

Assuming that one epoch takes one minute on all 16 nodes, training would finish in
about eight minutes. If, however, only eight nodes, instead of the expected 16, were
actually available, training with 16 tasks would take twice2 as long, as two tasks per
node need to be executed back-to-back in each iteration. However, in a shared system,
the number of available nodes is generally not known in advance.

Had the user chosen to only use eight nodes (and thus eight tasks) from the beginning,
the resulting smaller batch size of 8 × 8 = 64 would only require about 6 epochs and
therefore 2× 6= 12, instead of 16 minutes. Hence, the user has two options:

(1) Speculate that all 16 nodes will be available during training, accept the increased
number of epochs to converge, and risk a prolonged training in case they’re not.

(2) Assume that only eight nodes will be available during training, benefit from a lower
number of epochs to converge, but risk not exploiting all available resources, if all
16 nodes will be available after all.

This example highlights the main issue of micro-tasks for elastic distributed ML train-
ing: The number of tasks is generally only optimal, if all of them can be executed in
parallel and sub-optimal otherwise. When considering the additional tasks needed to
balance load in a heterogeneous cluster, the problem is aggravated further. Figure 5.1b
shows a similar behavior for the CoCoA algorithm, were a higher level of data parallelism
also leads to a larger number of epochs needed to converge.

5.2 Background

This section complements Chapter 2 with additional background information, specific to
ML, and provides information on the general workings of distributed iterative-convergent
ML training algorithms as well as relevant properties that are used to address the schedul-
ing challenges described in Section 2.2.

5.2.1 General workings of distributed ML training algorithms

ML training algorithms identify correlations between input data (training samples) and
expected output data (labels) and gradually adjust the parameters of an ML model in
an iterative fashion to reflect these correlations ever more closely, i.e., during the train-
ing process, an ML model iteratively converges towards a state where it can predict the

2Ignoring scaling overheads.
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correct outputs for a given input data set with increasing accuracy. While the details
of this training process vary across concrete training algorithms, the general iterative-
convergent pattern remains the same.

Next, this training process is formalized: A randomly initialized model m is iteratively
refined during the training process on a training dataset D such that m converges to-
wards a state that minimizes (or maximizes) an objective function (e.g. mean square
error (MSE)). Here D contains a plurality of training samples and label pairs, e.g., an
image of a cat and the label “cat”, which represent the ground truth.

During each iteration i, an updated model m(i) is computed on a randomly chosen
subset bD ⊆ D:

m(i) =m(i−1) + f∆(m
(i−1), bD) (5.1)

The update function f∆ is computed in a data parallel manner across K nodes by split-
ting up bD into K disjoint partitions bDk ⊆ bD:

f∆(m
(i−1), bD) =

K
∑

k=1

� |bDk|
|bD|
× f∆,k(m

(i−1), bDk)
�

(5.2)

Each f∆,k is weighted by the fraction |
bDk|
|bD| of the training samples it processed in iteration i

to account for imbalances in the size |bDk| of each partition bDk. In case all partitions have
the same size, this degrades to 1

K .
The computation of f∆ is auto-correcting in face of bounded errors, an important prop-

erty discussed further in Section 5.2.2.
The general structure of the algorithms that are considered here is depicted in Fig-

ure 5.2: During each iteration i, K tasks each process H × L training samples based on
the model of the previous iteration m(i−1) to compute f∆,k, whereas H sets of L indepen-
dent samples are processed sequentially by each task. L samples are processed in parallel
to take advantage of local hardware-parallelism. After each set of L samples have been
processed, a local model update is performed, such that learning on subsequent samples
within the same iteration can exploit knowledge gained from previous samples of the
same iteration and task. Afterwards, all tasks combine their results (Equation 5.2) to
update a global model (Equation 5.1), which forms the basis of the next iteration. Values
for L and H depend on the specific algorithm and configuration.
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Figure 5.2: General structure of distributed ML training algorithms considered in this chap-
ter.

5.2.2 Important properties of distributed ML training algorithms

The distributed ML training algorithms considered here have five important properties
that can be exploited by ML training frameworks to optimize the training process. These
properties are:

(1) The model is trained in an iterative fashion, i.e., the update function f∆ is com-
puted repeatedly, generally on the same number of training samples in each iter-
ation. This property is exploited for load balancing (Section 5.5) and elasticity
(Section 5.6).

(2) The model gradually converges towards an optimum. For generalized linear mod-
els (GLMs) this optimum is always global, while no such guarantee can be made
for neural networks (NNs). Here, the algorithm may converge towards a local opti-
mum. The convergence rate generally changes during the training process, starting
at a high rate and approaching zero towards the end. This property is exploited
for auto-scale-in (Section 5.9.1).

(3) The computation of f∆ is auto-correcting, i.e., it can tolerate bounded errors,
should they occur, and correct them in subsequent iterations. This property is ex-
ploited for straggler mitigation (Section 5.7).

(4) The training process itself is stochastic, i.e., training samples can be processed in
any order and a random sample selection typically increases the convergence rate.
This property is a exploited for load balancing (Section 5.5), elasticity (Section 5.6)
and straggler mitigation (Section 5.7).

(5) The computation of f∆ by each task is interruptible at any time, i.e., before all
training samples of the current iteration have been processed. After an interrup-
tion, f∆ represents a valid update for the so-far processed training samples. This
property is exploited for straggler mitigation (Section 5.7).
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These properties are exploited by many distributed ML training frameworks to vary-
ing degrees and can be used for many different purposes, such as automatic hyper-
parameter3 tuning. Here, however, the focus is on how these properties can be exploited
to improve scheduling, which will be elaborated on in the next section.

Beyond these five properties, there is one additional important aspect to consider when
devising scheduling techniques for distributed ML algorithms, namely that their conver-
gence rate per training sample and the ability of the resulting model to generalize
to previously unseen data degrades with an increasing level of data parallelism, as
already indicated in Section 5.1. Generalization refers to the ability of a model to make
predictions for previously unseen data. While no formal explanation for this correlation
can be given here, intuitively, it exists because of the stochastic nature of ML training
algorithms where the ideal is to update the model after each sample. The more samples
are processed independently (in parallel), the further the algorithm diverges from this
ideal and the more contradictory the updates from each sample can become.

Two recent works examine this correlation in more detail for the widely-used mSGD
algorithm: Keskar et al. [71] focus on the issue of the ability of a model to generalize
from the training data to data encountered during the usage of the model. Shallue et
al. [124] extensively study this aspect w.r.t. the convergence rate per processed training
sample.

5.3 The uni-tasks execution model

This section introduces uni-tasks, a novel execution model that enables efficient, elastic
and load balanced execution of iterative-convergent distributed ML training algorithms
in shared heterogeneous environments.

micro-tasks uni-tasks

micro-tasks
with single
data chunk

nodes

uni-task
with many
data chunks

nodes

Figure 5.3: Conceptual difference between micro-tasks (left) and uni-tasks (right). Tasks
are represented as blue, and data chunks as green boxes.

Figure 5.3 depicts conceptual differences between uni-tasks and micro-tasks which are
explained in the following. In uni-tasks, only a single execution context (henceforth
referred to as “task”) is executed per node. A task can use multiple threads to exploit
hardware-level parallelism. The schedulable unit of work is a data chunk. A data chunk

3The term hyper-parameter refers to a configuration parameter of an ML training algorithms.
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contains a set of data items (training samples) that can be processed independently by
the application-specific algorithm that is executed by the task. One or more data chunks
can be assigned to each task. Each task has full, random access to all data items across
all data chunks that were assigned to it.

While scheduling data chunks may appear similar to scheduling tasks and having a
single task per node may appear similar to how distributed memory parallel program-
ming concepts are used (e.g., for Message Passing Interface (MPI) applications), there
are important differences to both.

� When scheduling tasks to balance load and to scale elastically, the number of tasks
determines the scheduling granularity and therefore needs to be a multiple of the
number of nodes. As explained previously, a large number of tasks has detrimental
effects on the convergence behavior of distributed ML training algorithms. In uni-
tasks, the number data chunks, not tasks, determines the scheduling granularity
and therefore needs to be a multiple of the number of nodes. As only a single task
per node is used, which has full, random access to all data chunks on the node,
the number of nodes, not the much larger number of data chunks, constitutes a
lower bound for the level of data parallelism of the application. In consequence,
the latter is a multiple smaller in uni-tasks than in micro-tasks. Systems that fall in
this category are Spark [18] and Litz [114].

� In other distributed memory parallel programming concepts that use a single task
per node (e.g., as many MPI applications), the level of data parallelism can be
as low as with uni-tasks. In contrast to uni-tasks, however, no load balancing or
elastic execution is defined by the concept. Systems that fall in this category are
Snap ML [103], TensorFlow [62] and PyTorch [85]

Uni-tasks combines the scheduling flexibility of micro-tasks with the low lower bound
for the level of data parallelism of MPI applications.

5.3.1 Assumptions

Uni-tasks is based on the following assumptions:

� An increased level of data-parallelism impairs convergence rate or maximal test
accuracy. This justifies the uni-tasks approach.

� Training algorithms are iterative. This is required as uni-tasks implementation is
expected to move data chunks only in-between iterations.

� Training samples can be processed independently, in any order and combination.
Furthermore, the number of training samples can vary across tasks without impair-
ing maximal test accuracy and convergence rate. This ensures that data chunks can
freely moved across tasks.
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� Task runtime increases with the number of training samples processed during an
iteration. This ensures that load can be balanced by adjusting the number of data
chunks on each task.

� The level of data parallelism can be changed during training without impairing
maximal test accuracy and convergence rate. This allows the system to add and
remove tasks during training.

� Local solver algorithms do not access training data in-between iterations and do
not retain state that depends on individual training samples and is not kept in data
chunks. This ensures that data chunks can be moved between tasks in-between
iterations.

� Local solver algorithms can be interrupted frequently during each iteration. At
each interruption point, a valid result (model update) is available. This is used to
mitigate stragglers via task preemption. The more often a task can be interrupted,
the smaller the runtime variations across all tasks can be.

5.3.2 Task contract

In order to provide simple rules to application developers, uni-tasks establishes a simple
two-clause task contract between the scheduler (system) and the application (task):

(1) During an iteration, a task has full, random access to all training samples across
all data chunks that the scheduler assigned to it. The scheduler may not add or
remove any data chunks.

(2) In-between iterations, i.e., when tasks synchronize with each other, the scheduler
may add or remove data chunks to and from tasks. Tasks cannot access training
samples during this period. The scheduler notifies the task about any changes in
their data chunk assignment.

This contract ensures that training algorithms executed by tasks can treat all train-
ing samples from all data chunks as if they came from a single set while allowing the
scheduler to shift load between tasks frequently and at well-defined points in time.

5.3.3 Scheduling in uni-tasks

As there is only a single task per node in uni-tasks, task scheduling cannot be used to
shift load between nodes. Instead, the scheduler assigns one or more data chunks to each
task. A data chunk is a fixed-sized container for training (input) data, and for state that
depends on training data samples. The number and size of data chunks determines the
scheduling granularity and should therefore be at least an order of magnitude larger than
the expected number of nodes used during training. Similar recommendations for the
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number of tasks exist for micro-tasks [118, 37, 36]. In contrast to micro-tasks, however,
a large number of small data chunks does not incur significant runtime overheads (see
Section 5.3.4 for details) nor does it impair convergence.

The benefits of uni-tasks over the micro-task concept can only be realized if all three
scheduling challenges (as laid out in Section 2.2.4) are addressed. Sections 5.5 through
5.7 detail and evaluate the concepts and implementations used to address these chal-
lenges.

5.3.4 Uni-tasks overheads

In contrast to micro-tasks, the number and size of data chunks does not correlate to sys-
tem runtime overheads. This is due to the way data chunks can be handled by tasks: Each
task has full random access to all data chunks in its memory space. A data chunk appears
as a fixed sized, contiguous memory region that contains a dense or sparse training sam-
ple matrix, hence the localization and access of a training sample in a task’s memory
only requires the de-referencing of the data chunk’s base pointer and an access into the
contained matrix.

Data chunks can incur memory overheads as they can only store complete training
samples. If the combined size of all training samples stored in a data chunk does not
match the capacity of the data chunk, allocated, but unused space remains. In case
where the number of training samples N is in the tens or hundreds, this overhead is
generally very small, in the order of 1/N . If, however, only few training samples fit in a
data chunk, it can become significant. In that case, increasing the data chunk size may
alleviate this issue.

5.4 Chicle design and Implementation

This section introduces Chicle4, a distributed, elastic ML training framework. In contrast
to other frameworks, such as TensorFlow [62], PyTorch [85] and Snap ML [103], Chicle
combines the ability to elastically scale execution, balance load and mitigate stragglers
in homogeneous as well as heterogeneous environments without compromising conver-
gence behavior that micro-task-based systems [114] suffer from.

The main objective of Chicle is to demonstrate the viability and benefits of the uni-tasks
concept in elastic, heterogeneous scenarios while also demonstrating that uni-tasks does
not result in significant drawbacks for applications in rigid, homogeneous scenarios. The
purpose of Chicle is therefore to serve as a proof of concept for uni-tasks, rather than a
production-ready distributed ML training framework. For this reason the implementation
of advanced optimization methods, such as online hyper-parameter tuning [86, 102],
that can be found in major ML training frameworks, have been omitted.

4Chicle is the Mexican-Spanish word for latex from the sapodilla tree that is used as basis for chewing
gum and a reference to Chicle’s ability to elastically stretch (scale) computation.
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Furthermore, the decision to implement Chicle from scratch, instead of adapting an ex-
isting framework to uni-tasks, was made due to the expected complications when modify-
ing a central concept (such as the execution model) of a highly optimized (and therefore
presumably less adaptable) existing ML training framework. In fact, initially, Spark was
investigated w.r.t. the possibility of implementing uni-tasks. However, serious limitations
were identified, with the low data (de-)serialization performance being the most severe
one. As chunks may be moved across nodes frequently, the overhead for doing so needs
to be low. It was concluded that this is not possible within the Spark framework, and
that an implementation from scratch is warranted.

5.4.1 Assumptions

This section complements the concept-specific assumptions in Section 5.3.1 with Chicle-
specific ones.

� Data chunks are stored in memory in a way that does not require serialization (but
may require deserialization) before being transferred between tasks. This enables
transfer via RDMA read operations without prior notification of the remote task.
If this assumption does not hold, overhead for data chunk movement during load
balancing and elastic scaling actions increases.

� Node performance changes slowly (excluding stragglers), over the course of at
least tens of iterations. This ensures that the load balancing algorithm can learn
task runtimes to balance load.

5.4.2 Overview

The high level architecture of Chicle is depicted in Figure 5.4. Chicle is implemented as
a synchronous driver/worker design with a central driver and multiple workers. Com-
munication uses an RDMA-based RPC framework. Chicle is implemented in ≈7k lines of
C++ code.

Both, driver and workers, consist of multiple modules which are tied together by a
local event bus for communication and synchronization. The driver executes the trainer
module, which, in tandem with multiple policy modules, is responsible for the coordina-
tion of the training process. Scheduling-related algorithms, e.g., load balancing and task
preemption, are implemented as policies. Applications can also make use of the policy
framework to implement custom non-scheduling related optimizations (see Section 5.9).

Worker execute solver modules, where application-specific algorithms, such as SGD
or stochastic coordinate descent (SCD), are implemented (examples of solver modules
can be found in Section A.3.1). As per uni-tasks, only a single (multi-threaded) worker
(task) is executed per node. Solvers are controlled by the trainer and policy modules in
the driver (examples of trainer modules can be found in Section A.3.1). Solvers report
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Figure 5.4: High-level architecture of Chicle with driver and worker components, as well as
their respective trainer, policy, event bus (EB), communication subsystem (CSS)
and solver modules. The resource manager (RM) is connected to the driver via
a RM interface (RMI).

metrics to the driver, such as runtimes, number of processed samples, etc., to them which
are used to make scheduling decisions. Furthermore, solvers periodically (typically at the
end of each iteration) synchronize model updates with each other via the trainer.

Chicle applications consist of, and need to implement, a trainer and solver module as
well as optionally, application-specific policy modules. Applications can also make use
of policy modules that Chicle provides natively. Two examples of Chicle applications are
presented in Section A.3.1.

In the remainder of this section, each system module as well as the communication
subsystem and data chunk format of Chicle is described. Application-specific trainer and
solver modules are described in Section A.3.1.
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5.4.3 Communication facilities

This section describes the implementation of the event relay and communication facilities
of Chicle. While important for building a functional system, their specific implementation
is independent of the uni-tasks concept.

5.4.3.1 Event Bus (EB)

A means to relay events between various system modules is a basic necessity for any
complex (distributed) system. Chicle implements a simple asynchronous event bus based
on the Boost Signals2 library [119] that serves as central hub for global and local events
to meet this necessity. It allows modules to subscribe to specific event types and emit
events. Important event types (e.g., start iteration, iteration finished) as well as their
senders and receivers are listed in Table A.20 and Figure 5.4 additionally shows the global
communication paths in Chicle.

5.4.3.2 Communication Subsystem (CSS)

The efficiency of its communication subsystem substantially contributes to the perfor-
mance of a distributed system. For distributed ML training, that requires frequent syn-
chronization between multiple distributed tasks and communication of large amounts
of data, it is vital. For instance, for the KDDA dataset (see Table A.18), K × 154MiB of
model update data ( f∆) have to be communicated per iteration between workers and the
trainer and vice versa.

Therefore, a communication subsystem based on remote direct memory access
(RDMA) has been implemented to enable zero-copy data transfers with minimal CPU
overhead. RDMA-based communication is also available in other distributed ML training
frameworks, such as TensorFlow [62], Snap ML [103] and PyTorch [85].

Chicle’s communication subsystem is based on the OFED Verbs API as this allows for
the greatest implementation flexibility and performance. Basic communication primi-
tives, such as one-to-one, one-to-many and many-to-one communication patterns have
been implemented, the latter two via wrappers based on one-to-one primitives. More-
over, Chicle uses one-sided RDMA read primitives for bulk data transfer (model updates,
data chunks) to avoid unnecessary memory copies. Remote procedure calls (RPCs), to
relay events from the event bus across nodes are transmitted using two-sided RDMA
send and receive primitives. For each peer, an instance of a communication endpoint is
constructed.

An overview of the most important methods provided by Chicle’s communication sub-
system is given in Table A.21.
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5.4.4 In-memory data chunk format

Chicle provides the Chunk class to store and transmit mutable data across nodes in fixed-
sized contiguous memory chunks. Applications can utilize the Chunk class to store and
transmit training data as well as state that corresponds to training samples. Applications
have to derive a specialized class from the provided generic Chunk class. Each derived
chunk class needs to implement the methods listed in Table 5.1 but can add additional
methods, e.g., to access individual training samples, as needed.

Method Description

int idx() Returns the global index of this data chunk.

int worker_id() Returns the id of the worker this chunk currently resides on.
This is mostly used by the trainer which retains empty chunks
(i.e., without allocating any memory for training samples)
locally, to keep track of their location.

struct ibv_mr* mr() Returns an IB Verbs memory region data structure that con-
tains necessary information for remote one-sided access to
this chunk.

char* data() Returns a pointer to the raw data that is backing this data
chunk.

size_t size() Returns the size of the memory that backs this data chunk.

void restore() Restores (de-serializes) this data chunk after is has been read
from a remote node.

int num_samples() Returns the number of training samples contained in this
data chunk.

Table 5.1: API of the generic Chunk class.

The uni-tasks concept assumes that data chunks can be moved and processed indepen-
dently of each other, i.e., training samples must not span multiple data chunks. Further-
more, Chicle’s communication subsystem requires that data chunks can be transferred
using one-sided RDMA read primitives and must be transferable without serialization,
as the source task is not notified of the transfer ahead of time. This also limits the data
structures that can be stored inside a chunk object to ones that do not rely on the va-
lidity of pointers after a transfer (i.e., if pointers are used, they need to be restorable by
the receiving task). Fortunately, most training data is stored in form of dense or sparse
vectors, matrices or simply byte arrays, which are not affected by these restrictions.

De-serialization steps (via the restore method) are allowed (e.g. to restore pointers),
as long as they do not modify the data in a way that would require serialization for further
transfers. Chicle assumes that the in-memory layout of Chunk objects is identical on all
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nodes, which prohibits the use of mixed-endianess clusters as well as (to some degree)
different compilers or compiler versions5. Examples of application-specific chunk classes
can be found in Section A.3.1.1 and Section A.3.1.2.

5.4.5 System policies

System policy modules are a vital part of Chicle. All scheduling functionality is imple-
mented as system policies. Additionally, various support functions, such as the configu-
ration of communication paths, are implemented as policy modules.

Policy modules are executed in separate threads on the driver and multiple policy mod-
ules can be executed at the same time. They can coordinate with each other, the trainer
and solver via the event and communication subsystem of Chicle. Furthermore, they
need to coordinate with the trainer as data chunk reassignment actions that can be ini-
tiated by policies must be completed before the next iteration starts. Table 5.2 lists all
implemented system policies.

Policy Description

Rebalance This policy balances workload in heterogeneous clusters
by shifting data chunks from slow nodes to fast nodes.
See Section 5.5.1 for details.

Elasticity This policy redistributes chunks upon addition or removal
of nodes. See Section 5.6.1 for details.

Preemption This policy is responsible for straggler mitigation and pre-
empts straggling tasks. See Section 5.7.1 for details.

Initial chunk assignment This policy randomly assigns data chunks to workers af-
ter they are added such that the work load (number of
chunks) is balanced.

Statistics This policy module collects and reports metrics during
each iteration necessary to evaluate Chicle.

Table 5.2: System policies of Chicle. The first three policies implement scheduling functions
while the rest implements support functionality.

In addition to the system policies, additional application-specific policies have been
implemented. They are presented and evaluated in Section 5.9.

5The in-memory layout of data structures is not fully defined by the C/C++ ISO standard and may differ
across compilers or compiler versions.
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5.5 Load balancing

Load balancing ensures that the load on each node corresponds to the performance of
said node. Faster nodes can perform more work than slower nodes in the same amount
of time.

Load balancing in uni-tasks works by shifting data chunks from workers (henceforth
referred to as tasks) on slower nodes to tasks on faster nodes, until the relative number
of data chunks on each node corresponds to their relative performance to each other and
task runtimes per iteration align.

The task runtime per iteration does not only depend on the number of data chunks
assigned to it but on the number of training samples processed. Therefore, in addition
to shifting data chunks, tasks also need to know how many training samples they are
supposed to process in each iteration, e.g. one sample per data chunk. Uni-tasks does
not prescribe a specific policy but assumes a positive correlation between the number of
training samples per task and the number of training samples processed by that task per
iteration.

As result of the task contract (Section 5.3.2), the system is not allowed to add or remove
data chunks to and from tasks once an iteration has started. This prevents the scheduler
from reactively balancing load as a micro-task system could do. Instead, the scheduler
has to pro-actively balance load before an iteration starts. Uni-tasks exploits the iterative
nature of ML training algorithms. In each iteration, the same function is executed on
the same (amount) of data on each task. Assuming a constant or only slowly (over tens
of iterations) changing node performance, task runtimes are relatively constant. This
enables the scheduler to predict task runtimes and to correlate them with the workload
(number of data chunks or training samples) of each task. Based on this information,
the scheduler can estimate task runtimes for the next iteration as well as the impact of
adding or removing a chunk from a task. Chunks can be gradually shifted from tasks
on slow nodes to those on fast nodes, until task runtimes are balanced across all nodes.
Figure 5.5 shows an example of this gradual process to balance runtimes of tasks on
differently fast nodes.

This approach can balance load when node performance is static, e.g., caused by dif-
ferent generations of hardware, as well as when node performance changes infrequently
or slowly, e.g., due to long-running background applications in shared clusters. It can-
not mitigate the impact of stragglers, as those affect the perceived node performance
intermittently and unpredictably.
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Figure 5.5: Conceptual depiction of the workload rebalancing process using hardware-
heterogeneity-aware load-balancing with uni-tasks. This simplified depiction
assumes zero data transfer times.

The basic idea is similar to HCL’s initial approach to use task runtime predictions to bal-
ance load in heterogeneous clusters, without the use of many small tasks (Chapter 3). An
important difference is, however, that HCL cannot make any assumptions about the iter-
ativeness of an application, whereas systems based on uni-tasks can rely on this property
of ML training algorithms. This significantly simplifies reliable task runtime predictions.

5.5.1 Load-balancing in Chicle: Rebalance policy

The rebalance policy implements the hardware-heterogeneity-aware load-balancing
strategy described above. It uses task runtime predictions to estimate future runtimes
and moves chunks based on those predictions across K nodes. Therefore, task tk on node
nk with 0≤ k < K , reports the runtime τ′k of the last iteration of task tk. Furthermore, it
reports the fraction of planned samples it processed (σk) during the last iteration. This
information is necessary, as a task may have been preempted, in which case τ′k refers to
fewer samples than planned. This needs to be considered when predicting task runtimes.
Using the aforementioned information, it computes the normalized task runtime during
the last iteration τk.

τk =
τ′k
σk

(5.3)

As task runtimes are not steady but vary slightly in-between iterations, a moving me-
dian τk over all τk of the last I iterations6 is computed. τk represents the fundamental
task runtime.

All tasks are then sorted in ascending order of τk. Let t f and ts be the fastest and
slowest tasks respectively. Further, let c be a randomly selected chunk of ts with |c|
training samples. Let |t f | and |ts| be the total number of training samples on tasks t f and

6The moving median is computed across I iterations only if I iterations have already passed and fewer
otherwise.
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ts before the chunk rebalancing. Then,∆τ f and∆τs is the predicted runtime change for
either task, after chunk c is moved from ts to t f .

∆τ f =
|c|
|t f |
×τ f (5.4)

∆τs = −
|c|
|ts|
×τs (5.5)

Using this information, the rebalance policy decides whether the iteration runtime
can be reduced by moving chunk c, i.e., whether the runtime of the fastest task t f is not
increased beyond that of the slowest task ts. In order to prevent cyclic chunk movements,
an additional damping factor α is used. Chunk c is moved, iff Equation 5.6 is true.

τ f +∆τ f ×α < τs (5.6)

Once a chunk has been moved, τ f and τs are adjusted by∆τ f and∆τs and the process
is repeated, until Equation 5.6 is not true anymore or until a maximum of rmax chunks
have been moved. rmax has been introduced to avoid over-correction due to misprediction
of task runtimes. Listing 5.1 shows the corresponding code of the rebalance function.

Smaller values for α and I , as well as larger values for rmax allow this policy to balance
load quicker, but come at the cost of potentially less stable (and thus more frequent)
chunk (re-)assignments. Table 5.3 lists all parameters of the rebalance policy.

Parameter Description

α Damping (safety) factor that ensures that data chunks are only
moved if the runtime gain is significant, e.g. for α = 1.1, the run-
time gain has to be more than 10% of the estimated runtime of a
data chunk.

rmax The maximal fraction of data chunks to be moved in each iteration.

I The size of the sliding window to compute the moving average τk

over.
Table 5.3: Parameters of the rebalance policy parameters used here.
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1 void rebalance() {

2 // ’numChunks’ is the total number of chunks in the dataset.

3 for (int moved = 0; moved < rmax * numChunks; moved++) {

4 // ’workers’ is a list with all currently active workers. Sort this list in ascending

5 // order of their median runtime τk.

6 sort(workers);

7

8 Worker* fastest = workers.first; // worker with the shortest median task runtime

9 Worker* slowest = workers.last; // worker with the longest median task runtime

10

11 // Determine runtime for a chunk that is to be moved from the ’slowest’ to the

12 // ’fastest’ worker.

13 Chunk* chunk = slowest->chunks.first;

14

15 float fastestChunkRuntime = chunk->numSamples / fastest->numTotalSamples *

16 fastest->medianTaskRuntime;

17 float slowestChunkRuntime = chunk->numSamples / slowest->numTotalSamples *

18 slowest->medianTaskRuntime;

19

20 // Make sure the ’fastest’ task does not become slower than the currently ’slowest’

21 // task, if the chunk would be moved. Otherwise, moving the chunk does not reduce

22 // iteration runtime.

23 if (!(fastest->medianTaskRuntime + (fastestChunkRuntime * α) <

24 slowest->medianTaskRuntime))

25 break;

26

27 // Move ’chunk’ from ’slowest’ to ’fastest’ worker. Chunk data movement is performed

28 // in the background, hence this call is non-blocking.

29 moveChunk(chunk, slowest, fastest);

30

31 // Adjust task runtime predictions based on the predicted task runtime change

32 fastest->adjustRuntime(fastestChunkRuntime);

33 slowest->adjustRuntime(-slowestChunkRuntime);

34 }

35

36 // wait for all chunk data movements to complete

37 }

Listing 5.1: Simplified C++ code of the rebalance policy’s chunk moving algorithm.
Additional functions are described in Section A.3.4.3

5.5.2 Evaluation

This section presents evaluation results of the load-balancing experiments performed on
Chicle to compare uni-tasks with micro-tasks with 16, 32, 48 and 64 tasks (the number of
tasks is henceforth noted in parentheses). The evaluation method and metrics described
here are also used for evaluations of elasticity (Section 5.6) and straggler mitigation
(Section 5.7). ML-specific terms used through the evaluation are defined in Table 2.6.
Two distributed ML training algorithms have implemented on Chicle:
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� Communication-efficient distributed dual Coordinate Ascent (CoCoA) [46, 115]
for the training of generalized linear models (GLMs).

� Local SGD (lSGD) [109], a recent variant of Mini-batch SGD (mSGD), for the train-
ing of neural networks (NNs), deep neural networks (DNNs), convolutional neural
networks (CNNs) and others.

Both algorithms and their implementations are described in Section A.3.1.
Each CoCoA experiment was repeated five times and each lSGD experiment was re-

peated ten times. lSGD experiments are executed more often because their generally
shorter task runtimes exhibit higher relative variance than those of CoCoA. Due to the
large number of tests (315 individual training runs for this section), a test time limit of
360 seconds7 has been set, after which training is terminated.

No direct comparison between uni-tasks and another load-balancing ML training
framework can be presented here, as no competitive framework with this ability is pub-
licly available. Spark, even though it is based on a micro-task concept and allows elastic
and load balanced execution, was not considered here. Its performance for CoCoA is up
to one order of magnitude lower than that of Snap ML [80], to which Chicle is compared
later. A set of baseline tests of the reference implementation of CoCoA on Spark confirm
these findings (Section A.3.2.3). Spark requires between 6.8× and 23.0× more time per
epoch than Chicle (see for details). Spark’s performance for other ML training algorithms
falls also short [62, 77]. This does not allow a fair comparison between uni-tasks and
micro-tasks.

All experiments use the test setup and datasets described in Section A.3.3.

5.5.2.1 Evaluation metrics

The following metrics and training target values are used throughout the evaluation:

� CoCoA solves a convex optimization problem with one exact solution. Training
progress is measured by the duality-gap. The duality-gap is a metric for the dis-
tance of the current solution to the exact solution and represents “an accuracy
certificate and stopping criterion” [115] and also used in the original CoCoA pub-
lications [46, 115]. The smallest duality-gap, rounded to the next larger 10−i, that
is reached by the micro-tasks (16) case within the test time limit is used as training
target.

� LSGD solves a non-convex optimization problem, hence no metric such as the
duality-gap exists. Instead, the test accuracy, i.e., the fraction of correct predic-
tions on a test dataset, is used as metric to measure training progress. The highest
test accuracy, rounded to the nearest 1

100 , that is reached by all runs is selected as
target.

7This time limit does not include the time needed to load the training data from the file system.
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To measure the amount of work and time necessary for training, the following metrics
are used:

� Number of epochs to converge (lower is better), which correspond to the total
amount of work necessary to converge. One epoch represents one pass over all
training samples. For micro-tasks, this metric only depends on the global batch
size (lSGD) and number of equally sized partitions (CoCoA), not on the location
or performance of nodes on which tasks are executed. Chicle is used to emulate a
micro-tasks system by using a fixed batch size/partitioning and task count.

� Projected schedule length (lower is better). Schedule lengths are projected as
due to the lack of publicly available, competitive micro-task (or otherwise load-
balancing) ML training frameworks, no wall time comparison measurements can
be produced here. The projection is based on an idealized iteration duration (in
units of time) and the number of iterations needed to converge.

� Iteration duration (lower is better). For uni-tasks, the length of iterations is mea-
sured on the test cluster with four slowed down nodes. Iteration durations are
measured for uni-tasks with and without the rebalance policy as well as in the
baseline case without any slowed down nodes. For the above mentioned reasons,
no comparable measurements for micro-tasks could be produced.

Wall time measurements for CoCoA include the computation of the duality-gap, as it is
computed in distributed fashion, similar to how a real (production) system would do it.
Wall time measurements for lSGD do not include the computation of the test accuracy,
as the latter is performed on the trainer instead of distributed on workers, which does
not resemble a real system. For this reason, it is not included in the time measurements.
This also applies to subsequent evaluations. Duality-gap and test accuracy computation
does not impact convergence per epoch.

For each dataset, the number of epochs/schedule length to reach the training target
is used to compare performance of uni-tasks and micro-tasks. Training target values are
noted in parentheses with the results.

5.5.2.2 Parameters

Table 5.4 lists the parameters for the rebalance policy used throughout this evaluation.
Tables 5.5 and 5.6 list the parameters used for CoCoA and lSGD training algorithms.

Parameter Value Description

α 2 Damping (safety) factor. The selected value is high
enough to filter out task runtime jitter and prevent
cyclic chunk movements.



152 5 Tackling scheduling challenges for distributed machine learning

rmax 0.5/0.05 Maximal fraction of chunks to move in one itera-
tion. The first value is for CoCoA, the second for
lSGD. The latter value is smaller, as iterations in
lSGD are much shorter than in CoCoA and there-
fore more sensitive to background noise.

I 10 Size of the sliding window to compute the median
task runtime. The selected value is high enough to
filter out task runtime jitter and to prevent cyclic
chunk movements.

Table 5.4: Used rebalance policy configuration parameters.

Parameter Value Description

H variable H is the number of independent training sample sets
to be processed by each task during an iteration (see
Figure A.7). It is set to a value that corresponds to
all training samples that reside on a node. A smaller
value of H results in a higher convergence rate per
epoch but requires more iterations (rounds of com-
munication) to converge. The optimal number of H
depends on the system (compute vs. communication
speed), dataset (number of features vs. number of
samples) as well as the training stage (similar to Sec-
tion 5.9.1). The used setting has been chosen for sim-
plicity reasons and works for all datasets.

λ 0.01 Regularization parameter (similar to the learning rate
in mSGD/lSGD). If λ is chosen too small (big), the
model can over-fit (under-fit). A smaller value for λ
also leads to a slower convergence of the duality-gap
per epoch. The optimal value is dataset dependent.
A single value has been chosen for simplicity reasons
and works for all datasets.

chunk size 2MiB Chicle chunk size. This value has been chosen as it
provides a sufficiently fine scheduling granularity.

Table 5.5: Parameters for CoCoA and the SCD solver used in this evaluation.
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Parameter Value Description

L 8 L is the number of independent training samples per
task and iteration (see Figure 5.2 for details).

H 16 H is the average number of independent training
samples sets that are processed sequentially by each
task per iteration.

Global batch size K × L×H Global batch size for K tasks.

Learning rate 0.002 Learning rate, normalized for a batch size of 128. In
line with best practice [124, 81], the learning rate is
scaled by ×

p
n when changing the batch size by ×n.

Momentum 0.9 Stochastic Gradient Descent (SGD) momentum pa-
rameter.

Chunk size 256KiB Chicle chunk size.

Table 5.6: Parameters for lSGD used in this evaluation.

For lSGD, a limited set (≈2 – 8) of values for each parameter have been tested in a
homogeneous scenario on 16 nodes using 16 tasks. The selected values have provided the
best performance in terms of number of epochs to converge and maximal test accuracy.
As no comprehensive parameter sweep has been performed, no claim of optimality w.r.t.
the selected parameters is made.

5.5.2.3 Experiments

Two types of load-balancing experiments are performed:

(1) Assumed node performance to project schedule length: The rebalance policy is
configured not to measure task runtimes on each node to determine relative node
performance, but to assume a configured relative node performance. This is done
to allow the projection of schedules for uni-tasks and micro-tasks and compute
their total length in order to estimate time differences. As no other (micro-task
based) load-balancing distributed ML framework exists, time differences cannot
be measured directly.

(2) Automatically determine node performance and balance load: The rebalance
policy is configured to measure task runtimes on each node to determine relative
node performance. This is done to show that the rebalance policy can automatically
determine node performance, balance load and reduce iteration duration.
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5.5.2.4 Experiment 1: Assumed node performance to project schedule length

In this experiment, the number of epochs to converge is measured for uni-tasks as well as
for all four micro-task scenarios. For each scenario, schedule lengths (in units of time) are
projected and compared. Furthermore, it shows the impact of uni-tasks and micro-tasks
on the convergence behavior.

(1) Uni-tasks scenario: The rebalance policy uses a predefined (not measured) node
performance profile with eight fast and eight slow nodes. Slow nodes require 1.5×
as long to execute a task than fast nodes. The rebalance policy balances load ac-
cording to this profile, such that fast nodes get≈1.5× as many data chunks as slow
nodes and tasks on fast nodes process ≈1.5× as many training samples per iter-
ation than tasks on slow nodes. The total number of training samples processed
during each iteration remains constant.

(2) Micro-tasks scenarios: Chicle is executed without the rebalance policy enabled
and with 16, 32, 48 and 64 tasks to emulate a micro-tasks-based system. All tasks
process the same number of training samples per iteration. The number of epochs
needed to converge is independent of the quantity and speed of the used nodes.

Epochs to converge. Figure 5.6 shows convergence plots for the CoCoA and lSGD al-
gorithms. Tables 5.7a and 5.7b list the absolute and relative differences of the number
of epochs needed to converge between uni-tasks and micro-tasks. Additionally, Table 5.7
lists the maximal achieved test accuracy for lSGD, which typically peaks or levels off
within the test time limit. For CoCoA, the duality-gap does not level off within the test
time limit, hence no minimal value can be provided.
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Figure 5.6: Convergence of the duality-gap (lower is better) and test accuracy (higher is
better) over epochs in a heterogeneous scenario. This plot shows the impact
of the number of tasks on the convergence behavior of micro-tasks compared to
uni-tasks with the given node performance profile. The number of tasks is given
in parentheses.
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Some plot lines end in Figure 5.6 earlier than others. The reason for this is that the
number of epochs that are possible within the test time limit varies. For instance, uni-
tasks was executed assuming the node performance profile provided above, which does
not correspond to the actual node performance of the test cluster, which slowed down
training and thus allowed for fewer epochs within the test time limit. The length of plot
lines does not allow drawing conclusions about the training time, since the test is not
designed to measure time.

CoCoA. Figures 5.6a through 5.6d show the convergence of the duality-gap for CoCoA.
In particular, it shows that with an increasing number of micro-tasks, the number of
epochs needed to reach a certain duality-gap increases as well. The reason for this is that
due to the smaller partition size and the reduced training context of each task, the ability
to identify correlations locally is reduced. This is visible by the location of the knee (the
region where the convergence plot lines flatten) on the y-axis. For fewer tasks, it occurs
at lower y-axis (duality-gap) values than for more tasks. After this point, the number of
tasks is irrelevant to the convergence rate, as all identify correlation information only via
the global state. For CoCoA, uni-tasks require as many epochs to converge as micro-tasks
(16) and fewer than any other micro-tasks scenario. This is expected, as the number of
data partitions is the same for micro-tasks (16) and lower otherwise. It also shows that
load balancing, as it is done in uni-tasks, does not impair the convergence rate per epoch.
Table 5.7a summarizes the results.

lSGD. The convergence behavior of lSGD on uni-tasks and micro-tasks (16), shown in
Figures 5.6e and 5.6f, are also similar for the two tested datasets. This is expected be-
havior, as both use the same global batch size and only vary in the batch partitioning
across tasks. For uni-tasks and micro-tasks (16), the test accuracy for the CIFAR-10 (Fig-
ure 5.6e) dataset degrades after reaching a maximum. This general behavior is common
for mSGD (which is closely related to lSGD), especially with smaller batch sizes, and
has also been observed in the PyTorch reference framework (see Section 5.8.2). Miti-
gation strategies for this behavior exist, such as reducing the learning rate or increasing
the batch size in response to a falling convergence rate. Both are considered advanced
optimization methods and have not been implemented yet. Moreover, in a production
setting, the training would be terminated after no increase in accuracy with a test data
set is achieved within a certain amount of time, at which time the model state, for which
the highest accuracy was achieved, is used as final training result.
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uni-tasks micro-tasks

Dataset 16 16 32 48 64

CIFAR-10 63.43% 63.90% 63.34% 62.34% 61.48%

Fashion-MNIST 91.28% 91.28% 90.66% 90.20% 89.71%

Table 5.7: Average maximal test accuracy (higher is better) for lSGD on uni-tasks and
micro-tasks. The highest test accuracy for each dataset is underlined.

The maximal test accuracy (higher is better) of uni-tasks and micro-tasks (16) is sim-
ilar (≈0.74% lower) but degrades with an increasing number of tasks (Table 5.7). As
the required test accuracy is use-case dependent, no final verdict on the impact of the
measured differences can be made.

Summary. Table 5.8 summarizes the results. Small differences in the convergence be-
havior and (for lSGD) maximal test accuracy of micro-tasks (16) and uni-tasks can be
observed. These are caused by the difference in data partitioning and the weight as-
signed to each model update during each iteration. The weight of a model update f∆,k

from task k is computed as the ratio |bDk|/|bD| of number of samples |bDk| processed on the
aforementioned task to the total number of samples |bD| processed during an iteration
(see Equation 5.2). This assumes that updates from tasks that process n× as many sam-
ples are n× as accurate as other tasks. This, however, does not consider that due to the
local model updates, that occur on each task in-between global model updates, updates
from tasks that process more samples (and perform more local model updates), are over-
proportionally more accurate than updates of tasks with fewer samples. This is due to
the fact that each local model update improves the basis for training on subsequent sam-
ples. In consequence, the weights assigned to model updates are only an approximation
of their actual weight, which can impact convergence.

Overall, micro-tasks (16) and uni-tasks behave similarly w.r.t. the number of epochs
needed to converge. However, micro-tasks (16) does not allow for any load-balancing,
as the number of tasks executed on each node is already minimal (one task per node),
whereas uni-tasks can balance load with one task per node. Hence, even though a similar
number of epochs are needed to converge in both cases, the micro-task (16) schedule is
gated by tasks on the eight slow nodes.

In order to enable any load-balancing with micro-tasks, at least the next larger sce-
nario with 32 tasks has to be used. This, however already requires up to 2.08× as many
epochs as uni-tasks for CoCoA and 1.56× for lSGD (Table 5.8). The average maximal
test accuracy for the latter is also slightly lower than for uni-tasks. In general, the more
tasks are being used, the more epochs are needed to converge and, in the case of lSGD,
the lower the average maximal test accuracy is. In all but one case (CIFAR-10, compared
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to micro-tasks (16)), uni-tasks converges in fewer epochs than any micro-tasks scenario
and, in the case of lSGD, also achieves the same or higher test accuracies.

uni-tasks micro-tasks (absolute) micro-tasks (relative)

Dataset (target) 16 16 32 48 64 16 32 48 64

Higgs (1e-8) 1394 1474 1724 1864 2007 1.06× 1.24× 1.34× 1.44×

Criteo (1e-8) 54 57 94 100 120 1.06× 1.74× 1.85× 2.22×

KDDA (1e-5) 60 68 125 – – 1.13× 2.08× – –

Webspam (1e-6) 37 46 71 86 – 1.24× 1.92× 2.32× –

(a) CoCoA

uni-tasks micro-tasks (absolute) micro-tasks (relative)

Dataset (target) 16 16 32 48 64 16 32 48 64

CIFAR-10 (61%) 27.3 27.1 41.7 56.5 67.9 0.99× 1.53× 2.07× 2.49×

F.-MNIST (89%) 16.5 17.1 25.8 32.0 38.8 1.04× 1.56× 1.94× 2.35×

(b) lSGD

Table 5.8: Absolute and relative (compared to uni-tasks) number of epochs to converge to
the target duality-gap and test accuracy respectively. “–” indicates that the target
was not reached within the test time limit.

5.5.2.5 Schedule length projection

Given the measured number of epochs needed to converge, one can determine the cor-
responding number of iterations (rounds of global communication) needed to converge.
Using the number of iterations to converge × the duration of each iteration, the length of
the entire schedule and thus the duration (in units of time) for the entire training process
can be projected.

Number of iterations. For CoCoA, one epoch equals one iteration. For lSGD, the num-
ber of iterations per epoch is size of dataset

batch size . The batch size is K × L × H with fixed L = 8
and H = 16 and a variable number of tasks K . Table 5.9 lists the number of iterations
per epoch for lSGD.
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uni-tasks micro-tasks

Dataset 16 16 32 48 64

CIFAR-10 24.4 24.4 12.2 8.1 6.1

Fashion-MNIST 29.3 29.3 14.6 9.8 7.3

Table 5.9: Number of iterations per epoch for lSGD. Dataset sizes are given in Table A.19.

Iteration duration. The duration of each iteration depends on

� Task runtime, which depends on the number of training samples processed by a
task and whether it is being executed on a fast or a slow node.

� Number of back-to-back tasks per node.

All task runtimes are normalized, such that when using 16 micro-tasks, each processing
1/16th of the workload (training samples), one task runs for one time unit on a fast and
1.5 time units on a slow node. This corresponds to the node performance profile used in
the above experiments.

For CoCoA, the projected task runtimes and iteration durations are shown in Table 5.9a.
To balance the workload in uni-tasks such that tasks on fast nodes process 1.5× as much
data as tasks on slow nodes, the former needs to process 1/13.3̄th of the workload and
the latter 1/20th. This results in 16/13.3̄×1= 1.2 time units for uni-tasks on fast nodes
and 16/20 × 1.5 = 1.2 time units on slow nodes. The task schedule of each iteration
is depicted in Figure 5.7a. For micro-tasks, the workload is distributed evenly across all
tasks, hence a normalized task runtime of 16/number of tasks is used. The task schedule
of each iteration is depicted in Figures 5.7b through 5.7e.

For lSGD, the projected task runtimes and iteration durations are shown in Table 5.9b.
The difference to CoCoA is that in lSGD, the number of training samples depends on the
number of tasks, whereas in CoCoA, it is constant. For uni-tasks and micro-tasks (16),
this is the same as for CoCoA. For 32, 48 and 64 micro-tasks, the number of training
samples increases. As result, the task runtime is constant independently of the number
of used micro-tasks but the iteration duration increases, as with more micro-tasks, more
training samples are processed per iteration.
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Task runtimes

# of tasks Fast node Slow node Iteration duration Used for

16 1.000 1.500 1.500 micro-tasks (16)

32 0.500 0.750 1.500 micro-tasks (32)

48 0.333 0.500 1.333 micro-tasks (48)

64 0.250 0.375 1.250 micro-tasks (64)

16 1.200 1.200 1.200 uni-tasks

(a) CoCoA

Task runtimes

# of tasks Fast node Slow node Iteration duration Used for

16 1.0 1.5 1.5 micro-tasks (16)

32 1.0 1.5 3.0 micro-tasks (32)

48 1.0 1.5 4.0 micro-tasks (48)

64 1.0 1.5 5.0 micro-tasks (64)

16 1.2 1.2 1.2 uni-tasks

(b) lSGD

Table 5.10: Assumed task runtimes (in time units) for each micro-tasks and uni-tasks sce-
nario. The schedules that correspond to the iteration durations are depicted in
Figures 5.7 and 5.8.
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Figure 5.7: CoCoA minimal iteration schedules for uni-tasks and each micro-tasks scenario.
Runtimes of tasks correspond to those listed in Table 5.9a.
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Figure 5.8: LSGD minimal iteration schedules for uni-tasks and each micro-tasks scenario.
Notice the different x-axis values compared to Figure 5.7. Runtimes of tasks
correspond to those listed in Table 5.9b.

uni-tasks micro-tasks (absolute) micro-tasks (relative)

Dataset (target) 16 16 32 48 64 16 32 48 64

Higgs (1e-8) 1673 2211 2586 2485 2509 1.32 1.55 1.49 1.50

Criteo (1e-8) 65 86 141 133 150 1.32 2.17 2.05 2.31

KDDA (1e-5) 72 102 188 – – 1.42 2.61 – –

Webspam (1e-6) 44 69 106 115 – 1.57 2.41 2.61 –

(a) CoCoA

uni-tasks micro-tasks (absolute) micro-tasks (relative)

Dataset (target) 16 16 32 48 64 16 32 48 64

CIFAR-10 (61%) 799 992 1526 1831 2071 1.24 1.91 2.29 2.59

F.-MNIST (89%) 580 752 1130 1254 1416 1.30 1.95 2.16 2.44

(b) lSGD

Table 5.11: Projected schedule lengths for CoCoA and lSGD. “–” indicates that the target
was not reached within the test time limit.

Projection. Based on these task runtimes, minimal iteration schedules are computed.
Let e be the number of epochs needed to converge, |e| the number of iterations per epoch8

and τ the iteration duration. The projected schedule length T = e×|e|×τ. For instance,
for micro-tasks(16) and the Fashion-MNIST dataset with lSGD, e = 17.1, |e| = 29.3 and

8|e|= 1.0 in all CoCoA experiments as here, one epoch equals one iteration.
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τ = 1.5, the schedule length T = 17.1 × 29.3 × 1.5 =752 time units. All projected
schedule lengths are listed in Table 5.11. Projections assume zero system (scheduling,
communication, task launch, ...) overheads.

Results show, that the increased scheduling granularity, by using more micro-tasks,
cannot compensate for the increase in the number of epochs needed to converge. In
all micro-task scenarios, 16 tasks result in the shortest schedule lengths, even though no
load-balancing is possible. This shows the ineffectiveness of micro-tasks in balancing load
for both training algorithms. In general, micro-tasks need at least 24% to 57% longer
than uni-tasks under the assumed node performance profile.

5.5.2.6 Experiment 2: Automatically determine node performance and balance
load

This experiment evaluates the rebalance policy’s ability to determine task runtimes and
balance workload accordingly. To that end, uni-tasks with load-balancing is compared
to micro-tasks (16) without load-balancing. Due to the lack of another load-balancing
distributed ML training framework, no other comparisons can be made here. All tests are
executed with the test setup described in Section A.3.3. Four nodes of node class three
(Table A.17) have been slowed down to 1.20GHz to increase the heterogeneity of the
test cluster. As baseline, micro-tasks (16) is also evaluated with no slowed down nodes.

The swimlane diagrams in Figure 5.9 show the task runtimes during each iteration
during the initial load-balancing process on the heterogeneous cluster. For comparison,
task runtimes per iteration are also shown without load balancing enabled. For the case
with load-balancing, the workload on each node during each iteration is provided in
Figure 5.9 (bottom plots) to visualize how Chicle shifts load from slow to fast nodes
and how this affects task runtimes. The x-axis of the workload plot shows the relative
workload and not time. Each iteration of the workload plot corresponds to the same
iteration in the task runtime plot with load balancing. Section 2.5.2.1 provides a detailed
explanation of these figures. Table 5.12 summarizes the most important results of this
experiment.

Results. The execution plots in Figure 5.9 show that task runtimes with load-balancing
start unequal, whereas the workload starts out equal across all nodes (shown by the
equally long bars during the first iteration). Over the course of 2 – 3 (CoCoA) and ≈50
iterations (lSGD, >1000 iterations in total), the rebalance policy learns to predict task
runtimes in correspondence to the workload and balances the workload by shifting data
chunks from slow nodes to fast nodes. As results, task runtimes equalize across all nodes,
which is also reflected in the task runtime standard deviation listed in Table 5.12. The
latter is reduced by 12.28× on average with load-balancing compared to without load-
balancing. For CoCoA (Figures 5.9a through 5.9d), this process requires fewer iterations,
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Figure 5.9: Swimlane diagram of the load balancing process (first 10 iterations for CoCoA
and first 50 iterations for lSGD). CPUs of the top four nodes run at a reduced
frequency. This type of diagram is described in Section 2.5.2.1.



164 5 Tackling scheduling challenges for distributed machine learning

as rmax is set to 0.5 here, whereas for lSGD (Figures 5.9e and 5.9f), with rmax = 0.05, it
takes more time.

However, Figures 5.9c and 5.9d also show that even though task runtimes are equalized
after the workload has been balanced, iteration times do not necessarily decrease. The
corresponding datasets, KDDA and Webspam, have a large number of features (20M and
17M), whereas all other datasets have at most 1M features. The size of the model update
vector depends on the number of features. As a result, this vector is large: 154MiB for
KDDA and 127MiB for Webspam. During each iteration, the model update vector has to
be transmitted from all 16 nodes to the trainer, where it is reduced and broadcast back
to each node before the next iteration can start.

Data transfer for broadcast is started at the same time on all nodes and takes ≈610ms
for KDDA and ≈500ms for Webspam with and without load balancing. Reduce times are
not measured separately by Chicle, however it can be assumed that with load-balancing
enabled, all tasks start data transfer at the same time and reduce times are similar to
broadcast times. Without load-balancing, data transfer is staggered and reduce times
per node are lower than broadcast times. This allows hiding delays in computation of
tasks on slow nodes with data transfer from tasks on fast nodes.

As task runtimes in KDDA are significantly shorter than data transfer times (≈150ms
vs. ≈610ms), slow tasks can be completely hidden, and no benefit from load-balancing
can be achieved. For Webspam, task runtimes are slightly longer than data transfer times
(≈540ms vs. ≈500ms), hence slow tasks cannot be hidden completely and iteration run-
times can be reduced. In order to realize benefits from workload-balancing for datasets
such as KDDA and Webspam, Chicle needs to implement more efficient reduce and broad-
cast operations, e.g., using a tree.

However, for all other datasets, data transfer times are neglectable compared to task
runtimes, due to the smaller number of features and therefore model update vector size.
Here, load-balancing reduces iteration time by 1.56× on average and is even 3.3% faster
than the baseline case, were no nodes have been slowed down. The latter is possible
because even in the baseline case, small performance imbalances exist between nodes.

5.5.2.7 Evaluation summary

In all tested scenarios, uni-tasks reduces the number of epochs necessary to converge with
only minimal impairment of the average maximal test accuracy for CIFAR-10. However,
the only micro-tasks case that achieves a higher maximal test accuracy uses 16 tasks,
which does not allow any load-balancing on the 16 node test cluster. Furthermore, the
schedule projection shows the conflict between schedule efficiency, i.e., the ability to
balance load, and the training efficiency, i.e., the number of epochs needed to converge.
This conflict does not exist in uni-tasks.
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Higgs Criteo

baseline w/o w/ baseline w/o w/

mean iter. time 186ms 349ms 186ms 1834ms 2905ms 1903ms

mean task time 113ms 149ms 132ms 863ms 1120ms 1009ms

task time std. dev. 15ms 69ms 7ms 92ms 453ms 66ms

KDDA Webspam

baseline w/o w/ baseline w/o w/

mean iter. time 1336ms 1362ms 1398ms 1804ms 2245ms 1965ms

mean task time 131ms 173ms 150ms 481ms 621ms 540ms

task time std. dev. 14ms 80ms 4ms 110ms 246ms 10ms

(a) CoCoA

CIFAR-10 Fashion-MNIST

baseline w/o w/ baseline w/o w/

mean iter. time 136ms 181ms 127ms 166ms 207ms 147ms

mean task time 73ms 92ms 81ms 88ms 108ms 98ms

task time std. dev. 17ms 30ms 5ms 24ms 38ms 6ms

(b) lSGD

Table 5.12: Summary of results (mean iteration and task runtime, as well as standard de-
viation of the latter) for the load-balancing experiments. Each dataset was
trained with (w/) and without (w/o) rebalancing and compared to the base-
line, without slowed-down nodes.

5.6 Elasticity

Elastic execution is a special case of load balancing, where node performance changes
from full to none (if a node is removed) and vice versa (if a node is added) and can
therefore be addressed using the same data chunk moving mechanisms as described in
Section 5.5, albeit with a much simpler policy (i.e., without the need for task runtime
predictions).

An example of elastic scale-out is depicted in Figure 5.10. Here, a node is added after
iteration i finishes and parts of the workload (in form of data chunks) of nodes 1 and 2
is moved to the newly added node 3. As per the task contract, data chunks cannot be
moved during an iteration, hence this move occurs in-between iterations i and i+1. Due
to the reduced workload per node, the runtime of iteration i+1 is reduced. This process
is repeated after iteration i + 1 where node 4 is added.
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Figure 5.10: Conceptual depiction of the workload distribution process during elastic scale-
out with uni-tasks. Necessary data transfer times are not shown.

An example of elastic scale-in is depicted in Figure 5.11. Here, node 4 is removed after
iteration i finishes and the total workload of node 4 is spread across the remaining nodes
1–3 in-between iterations i and i + 1. Due to the increased workload on the remaining
nodes, runtime of iteration i + 1 increases. This process is repeated after iteration i + 1
where node 3 is removed. As per the task contract, nodes can only be removed in-between
iterations, hence the resource manager needs to announce the removal of a node ahead
of time.
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Figure 5.11: Conceptual depiction of the workload concentration process during elastic
scale-in with uni-tasks. Necessary data transfer times are not shown.

5.6.1 Load balancing in Chicle: Elasticity policy

The elasticity policy implements the method described above. It provides the ability of
Chicle applications to elastically scale in and out depending on resource availability and
application demands. It subscribes to worker registered and remove worker events which
are emitted by the trainer and the resource manager respectively. However, as Chicle is
currently not integrated into a resource manager such as Mira or YARN, these events are
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generated internally, according to a configurable schedule. This is sufficient to evaluate
the behavior of Chicle applications in elastic scenarios.

Upon receiving a worker registered event, this policy calls the scaleout function that
moves data chunks from existing to newly registered worker(s) in a round robin fashion,
until the number of chunks assigned to them is equal to the average number of chunks
across all workers. Afterwards it emits the worker added event to notify the trainer about
the new worker(s). The code for the scaleout function is shown in Listing 5.2.

1 void scaleout(list<Worker*> workers)

2 {

3 do {

4 // ’workers’ is a list with all currently active workers, including the newly added

5 // ones. Sort this list in ascending order of the number of chunks on each worker.

6 sort(workers);

7

8 Worker* leastLoaded = workers.first; // worker with the fewest data chunks

9 Worker* mostLoaded = workers.last; // worker with the most data chunks

10

11 Chunk* chunk = mostLoaded->chunks.first;

12

13 // Move ’chunk’ from ’mostLoaded’ to ’leastLoaded’ worker. Chunk data movement is

14 // performed in the background, hence this call is non-blocking.

15 move(chunk, mostLoaded, leastLoaded);

16 } while (leastLoaded->chunks.size + 1 < mostLoaded->chunks.size)

17

18 // wait for all chunk data movements to complete and emit worker added event

19 }

Listing 5.2: Simplified C++ code of the elasticity policy’s scale-out algorithm.

Similarly, upon receiving the remove worker event, the scalein function moves all data
chunks from the to-be-removed worker(s) onto the remaining workers in a round robin
fashion. After all chunks have been moved, it emits the worker removed event to notify the
trainer about the removed worker(s), as well as to confirm the removal to the resource
manager. The code for the scalein function is shown in Listing 5.3.
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1 void scalein(list<Worker*> workers, list<Worker*> remove)

2 {

3 // ’workers’ is a list with all currently active workers, excluding the to-be removed

4 // ones. Shuffle the list to avoid concentrating chunks on a few workers in case this

5 // function is called repeatedly.

6 shuffle(workers);

7

8 // ’remove’ is a list with workers that should be removed.

9 while (!remove.empty()) {

10 Worker *removeWorker = remove.first;

11 while(removeWorker.chunks.size > 0) {

12 Chunk* chunk = removeWorker.chunks.first;

13 Worker* remainingWorker = workers.next;

14

15 // Move chunk from a to-be-removed worker to a remaining one. Chunk data movement

16 // is performed in the background, hence this call is non-blocking.

17 move(chunk, removeWorker, remainingWorker);

18 }

19

20 // Remove the worker as no more chunks are left.

21 removeWorker.pop_first;

22 }

23

24 // wait for all chunk data movements to complete and emit worker removed event

25 }

Listing 5.3: Simplified C++ code of the elasticity policy’s scale-in algorithm.

In neither case does this policy consider knowledge about node performance when
shifting data chunks, but relies on the rebalance policy to reestablish task runtime bal-
ance. A possible improvement to this policy is to exploit this information, as far as node
performance is known, to reduce the need for subsequent rebalance actions.

5.6.2 Evaluation

This section presents evaluation results for elastic scaling experiments performed on Chi-
cle to compare uni-tasks with micro-tasks using CoCoA and lSGD (see Section A.3.1 for
details). The purpose of these experiments is to show the advantage of uni-tasks over
micro-tasks in terms of convergence per epoch and time, in scenarios where elastic scal-
ing is necessary or beneficial.

Experiments. Two scenarios with the following node availability profiles have been
evaluated:

� Scaling in from 16 to two nodes by removing two nodes every 20s.
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� Scaling out from two to 16 nodes by adding two nodes every 20s.

In each scenario, the metrics described in Section 5.5.2.1 are collected, i.e., duality-gap
and test accuracy to measure training progress as well as number of epochs to converge.
Iteration durations are computed based on these measurements.

All experiments use the test setup and datasets described in Section A.3.3. For uni-
tasks, Chicle’s elasticity policy has been configured according to the given node availabil-
ity profiles and the number of epochs to converge is measured. Parameters for CoCoA
and lSGD are the same as in Section 5.5.2.2. For micro-tasks, the node availability profile
does not have an impact on the number of epochs needed to converge. Instead, it de-
pends on the number of tasks (and therefore data partitions) used to execute training. As
this is the same as with the load balancing experiments, measurements for the number
of epochs to converge are reused for micro-tasks.

Similarly, to the load balancing experiments, the lack of publicly available competitive
elastic ML training frameworks prevents a direct comparison of uni-tasks with micro-
tasks. Instead, the length of a schedule is projected to estimate time savings of uni-tasks
over micro-tasks. This projection is based on the measured number of epochs to converge
and the node availability profile.

5.6.2.1 Epochs to converge

Figure 5.12 shows convergence plots for CoCoA and lSGD. Tables 5.13 and 5.14 list
the corresponding absolute and relative differences of the number of epochs needed to
converge between uni-tasks and micro-tasks for elastic scale-in and scale-out. Table 5.15
lists the average maximal achieved test accuracy for lSGD.
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Figure 5.12: Convergence of the duality-gap (lower is better) and test accuracy (higher is
better) over epochs in elastic scenarios. This plot shows the impact of data
parallelism on the convergence behavior of micro-tasks compared to uni-tasks
with the given node availability profiles. For micro-tasks, the number of par-
titions is given in parentheses. For uni-tasks, the number of partitions varies
between 2 – 16.
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In the CoCoA convergence plots (Figure 5.12), scale-in events are visible by the sudden
drops of the duality-gap in the coresponding plot line. Scale-out events are only visible in
Figure 5.12c as drops of the duality-gap. As scale-in/out events happen every 20s and the
plots show the number of epochs on the x-axis, these events happen at different points
on the x-axis. Moreover, the distance between scale-out (in) events in the plots changes,
as nodes are added (removed), which reduces (prolongs) the runtime of an epoch. For
lSGD, the effects are less pronounced, scale-in/out events are not visible in the plots.

The expectation for this experiment is that uni-tasks requires at most as many epochs
to converge as micro-tasks (16) but fewer than in any other micro-tasks scenario. This
expectation is based on the observation (see Figure 5.1) that the number of partitions/-
batch size is the main determinator for the convergence rate.

CoCoA. As Figure 5.12 shows, the convergence rate for CoCoA, when scaling in and out,
is much higher than in any micro-tasks scenario. Here, uni-tasks can achieve a reduction
in the number of epochs to converge of between 1.24× – 1.64× for scale-in and 7.12×
– 21.8× for scale-out, compared to the best micro-tasks (16) case. The reason for this is
threefold:

(1) In the scale-in scenario, each local SCD solver instance gains access to additional
training data, which allows it to identify more correlations locally. This is reflected
as small drops of the duality-gap in the scale-in plot, which appear after each scale-
in step. This effect is also exploited in by the auto scale-in policy (Section 5.9.1).

(2) In the scale-out scenario, only few tasks exist in the beginning, each with access to
large amounts of training data. As mentioned earlier, fewer tasks generally allow
for faster convergence per epoch, which is what causes this initial convergence head
start. When the number of tasks increases, the duality-gap has already dropped
significantly.

(3) In both cases, data chunks are recombined differently after a scale-in/out step,
allowing the local SCD solver to identify additional correlations locally.

Micro-tasks, on the other hand, cannot benefit from scale-in nor out in terms of con-
vergence, as the data per task remains the same, no matter where a task is executed.

lSGD. Similar to CoCoA, the lSGD results show that the number of epochs needed to
converge increases with a larger number of micro-tasks while uni-tasks consistently re-
quires the least number of epochs to converge. In the scale-in case, uni-tasks is 1.08×
– 1.15× faster than the best micro-tasks case, and 1.51×– 1.68× faster in the scale-out
case.

lSGD also exhibits a behavior where scale-out converges faster than scale-in when
using uni-tasks. The reason for this is different than for CoCoA, though. By scaling out
towards the end of the training, the batch size increases and the relative learning rate
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decreases implicitly, as it is scaled with
p

n for a change of ×n of the batch size. Both
methods, batch size increase and learning rate decrease, have been suggested in related
work to improve convergence [81, 124, 86]. Both adjustments are typically done once
the convergence rate slows down.

In the scale-in scenario, the test accuracy for CIFAR-10 on uni-tasks degrades notice-
ably after reaching its peak. The reason for this behavior is that scale-in happens once the
convergence has already slowed down significantly and the opposite of what is suggested
in the aforementioned related work happens: The batch size is decreased relative to the
learning rate. The same mitigation strategies can be used, though, to counter this effect.

For CIFAR-10, the average maximal test accuracy (Table 5.15) is slightly below that
of micro-tasks (16) in the scale-in case (≈0.45% lower). In the scale-out case as well
as in both cases for Fashion-MNIST, uni-tasks achieves the highest average maximal test
accuracy across all runs.

uni-tasks micro-tasks (absolute) micro-tasks (relative)

Dataset (target) 16 16 32 48 64 16 32 48 64

Higgs (1e-8) 1103 1474 1724 1864 2007 1.34× 1.56× 1.69× 1.82×

Criteo (1e-8) 42 57 94 100 120 1.36× 2.24× 2.38× 2.86×

KDDA (1e-5) 42 68 125 – – 1.62× 2.98× – –

Webspam (1e-6) 28 46 71 86 – 1.64× 2.54× 3.07× –

(a) CoCoA

uni-tasks micro-tasks (absolute) micro-tasks (relative)

Dataset (target) 16 16 32 48 64 16 32 48 64

CIFAR-10 (61%) 23.5 27.1 41.7 56.5 67.9 1.15× 1.77× 2.40× 2.89×

F.-MNIST (89%) 15.8 17.1 25.8 32.0 38.8 1.08× 1.63× 2.03× 2.46×

(b) lSGD

Table 5.13: Absolute and relative (compared to uni-tasks) number of epochs to converge
to the target duality-gap and test accuracy respectively during scale-in. “–”
indicates that the target was not reached within the test time limit.
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uni-tasks micro-tasks (absolute) micro-tasks (relative)

Dataset (target) 16 16 32 48 64 16 32 48 64

Higgs (1e-8) 141 1474 1724 1864 2007 10.5× 12.2× 13.2× 14.2×

Criteo (1e-8) 8 57 94 100 120 7.12× 11.8× 12.5× 15.0×

KDDA (1e-5) 4 68 125 – – 17.0× 31.2× – –

Webspam (1e-6) 6 46 71 86 – 7.67× 11.8× 14.3× –

(a) CoCoA

uni-tasks micro-tasks (absolute) micro-tasks (relative)

Dataset (target) 16 16 32 48 64 16 32 48 64

CIFAR-10 (61%) 16.1 27.1 41.7 56.5 67.9 1.68× 2.59× 3.51× 4.22×

F.-MNIST (89%) 11.3 17.1 25.8 32.0 38.8 1.51× 2.28× 2.83× 3.43×

(b) lSGD

Table 5.14: Absolute and relative (compared to uni-tasks) number of epochs to converge
to the target duality-gap and test accuracy respectively during scale-out. “–”
indicates that the target was not reached within the test time limit.

uni-tasks micro-tasks

Dataset scale-out scale-in 16 32 48 64

CIFAR-10 64.29% 63.61% 63.90% 63.34% 62.34% 61.48%

Fashion-MNIST 91.31% 91.48% 91.28% 90.66% 90.20% 89.71%

Table 5.15: Average maximal test accuracy (higher is better) for lSGD on uni-tasks and
micro-tasks. The highest test accuracy for each dataset is underlined (scale-
out) and double underlined (scale-in).

5.6.2.2 Iteration schedule projection

In this section, iteration schedules are projected and their duration determined to esti-
mate the training time and resource utilization efficiency. In contrast to the load balanc-
ing case, no entire schedules can be projected, as the number of tasks that run at the
same time is not constant. This number, however, can have a significant impact on the
actual iteration time due to data transfer overheads, especially for datasets with large
model update vectors, such KDDA and Webspam. As the projection of the entire sched-
ule does not consider these overheads, no realistic runtimes can be computed. Instead,
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only iteration schedules are projected which take the training time, but explicitly not the
data transfer times into account.

As no publicly available, competitive elastic ML training framework is available, no
actual measurements could be performed.
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Figure 5.13: Minimal iteration schedules for CoCoA. In uni-tasks, the workload is redis-
tributed evenly across all tasks.

Time

N
od

es

0.0 0.5 1.0 1.5 2.0

(a) uni-tasks on 4 nodes
Time

N
od

es

0.0 0.5 1.0

(b) uni-tasks on 8 nodes
Time

N
od

es

0.0 0.5 1.0

(c) uni-tasks on 14 nodes

task iteration end

Figure 5.14: Minimal iteration schedules for lSGD. In uni-tasks, the batch size is scaled
with the number of nodes whereas it remains constant for micro-tasks. The
number of iterations per epoch increases accordingly for uni-tasks. Micro-tasks
schedules for lSGD are the same as in Figure 5.13

Iteration duration. The duration of each iteration depends on

� Task runtime, which depends on the number of training samples processed by a
task and whether it is being executed on a fast or a slow node.
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� Maximal number of back-to-back tasks (task waves).

Iteration durations for uni-tasks and micro-tasks can be computed according to the
depictions in Figures 5.13 and 5.14. All task runtimes are normalized, such that when
using 16 micro-tasks, each processing 1/16th of the workload (training samples), one
task runs for one time unit. For instance, consider the case with 14 nodes:

� For CoCoA on uni-tasks, the number of tasks is reduced, load is redistributed and
each task runs 16/14 = 1.14× longer on 14 nodes than on 16 nodes, hence the
iteration duration is 1.14 as long as on 16 nodes. Micro-tasks (16) still executes 16
tasks. However, as only 14 can be executed at the same time, two task waves are
necessary and the iteration duration doubles compared to 16 nodes. This makes
iterations for micro-tasks (16) 2/1.14= 1.75× as long as for uni-tasks when using
14 of nodes.

� For lSGD, uni-tasks reduces the number of tasks and the batch size by 16/14 =
1.14× when scaling in from 16 to 14 nodes, whereas micro-tasks (16) continues to
process the same number of samples per iteration as on 16 nodes. To compensate
for the fewer training samples per iteration, 1.14× more iterations per epoch are
needed. Micro-tasks (16) behaves identically to CoCoA, hence the overall iteration
duration remains 2/1.14= 1.75× as long on micro-tasks (16) than on uni-tasks.

Table 5.16 lists iteration durations of all micro-task scenarios and node counts relative
to uni-tasks. The results of these calculations show that iteration durations for micro-
tasks (16), which requires the fewest epochs to converge among all micro-tasks configu-
rations, are between 1.12× and 1.75× as long as for uni-tasks in four out of eight node
configurations. Micro-tasks (64) can reduce this to at most 1.12× but requires between
1.82× and 2.89× (Table 5.13) as many epochs to converge as uni-tasks when scaling
in. In two out of four cases, the target duality-gap is not reached during the test time
limit. This shows the conflict between training efficiency and scheduling efficiency for
micro-tasks, which is not present in uni-tasks.
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micro-tasks

Number of Nodes 16 32 48 64

2 1.00× 1.00× 1.00× 1.00×

4 1.00× 1.00× 1.00× 1.00×

6 1.12× 1.12× 1.00× 1.03×

8 1.00× 1.00× 1.00× 1.00×

10 1.25× 1.25× 1.04× 1.09×

12 1.50× 1.12× 1.00× 1.12×

14 1.75× 1.31× 1.17× 1.09×

16 1.00× 1.00× 1.00× 1.00×

Table 5.16: Micro-tasks iteration schedule length for CoCoA and lSGDg relative to uni-tasks.

The relative resource utilization efficiency is the inverse of the relative iteration dura-
tion between uni-tasks and micro-tasks.

5.6.2.3 Node acquisition and release latency

In micro-tasks and uni-tasks alike, small delays can occur after scaling-out, before the
newly added nodes are used for training, as depicted in Figure 5.15.
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Figure 5.15: Elastic (scale-out) schedule examples with 1 – 3 nodes for uni-tasks (a) and
micro-tasks (b). Iterations are marked with different colors. The node avail-
ability profile is depicted by the dashed line (same in both plots).

Here, micro-tasks have a potential advantage, as the scheduler can react to the change
in node availability and move pending tasks to them during a running iteration. In uni-
tasks, on the other hand, the scheduler has to wait for the current iteration to finish, as
the task contract does not allow the movement of data chunks during an iteration. A
mitigation strategy exists with task preemption, that is also used for straggler mitigation.
As soon as a scale-in/out event occurs, running tasks may be preempted and the current
iteration cut short. This would allow the scheduler to add or remove nodes sooner. The
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latter has not been implemented in the elasticity policy yet, as scale-in/out events are
assumed to be rare and to occur with tens of iterations in-between. In this evaluation,
this is the case for all but the first few epochs of the CoCoA scale-out tests.

Similarly, during scale-in, nodes in uni-tasks cannot be released immediately, whereas
in micro-tasks, tasks are generally shorter and can be rescheduled on other nodes. The
same mitigation strategy, task preemption, can be used for uni-tasks.

5.7 Straggler mitigation

Similar to the stale synchronous parallel (SSP) approach described in Section 2.2.4.1,
uni-tasks exploits the auto-correcting property of ML training algorithms to mitigate the
impact of stragglers. Furthermore, it exploits the ability of tasks to produce valid updates
( f∆) after processing only a subset of the intended training samples during any given
iteration, by preempting straggling tasks.9

Straggler mitigation via task preemption assumes that training on tasks can be pre-
empted frequently (the more often the better) and that a valid model update, based on
the training samples that have been processed before the preemption, can be produced.

Similar to the load balancing case, tasks may process a different amount of training
samples in each iteration, with preempted tasks processing fewer samples than non-
preempted tasks (assuming the same planned number of samples for each task). The
weight of model updates is reduced accordingly (see Equation 5.2 for details).

5.7.1 Straggler mitigation in Chicle: Preemption policy

The preemption policy implements the straggler mitigation technique described above.
It complements the rebalance policy with the ability to address intermittently and unpre-
dictably fluctuating task runtimes.

This policy subscribes to task finished event and emits the finish iteration event to indi-
vidual tasks after a configurable number of tasks, given via a threshold parameter, have
finished the current iteration. Upon receiving the finish iteration event, tasks return a
model update along with the number of samples that have been processed in the current
iteration. Listings 5.4 and 5.5 shows the corresponding source code.

At the time of preemption, the model update is based on all samples that have been
processed before the finish iteration event was received. Remaining samples, that could
not be processed in the current iteration, are processed in subsequent iterations. The
effectiveness of this policy in mitigating stragglers depends on the number of training
sample sets (H), processed by each task during each iteration. A task is expected to
be preemptable in-between the processing of any two sample sets. This is the case for
CoCoA, where thousands of training sample sets are typically processed in each iteration.

9At the time of writing, a US patent application is in preparation for this straggler mitigation technique.
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The current implementation of mSGD and lSGD is based on libtorch. During training,
each task processes H training sample sets of with L training samples. For each H, a
set of L training samples is handed over to libtorch, which performs the actual training
(forward/backward propagation and gradient update) on the entire set. Once the entire
set has been processed, the result is returned to the Chicle task. No intermediate results
exist.

� In lSGD, H > 1 rounds of local training are performed. At the end of each round,
libtorch returns a result to Chicle. This result constitutes a valid model update and
can be returned to the trainer in case of preemption. Otherwise, the next round of
local training is started.

� In mSGD, H = 1, only one round of local training is performed and no preemption
is possible. Using a different implementation of the local training algorithm may
make mSGD preemptable as well but has not been explored as part of this work.

Table 5.17 lists all parameters of the preemption policy.

Parameter Description

threshold Fraction of tasks that need to finish before the remaining tasks are
preempted.

Table 5.17: Parameters of the preemption policy parameters used in this evaluation.

1 void workerFinishedEventHandler()

2 {

3 // ’numWorkersFinished’ holds the number of finished workers in this iteration. It

4 // is reset to 0, before a new iteration starts.

5 numWorkersFinished++;

6

7 // ’workers is a list of all currently active workers.

8 if (numWorkersFinished >= workers.size * threshold) {

9 // Iterate over all workers and preempt unfinished ones. The call to ’preempt()’ is

10 // asynchronous and non-blocking.

11 for (worker : workers) {

12 if (!worker->finished)

13 worker->preempt(); // emit ’finish iteration’ event

14 }

15 }

16 }

Listing 5.4: Simplified C++ code of the preemption policy’s decision algorithm in the
worker finished event handler
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1 void Solver::run(Dataset *dataset) {

2 // ’done’ is set when the training is finished.

3 while (!done) {

4 wait(event::iteration_started);

5

6 // ’to_process’ is the target number of training samples to process in the current

7 // iteration.

8 int to_process = H * L;

9

10 // ’processed’ is the number of training samples processed in the current

11 // iteration.

12 int processed = 0;

13

14 // ’preempted’ is set when the ’finish iteration’ event is received.

15 for (processed = 0; processed < to_process && !preempted; processed += L) {

16 // train on L samples.

17 }

18

19 // Push model updates and signal that the iteration is finished. Tell trainer

20 // how many samples have been processed and how many should have been processed.

21 send(model_update, processed, to_process);

22 signal(event::iteration_finished);

23 }

24 }

Listing 5.5: Simplified C++ code of a solver, which is executed in the task on each worker
node.

5.7.2 Evaluation

This section presents the results of the straggler mitigation experiments performed on
the test cluster. Stragglers were introduced artificially by slowing down one randomly
selected task in each iteration by ≈50%. The slowdown was realized by inserting small
pauses in-between the processing of training sample sets. All experiments use the test
setup and datasets described in Section A.3.3 as well as the CoCoA and lSGD training
algorithms (see Section A.3.1 for details). Table 5.18 lists parameter values used for the
preemption policy. Parameters for CoCoA and lSGD are the same as in Section 5.5.2.2.

Parameter Value

threshold 0.5

Table 5.18: Chicle’s preemption policy parameters used here.
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Experiments. Chicle with task preemption is compared to Chicle without task preemp-
tion in the above described scenario. No direct comparison to another framework is pre-
sented here. No other known CoCoA implementation supports straggler mitigation. For
lSGD, the SSP concept can be implemented but is not readily available as part of PyTorch,
which is used as reference framework later on. Instead, Chicle with task preemption and
stragglers is compared to a baseline scenario without stragglers. If the former achieves
the same performance as the latter, in terms of iteration runtime and convergence be-
havior, it is considered effective.

In contrast to the previous evaluations, the wall time can be measured, as no compar-
isons to micro-tasks are performed.

5.7.2.1 Task and iteration runtimes

Figures 5.16a through 5.16f show swimlane diagrams of the first 10 iterations with strag-
glers. The first row of each figure shows the task execution on each node without task
preemption and the second row shows it with task preemption. In the latter case, strag-
glers are mitigated effectively for all datasets. As with the load balancing experiments,
the benefit of mitigating stragglers is smaller for KDDA and Webspam, as a large fraction
of time is spend with model update vector transfer, which is unaffected by the introduced
stragglers.

This is also reflected in the mean iteration time as well as the standard deviation of task
runtimes listed in Table 5.19. On average, iteration length is reduced by 1.64× with task
preemption compared to without. Its effectiveness is also shown when compared to the
baseline, that does not have any artificially introduced stragglers. Here, task preemption
reduces iteration runtimes by 1.17×. The speedup compared to the baseline is due to
natural, unmitigated stragglers in the baseline as well as due to the slight heterogeneity
of the test cluster which is partially mitigated by task preemption.

The latter is also visible in Figures 5.16a through 5.16f where tasks on some nodes run
consistently longer than on others. The task preemption policy could be combined with
the rebalance policy to mitigate the impact of the slight heterogeneity of the test cluster.
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Figure 5.16: Visualization of the task preemption straggler mitigation method during ten
training iterations. Plots in the top (bottom) row show the task runtimes on
each node without (with) preemption. This type of diagram is described in
Section 2.5.2.1.
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Higgs Criteo

baseline w/o w/ baseline w/o w/

mean iter. time 186ms 314ms 152ms 1834ms 3177ms 1651ms

mean task time 113ms 123ms 108ms 863ms 968ms 840ms

task time std. dev. 15ms 42ms 5ms 92ms 387ms 35ms

KDDA Webspam

baseline w/o w/ baseline w/o w/

mean iter. time 1336ms 1358ms 1346ms 1804ms 2298ms 1819ms

mean task time 131ms 144ms 126ms 481ms 527ms 411ms

task time std. dev. 14ms 51ms 6ms 110ms 221ms 20ms

(a) CoCoA

CIFAR-10 Fashion-MNIST

baseline w/o w/ baseline w/o w/

mean iter. time 136ms 185ms 105ms 166ms 213ms 118ms

mean task time 73ms 78ms 65ms 88ms 92ms 75ms

task time std. dev. 17ms 26ms 6ms 24ms 32ms 7ms

(b) lSGD

Table 5.19: Summary of results (mean iteration and task runtime, as well as standard
deviation of the latter) for the straggler experiments. Each dataset was trained
with (w/) and without (w/o) task preemption and compared to the baseline,
without stragglers.

5.7.2.2 Epochs to converge

Figure 5.17 shows the impact of task preemption on the convergence behavior of CoCoA
and lSGD. Table 5.20 lists the number of epochs needed to converge to the training target.
With task preemption, the training target is reached on average with≈2.7% fewer epochs
than without. While these differences are small enough to be the result of the stochastic
nature of the algorithms, where small variations can occur, another explanation is also
possible: With task preemption, the number of training samples processed during each
iteration is reduced and the frequency of global communication therefore increased. This
has a similar effect as reducing the number of partitions for CoCoA and the global batch
size in lSGD. Both can reduce the number of epochs needed to converge.
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baseline without preemption with preemption

Dataset (target) epochs runtime epochs runtime epochs runtime

Higgs (1e-8) 1471 276.2s – – 1438 221.1s

Criteo (1e-8) 54 102.3s 56 178.5s 54 90.8s

KDDA (1e-5) 68 97.8s 67 98.1s 68 98.2s

Webspam (1e-6) 46 86.8s 48 115.1s 44 84.0s

(a) CoCoA

baseline without preemption with preemption

Dataset (target) epochs runtime epochs runtime epochs runtime

CIFAR-10 (61%) 27.13 68.9s 27.12 100.6s 27.72 57.7s

F.-MNIST (89%) 17.11 68.9s 17.11 94.4s 16.31 50.6s

(b) lSGD

Table 5.20: Number of epochs and time to converge to the target duality-gap and test accu-
racy respectively. “–” indicates that the target has not been reached within the
test time limit.

However, in SSP, a commonly used method to mitigate stragglers, the number of
epochs needed to converge generally increases in face of stragglers [34].10 The reason
for this difference lies in the methods themselves:

� With task preemption, the effective batch size is reduced, as preempted tasks pro-
cess fewer than planned training samples per iteration, after which all tasks syn-
chronize. At the same time, the task preemption method guarantees that all tasks
receive all model updates before starting the next iteration.

� In SSP, the effective batch size may be reduced as well (as updates from straggling
tasks are not considered immediately) - which generally supports faster conver-
gence per epoch. In contrast to task preemption, however, tasks are not guaranteed
to receive all model updates before starting the next iteration. Hence, some tasks
work based on an outdated (stale) model and thus making training less effective
per processed training sample.

10Ho et al. [34] report an increase in the number of iterations needed to converge, not epochs. However,
in SSP, the number of training samples processed in each iteration remains constant, hence the number
of epochs increases with the number of iterations.
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Figure 5.17: Convergence of the duality-gap (lower is better) and test accuracy (higher is
better) over epochs in a straggler scenario. Baseline is without stragglers,
w/o preemption with stragglers but without mitigation and w/ preemption
with stragglers and mitigation.
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5.7.2.3 Time to converge

Figure 5.18 shows the convergence over time for each dataset. Here, a noticeable ben-
efit of task preemption can be observed for all datasets, except for KDDA. The iteration
runtime for KDDA is dominated by communication, hence mitigating stragglers has little
effect and the overall training time remains virtually constant, as the data in Table 5.19b
shows. On average, a training time reduction of 1.62×, compared to without task pre-
emption, is achieved. Compared to the baseline, training times reduce by 1.17×.

5.7.2.4 Evaluation summary

Table 5.21 lists the average maximal test accuracy for lSGD. With task preemption, it is
reduced by 0.37% on average, compared to without task preemption.

Datasets w/ preemption w/o preemption

CIFAR-10 63.17% 63.60%

Fashion-MNIST 91.27% 91.33%

Table 5.21: Average maximal test accuracy (higher is better) for the straggler experiment.
The highest test accuracy for each dataset is underlined.

Overall, this evaluation has shown that task preemption is an effective method to mit-
igate the impact of stragglers with uni-tasks. On average, the number of epochs needed
to converge remains virtually unchanged but training time is cut short by 1.62×.
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Figure 5.18: Convergence of the duality-gap (lower is better) and test accuracy (higher is
better) over time in a straggler scenario. Baseline is without stragglers, w/o
preemption with stragglers but without mitigation and w/ preemption with
stragglers and mitigation.
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5.8 Comparison with state-of-the-art frameworks

In this section, Chicle is compared with two state-of-the-art distributed ML frameworks:

(1) Snap ML [103], a rigid, state-of-the-art, distributed ML training framework, using
the CoCoA training algorithm.

(2) PyTorch [85], a rigid, state-of-the-art, distributed ML training framework, using
the Mini-batch SGD (mSGD) training algorithm.

Like Chicle, both frameworks use RDMA for communication. The purpose of this ex-
periment is to show that Chicle, as the first implementation of uni-tasks, performs com-
petitively to state-of-the-art frameworks. As neither of them is elastic, supports load
balancing nor natively implements straggler mitigation techniques11, only baseline tests
are presented here. Litz [114], the work that is most closely related to Chicle was not
publicly available at the time of writing and could not be compared against.

All experiments use the test setup and datasets described in Section A.3.3. The same
training algorithm parameters were used in Chicle and the compared-to framework.

5.8.1 Comparison with Snap ML

This section presents a comparison of Chicle with Snap ML for the CoCoA training al-
gorithm. For CoCoA, data partitioning can significantly impact convergence. Chicle and
Snap ML use different data partitioning schemes:

� Chicle splits up the training data into small (here: 2MiB) chunks and assigns them
to nodes in a random order, such that each node gets the same number ±1 of
chunks. This results in C chunks.

� Snap ML splits the training data into K equally large partitions for K nodes and
assigns one partition per node.

As both implement the same training algorithm and use the same parameters for train-
ing, convergence per epoch should be identical in both cases, provided an identical data
partitioning and an identical training sample processing order on each local solver. Nei-
ther is the case here, hence differences are to be expected. In general, it is not possible to
predict how data partitioning (given the same number of partitions) and training sample
processing order impact convergence.

An attempt has been made to reduce these differences, to show that uni-tasks does not
inherently change the convergence per epoch from that of Snap ML. Due to the different
implementations of both frameworks, it is not possible to completely align both aspects.
However, in order to reduce differences, Snap ML has been modified to partition training

11PyTorch provides functionality to implement SSP. As part of this work, SSP has not been implemented
on top of PyTorch.
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data, similar to Chicle, into C chunks and assign them to nodes in a round-robin fashion
(Snap ML (RR)). Chicle has been modified to assign chunks not randomly but also in a
round-robin fashion (Chicle (RR)). This approximates both data partitioning schemes,
but it doesn’t make them identical, as Chicle’s data loader is chunk size based, whereas
the modified Snap ML data loader is number of partitions based. For each dataset, C was
set to match the number of chunks used in Chicle.

Furthermore, Snap ML’s local SCD solver can use multiple threads to speed up train-
ing. For Chicle, a multi-threaded local solver has not been implemented yet, as it is not
considered necessary to demonstrate the viability of uni-tasks. For this reason, only a
single thread for each solver instance was used for Snap ML in this evaluation.

Figure 5.20 shows the results of these experiments which are summarized Table 5.22.
Runtime includes time to compute the duality-gap in both cases.
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Figure 5.19: Comparison of CoCoA on Chicle with Snap ML w.r.t. epochs to convergence.
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Figure 5.20: Comparison of CoCoA on Chicle with Snap ML w.r.t. time to convergence.
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Chicle Chicle (RR) Snap ML Snap ML (RR)

Dataset (target) epochs time epochs time epochs time epochs time

Higgs (1e-8) 1474 275s 1528 277s 1486 241s 1582 256s

Criteo (1e-8) 57 185s 21 49s 236 539s 35 72s

KDDA (1e-5) 68 98s 59 95s 310 299s 50 47s

Webspam (1e-6) 46 87s 64 150s 39 94s 42 98s

(a) Absolute results

Snap ML Snap ML (RR)

Dataset (target) epochs time epochs time

Higgs (1e-8) 1.01× 0.88× 1.04× 0.92×

Criteo (1e-8) 4.14× 2.60× 1.67× 1.58×

KDDA (1e-5) 4.54× 2.89× 0.85× 0.52×

Webspam (1e-6) 0.85× 1.06× 0.66× 0.65×

(b) Relative to Chicle

Table 5.22: Absolute (a) and relative (b) number of epochs and time (r/t) to converge
(lower is better) for Chicle and Snap ML. A relative result > 1 means that
Chicle is faster than Snap ML.

Results show that convergence per epoch is similar in all four cases for the Higgs and
Webspam datasets, indicating that for those datasets, data partitioning is less important.
For Criteo and KDDA, however, significant differences in the convergence per epoch can
be observed. These differences reduce when comparing Snap ML (RR) to Chicle and
Chicle (RR), indicating the importance of data partitioning for both datasets.

In general, results for Snap ML (RR) are similar to those of Chicle and Chicle (RR),
hence no clear advantage of disadvantage of either framework can be identified, which
confirms the initial expectation. Remaining differences are due slight differences in data
partitioning as well as the different training sample processing order.

Table 5.21b shows that the speedup of Chicle over Snap ML is larger per epoch than
over time, thus an epoch takes more time in Chicle than on Snap ML. As in these ex-
periments, no data chunks are moved during training, differences in time per epoch are
rooted in the communication subsystem, i.e., the lack of efficient reduce and broadcast
operations, as well as in the CoCoA implementation, more specifically the local SCD
solver, on Chicle.

Overall, Chicle performs better than Snap ML and similar to Snap ML (RR) in a baseline
scenario.
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5.8.2 Comparison with PyTorch

For the comparison with PyTorch, the same training algorithm parameters as for previous
tests are used (Table 5.6), except that H = 1, i.e., only a single local round of training
is performed per iteration. The built-in PyTorch distributed training functions12 do not
allow the training with H > 1, as tasks synchronize implicitly after training on L samples.
For that reason, the mSGD algorithm has been evaluated with H = 1 on Chicle and
PyTorch.

Figures 5.21 and 5.22 show the convergence plots which are summarized in Tables 5.23
and 5.24. Runtime does not include the computation of the test accuracy in either case.
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Figure 5.21: Convergence over epochs (higher is better) of mSGD on Chicle and PyTorch.
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Figure 5.22: Convergence over time (higher is better) of mSGD on Chicle and PyTorch.

12
torch.nn.parallel.distributed_cpu.DistributedDataParallelCPU module
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The convergence over epoch plots show a very similar convergence behavior of Chicle
and PyTorch. The test accuracy targets are also reached in virtually the same number of
epochs. This is not surprising, as both use libtorch, which performs the actual training
on each task.

Convergence over time, is up to 1.30× faster on Chicle than on PyTorch. As both
use libtorch for training and RDMA for communication, the differences are likely due to
overheads incurred by Python: Chicle is written in C++ and PyTorch in Python. While
PyTorch also uses the libtorch C++ code for the actual training, data exchange between
Python and C++ adds some overhead.

Chicle as well as PyTorch exhibit the same behavior for the CIFAR-10 dataset, where
test accuracy decreases after reaching a peak. This behavior has been observed for CIFAR-
10 throughout the evaluation of Chicle and uni-tasks. Mitigation strategies include learn-
ing rate and batch size adjustment during the training.

Chicle PyTorch Speedup

Dataset (target) epochs runtime epochs runtime epochs runtime

CIFAR-10 (61%) 21.6 66.2s 21.4 86.0s 0.99× 1.30×

Fashion-MNIST (89%) 14.0 72.5s 14.6 93.8s 1.04× 1.29×

Table 5.23: Number of epochs and time to converge (lower is better) as well as relative
speedup of Chicle over PyTorch.

Maximal test accuracy is also very close in both cases (Table 5.24).

Dataset Chicle PyTorch

CIFAR-10 65.16% 65.19%

Fashion-MNIST 91.42% 91.28%

Table 5.24: Average maximal test accuracy (higher is better). The highest value is
underlined.

Overall, Chicle compares competitively against PyTorch, demonstrating that uni-tasks
does not slow down mSGD training in a baseline scenario. The latter is important, as the
benefit on heterogeneous, shared and straggler-afflicted scenarios should not come at a
cost of the normal (baseline) case.

Observed differences in the number of epochs to converge and maximal test accuracy
are not the result of targeted improvements in Chicle but of different data partitioning
schemes as well as a different training sample processing order.
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5.9 CoCoA-specific optimizations enabled by uni-tasks

This section presents two approaches of how to exploit CoCoA-specific properties with
uni-tasks:

� Resource requirements of CoCoA are heterogeneous: The number of nodes that result
in the highest convergence rate changes over the course of the training. With uni-
tasks, this heterogeneity can be exploited to reduce time to convergence and overall
resource utilization.

� After detecting all correlations across all local chunks, convergence rate drops sig-
nificantly. This can be prevented by exchanging a subset of chunks in each epoch
and is enabled by uni-tasks to access all local data chunks but also to move them
across tasks in-between iterations. This shows that uni-tasks can have benefits be-
yond scheduling.

5.9.1 Auto scale-in policy for an increased convergence rate

The convergence rate per epoch is inversely correlated to the number of nodes (and
therefore data partitions), i.e., the more nodes, the slower the convergence per epoch,
as already shown in Figure 5.1. Up until a dataset-specific point, the number of epochs
increases slower than the number of nodes and a net-benefit can be achieved by using
more nodes. Hence, a number of nodes should exist, where the increase in parallelism
due to an increase in nodes just outweighs the increase in the number of epochs required
to converge. A peculiarity of CoCoA, which is exploited by this policy, is that this number
is not constant but shifts towards fewer nodes during the training.

CoCoA’s stateful local solvers (e.g. SCD), update their local model after each training
sample. This allows them to efficiently discover correlations between training samples
locally. At some point in time, however, all local correlations will have been discovered.
From this point on, further discoveries can only be made by propagating correlation
information via the global model. As this requires global communication, which occurs
orders of magnitude less often than local updates, it is less efficient than local discoveries.
As result, convergence rate per epoch, as well as per time, drops noticeably. As with
more local data, more correlations can be discovered locally and this drop occurs at later
epochs, where more correlations have already been discovered and the duality-gap is
lower.
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Figure 5.23: Example of the convergence of the duality-gap (lower is better) using 1 – 16
nodes (node count in parentheses) and the same number of partitions over
(hardware-independent) idealized time: 1 partition requires 1 time unit per
iteration, K partitions require 1/K time units per iteration, assuming parallel
execution. This plots therefore shows the non-linear correlation between the
number of partitions and the duality-gap over different phases of the training
process.

This effect can be observed, to varying degrees, in all datasets shown in Figure 5.23.
Here, the duality-gap is plotted against an idealized time (assuming zero scheduling over-
heads and perfect scaling) for one to 16 nodes. In the beginning, convergence is generally
faster with more nodes than with fewer nodes (due to the higher level of parallelism).
However, the convergence curve also flattens out sooner, i.e., at larger duality-gaps, for
more nodes than for fewer nodes, despite the advantage of a higher level of parallelism.
The region that separates high convergence rates from low convergence rates is referred
to as the knee.
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For instance, in Figure 5.23a the highest convergence rate in the beginning can be
achieved with 16 nodes but it also starts to flatten earliest, between a duality-gap of 1e-4
and 1e-5. At this point, the convergence rate curve for four nodes is still steeper, and
only flattens just below 1e-5. If the training algorithm switched from 16 to four nodes
once the curve flattens, the convergence rate could remain high, until the slow-down
occurs here as well, at which point training could be scaled-in further, e.g., to two or one
node(s). For all other datasets, a similar convergence behavior can be observed, except
the knee occurs at different duality-gap values.

For all datasets, one node is a special case. Here, all correlations can be discovered
locally, throughout the entire training process and no knee will ever occur.

5.9.1.1 Auto-scale-in approach

The idea of this policy is to exploit the fact that the knee occurs at lower duality-gaps
for a smaller number of nodes [106]. Hence, if a knee occurs for some number of nodes
a, it will not yet have occurred for a smaller number of nodes b < a. By scaling in, and
therefore giving each local solver additional training data, it can again detect correlations
locally, thus staying in-front of the knee13.

For this to work, tasks need to be able to access all node-local training data, hence this
policy could not be realized with micro-tasks, as here, even if nodes are removed, the
same number of tasks is merely executed on fewer nodes, but tasks do not gain access to
more training samples.

Knee detection. In order to detect the knee, the convergence rate of the duality-gap
over time is observed. Once the convergence rate drops, the policy assumes that a knee
has occurred and training is scaled in to fewer nodes.

Figure 5.24 visualizes the method used to identify the knee. Using the difference be-
tween two slopes, a long-term slope Sl and a short-term slope Ss. Sl represents to con-
vergence since time t0, which is either the beginning of the training or time of the last
scale-in action (whichever occurred later), and now (tn), and is computed as in Equa-
tion 5.7. Here, v0 represent the duality-gap at time t0 and vn represent the duality-gap
at time tn.

Sl =
log10(vn)− log10(vo)

tn − t0
(5.7)

The short-term slope Ss represents the convergence over the last N iterations, i.e.,
since time tn−N , and now and is computed as in Equation 5.8. Here, vn−N represent the
duality-gap at time tn−N .

Ss =
log10(vn)− log10(vn−N )

tn − tn−N
(5.8)

13A US patent application, that describes this idea, has been filed.
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Once the short term slope Ss diverges significantly from the long term slope Sl , i.e.,
once Ss × d < Sl , with d being a damping factor, a knee has been detected and a scale-in
action is initiated. Upon scale-in, the number of workers K is reduced by a factor m. A
description of all parameters is in Table 5.25.
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Figure 5.24: Schematic view of the long-/short-term slope of the duality-gap that is used to
identify the knee. The y-axis is log10 scaled.

Parameter Description

N Number of iterations to compute the short-term slope Ss over. A
smaller value leads to a faster, but less reliable knee identification
as the impact of potential occasional stragglers is relatively higher
for smaller values of N . Larger values of N lead to a slower but more
robust knee detection.

d A damping factor that determines the magnitude by which the short
term and long term slops need to diverge before a scale-in action is
triggered. A small d (e.g., d = 1.0) can falsely trigger the scale-in
action because of jitter in the duality-gap, whereas a large d (e.g.,
d = 5.0) can delay or event prevent the triggering a scale-in action.

m The scale-in factor. During scale-in all but 1/m-th of nodes are re-
moved and (m − 1)/m of all data chunks have to be moved to the
remaining nodes, which represents a significant overhead. Scaling
in in many small steps may therefore be overall less beneficial than
scaling in using fewer large steps.

Kmin The minimal number of nodes to scale-in to.

Table 5.25: Overview of parameters of the scale-in policy. Concrete values for these param-
eters are given in the corresponding evaluation section.
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Using the auto scale-in policy, training can be accelerated while, at the same time, the
number of allocated resources is reduced, i.e., more effective work can be accomplished
using fewer resources, thus increasing resource utilization efficiency. A limitation of this
approach is that the memory capacity of the remaining nodes has to be sufficiently large
to hold all data chunks.

5.9.1.2 Auto scale-in in Chicle

The auto scale-in policy implements the method described above. As an additional
hardware-heterogeneity-aware improvement, it removes nodes upon scale-in based on
their performance: Slow nodes are removed first. Node performance is determined as in
the rebalance policy (Section 5.5.1). While the latter is not necessary to exploit the algo-
rithmic benefits of scaling in, it exploits available knowledge about the system to speed
up training further on heterogeneous clusters. The source code of this policy is shown
in Listing 5.6. The decide function is called upon the reception of an iteration finished
event.
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1 long itSinceSI = 0; // iterations since last scale-in

2 list<Worker*> workers; // ’workers’ is a list with all currently active workers.

3

4 // ’dg’ is the log10-scaled duality gap value after iteration ’it’ at time ’ts’

5 void decide(double dg, long ts, long it)

6 {

7 if (itSinceSI == 0)

8 lastSI = pair(ts, dg); // (t0, v0)
9 itSinceSI++;

10

11 // ’history’ is a ring buffer with maximal size N that contains (timestap, duality gap)

12 // pairs for the last N iterations.

13 // - ’history.first’ always points to the oldest value.

14 // - ’history.size’ contains the current number of elements in the buffer 0 . . . N
15 history.push_back(pair(ts, dg))

16

17 // Compute slopes of long- and short-term gradients

18 double Sl = (dg - lastSI.dg) / (ts - lastSI.ts);

19 double Ss = (dg - history.first.dg) / (ts - history.first.ts);

20

21 // Detect knee and scale-in by a factor of m, if it is detected.

22 if (Ss * d > Sl && itSinceSI >= N && workers.size > Kmin) {

23 // Sort the ’workers’ list in descending order of their median runtime τk as in the

24 // rebalance policy (see Section 5.5.1 for details).

25 sort(workers);

26

27 // Identify (number of) workers that need to be removed.

28 int remove = workers.size - max(Kmin, (workers.size / m));

29 list<Worker*> removeWorkers;

30

31 while (remove > 0) {

32 removeWorkers.push_back(workers.first);

33 workers.pop_first;

34 remove--;

35 }

36

37 scalein(workers, removeWorkers); // call ’scalein’ function of the ’elasticity’ policy

38 // (see Section 5.6.1 for details).

39 itSinceSI = 0;

40 }

41 }

Listing 5.6: Simplified C++ code of the scale-in policy’s decision algorithm.
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5.9.1.3 Evaluation

This section presents evaluation results for the auto-scale-in policy. The purpose of these
experiments is to show the reduction in the number of epochs and training time compared
to a static setting. Two scenarios have been tested:

(1) Assume that all training data fits inside the memory of a single node (Kmin = 1).

(2) Assume that all training data fits inside the memory of a two nodes (Kmin = 2).
The purpose of this scenario is to show the benefits of scale-in to multiple nodes,
as the convergence behavior on a single node differs significantly from that of two
or more nodes.

All experiments use the test setup and datasets described in Section A.3.3. Parameter
values for the auto-scale-in policy are listed in Table 5.26. Parameters for CoCoA are the
same as in Section 5.5.2.2. Table 5.27 shows the data volume that needs to be transferred
during scale-in.

Parameter Value

N 2

d 1.25

m 4

Kmin 1, 2 (depending on scenario)

Table 5.26: Chicle’s auto-scale-in policy parameters used in this evaluation.

Convergence plots per epoch and over time are shown in Figures 5.25 and 5.26 and
summarized in Table 5.28. The convergence plots show that the scale-in policy, by re-
ducing the number of nodes (and therefore data partitions) based on feedback from the
training algorithm, improves convergence rate over time in most cases. The specific im-
provement depends on the target duality-gap. Aside from improving the convergence
rate, the smallest, within the test time limit achievable duality-gap, also decreases signif-
icantly.

In 13 out of 16 cases, auto scale-in to two nodes improves time to convergence by up
to 7.22×. In the other three cases, the best static node count takes at least 0.61× as much
time as auto scale-in. When scaling in to a single node, auto scale-in improves time to
convergence in 14 out of 20 cases by up to 2.94×. In the other cases, the best static
node count takes at least 0.51× as much time as auto scale-in. However, the best static
node count varies and is generally not known in advance. Multiple trial runs would be
necessary to identify the best static node count, which also varies by target duality-gap
and dataset. Moreover, in cases where auto scale-in is not the fastest, it is the second
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fastest in all but one case (KDDA, 1e-5). KDDA is a special case, as even in the begin-
ning, 16 nodes converge slower over time than any other node count. This is caused by
the large model update vector in KDDA, which incurs high relative communication over-
heads. As result, the initial convergence rate over time for auto scale-in is lower than
any static node count with less than 16 nodes. However, upon scale-in, the auto scale-in
policy catches up. This is due to the hardware-heterogeneity-awareness that removes the
slowest nodes first during scale-in.

For each dataset, there is a brief period where scaling in to two nodes results in faster
convergence than when scaling in to one node. This is caused by the longer epoch dura-
tion on one node compared to two nodes. However, as the convergence rate per epoch
is higher on one node than on two, the former catches up and overtakes the latter after
said brief period. This suggests that adding another step between four and one nodes
accelerate training further. However, for the auto scale-in policy to detect a knee, mul-
tiple iterations need to pass, hence the delay to scale-in to one node may nullify the
benefits of shorter epoch duration. Due to the expected small benefits, this has not been
implemented.

5.9.1.3.1 Overheads. Scaling in incurs data transfer overheads. Table 5.27 lists the
amount of data that needs to be transferred when scaling in. The time given in Table 5.28
includes the data transfer time on the 56Gbps Infiniband network of the test cluster,
hence on this network, benefits outweigh the costs. On slower networks, this might not
be the case. However, slower networks would also benefit from the reduced reduce and
broadcast time after scaling in, especially for the KDDA and Webspam datasets.

Datasets 16→ 4 4→ 2 4→ 1

Higgs 0.2 GiB / 0.6 GiB 0.6 GiB / 1.2 GiB 0.6 GiB / 2.4 GiB

Criteo 1.2 GiB / 3.6 GiB 3.6 GiB / 7.2 GiB 3.6 GiB / 14.3 GiB

KDDA 0.2 GiB / 0.6 GiB 0.6 GiB / 1.2 GiB 0.6 GiB / 2.5 GiB

Webspam 0.8 GiB / 2.5 GiB 2.5 GiB / 4.9 GiB 2.5 GiB / 9.8 GiB

Table 5.27: Data transfer volumes during scale-in for each sending/receiving node.
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Figure 5.25: Duality-gap vs. epochs plots for the evaluated datasets and settings. Circles
depict a scale-in from 16 to 4 workers, diamonds a scale-in from 4 to 2 and 1
worker(s) respectively.
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Figure 5.26: Duality-gap vs. time plots for the evaluated datasets and settings. Circles
depict a scale-in from 16 to 4 workers, diamonds a scale-in from 4 to 2 and 1
worker(s) respectively.



5.9 CoCoA-specific optimizations enabled by uni-tasks 203

run 1e-05 1e-06 1e-07 1e-08 1e-09

static (16) 4.1s 41.1s 149.3s 264.3s –

static (8) 3.6s 26.1s 188.5s – –

static (4) 2.9s 24.1s 224.0s – –

static (2) 5.2s 20.7s 177.3s – –

static (1) 8.7s 11.7s 14.6s 17.5s 26.3s

auto (16 – 2) 1.6s 4.4s 20.7s 253.1s –

auto (16 – 1) 1.6s 7.3s 7.5s 12.1s 19.9s

speedup (16 – 2) 1.79× (4) 4.67× (2) 7.22× (16) 1.04× (16) –

speedup (16 – 1) 1.79× (4) 2.63× (1) 1.93× (1) 1.45× (1) 1.32× (1)

(a) Higgs

run 1e-05 1e-06 1e-07 1e-08 1e-09

static (16) 6.2s 8.1s 12.1s 103.0s 299.5s

static (8) 12.2s 15.4s 19.2s 96.6s –

static (4) 23.6s 25.7s 31.8s 57.1s –

static (2) 42.6s 50.0s 62.6s 86.5s –

static (1) 84.8s 84.8s 113.3s 141.7s 170.1s

auto (16 – 2) 6.1s 7.9s 14.4s 26.1s 66.8s

auto (16 – 1) 6.1s 7.8s 14.0s 56.5s 59.1s

speedup (16 – 2) 1.01× (16) 1.03× (16) 0.84× (16) 2.19× (4) 4.48× (16)

speedup (16 – 1) 1.02× (16) 1.03× (16) 0.86× (16) 1.01× (4) 2.88× (1)

(b) Criteo

Table 5.28: Time to converge to duality-gap 1e-5 – 1e-9 for each dataset and speedup of
auto scale-in compared to the best static node count larger than the minimum
(1 or 2). The best static node count is given in parentheses. The fastest run for
1 or more nodes is underlined and bold for 2 or more nodes. “–” indicates that
the respective duality-gap was not reached within the test time limit.
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run 1e-05 1e-06 1e-07 1e-08 1e-09

static (16) 97.7s – – – –

static (8) 31.6s 238.3s – – –

static (4) 14.8s 148.2s – – –

static (2) 9.7s 124.9s – – –

static (1) 13.3s 17.6s 26.2s 43.3s 90.1s

auto (16 – 2) 15.8s 20.9s 241.6s – –

auto (16 – 1) 19.0s 21.9s 28.9s 44.7s 77.6s

speedup (16 – 2) 0.61× (2) 5.98× (2) >1.49× (-) – –

speedup (16 – 1) 0.51× (2) 0.80× (1) 0.91× (1) 0.97× (1) 1.16× (1)

(c) KDDA

run 1e-05 1e-06 1e-07 1e-08 1e-09

static (16) 18.7s 86.4s – – –

static (8) 12.2s 53.7s 185.9s – –

static (4) 18.5s 59.4s 227.8s – –

static (2) 34.9s 57.9s 343.4s – –

static (1) 73.1s 97.0s 121.2s 193.5s –

auto (16 – 2) 15.1s 26.0s 41.4s 212.1s –

auto (16 – 1) 15.2s 36.8s 47.1s 85.9s 204.0s

speedup (16 – 2) 0.81× (8) 2.07× (8) 4.49× (8) >1.70× (-) –

speedup (16 – 1) 0.80× (8) 1.46× (8) 2.57× (1) 2.25× (1) >1.76× (-)

(d) Webspam

Table 5.28: Time to converge (continued) to duality-gap 1e-5 – 1e-9 for each dataset and
speedup of auto scale-in compared to the best static node count larger than the
minimum (1 or 2). The best static node count is given in parentheses. The
fastest run for 1 or more nodes is underlined and bold for 2 or more nodes. “–”
indicates that the respective duality-gap was not reached within the test time
limit.
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5.9.2 Chunk shuffle policy

The chunk shuffle policy is based the same insight as the auto scale-in policy, namely
that, at some point in time, all local correlations have been identified and convergence
slows down. However, in contrast to the auto scale-in policy, the number of nodes is not
reduced. Instead, a randomly selected subset of data chunks (the size of which corre-
sponds to the fraction f of a node’s number of local data chunks) is periodically shuffled
across workers, such that each worker is able to see a different combination of chunks in
each epoch. This has a similar effect as scale-in, as local solvers can identify additional
correlations locally, but does not reduce the number of compute resources. A similar ap-
proach was described by Ioannou et al. [105] to optimize local, multi-threaded training.
A description of all parameters is in Table 5.29.

Parameter Description

f Fraction of data chunks (range: 0.0 – 1.0) to be transferred between
epochs. f = 1.0 results in a full shuffle.

Table 5.29: Overview of parameters of the shuffle policy. Concrete values are given in the
corresponding evaluation section.

While this policy does not reduce the number of allocated resources, it can accelerate
training even further than the auto scale-in policy, given a sufficiently fast network, as
the level of parallel execution does not decrease. Moreover, it can also be used in cases
where fewer workers do not have sufficient memory capacity to hold all data chunks.

5.9.2.1 Chunk shuffling in Chicle

The shuffle policy implements the method described above. The source code of this policy
is shown in Listing 5.7. The shuffle function is called upon the reception of an epoch
finished event.
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1 map<Worker*, list<Chunk*>> mapping; // lists of chunks for each worker

2

3 void shuffleChunks() {

4 // Number of shuffling rounds depends on the f configuration parameter.

5 // See Table 5.29 for details.

6 int rounds = max(1, numChunks / workers.size * f );
7

8 for (int round = 0; round < rounds; round++) {

9 // randomly shuffle workers order and chunk list of each worker

10 shuffle(workers);

11

12 // split workers list in two parts across which chunks will be swapped.

13 vector<Worker*> part1; // workers ’0’ to ’(workers.size + 1) / 2’

14 vector<Worker*> part2; // workers ’(workers.size + 1) / 2 + 1’ to ’workers.size’

15

16 int idx1 = 0; int idx2 = 0;

17 while (idx1 < part1.size || idx2 < part2.size) {

18 // Select two workers, one from each part

19 Worker* w0 = part1[idx1];

20 Worker* w1 = part2[idx2];

21

22 // pick a chunk from each worker - due to the initial shuffling, chunks are picked

23 // at random.

24 Chunk* c0 = mapping[w0].front();

25 mapping[w0].pop_front();

26 Chunk* c1 = mapping[w1].front();

27 mapping[w1].pop_front();

28

29 // swap chunks. This is an asynchronous, non-blocking call.

30 moveChunk(c0, w0, w1);

31 moveChunk(c1, w1, w0);

32

33 // if part1 and part2 have different sizes, the last worker of the smaller part has

34 // two chunks exchanged.

35 if (idx1 < part1.size)

36 idx1++;

37 if (idx2 < part2.size)

38 idx2++;

39 }

40 }

41

42 // wait for all chunk data movements to complete.

43 }

Listing 5.7: Simplified C++ code of the shuffle policy’s algorithm.
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5.9.2.2 Evaluation

This experiment shows the benefit of recombining data chunks by shuffling them across
all tasks in-between epochs. All experiments use the test setup and datasets described in
Section A.3.3. The chunk shuffle policy (§5.9.2), which is configured to randomly swap
f = 5%, 10% and 15% of chunks of each task with that of another, randomly selected
task.

1e-05 1e-06 1e-07 1e-08 1e-09

baseline 4.4s 35.4s 152.5s 277.3s –

shuffle (5%) 1.9s 4.9s 8.3s 12.3s 19.8s

shuffle (10%) 1.3s 2.8s 4.5s 6.8s 12.4s

shuffle (15%) 1.0s 2.1s 3.3s 5.1s 10.8s

speedup (5%) 2.36× 7.27× 18.43× 22.56× >18.21×

speedup (10%) 3.38× 12.60× 33.66× 40.82× >29.03×

speedup (15%) 4.25× 16.95× 46.83× 53.95× >33.41×

(a) Higgs

1e-05 1e-06 1e-07 1e-08 1e-09

baseline 5.4s 9.1s 13.2s 107.5s 330.9s

shuffle (5%) 6.0s 7.7s 9.8s 29.1s 63.4s

shuffle (10%) 6.2s 8.2s 10.2s 20.4s 38.5s

shuffle (15%) 6.6s 8.2s 10.1s 16.2s 29.3s

speedup (5%) 0.91× 1.18× 1.34× 3.69× 5.22×

speedup (10%) 0.87× 1.11× 1.29× 5.27× 8.59×

speedup (15%) 0.82× 1.11× 1.30× 6.64× 11.31×

(b) Criteo

Table 5.30: Time to converge to duality-gap 1e-5 – 1e-9 for each dataset and speedup of
shuffling compared to the baseline. “–” indicates that the respective duality-
gap was not reached within the test time limit.

Figures 5.27 and 5.28 show the convergence per epoch and over time of this exper-
iment and Table 5.30 summarizes the results. Results indicate that chunk shuffling is
beneficial and reduces the training time significantly, depending on the target duality-
gap. Even when shuffling only 5% of all data chunks per epoch, a speedup of up to
30.4× can be achieved. With 15%, a speedup of up to 55.7× is possible. Only in a single
case (Criteo, 1e-5) is shuffling not beneficial. Table 5.31 lists the data volumes that are
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1e-05 1e-06 1e-07 1e-08 1e-09

baseline 97.8s – – – –

shuffle (5%) 34.5s 63.2s 107.6s 203.1s –

shuffle (10%) 27.3s 46.4s 85.7s 176.3s –

shuffle (15%) 26.2s 45.4s 84.2s 175.3s 359.0s

speedup (5%) 2.83× >5.70× >3.35× >1.77× –

speedup (10%) 3.58× >7.76× >4.20× >2.04× –

speedup (15%) 3.73× >7.94× >4.27× >2.05× >1.00×
(c) KDDA

1e-05 1e-06 1e-07 1e-08 1e-09

baseline 18.7s 86.4s – – –

shuffle (5%) 15.3s 36.7s 68.2s 138.8s –

shuffle (10%) 13.8s 27.7s 53.5s 123.8s –

shuffle (15%) 13.7s 23.0s 49.7s 120.9s –

speedup (5%) 1.22× 2.36× >5.28× >2.59× –

speedup (10%) 1.36× 3.11× >6.73× >2.91× –

speedup (15%) 1.36× 3.75× >7.25× >2.98× –

(d) Webspam

Table 5.30: Time to converge (continued) to duality-gap 1e-5 – 1e-9 for each dataset and
speedup of shuffling compared to the baseline. “–” indicates that the respective
duality-gap was not reached within the test time limit.
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Figure 5.27: Convergence of the duality-gap (lower is better) over epochs using the chunk
shuffle policy with 5%, 10% and 15% of chunks shuffled during each epoch
and the baseline, without shuffling, as reference.
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Figure 5.28: Convergence of the duality-gap (lower is better) over time using the chunk
shuffle policy with 5%, 10% and 15% of chunks shuffled during each epoch
and the baseline, without shuffling, as reference.
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transferred during each epoch. These volumes do not need to be transferred from a sin-
gle node but are evenly spread across all 16 nodes. Nevertheless, data transfer volumes
pose the biggest issue with this policy. While the auto scale-in policy also transfers data
chunks, it does so only during scale-in events, which are rare, compared to the number
of epochs.

As the plots in Figure 5.28 show, shuffling is only beneficial beyond the knee. A knee
detection has not been implemented for this policy yet, but could be adapted from the
auto scale-in policy.

While global training sample randomization is common in many (rigid) frameworks,
e.g. in PyTorch, this is typically done by loading the entire dataset on all nodes and not
by directly exchanging loaded training data as Chicle does. This has two disadvantages:

� Training data loading can be time-consuming. For instance, it takes ≈11 minutes
to load the entire 25GiB Criteo dataset by Chicle from the widely used SVM data
format [108]. If the training data file is stored on a shared network file system,
it also needs to be transferred to each node, potentially at the same time. Chicle,
instead, loads each training sample only once, reducing data loading overheads,
and further keeps only a single copy of each training sample in memory across
all tasks to reduce memory consumption. However, Chicle’s approach limits the
granularity with which training samples can be shuffled to sets stored in the same
data chunk. Loading all training samples on all nodes allows to shuffle on a per
sample basis.

� Per-sample state, as it exists for CoCoA, needs to be transferred if the training
sample is processed by a different task. In uni-tasks, the data chunk can store
this state and automatcially transfers it along with the training sample, whereas if
training data is loaded from a shared file system, this state needs to be transferred
separately.

Overheads. Continuous data shuffling incurs data transfer overheads. Table 5.31 lists
the amount of data that needs to be transferred during each epoch. The time given in
Table 5.30 includes the data transfer time on the 56Gbps Infiniband network of the test
cluster. In contrast to the auto scale-in policy, where data transfer overheads only incur
twice, data is transferred during each epoch.
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Datasets 5% 10% 15%

Higgs 15.1MiB 30.2MiB 45.3MiB

Criteo 91.8MiB 183.6MiB 275.5MiB

KDDA 15.8MiB 31.6MiB 47.4MiB

Webspam 62.9MiB 125.8MiB 188.7MiB

Table 5.31: Per-epoch and node data transfer volumes during this experiment. Numbers
are accumulated for send and receive.

5.10 Related Work

System year straggler mitigation h/w-hetero.-aware elastic

Cipar et al. [31] 2013 + - -

Ho et al. [34] 2013 + - -

Li et al. [47] 2014 + - +

MXNet [53] 2015 + - -

TensorFlow [51, 62] 2015 + - -

FlexRR [68] 2016 + - -

Proteus [82] 2017 + - +

PyTorch [85] 2017 + - -

Snap ML [103] 2018 - - -

Litz [114] 2018 + - +

Optimus [112] 2018 + - +

Chicle [106] 2018 + + +

Table 5.32: Summary of distributed ML frameworks w.r.t. their ability to address scheduling
challenges.

There is a large body of research that deals with efficient distributed ML training. Ta-
ble 5.32 compares various works w.r.t. which scheduling challenges they address. In the
following, the related work for each scheduling challenge is discussed in more detail.

Hardware-heterogeneity-aware load balancing Hardware-heterogeneity-aware load
balancing is not explicitly addressed in related work on ML training. Heterogeneity in
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related work often refers to the ability to use multiple types of hardware for computa-
tion, such as GPUs, TPUs and other accelerators or to scale from mobile devices to large
compute clusters [53, 51, 62]. The ability to balance load across hardware resources of
different speeds, that are used at the same time, is not addressed in related work.

General-purpose distributed application frameworks, such as Spark, are able to exe-
cute distributed ML training applications and balance load on heterogeneous clusters.
However, they often suffer from lower performance compared to special-purpose ML
frameworks [77, 62, 103], as they are optimized for deterministic, synchronous exe-
cution where tasks cannot explicitly hold state. For these reasons, they fail to exploit
special properties of distributed ML algorithms, such as the ability to tolerate bounded
errors during model updates [114]. A comparison of CoCoA on Spark and on Chicle has
shown that Spark is 13.9× slower than Chicle, in a baseline scenario.

Furthermore, as performance differences between nodes are long-lasting or static,
methods, such as SSP are not suitable to address this issue, as they can only deal with
sporadic, short-term performance fluctuations.

Hardware-heterogeneity-aware load balancing is a primary concern for Chicle and ad-
dressed by the rebalance policy (Section 5.5.1).

Elasticity While being a desirable property in modern compute clouds and shared clus-
ter environments, elasticity has gotten little attention by related work. Notable excep-
tions are Litz [114], which enables elastic distributed ML training on shared clusters
using a micro-task approach and Proteus [82], which enables distributed ML training on
transient, revocable resources by making workers stateless. Stateless workers are advan-
tageous from a scheduler point of view, as no state needs to be transferred when adding
or removing resources, but it also incurs overheads. For instance, in CoCoA, there is a
per-sample state on each task which can amount to ≈368MiB (Criteo).

Optimus [112] is a cluster resource manager for elastic, distributed ML training based
on MXNet [53]. The problem Optimus is addressing is orthogonal to the problems ad-
dressed with uni-tasks and Chicle. Instead of improving the convergence rate and effi-
ciency of an individual training application, Optimus attempts to minimize average job
completion time across all ML training applications sharing a cluster at the same time, by
assigning more or fewer resources to applications. Furthermore, its MXNet based imple-
mentation requires to checkpoint application state to a shared file system (HDFS) and to
restart an application to adjust the resources it is using. Chicle, on the other hand, can
adjust the number of workers (tasks) without the need to checkpoint and restart, which
is beneficial when large amounts of training data have to be loaded or nodes are added
or removed frequently.

While related work extensively studies the impact of the batch size (for mSGD) on the
number of epochs needed to converge [124], it has not been done in the context of elas-
tic scheduling. Peng et al. [112] report that the batch size for mSGD remains constant
during elastic scaling in their approach. The advantage is that convergence per epoch re-
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mains independent of the elastic execution. However, it also either limits scalability (if it
is chosen too small) and resource utilization efficiency (if only few samples are processed
on each worker/task per iteration) or impairs convergence speed per epoch (if it is cho-
sen too large). Chicle, dynamically adjusts the batch size (mSGD/lSGD) and the number
of partitions (for CoCoA) which allows to set both values to maximize convergence per
epoch with any number of nodes. A drawback of Chicle’s approach is, however, that the
number of nodes using during training can influence convergence.

Straggler mitigation Efficient distributed and scalable ML training requires effective
straggler mitigation and is therefore a primary concern for many works. The general
approach chosen by most works is relaxed consistency [23, 19, 25, 34, 43, 47, 82, 114,
104] where workers can run partially asynchronous and therefore don’t have to wait for
a straggler. SSP [31] is one of the most widely used approaches. A drawback of SSP is a
potentially negative impact on per-epoch convergence rate due to additionally introduced
bounded errors. FlexRR [68] improves upon SSP by temporarily reassigning work from
slower workers to faster workers for the remainder of an iteration. This, however, comes
at the cost of extra memory to hold training data assigned to other workers and effectively
restricts the order in which local solvers can process examples to a non-random sequence.
TensorFlow [62] additionally supports synchronous execution with backup workers to
mitigate stragglers, similar to backup workers in MapReduce [6], at the cost of consuming
additional resources. A similar approach is proposed by Karakus et al. [122].

Compared to the straggler mitigation techniques in related work, Chicle’s task preemp-
tion policy does not require additional resources. Furthermore, the evaluation has not
shown a systematic impairment of the per-epoch convergence rate but on the contrary, a
small reduction in the number of epochs needed to converge (Section 5.7.2.2).

Other Many distributed ML training frameworks do not address any of the above men-
tioned issues, such as the original CoCoA implementation [46] and Snap ML [103]. How-
ever, these typically focus on other aspects of the training process, such as optimized
solvers.

5.11 Conclusion and future work

This chapter presented uni-tasks, a novel task execution model for elastic, hardware-
heterogeneity-aware, straggler-mitigating distributed ML training and Chicle, a prototyp-
ical implementation thereof. Two state-of-the-art distributed ML training algorithms, Co-
CoA and lSGD, have been implemented and evaluated w.r.t. their performance in elastic,
heterogeneous and straggler afflicted scenarios. The evaluation showed that uni-tasks,
in comparison to micro-tasks, reduces the total amount of work (number of epochs) nec-
essary for elastic and load balanced training, and therefore utilizes available resources
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more efficiently. A comparison with two rigid state-of-the-art distributed ML training
frameworks furthermore showed that Chicle provides competitive performance. While
the average maximal test accuracy of lSGD on uni-tasks exceeded the highest of what can
be achieved on micro-tasks in many cases, the evaluation also showed that the maximal
test accuracy for lSGD can be impaired by uni-tasks. An investigation into the impact of
uni-tasks and the maximal test accuracy is left for future work.

5.11.1 Applicability and limitations

The uni-tasks concept is expected to be applicable beyond ML training algorithms. All al-
gorithms that exhibit the properties listed in Section 5.2.2 can generally be implemented
on top of uni-tasks. If not all properties are fulfilled, uni-tasks may still have limited
applicability to iterative algorithms. The following list gives an overview over these lim-
itations.

� In order to benefit from uni-tasks’s elasticity, the algorithm needs to allow work
to split up into independent sub-problems of the same or arbitrary size. Due to
Chicle’s synchronous implementation, sub-problems are ideally large.

� In order to benefit from uni-tasks’s load balancing property, algorithms need to
allow work to be split up into independent sub-problems of arbitrary size.

Moreover, the size of the sub-problem p needs to correlate to the time it takes to
solve a sub-problem, i.e., time(p) = size(p) × x + y with x being a factor deter-
mining the time needed to process individual work items and y a constant time
overhead. The closer y is to 0, the more effective load can be balanced with uni-
tasks. For instance, with mSGD, at least for the tested datasets and test cluster, y
is a large constant, making time(p) virtually independent of size(p), for the tested
sub-problem sizes. This makes uni-tasks’s load balancing method, by adjusting the
size of p, less effective.

This, however, is not a real disadvantage of uni-tasks over micro-tasks, as here the
cost for y has to be paid once per task, of which there need to be many in order to
allow load balancing, whereas in uni-tasks, there is only a single one.

� In order to benefit from Chicle’s straggler mitigation method, sub-problems need to
be preemptable without impairing eventual correctness of the final result. Ideally,
sub-problems are preemptable at arbitrary points in time. Similar to before, in con-
trast to lSGD, the current mSGD implementation does not fulfill this requirement.

If some or all of the necessary properties are fulfilled, uni-tasks can be used. Further-
more, it is most beneficial for algorithms that benefit from being executed using a small
number of tasks with access to a large fraction of data, such as ML training. For other
problems, uni-tasks may still provide benefits, as systems based thereon, such as Chicle,
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may reduce system-related overheads, due to a smaller number of tasks compared to
micro-tasks-based systems.

5.11.2 Future work

Chicle serves as proof-of-concept for uni-tasks and several features that can be bene-
ficial in real-world deployments have not been implemented yet. The following (non-
exhaustive) list contains possible future work items:

� Integration and evaluation of GPUs in Chicle is one of the most important future
work items, which, due to lack of GPU resources, could not be done as part of
this work. While GPUs may shift bottlenecks, they are not fundamentally different
from CPUs from a scheduler’s perspective and should therefore work well with uni-
tasks and Chicle. Moreover, the reduced number of tasks of uni-tasks compared to
micro-tasks may prove even more beneficial here, as fewer GPU kernels need to be
started and fewer results collected.

� Investigation and implementation into advanced optimization techniques, such as
automatic learning rate, momentum and batch size adjustment for mSGD and lSGD
to improve convergence speed and maximal test accuracy.

� Scaling the batch size (mSGD/lSGD) and the number of partitions (CoCoA) with
the number of nodes during elastic execution influences the convergence behavior
of the algorithms. While the evaluation (Section 5.6.2) has shown that convergence
rate per epoch as well as (in many cases) maximal test accuracy is not impaired,
this behavior may not always be acceptable. An investigation into the benefits of
limiting the range in which the batch size and the number of partitions can change
as well as the maximal beneficial scale-out level remains for future work.

� Furthermore, while Chicle’s synchronous approach works well for the evaluated
datasets on the test cluster, its efficiency degrades when tasks become very short,
as runtime jitter and other system overheads can become relatively large. A future
investigation into the applicability of asynchronous approaches, such as SSP, may
therefore be worthwhile.

� Fault tolerance and recovery in case of node failures was not addressed as part of
this thesis but can be relevant if training takes hours or days.

� Implementation and evaluation of additional distributed ML algorithms, such as
multinomial logistic regression (MLR) and latent dirichlet allocation (LDA), as well
as an investigation into the applicability of uni-tasks to non-ML algorithms.

Overall, uni-tasks represents a novel, effective and efficient approach to elastic scaling,
load balancing and straggler mitigation for distributed ML training applications. Chicle
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is one of the first distributed, elastic ML frameworks and, to the best of my knowledge,
the only one that also supports load balancing on heterogeneous clusters, which further
increases resource utilization efficiency without compromising application performance.





6. Conclusion

With the advent of cloud computing, the compute infrastructure became shared, virtual-
ized, and heterogenous. As a result, the performance of cloud-provided compute services
is less predictable. New cluster scheduling techniques apply elasticity and heterogeneity
awareness to mitigate this problem, while at the same time aiming at improving cloud
resource utilization.

Modern distributed application frameworks, such as Apache Spark, rely on micro-tasks
as a scheduling technique to address heterogeneity, and to enable elastic execution in
shared environments. Since executing each micro-task as a separate process would incur
prohibitive overheads, long running task executor processes are used to partially amortize
startup costs across many tasks. While breaking up work into many micro-tasks enables
natural load balancing on heterogeneous clusters, each additional task also incurs some
additional overhead which reduces overall resource utilization efficiency.

Unfortunately, current schedulers do not consider an important property of these ex-
ecutors: Over their lifetime, executors accumulate state. Just-In-Time (JIT) compilers
translate interpreted code into native code to accelerate execution of subsequent tasks
and data is cached such that future accesses can be served quicker. Ignoring this property
leads to sub-optimal scheduling decisions.

In Chapter 3, methods to improve scheduling of individual applications on hetero-
geneous clusters were examined and the impact of various factors on the task runtime
analyzed. During this analysis, the importance of the executor state on task runtime
was recognized. A new scheduling technique, stage packing, that exploits this state to
reduce task and application runtime, was devised. Stage packing was implemented in
HCL-SP, a state-, directed acyclic graph (DAG)-, task- and hardware-heterogeneity-aware
scheduler, and integrated into Spark. Using machine learning (ML) techniques to predict
task runtimes as well as simple rules to select nodes classes on heterogeneous clusters
were integrated. The evaluation has shown that application runtime on heterogeneous
clusters can be reduced by ≈1.4× while resource utilization was tripled.

However, executors were still idle for two thirds of the time. To address this issue,
executors needed to be shared efficiently across applications. This was addressed in
Chapter 4, where executor sharing overheads were analyzed and quantified. Based on
the findings, a new resource manager and elastic application scheduler, Mira, has been
developed and integrated into Spark. Mira treats executors as resource which can be
shared across applications in milliseconds instead of seconds. As executors are not shut
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down anymore, their accumulated state remains intact and task execution is accelerated.
The evaluation has shown that Mira almost doubles the speed of applications in a shared
environment and increase resource utilization to 96.50%. This demonstrates the im-
portance of efficient resource sharing and the ability of application frameworks to scale
elastically in order to do so.

For one important class of applications, however, elastic execution remains a chal-
lenge. In recent years, ML technologies, that powers today’s pervasive digital assistants,
recommendation systems, social networks and more have emerged. Distributed iterative-
convergent ML training algorithms allow to analyse vast amounts of data that these
technologies rely on. Algorithms such as Mini-batch SGD (mSGD) for the training of
neural networks (NNs), however, have peculiarities that make the micro-task approach
less efficient: Splitting up the training process into arbitrarily small tasks impairs their
efficiency on an algorithmic level and can increase the total amount of work that needs
to be performed to achieve the same result. In consequence, only few elastic and no
hardware-heterogeneity-aware distributed ML training frameworks exist.

In Chapter 5, a new execution model for iterative-convergent distributed ML training
algorithms, uni-tasks, and Chicle, an implementation thereof, are presented. Instead of
scheduling tasks, uni-tasks schedules small chunks of training data that can be moved
across and recombined on nodes. In consequence, the number of tasks equals the num-
ber of nodes, which allows the training algorithm to work at maximal efficiency with
any number of nodes. Chicle uses task runtime prediction to balance load across nodes
of heterogeneous clusters and redistributes data chunks to elastically scale in and out.
Furthermore, Chicle implements a novel straggler mitigation technique based on task
preemption. The evaluation of two state-of-the-art algorithms, Communication-efficient
distributed dual Coordinate Ascent (CoCoA) and Local SGD (lSGD) has shown that with
uni-tasks, the number of epochs needed to converge is reduced by up to one order of
magnitude compared to micro-tasks. Chicle also performs competitively in non-elastic
scenarios on homogeneous clusters, as a comparison with two state-of-the-art ML frame-
works has shown. Chicle achieves an average speedup of 1.9× and 1.3× depending on
the training algorithm.

6.1 Outlook and future work

The work presented here has touched many aspects of scheduling, resource management
and execution for data-analytics as well as machine learning applications. While many
issues have been addressed, new ones were identified during the course of this work. The
importance of the scale-out level for distributed execution and the resource utilization
efficiency thereof has been recognized. The resource scale-out factor mechanism in Mira
addresses this aspect but a policy to determine the optimal value has yet to be devised.

The work on uni-tasks and Chicle has touched many aspects that could not all be ad-
dressed as part of this thesis. While the evaluated algorithms cover some of the most
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important and often used algorithms, several other potential algorithms, such as Multi-
nomial Logistic Regression (MLR), Latent Dirichlet Allocation (LDA) and others exist
that may benefit from uni-tasks. Furthermore, additional algorithm-specific optimiza-
tions similar to the presented auto scale-in and continuous shuffling policies may exist
for other algorithms. Beyond ML, uni-tasks and Chicle may have applications for instance
with graph algorithms, such as page rank and others that can benefit from few large tasks
instead of many small ones and fulfill the general assumptions made by uni-tasks (Sec-
tion 5.3.1).

In the near and medium term, the integration of techniques developed during this work
into commercial products is also planned.





A. Appendix

A.1 HCL

A.1.1 HCL-SP Representational State Transfer (REST) interface

HCL-SP implements a programming-language agnostic REST interface which is acces-
sible via a built-in Hypertext Transfer Protocol (HTTP) server and accepts and returns
data encoded in the text-based JavaScript Object Notation (JSON) data format. REST
and JSON are already used within Spark, e.g., to communicate with the YARN resource
manager (RM) and a new connector for HCL-SP has been implemented inside the Hcl-

SchedulerClient.

URL Event types

/apps/{app} Application-events for the application
with the id {app}. Application ids are
unique. Table A.2 lists all events of this
type.

/apps/{app}/jobs/{job} Job events for the job with the id {job}

of application {app}. Job ids are unique
within each application. Table A.3 lists
all events of this type.

/apps/{app}/stages/{stage} Stage events for the stage with the id
{stage} of application {app}. Stage ids
are unique within each application. Ta-
ble A.4 lists all events of this type.

/apps/{app}/stages/{stage}/tasks/{task} Task events for the task with the id
{task} of stage {stage} of application
{app}. Task ids are unique within their
stage. Table A.5 lists all events of this
type.

Table A.1: HCL-SP’s REST interface hierarchy.
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All events include an event field that specifies the event and a timestamp field that
specifies the time the event was generated in microseconds. The meaning of the former
is only unique in combination with the event type. In the following, all available events
for each event type are listed:

Event Description

start Application submitted: A new application with the given id {app}

is submitted. The {app} is a unique identifier of the application in-
stance. This event contains the following additional fields:

� name: Name of the application. This field is the same for all
instances of an application.

end Application finished: An application has finished. This event con-
tains no additional fields.

Table A.2: List of HCL-SP’s application events.
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Event Description

submit Submit job: A new job is added to the application. This event con-
tains the following additional fields:

� stages: List of stages in this job and their dependencies.

The stages list contains the following fields:

� id: Unique stage id.

� parents: List of parent stage ids.

� size: Number of tasks in this stage.

� type: Type of stage, can be load or compute to specify whether
a task gets its input data from a file system or consumes inter-
mediate results from a previous stage as input data.

� function: String of function executed in this stage, e.g.
“persist at SQLTest.scala:118”.

� key: Stable ID to identify this stage across instances of this
application.

� input: List of key-value pairs specifying the location (node)
and the amount of input data (if available), e.g., {“node01” :

“1024”} to specify that 1024 bytes of input data is located on
node01. This data is only available at this point for stages of
type load.

Table A.3: List of HCL-SP’s job events.

Event Description

ready Stage ready: A stage is ready to be executed. This event contains
the following additional fields:

� input: List of key-value pairs specifying the location (executor)
and the amount of input data. For stages of type compute, input
data location is available at this time.

A stage ready event automatically marks all of its tasks as ready.
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Event Description

finished Stage finished: A stage has finished execution, i.e., all tasks have
been executed. This event contains the following fields:

� status: Can be either succeeded or failed to indicate whether
a stage was executed successfully or not.

Table A.4: List of HCL-SP’s stage events.

Event Description

finished Task finished: A task has finished execution. This event contains
the following additional fields:

� status: Can be either succeeded or failed to indicate whether
a stage was executed successfully or not.

� executor: Id of executor this task was executed on.

� shuffleReadRemote: Amount of shuffle (input) data read from
a remote location.

� shuffleReadLocal: Amount of shuffle (input) data read from
the same node.

� bytesRead: Total number of bytes read (including broadcast
and file system data).

� bytesWritten: Total number of bytes written.

� cpuTime: Total time used to execute the task on the executor.

After a task has finished execution, the client (long) polls on this
connection until HCL assigns another task (or command) for the ex-
ecutor.

Table A.5: List of HCL-SP’s task events.

A.1.2 Test setup

All experiments use the test setup, software and configuration described in the following.
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A.1.2.1 Cluster

Table A.13 lists the test cluster configuration. As I did not have full control over the test
cluster and had to share it with other users and projects, the cluster used a variety of
Linux Distributions and versions. Furthermore, nodes were added and removed during
the lifetime of the cluster, due to upgrades and node failures, hence hardware resources
are heterogeneous.

Node class Quantity CPU Memory OS

1 5 Intel Xeon E5-2650v2, 2.60GHz 160GiB RHEL 7.5

2 2 Intel Xeon E5-2630v3, 2.40GHz 160GiB RHEL 7.5

3 4 (3) Intel Xeon E5-2640v3, 2.60GHz 256GiB Fedora 26

4 4 Intel Xeon E5-2640v3, 1.20GHz 256GiB CentOS 7.5

Table A.6: Test cluster hardware and OS versions.

All nodes are connected by a 56Gbps Infiniband network using a single Mellanox
SX6036 switch. IPoIB was used for inter-node communication.

One node of node class 3 was exclusively used as control node where HCL, HDFS
namenode and YARN master were executed. No executors were executed on the control
node, hence only three nodes of node class 3 run executors.

A.1.2.2 Software

Table A.7 summarizes the software versions used throughout the evaluation.

Software Version

Apache YARN 2.7.3

Apache HDFS 2.8.2

Apache Spark 2.2.1

Oracle HotSpot JVM 1.8.0_144

Table A.7: Software versions.

A.1.2.3 Settings

HCL, YARN’s resource manager as well as HDFS’s nameserver are executed exclusively on
the control node. The HDFS file system is backed by 16 GB ram-disks on each of the 15
compute nodes. HDFS’s balancer was invoked to distribute data across all nodes evenly.
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Each compute node runs at most eight single-user-task executors1 with a maximal heap
size of 8GiB, resulting in a maximum of 112 executors in the cluster.

Parameter Value (default)

spark.shuffle.service.enabled true (false)

spark.sql.shuffle.partitions 56 (200)

spark.default.parallelism 64 (# of CPUs)

spark.serializer KryoSerializer (JavaSerializer)

spark.sql.autoBroadcastJoinThreshold 20971520 (10485760)

spark.executor.cores 1 (1 with YARN)

(a) Spark settings

Parameter Value

XX:MaxHeapSize (driver) 12g

XX:MaxHeapSize (executor) 8g

Garbage collector XX:+UseG1GC

(b) JVM settings

Table A.8: Relevant settings used throughout this evaluation, unless noted otherwise. De-
fault values are given in braces.

Spark settings are the result of performance tuning for vanilla Spark.
spark.shuffle.service.enable=true is not necessary for HCL-SP but has been
chosen to reduce the difference to the Mira setup. For spark.default.parallelism and
spark.sql.shuffle.partitions, a balance between application runtime and resource
utilization has been struck. Details about their impact is shown in Section 2.2.3.2. JVM
settings reflect requirements by the test applications as well as performance tuning
(garbage collector).

A.1.3 Example cluster definition file

”type”:”cluster”,”id”:”example-cluster”,

”graph”: {

”type”:”tree”,

”vertices”: [

{

1Each executor typically spawns multiple background threads for system-related tasks, such as garbage
collection and communication with the Spark driver
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”id”:”node1.example.cluster.org”,

”nodeclass”:”1”,

”architecture”:”x86_64”,

”model”:”Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz”,

”connectors”:[{”id”:”eth0”,”level”:”1”}],

”domains”: [

{

”id”:”0”,

”memory”:”136564400128”,

”cores”: [

{”id”:”0”,”pus”: [”0”,”2”,”4”,”6”,”8”,”10”,”12”,”14”,”16”,”18”,

”20”,”22”,”24”,”26”,”28”,”30”]},

{”id”:”1”,”pus”: [”1”,”3”,”5”,”7”,”9”,”11”,”13”,”15”,”17”,”19”,

”21”,”23”,”25”,”27”,”29”,”31”]}],

”iodevs”: [

{”id”:”45056”,”type”:”storage”,”dev”:”sda”},

{”id”:”16384”,”type”:”gpu”,”dev”:”card0”,”model”:”Nvidia GTX 1080”},

{”id”:”24578”,”type”:”net”,”dev”:”eth0”,”ipv4”:”10.0.0.1/24”,

”bw”:”1000000000”}]

}]

},

// more vertices

]

}

A.1.4 Test applications

Throughout the evaluation of HCL-SP and Mira, a Spark implementation [116] of the
the TPC-DS benchmark suite is used, which “provides a representative evaluation of per-
formance as a general purpose decision support system” [88]. The TPC-DS benchmark
consists of ≈100 Structured Query Language (SQL) queries which vary in complexity,
runtime, amount of processed data, DAG structure, depth and width. Figures A.1 and
A.2 shows the DAG and the task runtime distribution for two queries across the entire
applications as well as across individual stages as example of the variation within the set
of TPC-DS queries.
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(a) TPC-DS query 41 (b) TPC-DS query 44

Figure A.1: Example of the heterogeneity of application DAGs. Both figures show DAGs of
TPC-DS queries. The size of nodes represents the total amount of work (accu-
mulated task runtimes) performed in the corresponding stage. The widths of
arrows corresponds to the amount of data transferred between two stages.
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(b) TPC-DS query 44

Figure A.2: Example of relative normalized task runtime distributions for two TPC-DS
queries. The histograms show two things: The runtime distribution across all
tasks and the runtime distribution within each stage. Stages are color-coded.
The y-axis shows the normalized fraction of tasks on a linear scale.
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Spark’s SQL engine compiles each SQL query into Scala code, which in turn is compiled
into JVM byte code. As different code generated, compiled and executed for each query,
each is be considered a different application.

Due to incomplete changes in Spark’s lineage graph that were required to compute
the stable stage ID, only 90 queries could be executed, as others relied on Resilient Dis-
tributed Dataset (RDD) types for which the computation of the stable ID was infeasible
due to the complexity of the Spark code.

Input data. The input data has been generated using a Spark version of the TPC-DS
data generator utility [129]. The scaling factor parameter has been set to 100, which
corresponds to ≈100GiB of raw table data (≈40GiB in the Parquet file format). All data
was stored in the Parquet data format [117] on a distributed HDFS file system.

A.1.5 Supplemental results

This section provides enlarged plots of Section 3.4.5.5.
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A.2 Mira

A.2.1 Mira REST interface

Mira’s REST interface is based on that of HCL-SP (Section A.1.1) and extends it as de-
scribed in the following.

URL Event types

/apps/{app}/executors/{executor} Assigned executor events for the execu-
tor with the id {executor} that is cur-
rently assigned to application {app}.
Executor ids are unique within an ap-
plication. Executor instances that dis-
connect and reconnect to the same ap-
plication are assigned a new (tempo-
rary) application-specific id. Table A.11
lists all events of this type.

/executors/{executor} Unassigned executor events for the ex-
ecutor with the id {executor} that is
currently unassigned. The executor id
here is stable and identifies the execu-
tor instance. Table A.12 lists all events
of this type.

Table A.9: Mira’s REST interface hierarchy as extension to the HCL-SP REST interface hier-
archy (Table A.1).

All events include an event field that specifies the event and a timestamp field that
specifies the time the event was generated in microseconds. The meaning of the former
is only unique in combination with the event type. In the following, all available events
for each event type are listed:
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Event Description

start Application submitted: A new application with the given id {app}

is submitted. The {app} is a unique identifier of the application in-
stance. This event contains the following additional fields:

� name: Name of the application. This field is the same for all
instances of an application.

� driver: URL to the application driver scheduler interface, e.g.,
spark://CoarseGrainedScheduler@10.0.0.25:40129. The
driver URL is passed to executors to connect to during driver
assignment.

Table A.10: List of Mira’s application events as extension to the HCL-SP application events
(Table A.2).

Event Description

register Register executor: An executor is re-registering itself with an ap-
plication after a previous assignment by the RM. This event contains
the following additional fields:

� host: Name of the host where this executor is running on.

deregistered Deregister executor confirmation: An executor is confirming that
it has removed itself from an application after a previous disconnect
from driver command by the RM. This event contains no additional
fields.

Table A.11: List of Mira’s assigned executor events.

Event Description

register Register executor: An executor is registering itself with the RM and
asks for a application driver (DRV) to connect to. This event contains
the following additional fields:

� host: Name of the host where this executor is running on.
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Event Description

requestDriver Request driver: An unassigned executor is asking for a new driver
assignment after having disconnected from its previously assigned
driver. This event contains no additional fields.

Table A.12: List of Mira’s unassigned executor events.

A.2.2 Test setup

A.2.2.1 Cluster

Node class Quantity CPU Memory OS

1 5 Intel Xeon E5-2650v2, 2.60GHz 160GiB RHEL 7.5

2 2 Intel Xeon E5-2630v3, 2.40GHz 160GiB RHEL 7.5

3 4 (3) Intel Xeon E5-2640v3, 2.60GHz 256GiB Fedora 26

4 4 Intel Xeon E5-2640v3, 2.60GHz 256GiB CentOS 7.5

Table A.13: Test cluster hardware and OS versions.

All nodes are connected by a 56Gbps Infiniband network using a single Mellanox SX6036
switch. IPoIB was used for inter-node communication.

One node of node class 3 was exclusively used as control node where Mira, HDFS
namenode and YARN master were executed. No executors were executed on the control
node, hence only three nodes of node class 3 run executors.

A.2.2.2 Software

The following software versions (Table A.14) are used throughout the evaluation:

Software Version

Apache YARN 2.7.3

Apache HDFS 2.8.2

Apache Spark 2.2.1

Oracle HotSpot JVM 1.8.0_144

Table A.14: Software versions.
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In order to perform detailed performance analysis, Spark’s DAG and task scheduler
(e.g. for executor request, release and registration, task start and finish), as well as execu-
tor (e.g. startup and shutdown, task start and finish) were annotated with time-stamped
log messages. These annotations are present in the vanilla, otherwise unmodified ver-
sion of Spark, as well as in the Mira-integrated version, hence any potential performance
implications thereof affects both versions equally.

A.2.2.3 Settings

Mira, YARN’s resource manager as well as HDFS’s name server are executed exclusively
on the control node. The HDFS file system is backed by 16 GB ram-disks on each of the 15
compute nodes. HDFS’s balancer was invoked to distribute data across all nodes evenly.
Each compute node runs at most eight single-user-task executors2 with a maximal heap
size of 8GiB, resulting in a maximum of 112 executors in the cluster.

Parameter Value

XX:MaxHeapSize (driver) 12g

XX:MaxHeapSize (executor) 8g

Garbage collector XX:+UseG1GC

(a) JVM settings

2Each executor typically spawns multiple background threads for system-related tasks, such as garbage
collection and communication with the Spark driver
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Parameter Value (default)

spark.dynamicAllocation.enabled true (false)

spark.shuffle.service.enabled true (false)

spark.dynamicAllocation.minExecutors 1 (1)

spark.dynamicAllocation.executorIdleTimeout 1s (60s)

spark.sql.shuffle.partitions 56 (200)

spark.default.parallelism 64 (# of CPUs)

spark.serializer KryoSerializer
(JavaSerializer)

spark.sql.autoBroadcastJoinThreshold 20971520
(10485760)

spark.executor.cores 1 (1 with YARN)

(b) Spark settings

Parameter Value (default)

yarn.nodemanager.resource.cpu-vcores 8 (unlimited)

yarn.resourcemanager.scheduler.class CapacityScheduler
(FairScheduler)

yarn...capacity.preemption.total_preemption_per_round 1.0 (0.1)

yarn...capacity.preemption.max_wait_before_kill 1s (15s)

yarn...capacity.preemption.monitoring_interval 1s (3s)

yarn.scheduler.capacity.root.queues background,
foreground (n/a)

yarn.scheduler.capacity.root.background.capacity 50 (n/a)

yarn.scheduler.capacity.root.background.maximum-capacity 99 (n/a)

yarn.scheduler.capacity.root.background.user-limit-factor 2.0 (n/a)

yarn.scheduler.capacity.root.foreground.capacity 50 (n/a)

yarn.scheduler.capacity.root.foreground.maximum-capacity 100 (n/a)

yarn.scheduler.capacity.root.foreground.user-limit-factor 2.0 (n/a)

(c) YARN settings

Table A.15: Relevant settings used throughout this evaluation, unless noted otherwise. De-
fault values are given in braces.



A.2 Mira 241

Settings for Mira are based on those for HCL (Section A.1.2.3) but have been extended
due to enable elastic scaling on Spark and YARN. Maximum background capacity settings
for YARN were necessary as foreground applications would not launch with a value of
100. Furthermore, the resource scale-out factor α for Mira has been set to 1.0 to resemble
vanilla Spark’s behavior.

A.2.3 Test applications

Mira was evaluated using the TPC-DS benchmark suite, which is described in Sec-
tion A.1.4. Additionally, the following micro-benchmarks were used.

A.2.3.1 Application to demonstrate executor acquisition delay

1 def main(args: Array[String]): Unit = {

2 val ss = SparkSession.builder.appName(”TestApp”).getOrCreate()

3 val sc = ss.sparkContext

4

5 acquireExecutors(sc, 110, 10000) // 1. Acquire ’par’ executors

6 }

7

8 def acquireExecutors(sc: SparkContext, par: Int, duration: Int): Unit = {

9 // Build a dummy list with as many entries as executors to acquire. Spark needs to think

10 // it processes data, otherwise it won’t acquire executors. The values are irrelevent.

11 val data = List.newBuilder[Int]

12 for (i <- 0 until par) { data += i }

13

14 // Initiate the parallel execution. For each entry in ’data’, one task is spawned. For

15 // each task, one executor is acquired.

16 val result = sc.parallelize(data.result(), data.result().size).map(v => {

17 val t0 = System.currentTimeMillis()

18 Thread.sleep(duration) // Wait for ’duration’ seconds. It needs to sleep longer than

19 // Spark needs to acquire all executors, otherwise two or more

20 // tasks may be scheduled back-to-back on the same executor.

21 val t1 = System.currentTimeMillis()

22 (t1 - t0) // necessary return value. The specific value is irrelevant.

23 }).collect()

24 }

Listing A.1: Scala code of application to demonstrate executor acquisition delay
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A.2.3.2 Application to measure executor acquisition delay

1 def main(args: Array[String]): Unit = {

2 val ss = SparkSession.builder.appName(”TestApp”).getOrCreate()

3 val sc = ss.sparkContext

4 // Warm-up driver, to make sure all executor acquisition paths in Spark (and YARN, if

5 // used) are initialized and the JIT-cache is warm. We don’t want to measure driver

6 // initialization overheads.

7 for (i <- 1 until 10) {

8 acquireExecutors(sc, 1, 20000)

9 }

10

11 // Wait for 10 seconds to make sure Spark has released all executors again.

12 Thread.sleep(10000,0)

13

14 // Start actual test

15 for (par <- 1 until 110) {

16 acquireExecutors(sc, par, 20000) // 1. Acquire ’par’ executors for 20s each.

17 // The ’acquireExecutors’ function is defined

18 // in Listing A.1.

19 Thread.sleep(10000,0) // 2. Wait for 10 seconds to make Spark release

20 // executors.

21 }

22 }

Listing A.2: Scala code of application to measure executor acquisition delay

A.3 Chicle

A.3.1 Applications

This section presents two state-of-the-art distributed ML training algorithms, Local SGD
(lSGD) (a recent variant of Mini-batch SGD (mSGD)) and Communication-efficient dis-
tributed dual Coordinate Ascent (CoCoA), that have been ported to Chicle.

A.3.1.1 Communication-efficient distributed dual Coordinate Ascent (CoCoA)

CoCoA is a state-of-the-art communication-efficient framework for distributed training of
support vector machines (SVMs), linear and logistic regression, lasso and sparse logistic
regression models [46, 115]. Its stateful solver tasks execute efficient algorithms such as
stochastic coordinate descent (SCD) and stochastic dual coordinate ascent (SDCA) and
highly benefit from having random access to large amounts of data. Here, CoCoA was
implemented with SCD solvers to train SVMs. Other solvers and models can be used as
well by replacing the corresponding functions in CoCoA.
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︸ ︷︷ ︸

H×
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one iteration

local model update
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training sample

1
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∑

global model update

Figure A.7: Conceptual depiction of CoCoA execution. H represents the number samples
processed in each iteration (typically H = 1/K-th of the total training data)
and K is number of tasks.

Figure A.7 depicts the execution of CoCoA. In contrast to stateless mSGD solvers, where
model updates are only applied to the global model after an iteration, in CoCoA, solvers
apply updates to their local model immediately after “learning” from each training sam-
ple. This has the benefit that next samples of the same iteration can already benefit
from learning done during previous samples. This allows CoCoA to identify correlations
between training samples (and therefore “learn”) locally, without the need for global
communication and is also the reason why CoCoA benefits from having random access
to all data on each node.

Implementation

The implementation of CoCoA on Chicle is based on the reference Spark implementa-
tion [125] and uses a CPU-based SCD as local solver to train a SVM. Simplified C++
code of the trainer and solver modules are shown in Listings A.3 and A.5. As CoCoA
solves problems with a primal-dual structure, the duality-gap [46], i.e., the difference
between the primal and dual solution, is used here as metric to determine how well the
algorithm has converged to an optimal solution.

In-Memory Data Chunk Format. For CoCoA, the CoCoAChunk class has been derived
from Chicle’s base Chunk class. CoCoAChunk stores training samples in sparse vectors3. As
sparse vectors are not fixed-sized, direct access to samples is not possible but an addi-
tional redirection step is required to account for variable offsets to each sample in the
chunk. This is realized by a separate samples array with a pointer to the sparse vector for
each training sample. As pointers are only valid within the task context where they were

3A sparse vector implementation was chosen as the evaluated datasets contain sparse one-hot encoded
data. A dense vector implementation is possible as well would and result in a simpler, but less memory
efficient in-memory representation for many of the selected datasets.
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1 void Trainer::run(float target) {

2 do {

3 wait(event::policies_finished); // wait until policies have completed

4 // actions that must not be performed

5 // during an iteration.

6 signal(event::start_iteration); // start next iteration on all workers

7 wait(event::iteration_finished); // wait until all workers have finished

8

9 // The shared vector (model) is updated in the background as each task

10 // finishes the current iteration. At this point, all shared vector updates

11 // have already been applied.

12

13 signal(event::update_shared_vector); // signal workers to update their

14 // shared vector copy.

15

16 float duality_gap = compute_duality_gap(); // compute duality-gap as

17 // metric for convergence (Listing A.4).

18

19 } while (duality_gap > target)

20 }

Listing A.3: Simplified C++ code of CoCoA trainer

1 void Trainer::compute_duality_gap() {

2 // All primal and dual objectives are accumulated in the background.

3

4 wait(event::objectives_updated); // wait until all workers have updated their partial

5 // primal and dual objectives.

6

7 // get the accumulated values.

8 double partial_do = get_partial_dual_objective();

9 double partial_po = get_partial_primal_objective();

10 double final_do = 0.0;

11 double final_po = 0.0;

12

13 int num_ft = get_num_features(); // number of features in the dataset

14 for (int ft = 0; ft < num_ft; ft++) {

15 final_do += shared_vector[ft] * shared_vector[ft];

16 }

17

18 final_po = final_do / (lambda * lambda); // lambda = 0.01 in the experiments.

19

20 final_do = ((final_do / (2.0 * lambda)) - partial_do) / get_num_examples();

21 final_po = ((final_po * (0.5 * lambda)) + partial_po) / get_num_examples();

22

23 double duality_gap = final_do + final_po;

24 }

Listing A.4: Simplified C++ code of CoCoA trainer duality-gap computation.
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1 void Solver::run(Dataset* dataset) {

2 // ’done’ and ’preempt’ are set via RPCs by the trainer to indicate that training

3 // or the current iteration is finished.

4

5 double* shared_vector = get_model(); // get initial copy of the shared vector

6

7 while (!done) {

8 wait(event::iteration_started);

9

10 int num_samples_processed = 0;

11 int num_samples = dataset->get_num_samples(); // # of local samples

12

13 while (num_samples_processed < num_samples && !preempted) {

14 Sample *sample = get_next_sample(); // randomly select next sample from all data

15 // chunks. Samples do not repeat within one

16 // epoch.

17

18 // Perform local training step with the SCD/SVM solver. The shared_vector

19 // constitutes a valid update after each iteration of this loop (see Listing A.6).

20 local_solver_method(shared_vector, sample);

21

22 num_samples_processed++;

23 }

24

25 // Update shared vector and signal that iteration is finished. Tell trainer how

26 // many samples have been processed and how many should have been processed.

27 send(shared_vector, num_samples_processed, num_samples);

28 signal(event::iteration_finished);

29

30 // Compute partial dual objective: O(S) with S = number of samples across all data

31 // chunks on this node (see Listing A.7).

32 double delta_dual_objective = compute_dual_objective();

33

34 // Wait until the trainer as collected and merged all updates to the shared

35 // vector, then pull latest version.

36 wait(event::update_shared_vector);

37 shared_vector = get_model();

38

39 // Compute partial primal objective: O(S * F) with S as above and F = number of

40 // features (see Listing A.8).

41 double delta_primal_objective = compute_primal_objective();

42

43 // Send primal and dual objectives to the trainer so that it can compute the

44 // duality-gap.

45 send(delta_primal_objective, delta_dual_objective);

46 signal(event::objectives_updated);

47 }

48 }

Listing A.5: Simplified C++ code of CoCoA solver
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1 void Solver::local_solver_method(double* shared_vector, Sample* ex) {

2 double dp = 0.0;

3 double norm = 0.0;

4

5 for (int i = 0; i < ex->size; i++) {

6 int ft = ex->data[i].feature;

7 double val = ex->data[i].value;

8 dp += val * shared_vector[ft];

9 norm += val * val;

10 }

11

12 double label = ex->label;

13 double delta = (lambda * label - dp) / sigma / norm;

14 double alpha = ex->state + delta;

15 double ulim = (label == +1.0) ? 1.0 : 0.0;

16 double llim = (label == +1.0) ? 0.0 : -1.0;

17

18 alpha = fmax(fmin(alpha, ulim), llim);

19 delta = alpha - ex->state;

20 ex->state += delta;

21 delta *= sigma;

22

23 for (int i = 0; i < ex->size; i++) {

24 int ft = ex->data[i].feature;

25 double val = ex->data[i].value;

26

27 shared_vector[ft] += val * delta;

28 }

29 }

Listing A.6: Simplified C++ code for the local SCD solver. Based on the CoCoA reference
implementation [125].

1 double compute_dual_objective()

2 {

3 double result = 0.0;

4

5 for (Chunk* chunk : chunks) {

6 for (Sample* ex : chunk->examples()) {

7 result += ex->state * ex->label;

8 }

9 }

10

11 return result;

12 }

Listing A.7: Simplified C++ code to compute the dual objective.
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1 double compute_primal_objective()

2 {

3 double result = 0.0;

4

5 for (Chunk* chunk : chunks) {

6 for (Sample* ex : chunk->examples()) {

7 double dp = 0.0;

8 for (int k = 0; k < ex->width(); k++) {

9 long feature = ex->data[k].feature;

10 double value = ex->data[k].value;

11 dp += (shared_vector[feature] / lambda) * val;

12 }

13 result += std::max(0.0, 1.0 - (ex->label * dp));

14 }

15 }

16

17 return result;

18 }

Listing A.8: Simplified C++ code to compute the primal objective.

created, the restore() method of CoCoAChunk restores the samples array. Furthermore,
SCD requires a single state value for each training sample. As a sample is moved from
one node to another, this state has to be moved as well. In CoCoAChunk this problem is
addressed by storing the state value within the chunk such that it is automatically trans-
ferred by Chicle if the sample (via the chunk) is transferred to another node, i.e., chunks
do not have to be read-only but can contain mutable state. As with Chunk, the assumption
is that the in-memory layout of the CoCoAChunk data structure is identical on all nodes
and that no (de-)serialization (other than what was already mentioned) is required. The
CoCoAChunk data structures is shown in Listing A.9.

A.3.1.2 Mini-batch and Local Stochastic Gradient Descent (SGD)

The second application that has been ported to Chicle is Local SGD (lSGD) [109], a
recent variant of Mini-batch SGD (mSGD) algorithm, arguably the most widely used
distributed ML training algorithm. Both algorithms are mainly used for the training of
neural network (NN) variants, such as convolutional neural network (CNN), deep neural
network (DNN) and recurrent neural network (RNN).
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1 struct Datapoint {

2 uint32_t feature; // sparse vector entry index

3 float value; // sparse vector entry value

4 }

5

6 struct Sample {

7 uint32_t size; // number of datapoints

8 float label; // ground truth for this sample

9 double state; // per-sample state

10 Datapoint *data; // sparse vector

11 }

12

13 class CoCoAChunk : public Chunk {

14 // all methods listed in Table 5.1 need to be implemented.

15

16 size_t size; // sizeof(data)

17 char *data; // contiguous memory region containing all data, i.e.,

18 // model, samples, datapoints

19 size_t num_samples; // number of samples

20 Sample *samples; // pointers to samples in the ’data’ array.

21 }

Listing A.9: CoCoAChunk structure used by Chicle’s CoCoA implementation for storing sparse
vectors and per sample state.

︸ ︷︷ ︸

H×
︸ ︷︷ ︸

one iteration

local model updateL× training sample

K× 1
K

∑

global model update

Figure A.8: Conceptual depiction of mSGD and lSGD. The difference between mSGD and
lSGD is that the former sets H = 1, i.e., does not perform any local model
updates, while the latter sets H > 1, i.e., does locally update the model after
independently processing L training samples.

Figure A.8 shows a conceptual representation of mSGD and lSGD.

� In mSGD, H = 1 and K×L samples (=mini-batch size) are processed independently.
Updates are only applied to the global model.

� In the lSGD variant, H > 1 and local updates are applied to local models after L
training samples. Global updates occur after K × H × L samples (= global batch
size). Similar to SCD solvers in CoCoA, this allows the training algorithm to benefit
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from learning done on previous training samples in the same iteration and can
reduce the number of communication steps (iterations) necessary to converge.

Both variants use the same local solver algorithm (SGD), hence lSGD with H=1
is mSGD.

The number of training samples processed per iteration is K ×H × L in both cases. In
both cases, L training samples are processed independently. Typically, L > 1 is chosen
(e.g., L = 16) to take advantage of hardware parallelism on worker nodes and to amor-
tize overheads (e.g. for communication and synchronization) across multiple training
samples.

Implementation

The Chicle implementation of mSGD and lSGD is based on libtorch, the C++ backend
library of PyTorch [85], that implements various ML algorithms. For instance, it provides
implementations for forward and backward propagation for NNs networks, facilities to
construct NNs, the SGD algorithm as well as the Tensor class4 used by all provided algo-
rithm implementations. Furthermore, libtorch provides CPU and GPU implementations
of ML training algorithms which would allow Chicle utilizing GPUs.

Simplified C++ code of the trainer and solver modules are shown in Listing A.10 and
Listing A.11.

1 void Trainer::run(float target) {

2 do {

3 wait(event::policies_finished); // wait until policies have completed

4 // actions that must not be performed

5 // during an iteration.

6 signal(event::start_iteration); // start next iteration on all workers

7 wait(event::iteration_finished); // wait until all workers have finished

8

9 // the model is updated in the background as each task finishes the

10 // current iteration.

11

12 float accuracy = compute_test_accuracy(); // compute test accuracy as

13 // metric for convergence

14

15 } while (accuracy < target)

16 }

Listing A.10: Simplified C++ code of the mSGD and lSGD trainer.

4Tensors store vectors and matrices.
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1 void Solver::run(Dataset *dataset) {

2 // ’done’ and ’preempt’ are set via RPCs by the trainer to indicate that training

3 // or the current iteration is finished.

4

5 while (!done) {

6 wait(event::iteration_started);

7 Model* model = get_model(); // fetch latest global model

8

9 int L = get_L(); // number of samples to process independently

10 int H = get_H(); // number of independent sample sets to process sequentially.

11 // H=1 for mini-batch SGD and H>1 for local SGD.

12

13 int num_samples_processed = 0;

14 int num_samples = H * L; // number of sample to process.

15

16 // The PyTorch API does not allow to efficiently train individual samples but

17 // requires samples to be pre-grouped into ’Tensor’ objects that contain the

18 // intended number of samples ’L’. dataset->restore(L) checks the correct

19 // grouping and regroups samples, if necessary (i.e., if ’L’ changes).

20 dataset->restore(L);

21

22 // without the following while loop, local SGD degrades to mini-batch SGD.

23 for (int i = 0; i < H && !preempted; i++) {

24 torch::Tensor *sample = get_next_sample(); // randomly select next sample.

25 // ’sample’ actually contains ’L’

26 // training samples, pre-grouped

27 // as required by libtorch.

28

29 // Forward propagation

30 torch::Tensor output = model->forward(sample->data);

31 // Compute loss (prediction error)

32 torch::Tensor loss = torch::loss(output, sample->target);

33 // Backward propagation

34 loss.backward();

35 // Update local model

36 sgd.step();

37

38 num_samples_processed += L;

39 }

40

41 // Push model updates and signal that the iteration is finished. Tell trainer

42 // how many samples have been processed and how many should have been

43 // processed.

44 send(shared_vector, num_samples_processed, num_samples);

45 signal(event::iteration_finished);

46 }

47 }

Listing A.11: Simplified C++ code of the mSGD and lSGD solver.
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In-Memory Data Chunk Format. For mSGD and lSGD based on PyTorch, the PyChunk

has been derived from Chicle’s base Chunk class. PyChunk stores data such that it can be
used with PyTorch’s native Tensor objects. This is enabled by the fact that Tensor objects
already store their data in a contiguous memory region and provide accessor functions
to this memory where training samples are laid out back-to-back.

Furthermore, Tensor objects can be constructed from externally managed copies of
that memory without the need to copy the data during construction. Moreover, train-
ing samples from multiple Tensor objects can be merged into a single Tensor object or
split up into multiple Tensor objects without the need to copy or transform data. This
allows efficient storage and transfer of training samples using the mechanisms provided
by Chicle.

1

2 struct Sample {

3 torch::Tensor data; // tensor containing training data

4 torch::Tensor label; // tensor containing labels, i.e., ground truth.

5 }

6

7 class PyChunk : public Chunk {

8 // all methods listed in Table 5.1 need to be implemented.

9

10 void restore(int L);

11

12 size_t size; // sizeof(data)

13 char *data; // contains all data (samples ’data’ and ’label’)

14 size_t num_samples; // number of samples

15 int[4] dimensions; // dimensions of the stored tensor objects: number of

16 // samples per tensor + 3 spacial dimensions.

17 Sample *samples; // pointers to samples which are backed by memory in the

18 // ’data’ array. The ’samples’ array itself is stored outside

19 // of the chunk memory and is therefore not transmitted.

20 }

Listing A.12: PyChunk class used by mSGD and lSGD to store PyTorch Tensor objects.

The PyChunk::restore(int L) method is called by the receiving task to construct
Tensor objects from the training samples stored in the chunk. As PyTorch requires mul-
tiple training samples to be pre-grouped for efficient training, each Tensor object is con-
structed such that it contains L training samples, corresponding to the L parameter of
mSGD and lSGD. Furthermore, the samples and dimensions arrays are restored.

CNNs used in the evaluation

A simple CNN with Rectified Linear Unit (ReLU) activation, composing of two convolu-
tional layers with max-pooling, followed by 3 fully connected layers was used throughout
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the evaluation. This CNN was adjusted for the specific dataset for the number of color
channels and image dimensions.

Listings A.13 and A.14 show the source code that defines both CNNs used for the
CIFAR-10 and Fashion-MNIST datasets respectively. The source code is based on https:

//pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html.

1 class Net(nn.Module):

2 def __init__(self):

3 super(Net, self).__init__()

4 self.conv1 = nn.Conv2d(3, 6, 5)

5 self.pool = nn.MaxPool2d(2, 2)

6 self.conv2 = nn.Conv2d(6, 16, 5)

7 self.fc1 = nn.Linear(16 * 5 * 5, 120)

8 self.fc2 = nn.Linear(120, 84)

9 self.fc3 = nn.Linear(84, 10)

10

11 def forward(self, x):

12 x = self.pool(F.relu(self.conv1(x)))

13 x = self.pool(F.relu(self.conv2(x)))

14 x = x.view(-1, 16 * 5 * 5)

15 x = F.relu(self.fc1(x))

16 x = F.relu(self.fc2(x))

17 x = self.fc3(x)

18 return F.log_softmax(x, dim=1)

Listing A.13: Python/PyTorch code that defines the CNN used for the CIFAR-10 dataset.

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html


A.3 Chicle 253

1 class Net(nn.Module):

2 def __init__(self):

3 super(Net, self).__init__()

4 self.conv1 = nn.Conv2d(1, 20, 5, 1)

5 self.pool = nn.MaxPool2d(2, 2)

6 self.conv2 = nn.Conv2d(20, 50, 5, 1)

7 self.fc1 = nn.Linear(4*4*50, 120)

8 self.fc2 = nn.Linear(120, 84)

9 self.fc3 = nn.Linear(84, 10)

10

11 def forward(self, x):

12 x = self.pool(F.relu(self.conv1(x)))

13 x = self.pool(F.relu(self.conv2(x)))

14 x = x.view(-1, 4*4*50)

15 x = F.relu(self.fc1(x))

16 x = F.relu(self.fc2(x))

17 x = self.fc3(x)

18 return F.log_softmax(x, dim=1)

Listing A.14: Python/PyTorch code that defines the CNN used for the Fashion-MNIST
dataset.

A.3.2 Description of minor experiments

This section contains brief descriptions for minor experiments of which results are used
in the main chapter but haven’t been described there.

A.3.2.1 Experiments for Figure 5.1a

The data for this plot was generated using PyTorch and the CNN in Listing A.13 on the
CIFAR-10 dataset [10]. The training was performed on a single node with mini-batch
sizes of 2n, with n = 3 . . . 11. Training was considered complete once a test accuracy of
61% had been reached. This test accuracy represents the highest test accuracy that was
achieved with all mini-batch sizes. The plotted data represents the average number of
epochs to converge over 5 training runs for each mini-batch size.

A.3.2.2 Experiments for Figure 5.1b

The data for this plot was generated using CoCoA on Chicle on the Criteo dataset [70]
with 16, 32 and 64 data partitions on 16 nodes. Apart from that, the test setup was as
described in Section A.3.3. The plotted data represents the average number of epochs to
converge over 5 training runs for each partition size.
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A.3.2.3 Experiments to evaluate the performance of CoCoA on Spark

Spark is not considered a competitive ML training framework here and not used to com-
pare Chicle against. Dünner et al. [103] have compared Sanp ML against Spark and
various other distributed ML training frameworks and shown its inferior performance,
albeit using test setups that are not directly comparable. In order to confirm the qualita-
tive statement, that Spark is significantly slower than a C++/MPI-based implementation
of CoCoA, the CoCoA reference implementation for Spark [125] is used to train the same
four datasets (Table A.18) on the same 16-node test cluster as Chicle (Section A.3.3).
The same vanilla Spark version (Section A.1.2.2) and settings (Section A.1.2.3) as in the
HCL evaluation was used. As the reference CoCoA implementation was written for an
older version of Spark with a slightly different API, minor syntactic changes had to be
implemented.

This evaluation compares the iteration time of CoCoA on Spark with CoCoA on Chicle.
Results are shown in Table A.16.

Dataset Chicle Spark Difference

Higgs 186ms 2022ms 10.9×

Criteo 1834ms 12501ms 6.8×

KDDA 1336ms 30707ms 23.0×

Webspam 1804ms 26584ms 14.7×

Table A.16: Iteration runtime comparison of CoCoA on Chicle and on Spark.

The evaluation results confirm that Spark is significantly (up to 23.0×) slower than
Chicle, which makes a fair comparison of uni-tasks vs. micro-tasks impossible.

The reasons for the lower performance of Spark are manifold and include the use of
interpreted languages (Scala), data serialization, copy and transfer overhead and inher-
ent properties of Spark’s execution model. For instance tasks in Spark cannot explicitly
retain state across iterations. Any state that needs to be retained has to be transferred to
the driver and broadcast back to tasks for next iteration. In the case of CoCoA, there is
per-sample state (one double value) that is only read and updated by the task that pro-
cesses a specific sample. As tasks process the same samples in every iteration, this state
could remain local. In this experiment, the size of the state ranges from 2.8MiB (Web-
spam) to 368MiB (Criteo). In Chicle, it is stored as part of the data chunk and remains
local, except if the data chunk is moved to another task, which happens rarely.

Similar observations w.r.t. the performance of Spark for ML training have also been
made for other algorithms [77, 62].
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A.3.3 Test setup

All Chicle experiments use the test setup described in the following.

A.3.3.1 Cluster

Table A.17 lists the test cluster configuration. As I did not have full control over the test
cluster and had to share it with other users and projects, the cluster used a variety of
Linux Distributions and versions. Furthermore, nodes were added and removed during
the lifetime of the cluster, due to upgrades and node failures, hence hardware resources
are heterogeneous.

Node class Quantity CPU Memory OS

1 5 Intel Xeon E5-2650v2, 2.60GHz 160GiB RHEL 7.5

2 4 Intel Xeon E5-2630v3, 2.40GHz 160GiB RHEL 7.5

3 5 Intel Xeon E5-2640v3, 2.60GHz 256GiB Fedora 26

4 4 Intel Xeon E5-2640v3, 2.60GHz 256GiB CentOS 7.5

Table A.17: Test cluster hardware and OS versions.

Due to difficulties deploying the libtorch dependency of Chicle and PyTorch across all
given OS versions, Chicle and the PyTorch reference application were executed inside
Docker containers [49], with a Fedora 28 base image, during all experiments. Due to
Message Passing Interface (MPI) deployment issues, the Snap ML reference application
was run on the host OS and not inside Docker containers.

All nodes are connected by a 56Gbps Infiniband network via a single Mellanox SX6036
switch. A single control node (from node class 3) runs the Chicle driver and does not
participate in any distributed computation. No GPUs were available.

For load balancing tests, all nodes of node class 4 have been slowed down to 1.20GHz.
Nodes of other node classes did not allow the manual adjustment of the CPU frequency
due to their configuration.

A.3.3.2 Datasets

CoCoA. Table A.18 lists all datasets used in the evaluation of CoCoA. All datasets were
acquired from the libsvm project [108] and selected according to the following critea:

� Size: The largest datasets that still fit inside a single node’s memory have been
chosen. This is a limitation of Chicle’s data loader.

� Preprocessing: Only datasets that did not require preprocessing, e.g., unsuper-
vised label learning, have been selected.
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� Density: The selected datasets contain such with dense and sparse vectors.

Dataset Samples Features In-mem. size File size Chunks Density

Higgs [41] 11M 28 2.5GiB 7.4GiB 1209 92.11%

KDDA [16] 8.4M 20M 2.6GiB 2.5GiB 1263 1.8e-04%

Webspam [4] 350k 17M 10GiB 24.0GiB 5032 0.02%

Criteo [70] 46M 1M 15GiB 25.0GiB 7346 3.9e-3%

Table A.18: Overview of datasets used in the evaluation of CoCoA.

lSGD/mSGD. Datasets used in all lSGD and mSGD experiments are listed in Table A.19.
Datasets have been selected as they are commonly used in ML publications [62, 114, 112,
124] and still trainable without GPUs within the test time limit (6 minutes) (which, for
instance, excludes the also widely used imagenet dataset).

Dataset # Samples # Features # Cat. Size # Chunks

CIFAR-10 [10] 50 k / 10 k 3072 10 586MiB 2381

Fashion-MNIST [89] 60 k / 10 k 784 10 180MiB 723

Table A.19: Overview of datasets used in the evaluation of mini-batch SGD with number of
training/test samples, number of features and categories, as well as the total
in-memory size of all training samples and number of data chunks used to store
them.

A.3.4 Supplemental implementation information

This section lists supplemental implementation-related information, such as APIs, event
description and minor functions that are used but not described in the main chapter.

A.3.4.1 Event bus events

This section lists events handled by the event bus.
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Event Sender Receiver Description

register worker worker trainer,
policies

First event sent from a worker after it
connects to the driver. Contains: worker
name and address.

worker registered trainer trainer,
policies

A worker has registered itself with the
system. Contains: worker id and name
and address.

worker added trainer trainer,
policies

A worker was added to the current appli-
cation. Contains: worker id.

remove worker resource
manager

trainer,
policies

A worker will be removed from the cur-
rent application. Contains: worker id.

worker removed trainer trainer,
policies

A worker was removed from the current
application. Contains: worker id.

connect to worker trainer solver Directs a solver (worker) to connect
to another solver (worker). Contains:
worker id, worker address.

(a) Worker management

Table A.20: Overview of the most important event types in Chicle, grouped by function.
Sender and receiver modules may coincide as some use the event bus for internal
event signaling and coordination across multiple threads. Continued on page
258.
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Event Sender Receiver Description

dataset loaded trainer trainer,
policies

Notifies policies that the training dataset
has been loaded.

chunk assigned trainer solver,
policies

A data chunk was assigned to a solver
which is supposed to retrieve it. Con-
tains: chunk id, current location of the
chunk

chunk added trainer,
solver

trainer,
solver,
policies

Confirms that a data chunk has been
added to a task. Contains: chunk id, new
location of the chunk

remove chunk trainer solver,
policies

A data chunk should be removed from a
task. Contains: chunk id

all chunks assigned trainer trainer,
policies

Confirms that all data chunks have been
assigned to tasks and that training can
start/continue.

(b) Chunk management

Table A.20: Continued from page 257.
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Event Sender Receiver Description

update shared vec-
tor

trainer solver Direct solver to update the shared vector
(model) from the trainer.

start iteration trainer solver Directs solver tasks to start next itera-
tion. Contains: iteration number as well
as number of samples to process

task finished solver trainer,
policies

A task has finished the current iteration.
Contains: task id, iteration number, num-
ber of processed samples, percentage of
completed samples, task runtime.

finish iteration policy solver Instructs a solver to finish the current
iteration and return the latest results.
Used by the preemption policy to miti-
gate stragglers.

iteration finished trainer trainer,
policies

Current iteration has finished. Contains:
iteration number.

epoch finished trainer trainer,
policies

Current epoch has finished. Contains:
epoch number.

(c) Training coordination

Table A.20: Continued from page 258.

A.3.4.2 Communication subsystem API

Table A.21 lists the API of the communication subsystem used in Chicle. For each peer
(trainer, worker), there is one endpoint instance, which defines the source and destina-
tion for each API call.
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Method Description

struct ibv_mr* register(char*

region, size_t size)

Registers a memory region with the remote
direct memory access (RDMA) subsystem for
one-sided transfers. Returns a pointer needed
to manage the region and initiate one-sided
operations.

void deregister(struct ibr_mr

*mr)

De-registers the memory region managed via
mr.

void send(Rpc request) Serialize and send a request rpc.

void respond(Rpc request, Rpc

response)

Serialize and send a response to a prior re-
quest.

void read(OneSidedRpc request,

int worker_id)

Issue a one-sided RDMA read request to
worker worker_id.

Table A.21: Methods provided by Chicle’s communication subsystem.

A.3.4.3 Rebalance (load balancing) policy

This section lists minor functions of the rebalance policy.

1 void addRuntime(Worker* worker, float runtime) {

2 // worker->runtimes is a ring-buffer of size I and represents the sliding window.

3 worker->runtimes.push_back(runtime);

4 // ’median’ computes the median of all values stored in the ring-buffer.

5 worker->medianTaskRuntime = median(worker->runtimes);

6 }

Listing A.15: Simplified C++ code of the rebalance policy’s task runtime prediction
algorithm.
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1 void adjustRuntime(Worker* worker, float runtime) {

2 // Runtime is adjusted for all values in the history such that the new median task

runtime

3 // reflects the to be expected runtime with a changed number of chunks.

4 for (int i = 0; i < I; i++)

5 worker->runtimes[i] += runtime;

6

7 worker->medianTaskRuntime = median(worker->runtimes);

8 }

Listing A.16: Simplified C++ code of the rebalance policy’s task runtime prediction
algorithm.

1 void workerFinishedEventHandler(int iteration, Worker* worker,

2 float completionRate, float runtime) {

3 // Straggler mitigation works by preempting running tasks. A preempted task processed

4 // fewer samples than planned, making the measured runtime misleading. Correct measured

5 // runtime (τk) for the completed fraction (σk) of training samples.

6 float normalizedRuntime = runtime / completionRate; // T ′k =
τk
σk

7

8 // Add latest runtime measurement to the sliding window and update median task runtime.

9 addRuntimes(worker, normalizeRuntime);

10 }

Listing A.17: Simplified C++ code of the rebalance policy’s event handlers.

1 void iterationFinishedEventHandler(int iteration) {

2 // initiate chunk rebalancing, if necessary

3 rebalance();

4

5 // signal trainer that rebalancing has been done and it can start the next iteration.

6 }

Listing A.18: Simplified C++ code of the rebalance policy’s event handlers.
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