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ABSTRACT: Soil loss caused by erosion has enormous economic and social impacts. Splash effects of rainfall are an important
driver of erosion processes; however, effects of vegetation on splash erosion are still not fully understood. Splash erosion processes
under vegetation are investigated by means of throughfall kinetic energy (TKE). Previous studies on TKE utilized a heterogeneous set
of plant and canopy parameters to assess vegetation’s influence on erosion by rain splash but remained on individual plant- or plot-
levels. In the present study we developed a method for the area-wide estimation of the influence of vegetation on TKE using remote
sensing methods. In a literature review we identified key vegetation variables influencing splash erosion and developed a conceptual
model to describe the interaction of vegetation and raindrops. Our model considers both amplifying and protecting effect of vegeta-
tion layers according to their height above the ground and aggregates them into a new indicator: the Vegetation Splash Factor (VSF).
It is based on the proportional contribution of drips per layer, which can be calculated via the vegetation cover profile from airborne
LiDAR datasets. In a case study, we calculated the VSF using a LiDAR dataset for La Campana National Park in central Chile. The
studied catchment comprises a heterogeneous mosaic of vegetation layer combinations and types and is hence well suited to test
the approach. We calculated a VSF map showing the relation between vegetation structure and its expected influence on TKE. Mean
VSF was 1.42, indicating amplifying overall effect of vegetation on TKE that was present in 81% of the area. Values below 1 indicat-
ing a protective effect were calculated for 19% of the area. For future work, we recommend refining the weighting factor by calibra-
tion to local conditions using field-reference data and comparing the VSF with TKE field measurements. © 2020 The Authors. Earth
Surface Processes and Landforms published by John Wiley & Sons Ltd
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Introduction

Soil erosion is a natural process that is sensitive to changes of
land use and climate. In areas with intensive agricultural cul-
tivation enormous economic and social consequences can
arise from disturbed soil erosion dynamics (Morgan, 2005). In-
creased soil erosion can result in nutrient leaching, declining
crop yields, reduced biodiversity or decreasing soil filtering
functions with potential effects on water resources
(Giambelluca et al., 2009). Furthermore, soil erosion can re-
duce the water retention capacity and hence increase flood
risk (Morgan, 2005; Hiraoka and Onda, 2012). In its undis-
turbed condition, soil is typically resistant against transport
processes. Consequently, the initial process of soil erosion is
disturbance, or more precisely the disintegration of soil aggre-
gates by bioturbation, wetting–drying processes, freeze–thaw
cycles or splash effects caused by raindrops (Arnalds, 2000;

Geißler, 2011). This results in loose soil particles, which are
more prone to transport processes driven by water or wind
(Panagos et al., 2015). Splash erosion is disintegrating soil ag-
gregates by impacting drops of water and initiating their short-
range transport (Morgan, 2005; Blanco-Canqui and Lal,
2008). In the literature, splash erosion has been described as
the most important detaching agent (Shinohara et al., 2018).
The intensity of splash erosion at a particular site mostly de-
pends on the erodibility of the local soil surface and the ki-
netic energy of the impacting drop. Soil erodibility varies
with grain size, chemistry of the soil matrix and the content
of organic matter which all influence soil shear strength. Rock
fragments can act as a protective cover against drop impacts
(Panagos et al., 2014). The kinetic energy of an impacting
drop depends on its size and falling height which in turn
are determined by the precipitation type and the additional ef-
fect of vegetation. Natural precipitation is highly variable and
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strongly modified by the presence of vegetation (Levia et al.,
2017). This influence of vegetation layers on splash erosion
is investigated as ‘throughfall kinetic energy’ (TKE) compared
to ‘freefall kinetic energy’ (FKE).
Vegetation generally plays an important yet not fully under-

stood role in controlling soil erosion as it can both aggravate
and diminish disintegration processes. In erosion models the in-
fluence of vegetation is simplified, e.g. as density-dependent
protective parameter or as a set of predefined crop classes in
empirical models such as the universal soil loss equation, USLE
(Wischmeier et al., 1978). In fact, vegetation canopies closely
above the soil surface reduce surface run off, stabilize soil and
protect the surface from direct drop impact. These processes
have been well investigated (Ferro and Minacapilli, 1995;
Wang et al., 2013). However, the influence of higher vegetation
layers (e.g. formed by shrubs and trees) have received less atten-
tion (Goebes et al., 2015a) but are likely to play a crucial role in
splash erosion processes. In any case, those processes are not
reflected in detail within erosion models.
Rainfall erosivity is controlled by the duration, magnitude

and intensity of a rainfall event (Panagos et al., 2015). The drop
size distribution (DSD) provides information on the intensity of
rainfall, as the potential drop velocity and hence kinetic energy
increases with drop size (Van Dijk et al., 2002). The falling
height required to reach terminal velocity also increases with
drop size: The largest drops must fall at least 12m to reach ter-
minal velocity, whereas smaller drops are more likely to reach
terminal velocity (Wang and Pruppacher, 1977).
Interception processes caused by vegetation do not only in-

fluence the DSD, but also the temporal, spatial and proportional
distribution of raindrops reaching the ground. Depending on its
path through the vegetation, precipitation is grouped into three
components when passing through vegetation: Interception,
stemflow and throughfall. Water retention on the plant surfaces
is called canopy interception and its magnitude is determined
by canopy storage capacity. In the course of rainfall events the
canopy saturation by incremental wetting of stems and leaves
causes an increase in drip formation. This throughfall lag results
in a successive shift in DSD with an increasing proportion of
larger drops from leaf drips (Nanko et al., 2008b). In arid cli-
mates evaporation rates must be additionally considered (Van
Dijk and Bruijnzeel, 2001). The second rainfall component that
is not contributing to throughfall is the stemflow. It is generated
by water running along the downside of upward oriented
branches towards the stem (Herwitz, 1987; Park and Cameron,
2008; Levia and Germer, 2015) and then along the stem to the
ground. The DSD of throughfall is determined by its path
through the canopy and thus crucial for the understanding of
TKE. Throughfall consists of three drop components: free
throughfall, splash droplets and canopy drips (Nanko et al.,
2006). Raindrops passing through the canopy without striking
the vegetation are called free throughfall. Their DSD equals
open rainfall. Splash droplets are formed by the impact of drops
on surfaces and have diameters of< 1.5mm (Levia et al., 2017,
2019). The number of droplets increases with windspeed and
rainfall intensity because the number of droplets produced per
impact increases with kinetic energy (Herwitz, 1985;
Murakami, 2006; Nanko et al., 2006). Canopy drips have the
largest diameters among the throughfall components and can
thus reach the highest kinetic energy.
Throughfall generation can be estimated with several well-

established models: The models of Gash (1979) and Rutter
et al. (1971) have both been continuously improved and been
applied area-wide using remote sensing data (de Jong and
Jetten, 2007). In contrast, there are no established methods
available for the area-wide estimation of DSD or TKE. Previous
studies agree that the rainfall intensity, independent from

vegetation, is the most influential parameter driving splash ero-
sion (Blanco-Canqui and Lal, 2008; Liu et al., 2018). Neverthe-
less, vegetation is assumed to have a significant impact and
some recent studies investigated vegetation effects in relation
to land-use and vegetation type: Lacombe et al. (2018) found
high TKE in land-cover types with sparse but high vegetation
while they found notable reduced TKE in land-cover types with
a low and dense vegetation layer. Similar findings were de-
scribed by Liu et al. (2018) in plantation forests without pro-
nounced understory and under maize canopy by Liu et al.
(2016). This coincides with the findings of earlier studies (Seitz
et al., 2015; Goebes et al., 2015a) emphasizing the protective
effect of understory and litter cover against impacting rain
splash. However, these studies are based on occurrences of
broad growth form classes (herbs/crops, shrubs, trees) and their
arrangements which we consider imprecise for describing the
influence of vegetation on TKE. For example, in some cases a
differentiation between a bush and a tree of the same height
may not be meaningful as the decisive property of both plants
is likely to be the crown base height which does not necessarily
differ between the two plants. Hence, we think that a continu-
ous structure-based approach which focuses on the continuous
arrangement of plant elements in the three-dimensional (3D)
space can be a more effective approach than a distinction
based on plant types.

Another important aspect which has rarely been addressed is
the data-driven estimation and mapping of TKE across larger re-
gions. The latter is an important requirement for environmental
protection and risk assessment related to erosion effects as such
assessment are typically conducted on a regional level. There
have been some earlier studies, including for example
Zhongming et al. (2010) who applied remote sensing methods
to assess general erosion risk using passive multispectral satel-
lite data. These studies estimated TKE or erosion risk using indi-
rect relations based on vegetation cover and type but did not
account for variability in TKE created by the arrangement of
plant elements in 3D space, which is known to be a major de-
terminant of TKE.

A larger potential to derive such 3D information on vegeta-
tion structure has been identified for increasingly available air-
borne and terrestrial laser scanning technologies (Hosoi et al.,
2010) also known as Light Detection and Ranging (LiDAR).
Such systems have been proven to efficiently determine vegeta-
tion top height (Popescu et al., 2002), crown base height
(Popescu and Zhao, 2008), as well as the presence of
understory vegetation layers (Korpela et al., 2012). It is hence
likely that LiDAR data offers interesting opportunities for
implementing a spatially continuous approach to estimate the
effects of vegetation on TKE. However, such an approach is
yet to be developed.

The objectives of the present study are hence (i) to identify
the structural vegetation parameters controlling TKE from a lit-
erature survey, (ii) to formulate a conceptual model of the inter-
action between FKE and structural vegetation parameters and
(iii) to develop a method for the area-wide representation of this
interaction via a single measure that can be derived using Li-
DAR data. The latter methods will be implemented for a spa-
tially continuous LiDAR dataset available for a catchment
with heterogeneous vegetation structures in central Chile.

Methods

Development of the Vegetation Splash Factor

To identify the vegetation parameters controlling TKE, a litera-
ture review was conducted on throughfall generation and TKE
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which are closely linked. In previous TKE studies, many differ-
ent vegetation parameters have been investigated on plot, indi-
vidual plant or species level depending on the objectives of the
study. To evaluate the relevance of a range of vegetation pa-
rameters regarding our objectives, they are assessed by two
criteria: (i) predictive value for TKE and (ii) independence from
other parameters. Furthermore, we assessed whether the pa-
rameter reflects the vertical or the horizontal vegetation struc-
ture, or both (3D). We also determined whether the parameter
can be measured or estimated at large-scale and area-wide by
use of remote sensing techniques. In our assessment, we fur-
thermore tried to focus on vegetation parameters that we as-
sume to have a direct (physical) influence on raindrops and
hence TKE while we avoid vegetation parameters that may in-
directly correlate with TKE. For example, tree age is likely to
correlate with tree height, but tree height is the factor that phys-
ically influences TKE. In the following, the vegetation parame-
ters are presented along an increasing object scale: we start
with parameters assessed on single leaf-level, continue with pa-
rameters on a branch-level and then review parameters related
to vertical, horizontal and 3D canopy-structure (Table I).

Leaf and branch characteristics
Leaf properties were for example investigated by Goebes et al.
(2016) who identified the leaf area as having the highest influ-
ence on TKE from a range of vegetation parameters. Leaf area
represents the surface available for raindrop gathering and con-
fluence and is therefore determining the size of leaf drips. Sev-
eral other studies conducted in the field (Calder, 2001; Nanko
et al., 2006) and under experimental conditions (Herwitz,
1987) support the high relevance of leaf areas for estimating
TKE. In addition, leaf shape (Hall and Calder, 1993; Goebes
et al., 2015a), leaf surface (Nanko et al., 2013), water repel-
lency (Rosado and Holder, 2013) and leaf angle (Park and
Cameron, 2008; Nanko et al., 2013) were found to have strong
influence on TKE. However, these parameters are also all
highly intercorrelated (Foot and Morgan, 2005). Goebes et al.
(2015a) measured the second highest variation in TKE between
deciduous and evergreen species. However, leaf habit relates
to a variety of different traits: Evergreen species tend to have
smaller leaf areas, larger crown heights and thus higher falling
heights and a higher Leaf Area Index (LAI). Additionally, the
seasonal transformation of phenology causes significant differ-
ences in the vegetation structure (Nanko et al., 2016). For this
reason, foliation cannot be investigated independently from
other seasonal variables like temperature and solar inclination
which in turn are affecting evaporation, viscosity and surface
tension of water (Levia and Herwitz, 2000).
Focusing on branches and other wooden structures,

Crockford and Richardson (2000) found that branch angles
have a large impact on the throughfall-stemflow distribution.
Besides branch angles Levia et al. (2015) identified branch
count and dry woody biomass as most important parameters
influencing stemflow yield. Other studies found that the bark
roughness is strongly correlated with the spatial DSD (Herwitz,
1987; Park and Cameron, 2008). In aforementioned studies,
leaf and branch properties were amongst the most influential
parameters determining TKE. They are, however, often
intercorrelated and their importance is hard to isolate. Further-
more, leaf and branch parameters are mostly suitable for mea-
surements on plot and plant level but can hardly be obtained
for area-wide assessments.

Vegetation parameters related to vertical structure
The vertical vegetation structure affects the potential falling
heights of raindrops and thereby TKE. The most dominant ex-
pression of vertical vegetation structure is the plant height, Ta
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which determines the potential maximum falling height and
thus, the maximum kinetic energy of drips. Accordingly, several
studies found a strong correlation between plant height and
TKE (Foot and Morgan, 2005; Geißler et al., 2013; Goebes
et al., 2015a). The crown base height (CBH) can be seen as
‘the last barrier’ of the canopy (Goebes et al., 2015a) determin-
ing the lowest falling height of drips. Although, CBH is found to
be rather influential on TKE (Nanko et al., 2008b; Goebes et al.,
2016) it does not represent the whole vegetation: The presence
of shrubs and other vegetation below the crown lead to re-
interception.
Further parameters reflecting vertical distribution in previous

studies are the number of branches (Herwitz, 1987; Goebes
et al., 2015b) and the canopy thickness (Nanko et al., 2008b).
These parameters do not give any indication of potential falling
heights. Neither do they reflect the vertical distribution of veg-
etation density which could provide information on drip ori-
gins. We hence assume that number of branches and canopy
thickness are only significant for TKE through their intercorrela-
tion with other parameters.
Finally, understory elements and particularly dense and low

canopy layers are suspected to have a notable influence on
TKE as they can form a protective layer intercepting canopy
drips with high kinetic energy (Foot and Morgan, 2005). Such
low vegetation layers (mostly grasses, herbs and small shrubs)
and litter cover might be more influential on soil loss than
higher canopy layers (Zhongming et al., 2010) and should cer-
tainly be included when modelling TKE under the influence of
vegetation. Assessment of such low canopy layers with remote
sensing methods is challenging and under some conditions
even impossible. Particularly the presence or absence of litter
under canopy will in most cases not be possible, while the
presence of smaller shrubs and even herbal layers may be de-
tected with high resolution or full waveform LiDAR data
(Hollaus et al., 2010). The presence of litter under the canopy
may partly be predictable based on the species occurring in
the canopy as the degradability of leaves varies amongst spe-
cies. Remote sensing-based mapping of dominant tree and
shrub species has been widely documented in the literature
(Fassnacht et al., 2016; Kattenborn et al., 2019a).

Vegetation parameters related to horizontal structure
Cover-related variables contain information on the horizontal
distribution of the vegetation that can be utilized to approxi-
mate the storage capacity of vegetation surfaces but also free
throughfall through gaps. One important horizontal variable is
LAI, which is defined as the total leaf surface per unit of ground
surface. The surface area determines storage capacity and
therefore the magnitude of throughfall lag, the retention of wa-
ter on the vegetation surface. It also affects the probability of re-
interception by lower vegetation layers, which determines the
proportion of droplets. Furthermore, LAI can be related to the
canopy cover and thus to canopy gaps that allow free
throughfall (Gonsamo et al., 2013). However, for the relation
of LAI and TKE inconsistent findings are described in previous
studies. For example, Nanko et al. (2008a) and Geißler et al.
(2013) found a negative influence of LAI on TKE below trees
larger than 15m. Goebes et al. (2016) in contrast, found a pos-
itive correlation of LAI and TKE in an early-successional forest
plantation. These differences might result from differences in
the vertical distribution of the leaf area, especially due to vary-
ing vegetation heights.
Variables related to horizontal structure have been success-

fully approximated from various remote sensing data types
and across several land-cover types. Studies applied both pas-
sive spectral data (e.g. Wood et al., 2012) and active LiDAR
data [e.g. Dandois and Ellis, 2010 or Lefsky et al., 2002].

Approaches based on process-understanding
Besides the discussed individual plant parameters, some inte-
grated approaches have been suggested to describe vegetation
effects in the context of TKE and erosion modelling. For exam-
ple, the Stratified Vegetation Cover Index (SVCI) suggested by
Zhongming et al. (2010) features four classes of vegetation
layers: trees, shrub, grass and litter. Erosion intensities are then
approximated by summing up the densities of the four layers
and an empirical weighting factor. Zhongming et al. (2010) de-
veloped this concept based on reference vegetation mapped on
field plots and the erosion measured below. Subsequently,
Landsat data were used across larger areas to identify vegeta-
tion similar to the reference types and to assign the measured
erosion rates to them.

The alternative Leaf Area Index (aLAI) proposed by Foot and
Morgan (2005) is similar to SVCI, but here the layers are sepa-
rated by height instead of plant type. In the aLAI concept, TKE
is modelled as the sum of vegetation layers weighted depend-
ing on their height. Although this structure-based approach al-
lows a high degree of comparability between studies, the
index could not be successfully related to TKE. We assume that
the approach neglects the protective effect of lower layers,
which is particularly important as the investigated vegetation
did not exceed 60 cm.

Finally, we identified another relevant variable: The gap frac-
tion profile and its counterpart the vegetation cover profile. The
vegetation cover is defined as the proportion of horizontal veg-
etated area occupied by the vertical projection of canopy ele-
ments (Gonsamo et al., 2013). It can be determined for a
series of vertical vegetation layers as vegetation cover and
gap fraction profile. The vegetation cover profile can be calcu-
lated in a regular horizontal grid spanning across the area of in-
terest. The resulting 3D grid is called voxel space. It reflects
both vertical and horizontal distribution of vegetation in space
and can be calculated from small footprint airborne LiDAR as
shown in some earlier studies (e.g. Bouvier et al., 2015).

Implications – setting up a conceptual vegetation
splash model

Based on the earlier review, we assume that both, the horizon-
tal and the vertical distribution of vegetation must be consid-
ered to successfully predict TKE. Additionally, some highly
influential leaf and branching parameters were identified. Fur-
ther complexity is added by the seasonal variation of some of
the identified parameters. One option to successfully predict
TKE may be the integration of all these important vegetation pa-
rameters into a complex model. However, it is likely that such a
model would be difficult to calibrate and parameterize as reli-
able measurements of many (partly intercorrelated) vegetation
parameters would be necessary. Furthermore, an accurate
large-scale and area-wide estimation of these parameters seems
very challenging. Here, we hence suggest a simpler conceptual
model that is solely based on the gap fraction profile. In this
context we interpret the gap fraction as the probability of
throughfall within a layer assuming a homogeneous spatial dis-
tribution of gaps over the base area for simplification. The liter-
ature review led us to the hypothesis that the influence of
vegetation on TKE varies with the vegetation height and ar-
rangement: Lower vegetation acts as protective layer reducing
TKE, whereas higher vegetation amplifies TKE through in-
creased falling heights of (large) canopy drips and splash drop-
lets. Figures 1A–1D schematically illustrates the assumed
interaction of the opposing effects of vegetation layers on
TKE. In the reference state (Figure 1A) the TKE equals FKE.
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Increased or decreased TKE is expected in the presence of ex-
clusively tall or low vegetation (Figures 1B and 1D). Whereas
the effects of tall vegetation and protective low vegetation layer
outbalance each other when combined (Figure 1C). This as-
sumption is supported by the findings of Lacombe et al.
(2018) where the only scenario with TKE lower than FKE was
found for low vegetation.
Based on these findings we propose a new measure for the

influence of vegetation on TKE: the Vegetation Splash Factor
(VSF). To understand where drops originate from, it is easiest
to imagine looking at the vegetation from the ground: Free
throughfall precipitates onto areas where sky is visible and
drips fall from the lowest visible vegetation layer. The area pro-
portions per layer from which drips can fall to the ground with-
out being intercepted can be transferred into a vertical profile
of the drip contribution (DC).
Here, we derive the DC from the vegetation cover, because

DC cannot be measured directly. We assume the probability
of throughfall and interception in a vegetation layer depends
on the ratio of vegetation cover and gap fractions. To estimate
DC we hence divide the vegetation into a series of vertical
layers and measure their gap fractions to estimate the probabil-
ity for leaf drips to reach the ground without re-interception in
lower layers. The model is illustrated in Figure 2 by means of a
simplified vegetation structure (background): The proportions
of vegetation cover and gap fraction (Figure 2a) are visualized
in a bar graph and reflect the canopy and understory. The shad-
ing indicates the proportion of precipitation reaching the
ground without being intercepted below. To account for free
throughfall we introduced an artificial layer with 100% cover
above the vegetation representing open rainfall.
To calculate the VSF, we follow two steps. In the first step we

determine the drip contribution in the vegetation profile. The
second step is to assign a weighting factor to include the influ-
ence of the vegetation elements on kinetic energy. We know
that the kinetic energy is defined as the work required to accel-
erate a drop of a given mass to a stated velocity, which is

determined by both, falling height and drop diameter. The larg-
est drops reach terminal velocity after 12m (Gunn and Kinzer,
1949). The falling height required to reach the same kinetic en-
ergy of a drop in open rainfall decreases with drop diameter
(van Dijk et al., 2002; Goebes et al., 2014). Below a certain fall-
ing height, the kinetic energy of drips becomes smaller com-
pared to FKE. In this case we assume that vegetation reduces
the kinetic energy of rainfall. If we assume that drips under
one specific species have similar DSD we narrow the determin-
ing factors for TKE down to the falling height. Thus, the
weighting factor is mainly based on the kinetic energy of drips
according to their falling height. The height where the TKE of
canopy drips exceeds FKE and hence the weighting factor
(WF) = 1 varies with vegetation types. For simplification, we es-
timated the weighting factor from the literature by comparing
the kinetic energy of many different drip and raindrop sizes fall-
ing from different heights (cf. Wainwright et al., 1999; van Dijk
et al., 2002; Goebes et al., 2014). We assume that 1m is a good
estimation for the average DSD to reach TKE = FKE. Analo-
gously we assume WF = 3 as upper limit for the amplifying ef-
fect (Lacombe et al., 2018; Liu et al., 2018). The weighting
factor curve shown in Figure 2c is a first suggestion based on
the assumed relation between TKE and vegetation height. Fi-
nally, we calculated the VSF as the sum of the weighted DC
profile. The VSF indicates the effect of vegetation on TKE rela-
tive to FKE and assumes values greater than 1 for amplification
and less than 1 for protection. Consequently, the WF is 1 for the
open rainfall layer above the vegetation. In order to reproduce
the actual relations in a given area, the weighting factors must
be calibrated based on field measurements, which were not
available in the scope of this study but will be part of an up-
coming field campaign. The calibration must include the typi-
cal range of rainfall intensities and durations in order to
register characteristic DSD and the effect of throughfall lag.
Nevertheless, we implemented the VSF for a dataset in a het-
erogeneous study area in central Chile for a first plausibility
check.

Figure 1. Schematic representation of layer-based approach of vegetation impact on throughfall kinetic energy (TKE) (A–D) and examples for cor-
responding vertical vegetation structures (E–G) in La Campana National Park. [Colour figure can be viewed at wileyonlinelibrary.com]
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Case study

To implement the conceptual model for an area wide applica-
tion we divided an airborne laser scanning point cloud into a
grid of regular cells. Then, we derived the gap fraction and
DC profiles for every cell and calculated the VSF as a raster. Fi-
nally, we assessed the results for plausibility and consis-
tency (Figure 3).
The experimental site is situated in the La Campana National

Park near Ocoa, Valparaiso, central Chile and is part of the
EarthShape project [DFG SPP 1803, see Bernhard et al., 2018
and Schmid et al., 2018]. It features a heterogeneous mosaic
of vegetation layer combinations on a total area of 49 km2, ris-
ing from 400 to 2200m above sea level (a.s.l.). The vegetation
structure of the area ranges from open land, low vegetation
with bushes and shrubs, mixed low/tall vegetation to tall vege-
tation mainly dominated by Chilean palms (Figure 1). Airborne
LiDAR scans were conducted by Digimapas Chile
Aerofotogrammetra Ltda on the 10 and 13 September 2016.

The discrete return LiDAR dataset features a density of three
to five points per square metre and covers a total area of
4258 ha. Each point contains values for intensity and number
of returns with up to seven returns per pulse.

To calculate the VSF, we first normalized the point cloud by
subtracting the heights of a digital terrain model (DTM) from the
individual point height using TreesVis (Weinacker et al., 2004).
In the next step we used R (R Core Team, 2016) and the lidR
package (Roussel and Auty, 2019) to calculate the gap fraction
profile. For each voxel in a 5m × 5m grid with 1m layer height
we calculated the gap fraction profile as the ratio of returns be-
low and above the voxel with a lower threshold of 0.1m
(Bouvier et al., 2015). All returns below this threshold are con-
sidered as ground. Assuming that laser beams behave similar to
sunlight the gap fraction profile is equivalent to canopy trans-
mittance according to the Beer–Lambert law (Breda, 2003)
and thus reflects the vertical distribution of vegetation (Bouvier
et al., 2015). The calculation method is described for a single
grid cell. The gap fraction (GF) for a layer i is calculated as:

Figure 3. Transect (height against X coordinate) of the point cloud underlain by the calculated drip contribution (DC) pro-file raster and the resulting
Vegetation Splash Factor (VSF) below. The area covered by the transect is indicated in Figure 4. The boxes indicate where the amplifying (1, 2 and 3)
and protective effect (4) can be observed. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 2. Schematic representation of the conceptual model on an exemplified vegetation profile (background). Note that in the model, as opposed
to this figure, vegetation cover and gaps are distributed homogeneously inside the individual layers. (a) Percentage of gap fraction (blue) and vege-
tation cover (green), dashed areas indicate free throughfall below, the solid share is intercepted in the layers below. The blue line indicates the cumu-
lative interception ratio (CIR). (b) The drip contribution (DC) profile indicates the percentage of drips from a layer falling without interception below.
When applying the weighting factor (c) the weighted drip contribution reflects the effect of the layer on TKE. The largest drop only reaches terminal
velocity after 12m falling height (Gunn and Kinzer, 1949). [Colour figure can be viewed at wileyonlinelibrary.com]
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GFi ¼
N 0;z½ �

Ntotal �N 0;zþdz½ �

with N[0;z] being the number of returns below z, Ntotal the total
number of returns, and N[0;z + dz] the number of returns below z
+ dz (Bouvier et al., 2015). The gap fractions are illustrated as
blue bars in Figure 2a.
The selected voxel size is a trade-off between accuracy

(points per voxel) and resolution (voxel footprint): We chose a
comparably large grid size according to the relatively sparse
point cloud density of three to five points per square metre of
the available LiDAR dataset.
The vegetation cover (VC) profile is calculated as (Gonsamo

et al., 2013):

VCi ¼ 1�GFi

and illustrated with green bars in Figure 2a. Next, we calcu-
lated the cumulative interception ratio (CIR), the percentage
of interception in and below every layer (blue line in Figure 2
a). For the lowest layer (0.1–1.1m in our vertical resolution)
CIR equals the vegetation cover. In the subsequent layers above
it is calculated as:

CIRi ¼ VCi þGFi�CIRi�1

An increase in CIR between two layers indicates that drips from
this layer reach open ground. Finally, the difference between
the CIR of each layer and its predecessor is the DC value. It is
calculated as:

DCi ¼ CIRi � CIRi�1

In Figure 2a the shaded green areas illustrate the DC as part of
the vegetation cover and in Figure 2b as isolated profile. By def-
inition the sum of the drip contribution profile is 1 as it repre-
sents proportions of the unit of ground that is either reached
by drips or free throughfall.
Then, we calculated the weighted DC profile (see Figure 2b,

black lines) by applying the height dependent weighting factor
(see Figure 2c) to every voxel. The weighting factor ensures that

the weighted drip contribution of lower layers reduce TKE
whereas higher layers amplify it and is ideally calibrated with
TKE measurements. Based on our estimation it is calculated as:

WF ¼ 3–3�e�0:4�h

where h is the voxel elevation. The equation applies for vegeta-
tion bodies while the WF for above the vegetation is fixed to 1.
Finally, we summed up the weighted DC values over each grid
cell to yield the VSF.

VSF ¼ ∑
hmax

i¼hmin

DCi�WFi

With this approach, we calculated a VSF map of the entire
study area and extracted subsets to visually interpret and dis-
cuss the results on the basis of an unmanned aerial vehicle
(UAV) orthophoto (Figure 4). Additionally, a vertical profile
through the point cloud was extracted along a transect and
the calculated DC profile was plotted to assess the plausibility
of the implementation of the conceptual model (Figure 3).
The location of the transect is marked in Figure 4.

Results

In the investigated area we calculated a mean VSF of 1.42 (me-
dian: 1.32). Values below 1 were calculated for 19% of the
area, while the other 81% show values above 1 (cf. Table II).
The vertical distribution of aerial LiDAR returns and the calcu-
lated DC for an exemplary transect are illustrated in Figure 3. In
addition, Figure 3 features the calculated VSF values as a stripe
below the profile. The highest VSF values occur in grid cells
with almost no ground returns (cf. boxes 1 and 3). Whereas,
grid cells with large numbers of returns in the lowest layers
show more variability in the resulting VSF values depending
on the height and DC of the overlying voxels (cf. boxes 2 and
4). The higher canopy layers in box 2 coincide with a higher
VSF value. In box 4 however, the falling heights are lower
and thus the calculated VSF. In grid cells with dense canopies

Figure 4. A subset of the calculated Vegetation Splash Factor (VSF) map with an unmanned aerial vehicle (UAV) ortophoto as reference. The black
box (solid line) indicates the location of the transect of Figure 3 for context. Three polygons (dashed lines) and four points indicate areas with char-
acteristic vegetation structures for isolated analysis, see Table II for key statistics. [Colour figure can be viewed at wileyonlinelibrary.com]
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an absence of returns from ground and understory layers can be
observed, as some ground voxels do not contain any points.
The VSF map can be related to recognizable structures in the

aerial photograph (Figure 4): The lowest VSF values are present
in the barely vegetation covered area (21% cover in lowest
layer) (polygon B) with a mean VSF of 0.9 (cf. Table II). The sur-
faces appearing white and grey in the aerial image are mostly
bare rock whereas the darker areas in brown and beige show
soil and vegetation cover. The average vegetation height in this
area is below 20 cm and the VSF values range between 0.8 and
1. Polygon C is characterized predominately by low and inter-
mediate vegetation heights (mean: 2.3m) with few open areas
and patches of higher vegetation up to 10m. The mean vegeta-
tion cover of the lowest layer is 34% and the resulting VSF
values range from 0.7 to 1.7 with a mean of 1.1 and are visibly
related to the vegetation heights. Consequently, in the valley
bottom (polygon A) where water availability allows plant to
grow taller (13m average) we yielded the highest VSF values
with a mean of 2.3. The average vegetation cover in the lowest
layer is only 4% (cf. Figure 1E photograph from this area). The
different vegetation structures in the polygons A and C can be
recognized in the vegetation profile (Figure 3) that overlaps
the polygons. Further, isolated occurrences of high VSF values
can be found scattered over the whole area (cf. points a, b, c, d,
Figure 4). These areas often coincide with the large (palm) tree
crowns recognizable in the aerial image.
A trail running from southeast to northwest can be recog-

nized in the aerial map parallel to polygon A showing slightly
lower VSF values compared to the surrounding high vegetation.
However, due to the low spatial resolution a sufficient spatial
separation between grid cells with open soil and vegetation is
probably not given.

Discussion

Conceptual model and derived Vegetation Splash
Factor

Previous work on TKE and vegetation has targeted the under-
standing of their interaction and thus investigated large num-
bers of vegetation parameters to quantify their influence on
TKE. Our approach, in contrast, focuses on developing a
method for the efficient spatially continuous estimation of TKE
with as few parameters as necessary. Based on a literature re-
view we identified the main driving vegetation parameters to
set up our conceptual model: We suggest that various vertical
(e.g. tree height, CBH or canopy thickness) and horizontal pa-
rameters (e.g. LAI or canopy cover) can be simplified into a sin-
gle voxel wise parameter: The vegetation cover profile. This
parameter can be derived from aerial LiDAR datasets and is
thus more efficient to cover large areas than the parameters
used in earlier studies which are typically restricted to small
vegetation plots.

The current version of the VSF omits several parameters that
the literature review indicates to be influential but are not re-
lated to the vertical nor the horizontal distribution of vegeta-
tion: The leaf area and branch angles for example have strong
impact on the spatial distribution of throughfall and DSD
(Herwitz, 1987; Goebes et al., 2016). Further, the temporal var-
iability of TKE (during a rainfall event) is strongly correlated to
the water storage capacity and thus LAI (Nanko et al., 2008b).
On a larger (e.g. annual) scale the storage capacity varies with
foliation (Nanko et al., 2016; Levia et al., 2017). This could be
taken into account by considering LiDAR datasets from differ-
ent seasons.

In a first attempt (not presented here), we calculated the VSF
based on the vertical distribution of one-sided leaf area per
unit ground surface area, the leaf area density. Although it rep-
resents the vertical distribution of biomass (surface area) and
thus storage capacity better than the vegetation cover profile,
the leaf area density does not reflect the potentials of
throughfall and interception. In addition, the leaf area density
is an absolute value and is thus limited in its comparability.
In the model this led to an overemphasis of dense upper vege-
tation layers causing high VSF values, which were not
outbalanced by the lower layers. This means that the reduction
of falling height through re-interception on lower vegetation
layers was not considered. For the representation of throughfall
probability, the vegetation cover is the more appropriate mea-
sure as it is a relative value. By building the model based on
the DC, our approach also goes one step further: Only the
drops that reach open ground are taken into account in the
calculation of the VSF. Therefore, a full vegetation cover in
the first layer above the ground cancels out the effect of all
layers above.

The height dependent weighting factor is based on the as-
sumption that drops are intercepted on vegetation surfaces.
However, drips are more likely to form droplets on impact,
while free throughfall drops with smaller diameters tend to re-
main on the plant surface and build drips. Levia et al. (2019)
found that the ratio between throughfall, droplets and drips dif-
fer significantly between coniferous and broadleaved vegeta-
tion which indicates that the additional consideration of
species information may be an interesting future extension for
the VSF.

Species information is also relevant in terms of other param-
eters with a direct effect on TKE. For example, DSD and
throughfall amount vary during rainfall events, as canopy stor-
age is successively filled before drips are released (Nanko
et al., 2008b; Levia et al., 2019). The storage capacity is known
to be related to general parameters as total leaf area but also
species-specific parameters such as leaf hydrophobicity or hy-
drophilicity (Holder, 2012, 2013; Rosado and Holder, 2013).
These parameters have significant impact on the hydrological
response that can be measured on watershed scale (Holder,
2013). At the same time rainfall intensity creates large varia-
tions between events, seasons and regions (Carlyle-Moses and
Gash, 2011).

Table II. Key statistics for the three polygons (Figure 4) and the whole tile. Heights from the normalized digital surface model, Vegetation Splash
Factor (VSF) and vegetation cover of the lowest layer (0.1–1.1m)

Vegetation height (m) VSF Vegetation cover fraction 0.1–1.1m

Polygon Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean

A 0.00 24.20 12.95 1.52 2.88 2.33 0.00 0.40 0.04
B 0.00 4.45 0.19 0.84 1.04 0.92 0.04 0.43 0.21
C 0.00 10.90 2.32 0.71 1.66 1.13 0.00 0.80 0.34
Total 0.00 24.20 4.53 0.64 2.91 1.42 0.00 0.90 0.24
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The VSF is currently not taking into account plant specific
parameters but follows a purely structure-based approach that
can, however, be calibrated to local rainfall and vegetation
conditions by adapting the weighting function based on empir-
ical TKE measurements, for example using splash cups
(Scholten et al., 2011). Based on this site-specific calibration
the VSF estimates the relative effect of vegetation on TKE. This
simplification of the model is advantageous as it enables large-
scale applications.
However, as indicated earlier, to explain the variation that

cannot be related to the VSF, additional species-specific param-
eters could be collected parallel to the calibration with splash
cups (Scholten et al., 2011). In an ideal case, these parameters
would also be collected using remote sensing approaches to
maintain the possibility to estimate the VSF spatially continu-
ous. Some parameters, e.g. the ratio of wood to leaf surfaces
could be directly quantified by classification from aerial imag-
ery, whereas other plant specific parameters could be assigned
based on species classification from multispectral or RGB UAV
data (Kattenborn et al., 2019b).
In summary, we believe that our suggested approach to con-

dense the information contained in the 3D vegetation structure
represented in the vegetation cover into a two-dimensional
map to reflect the influence of vegetation on TKE holds great
potential. It may be extended and refined using additional
species-specific information and by calibration to local field
conditions using reference measurements.

Application of Vegetation Splash Factor in the case
study

In our study area we observed a mean VSF of 1.42 (median:
1.32). The overall effect of vegetation on the kinetic energy of
rainfall is hence an amplification. We calculated VSF values
below 1 for 19% of the area and above 1 on the other 81%. Ac-
cordingly, we expect that, vegetation reduces kinetic energy of
rainfall in less than a fifth of the area. The amplifying overall ef-
fect of vegetation on TKE is consistent with the observed vege-
tation structure: Large areas show only sparse vegetation in the
understory layers. The open rainfall is intercepted by the can-
opy and forms large leaf drips that can fall uninterrupted to
the ground gathering high velocities and kinetic energy. This ef-
fect has been described in the literature for areas with similar
vegetation structures. For example, Liu et al. (2018) reported
relative values of 1.84 to 2.3 for TKE within plantations com-
pared to open conditions.
The vegetation structures recognizable in the aerial image

agreed well with the VSF values in the map according to our
initial assumptions (Figure 4). The open soil area visible in poly-
gon B is sparsely covered by vegetation. The corresponding
VSF values show little variation and a mean of 0.92. This agrees
with the expected neutral or slightly protective effect of the veg-
etation. The lowest VSF values in these areas were calculated
for the areas with visible sparse vegetation cover, whereas the
areas with open rock are closer to 1. The mean vegetation
height of only 0.19m implies that a small proportion of the veg-
etation returns are above the 0.1m threshold that excludes
ground points in the calculation of the gap fraction. However,
the vegetation cover of the lowest layer with a mean vegetation
cover of 21% is higher than the aerial image suggests. The rea-
son for this might be that on a small scale of tens of centimetres
in a rather steep section the point cloud normalization is
reaching its limits. The medium high vegetation in polygon C
coincides with VSF values around 1 but with a wider range of
VSF values than in polygon B. Despite the relatively dense

vegetation cover (mean: 34%) in the lowest layer, the highest
VSF values occur under the tallest vegetation. A likely reason
for this is that the second and third vegetation layers are already
weighted with factors 1.4 and 1.9. For this reason, slightly
higher overall VSF values were calculated in this area even
though the vegetation cover in the first layer is relatively dense.
Whether these values are realistic or not has to be validated
using field experiments. Finally, in polygon A the most erosion
prone vegetation structure is visible. The combination of tall
trees and sparse understory consistently yields high VSF values
which matches well the theoretical assumptions.

Despite the sparseness of the LiDAR dataset the overall large
ratio of ground returns (as visible in Figure 3) indicates that the
point cloud density was sufficient for the calculation of an ac-
curate DTM (Estornell et al., 2011). However, a higher point
cloud resolution holds potential to improve several aspects of
the presented VSF model: Firstly, a better horizontal and verti-
cal resolution would allow to reduce the applied grid size
and hence to identify gaps on a smaller scale, e.g. the trail run-
ning parallel to polygon A. Secondly, it would allow a better
representation of variations in the vegetation density and thus
a finer differentiation between cover percentages. Thirdly, a
finer DTM resolution would reduce the vertical deviations in-
duced by point cloud normalization (which does not account
for within-pixel terrain inclinations) and thus improve the accu-
racy of the derived gap fraction profiles, especially near the
ground.

The presence of ground returns in most areas of the dataset
proves that individual laser pulses could penetrate the vegeta-
tion to the ground: All layers were reached by the scanner
and thus considered in the model. Consequently, we assume
that few or no returns from the intermediate layers indicate
the absence of vegetation and hence free-fall areas that gener-
ate high TKE. In turn, the absence of ground returns implies that
all pulses were absorbed by vegetation and thus no information
on the understory structure is provided (Korpela et al., 2012).
Considering the large influence of the lowest vegetation layers
on the VSF an adequate representation of these layers is crucial.
In the current dataset, this was mostly the case. Deficits in pen-
etration depth can be overcome by reducing the footprint size
of the LiDAR scanner (Korpela et al., 2012). Especially, when
the VSF is calculated for denser vegetation a higher point cloud
density would be required.

In future applications, the normalization process could be
improved by using a waveform LiDAR dataset to classify, and
filter returns according to echo width and amplitude (Hollaus
et al., 2010). This would also allow preventing the misclassifi-
cation of dense vegetation layers as ground returns, as a result
of impenetrability for laser beams. In addition, we want to em-
phasize the importance of (organic) layers directly overlaying
the soil surface such as plant litter, biological soil crusts or
stones. Further studies have to evaluate if they can be included
in our approach and if litter as wells as biological and non-
biological crusting can be efficiently retrieved from spectral re-
mote sensing data or modelled using vegetation type maps and
environmental parameters.

Within the first metre above-ground, the protective effect of
the low vegetation transforms into the amplifying effect of
higher layers (Lacombe et al., 2018; Liu et al., 2018). An accu-
rate vertical representation of the lower layers is therefore cru-
cial for the model accuracy but can be limited by the point
cloud density: Voxels must contain a certain number of points
to sufficiently reflect variations in vegetation density (Béland
et al., 2014). For this reason, we applied a vertical resolution
of 1m in our case study: Hence, only the lowest layer of the
drip contribution profile was weighted with values below 1.
Low vegetation heights as in polygon B would benefit the most
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from a finer vertical resolution where the steep increase of pro-
tective effect towards the ground is distributed over more
layers. In terms of horizontal resolution, the outcomes of the
VSF model would benefit from a better representation of
small-scale differences in the vegetation density. In particular,
because in the model, as opposed to natural vegetation (see
Figure 2), vegetation cover and gaps are distributed homoge-
neously inside the individual layers. Even though the 5m grid
size was sufficient to prove the concept, future applications re-
quire horizontal resolutions of at least 1m. Overall, we recom-
mend using datasets with at least 10 to 15 pulses per square
metre for future applications.
In order to investigate the influence of different LiDAR sensor

systems, scan geometries and vegetation properties on the
model results, we consider the recent developments in the field
of simulated LiDAR scans a promising approach for future in-
vestigations (Hämmerle et al., 2017).

Implications

The VSF is a strictly structure-based parameter to efficiently as-
sess vegetation’s amplifying and protecting influence on TKE
for large areas. Previous concepts are either biased by growth
form (SVCI, Zhongming et al., 2010) or did not account for
the protective properties of low vegetation layers (aLAI, Foot
and Morgan, 2005). While plant and plot-based studies often
investigate large numbers of parameters, our approach only
uses VSF and we assume that it can represent the majority of
these parameters. Compared to the multi-factor approaches of
previous studies, the VSF is a strong simplification. At the same
time, VSF allows a high level of comparability between studies
on soil erosion. This is especially valuable, as meta-analysis
and comparison between previous studies on TKE is challeng-
ing due to the large number of different investigated parame-
ters. VSF could easily be added to future studies on TKE to
improve their comparability. It is even possible to complete
previous studies with VSF values if a corresponding LiDAR
dataset is available.
The TKE is one of the main factors controlling splash erosion

and transport of soil particles. Our concept has great potential
to improve future studies on soil erosion as it can be used to es-
timate splash erosivity by applying the VSF on measured FKE.
Combined with soil erodibility parameters and data on soil sur-
face covering vegetation, such as biological soil crusts, this
could provide the basis to set up an easy-to-apply erosion
model. The VSF could furthermore be included in existing soil
erosion models to improve the representation of the influence
of vegetation on erosivity. The USLE crop factor for example,
could be determined based on actual vegetation structure in-
stead of being roughly classified and assigned to values from
species-specific look-up-tables (Wischmeier et al., 1978). If
multi-temporal datasets are available the representation of sea-
sonal crops, e.g. corn, grain could be enhanced by considering
vegetation periods. VSF can be applied to efficiently map large
areas and identify areas of risk. The assessment of areas with
VSF values above 1 could be a first step for determining areas
that require soil conservation strategies.

Conclusions

In the present study we (i) identified the horizontal and vertical
distribution of vegetation as the vegetation parameters with the
highest influence on TKE. (ii) Based on these vegetation param-
eters, we developed a conceptual model of the interaction be-
tween TKE and vegetation in which vegetation layers provide

protective or amplifying effects on the kinetic energy of rainfall
depending on their height and cover. This model was trans-
ferred (iii) into a method for the area wide representation of this
interaction via a single measure, the VSF that can be calculated
from airborne LiDAR datasets. The VSF offers an easily applica-
ble, transferable and standardized measure of the vegetation
structure for investigating TKE. We successfully calculated the
VSF for a study site in the Chilean La Campana National Park.

The VSF is independent from species composition and thus
allows comparisons between sites. To further refine the ap-
proach, the weighting factor needs to be calibrated under vari-
ous types of vegetation by measuring the yielded TKE in the
field and assigning it to VSF values.

For future applications, point clouds with higher spatial reso-
lutions are mandatory. This will allow decreasing the grid size
and more importantly the layer thickness. We believe that the
VSF holds great potential for improving current representations
of vegetation in existing soil erosion models and for providing
high resolution soil risk maps over large areas.
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