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Abstract— This paper deals with the parameter identification
of a fractional system considering a noisy observation of the
output signal. The novelty is that the instrumental variable
method is applied to the modulating function method applied
to a fractional system. A simulated output signal which is not
correlated to noise is required as the instrumental variable.
Because all known simulation algorithms only consider zero
initial conditions, the simulated output signal converges against
the true output signal in an undefined time if the zero initial
conditions are penalized. Therefore, an algorithm is extended
with the short-memory principle. The benefit is that after a
fixed time the error between the simulated and true output
signal is small and can be used as the instrumental variable.
Considering this extension of the simulation algorithms, it is
shown that a consistent estimation is yield with the instrumental
variable method.

I. INTRODUCTION

The fractional calculus has been more and more in the
focus of research because complex systems or memory
effects can be described more efficiently than using the
classic calculus (see [1]). One field of research deals with
the parameter identification due to the fact that new math-
ematical problems come along with the fractional systems.
Several approaches are developed in frequency domain (see
e.g. [2]) as well as in time domain (see e.g. [16, 3, 4, 5, 6]).

In [16, 3], the modulating function method is transferred
to fractional systems and it is used to identify the parameters.
The benefit is that no derivative of the measured signals
has to be calculated. It can be shown that the parameter
identification is robust against high frequency sinusoidal
noise, but not in general against a noisy observation of the
output signal.

In [4], the problem of the initialization function is in-
vestigated. It is shown if the modulating function method
is used and, in addition, if a special property is fulfilled
by the modulating function, no initialization function will
be needed anymore. The resulting bias is also calculated
if Gaussian white noise is assumed and the least squares
method is applied for the parameter identification.

In [5, 6], the modulating function method combined with
the least squares method is also used. But, in [5], a prediction
of the future noise and, in [6], information about properties of
the noise is used to revise the standard least squares method
to eliminate the bias.

In this paper, an approach for bias-free parameter identifi-
cation based on the instrumental variable method is proposed
so no information about the noise has to be considered.
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Therefore, an existing algorithm will be extended with the
short-memory principle. So, it is possible to calculate the
output signal of the fractional system after a fixed, prede-
termined time with only a small error compared to the true
output signal. The simulated output signal will be used as
the instrumental variable like in the classical case.

This paper is structured as follows: In Section II, the basis
of the fractional calculus, the considered structure of the
fractional system and the modulating function are provided.
The main parts are described in Section III and Section IV.
First, the existing algorithm which is extended with the short-
memory principle, in a second step, is described. Afterwards,
the consistent parameter identification using the instrumental
variable method within the modulating function method is
shown. A numerical example in Section V completes this
paper.

II. PRELIMINARIES

A. Fundamentals of Fractional Calculus

In this section, the left-sided Riemann-Liouville and the
right-sided Caputo definition of the uninitialized and initial-
ized fractional derivative used in this paper are described.
Also, the right-sided Grünwald-Letnikov definition and the
important relation between the derivatives are given. But,
first, the fractional integration is presented because the
fractional integration is inevitable to define the fractional
derivatives.

Through this paper, the following notations are used:
f ∶ [a, t] → R, h ∶ [t, b] → R and α,β ∈ R+ where f and
h are arbitrary continuous functions with f(t) = 0, ∀t ≤ a
and h(t) = 0, ∀t ≥ b. Also, a ≤ e < t < g ≤ b holds. In
addition, ⌊α⌋ describes the floor function and denotes the
biggest integer smaller or equal to α.

All uninitialized operators given in this section are defined
in e.g. [7, 8, 9]. The initialized fractional operators can be
obtained from [10, 11] and [12] whose notation is used. The
lower or rather upper bound is marked at the operator in the
left or rather right lower corner. The fractional order is given
in the right upper corner.

Definition 1: Uninitialized Fractional Integration.

iαe t f(t) ∶=
1

Γ(α) ∫
t

e

f(ν)
(t − ν)1−α

dν (1)

where Γ is the Gamma function.
Definition 2: Uninitialized Right-Sided Fractional Integra-

tion.

iαt g h(t) ∶=
1

Γ(α) ∫
g

t

h(ν)
(ν − t)1−α

dν (2)



Definition 3: Uninitialized Riemann-Liouville Derivative.

dRLαe t f(t) ∶= ( d
dt

)
⌊α⌋+1

[ i⌊α⌋+1−αe t f(t)] (3)

where i
⌊α⌋+1−α

e t f(t) is the uninitialized fractional inte-
gral (1).

Definition 4: Initialized Riemann-Liouville Derivative.

DRLαe t f(t) ∶= dRLαe t f(t) + ϕRL,L(f,α, a, e, t) (4)

where ϕRL,L(f,α, a, e, t) is the initialization function of the
Riemann-Liouville derivative.

Definition 5: Terminal Initialization Function of the Ini-
tialized Riemann-Liouville Derivative.

ϕRL,L(f,α, a, e, t) ∶= ( d
dt

)
⌊α⌋+1

[ i⌊α⌋+1−αa e f(t)] (5)

Definition 6: Uninitialized Right-Sided Caputo Derivative.

dCαt g h(t) ∶= (−1)⌊α⌋+1 i
⌊α⌋+1−α

t g [( d
dt

)
⌊α⌋+1

h(t)] (6)

where i
⌊α⌋+1−α

t g h(t) is the uninitialized right-sided fractional
integral (2).

Definition 7: Initialized Right-Sided Caputo Derivative.

DCαt g h(t) ∶= dCαt g h(t) + ϕC,R(h,α, g, b, t) (7)

where ϕC,R(h,α, g, b, t) is the initialization function of the
right-sided Caputo derivative.

Definition 8: Terminal Initialization Function of the Ini-
tialized Right-Sided Caputo Derivative.

ϕC,R(h,α, g, b, t) ∶= (−1)⌊α⌋+1 i
⌊α⌋+1−α

g b [( d
dt

)
⌊α⌋+1

h(t)] .
(8)

Remark 1: The order of the fractional integral and integer
derivative of the Caputo derivative is changed compared to
the definition of the Riemann-Liouville derivative.

Considering the uninitialized case, the link between the
Riemann-Liouville and the Caputo derivative given in [13]
is

dRLαt g h(t) = dCαt g h(t) +
⌊α⌋

∑
j=0

dRLαt g

h(j)(t)∣
t=g

j!
(g − t)g.

(9)
Remark 2: So, if f (j)(t)∣

t=g
= 0 ∀j ∈ {0,1, . . . , ⌊α⌋}

holds, it follows

dRLαt g h(t) = dCαt g h(t) (10)

Definition 9: Uninitialized Grünwald-Letnikov Derivative.

dGLαa t f(t) ∶= lim
Ts→0

1

Tαs

⌊ t−aTs
⌋

∑
l=0

(−1)j (α
j
)f(t − jTs) (11)

where Ts is the sampling time.
Definition 10: Uninitialized Right-Sided Grünwald-

Letnikov Derivative.

dGLαt b h(t) ∶= lim
Ts→0

1

Tαs

⌊ b−tTs
⌋

∑
l=0

(−1)l (α
l
)h(t + jTs). (12)

Remark 3: The Grünwald-Letnikov derivative is equivalent
to the Riemann-Liouville derivative under some suitable
conditions (see [13, 14]).

Considering (11) and (12), as time goes by, t ≫ a
or rather t ≪ b, more and more summands have to be
taken into account. The influence of the functional values
is decreasing closer to the limits a or rather g due to the
binomial coefficient. So, after a certain time these values can
be neglected and only the recent past of the function have to
be considered (see [7]). This principle is called short-memory
principle and within a fixed memory length is used to take
the recent past into account.

Definition 11: Short-Memory Principle.

dGLαe t f(t) ≈ dGLαt−L⋅Ts t f(t) or rather (13)
dGLαt g h(t) ≈ dGLαt t+L⋅Tsh(t) (14)

where L ∈ N is the fixed memory length.
Definition 12: Relation Between The Frequency And Time

Domain.
If the Laplace transform Lf(s) and L[ Dk

e t f(t)](s) exists
and limt→∞ Dj

e tf(t) = 0 for j = 0,1, ..., k − 1 holds true,
then the relation

L[ Dk
e t f(t)](s) = skLf(s) −

k−1

∑
j=0

sk−j−1 Dj
e tf(0) (15)

exists [13].
Remark 4: The operator Dj

e t notates that the Riemann-
Liouville as well as the Grünwald-Letnikov derivative can
be used.

B. Fractional Order Models

In this paper, the investigated system is initially described
by the transfer function

Y (s)
U(s)

= ∑
m
k=0 bks

βk

∑ni=0 aisαi
= B(s)
A(s)

. (16)

Using (15) and zero initial conditions at t = a leads to the
non-commensurable fractional system

n

∑
i=0

ai dRLαia t ỹ (t) =
m

∑
k=0

bk dRLβka t u (t) (17)

in time domain. If it is assumed that the system is not at
rest when the parameter identification is done the initialized
derivatives have to be used and, therefore, the system is

n

∑
i=0

ai DRLαie t ỹ (t) =
m

∑
k=0

bk DRLβke t u (t) (18)

where ai, bk ∈ R are unknown parameters collected in the
vector p = [an−1, ..., a0, bm, ..., b0]⊺. The fractional orders
αi, βk ∈ R+ are assumed to be ordered 0 ≤ α0 < ⋅ ⋅ ⋅ < αn,
0 ≤ β0 < ⋅ ⋅ ⋅ < βm as well as αn ≥ βm. The number of
unknown parameters n,m ∈ N and the input signal u (t) are
known and ỹ(t) is a noisy observation of y(t):

ỹ(t) = y(t) + % + ε(t) (19)

where y(t) is the noiseless output signal, % is a constant bias
and ε(t) is assumed to be Gaussian white noise.



Assumption 1: Noise.

E{ε(t)} = 0 and (20)

E{ε(t)ε(t − τ)} = σ2 ⋅ δ(τ) (21)

where E describes the expected value, σ2 is the value of the
variance and δ(t) is the Dirac delta function.

Regarding the input and output signal, the following
assumption is also made.

Assumption 2: Bounded Signals.
The input and output signal are assumed to be bounded.

The last assumption regarding the system is stated below.
Assumption 3: Standardization.

Without loss of generality, it is assumed that an = 1 in the
fractional system (18).

Remark 5: The investigated system is not at rest. It
follows that DRLαe t f(t) ≠ dRLαe t f(t) and the initialization
function (5) has to be taken into account.

C. Modulating Function Method

The modulating function method was first presented in
[15] and, meanwhile, the modulating function method is
transferred to fractional order models (see e.g. [16, 4]). The
idea is that the derivatives of the signals are swapped to
a, at first, arbitrary and continuously differentiable function
using the integration by parts. Each signal of system (18) is
multiplied with this function and every product is integrated
over t ∈ [e, g]. Applying the integration by parts leads to the
result that the derivatives are swapped but with the drawback
that boundary terms arise. In [15], two properties

(P1) ∶ γ(t) ∈ Cαn([e, g])

(P2) ∶ γ(v)(e) = γ(v)(g) = 0 ∀v = 0,1, . . . , ⌊αn⌋ + 1.

are stated which eliminates the boundary terms. The func-
tions which fulfills these properties are called modulating
functions. An overview of some modulating functions are
given in [17].

If the modulating function additionally fulfill

(P3) ∶
dCαit g γ(t) = 0 ∀i = 0,1, ..., n

dCβkt g γ(t) = 0 ∀k = 0,1, ...,m

where t ∈ [a, e], the initialization function need not to be
considered (see [4]).

If the modulating function also has the property

(P4) ∶
∫

g

e
dCαit g γ(t)dt = 0 ∀i = 0,1, ..., n

∫
g

e
dCβkt g γ(t)dt = 0 ∀k = 0,1, ...,m

an unknown bias will be eliminated (see [18]).
Lemma 1: Applied Modulating Function Method.

Applying the modulating function method to the system (18)
results in

n

∑
i=0

ai ∫
g

e
dCαit g γ (t) ỹ (t)dt =

m

∑
k=0

bk ∫
g

e
dCβkt g γ (t)u (t)dt

(22)

assuming that the modulating function also fulfills (P3).
Proof: The proof can be found in [4].
Lemma 2: Replacing Caputo derivative.

The uninitialized right-sided Caputo derivative can be re-
placed by the uninitialized right-sided Grünwald-Letnikov
derivative.

Proof: Because of (P2), the link between the unitialized
Caputo and Riemann-Liouville derivative (9) simplifies to

dRLαt g h(t) = dCαt g h(t). (23)

In [14], the equivalence between the Riemann-Liouville and
Grünwald-Letnikov derivative is shown.

In the following, the system

n

∑
i=0

ai ∫
g

e
dGLαit g γ (t) ỹ (t)dt =

m

∑
k=0

bk ∫
g

e
dGLβkt g γ (t)u (t)

(24)

will be considered unless it is stated specifically.

D. Definition of a Spline-Type Modulating Function

Definition 13: Spline-Type Modulating Function.
In [19], a spline-type modulating function is described which
is a weighted sequence of impulses integrated afterwards

γς,ι(t) = ∫
g

e

o=ς−ι
©⋯ ∫

g

e

ς

∑
ν=0

(−1)ν (ς
ν
)δ (νT0 − t + e)dto

(25)
where ς is the order of the modulating function and T0 = T

ς
depends on the identification time T .

III. CLOSED-FORM SOLUTION CONSIDERING
SHORT-MEMORY PRINCIPLE

A. Origin Closed-Form Solution

Starting point of developing the algorithm is the transfer
function (16). In [22], the developing is described in detail
and, in this paper, the most important steps are just given in
the following.

Lemma 3: Closed-Form Solution.
The closed-form solution using the Grünwald-Letnikov
derivative is

y(t) = 1
n

∑
i=0

ai
T
αi
s

⎛
⎜
⎝
x(t) −

n

∑
i=0

ai
Tαis

⌊ t−aTs
⌋

∑
l=1

(−1)l(αi
l
)y(t − l ⋅ Ts)

⎞
⎟
⎠

(26)
where

x(t) =
m

∑
k=0

bk

T βks

⌊ t−aTs
⌋

∑
l=0

(−1)l(βk
l
)u(t − l ⋅ Ts). (27)

Proof: The transfer function (16) can be rewritten as

n

∑
i=0

ais
αiY (s) =

m

∑
k=0

bks
βkU(s). (28)



First, the right side of this equation is set equal to X(s) and
(15) with zero initial condition and the Grünwald-Letnikov
derivative is applied

x(t) =
m

∑
k=0

bk dGLβka t u(t). (29)

Second, (15) is applied on the left side of (28) again with
zero initial condition and the Grünwald-Letnikov derivative
and the right side is replaced by (29) which leads to

n

∑
i=0

ai dGLαia t = x(t). (30)

Using (11), it follows

n

∑
i=0

ai
Tαis

⌊ t−aTs
⌋

∑
l=0

(−1)l(αi
l
)y(t − l ⋅ Ts) = x(t) (31)

and evaluating the inner sum for l = 0 and rearranging
everything results in (26).

Remark 6: In [20], a recursive formulation to calculate the
binomial coefficient

(α
0
) = 1

(α
j
) = (1 − α + 1

j
)( α

j − 1
) for j = 1,2, ....

(32)

is given which is numerically more robust.
Remark 7: This approach is used in the FOMCON toolbox

(see [21]) and the approach which can not be extended with
the short-memory principle in the FOTF toolbox (see [22]).

B. IMPLEMENTATION OF THE SHORT-MEMORY PRIN-
CIPLE

In this section, the closed-form solution is extended with
the short-memory principle.

Lemma 4: Closed-Form Solution Considering Short-
Memory Principle.
The closed-form solution considering the short-memory prin-
ciple using the Grünwald-Letnikov derivative is

y(t) = 1
n

∑
i=0

ai
T
αi
s

(x(t) −
n

∑
i=0

ai
Tαis

L

∑
l=1

(−1)l(αi
l
)y(t − l ⋅ Ts))

(33)
where

x(t) =
m

∑
k=0

bk

T βks

L

∑
l=0

(−1)l(βk
l
)u(t − l ⋅ Ts). (34)

Proof: The proof is analogous to the proof of the closed-
form solution except that in (29) and (30) the short-memory
principle (13) is used.

Remark 8: The binomial coefficient is calculated using
(32).

The benefit of using the short-memory principle is shown
by calculating the closed-form solution without and with the
short-memory principle of a system which is not at rest.
Therefore, the following system is considered:

DRLα2
e t y(t) + a1 DRLα1

e t y(t) + a0y(t) =
b1 DRLβ2

e t u(t) + b0 DRLβ1

e t u(t)
(35)
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Fig. 1. Comparison of the closed-form solution without and with the
short-memory principle.

where a1 = 2, a0 = 3, b1 = 1 and b0 = 4 as well as α2 = 0.8,
α1 = 0.5, β2 = 0.5 and β1 = 0.1. The sampling time is
Ts = 0.01 s. In the top picture of Fig. 1, the input signal, a
single pulse between t = 0.75 s and t = 1.5 s, is shown.

First, the output signal of system (35) is calculated with
zero initial conditions at t = 0 s using (26) which is displayed
as a solid blue line in Fig. 1. Next, the calculation of the
output signal begins at t = 1 s marked as a dotted green line.
It is assumed that no past data of t ∈ [0,1.5] are known. At
first, the closed-form solution is calculated using also (26)
and shown as a dash-dotted red line in the middle picture of
Fig. 1. Because the zero initial condition which is penalized
in this case, but which is assumed in (26), the output signal
starts at 0 and converges against the true output signal after
t = 2 s. Afterwards, (33) is used to calculate the closed-form
solution. A memory length of L = 20 or rather TSMP = 0.2 s
is used. Because, also in this case, no past data are available,
the calculated output signal begins at t = 1.2 s. In the middle
picture of Fig. 1, this output signal considering the short-
memory principle is shown as a dashed yellow line. No
obvious divergence is between the closed-form solution with
zero initial condition starting at t = 0 s and the one with
the short-memory principle. The error is also shown in the
lowest picture of Fig. 1. Therefore, it can be concluded that
after the time corresponding to the memory length the error
is small.

IV. INSTRUMENTAL VARIABLE METHOD USING
THE MODULATING FUNCTION METHOD

In e.g. [4, 5, 6], it is shown that using the least squares
method for parameter identification the parameters can not be
estimated consistently. In this section, the refined instrumen-
tal variable method is described for the modulating function
method. Because the undisturbed output signal has to be
estimated analogous to the integer order case, an auxiliary
model with the latest identified parameters is set up (see



e.g. [23]). This model is used to simulate the output signal
which is obtained applying the closed-form solution with the
short-memory principle (33). In opposite to the closed-form
solution with zero initial condition, this approach leads to a
small error and the output data can be used after the time
corresponding to the memory length.

Before the consist estimation can be shown, some vari-
ables have to be introduced: q ≥ n +m + 1, tτ = e + τ∆T
and t

′

τ = tτ + T where ∆T is the shifting time, T the
identification time, t0 = e the start time of the identification
and τ ∈ 0, . . . , q − 1.

Lemma 5: To estimate the unknown parameters, the linear
system

Y =Mp (36)

has to be solved where p are the unknown parameters,
Y ∶= [ym(0), ym(1),⋯, ym(q − 1)]⊺ describes the αn-th
fractional derivative of the modulated output signal

ym (τ) ∶= ∫
t
′

τ

tτ
ỹ(t) dGLαn

t t′τ
γ(t − τ∆T )dt. (37)

M ∶= [m⊺(0),m⊺(1),⋯,m⊺(q − 1)]⊺ where m⊺ (τ) ∈
R(n+m+1)×1 given in (40) are all other modulated derivatives
of the output and input signal.

Proof: The proof can be found in [4].
The resulting equation error using the modulating function

method is
e (τ) = ym (τ) −m⊺ (τ)p (38)

where ym (τ) is given in (37) and m⊺ (τ) is given in (40)
(see [23]).

Then, the estimation equation of the instrumental variable
method is given by

p = (W ⊺M)−1W ⊺Y (39)

where W ∶= [w⊺(0),w⊺(1),⋯,w⊺(q − 1)]⊺ and w⊺ (τ) ∈
R(n+m+1)×1 are the instrumental variables given in (41) (see
[23]).

In [23], conditions of a consistent estimation for the
instrumental variable methods are given. These conditions
are given in the following lemma using the definitions above.

Lemma 6: The parameters can be estimated consistently
in the mean square if the conditions

● The number of parameters (n and m) has to be known.
● The input signal u (t) has to be known exactly.
● The mean value of the equation error is zero

E{e (τ)} = 0.
● The equation error e (τ) is not correlated with the

instrumental variables w (τ).
are satisfied.

Proof: The proof is structured in four parts correspond-
ing to the conditions. First, considering that the system is
modeled using white box or gray box modeling the number
of parameters is known. If black box modeling is used, the
number of parameters have to be fixed in this case and,
afterwards, it is known.

Second, the input signal is specified for the identification.
Therefore, the used input signal is known exactly.

Third, inserting the true parameter values in (40) and
assuming that the modulating function fulfills (P4) leads
to the following equation error

e (τ) =∫
t
′

τ

tτ
ε (t) dGLαn

t t′τ
γ(t − τ∆T )dt + ...+

+ a0 ∫
t
′

τ

tτ
ε (t) dGLα0

t t′τ
γ(t − τ∆T )dt

(42)

Using a numerical integration and rewriting everything as a
sum results in

e (τ) =
n

∑
i=0

aiTs

⌊
t
′

τ−tτ
Ts

⌋

∑
s=0

P (s)ε (ts) dGLαi
t t′τ

γ(t − τ∆T )∣
t=ts

+

n

∑
i=0

aiFi

(43)

where αn = 1, ts = tτ + sTs, P (s) are the weights of the
numerical integration and Fi the numerical errors of the
integral approximation. For the calculation of the expected
value, it is assumed that the noise ε (t) is uncorrelated to the
modulating function γ (t) and, hence, (44) results. Because
of Assum. 1, the first part of (44) vanishes. Therefore, the
mean value of the equation error is zero if Ts tends to 0.

Fourth, it is shown that under the assumption that an
estimation of the undisturbed output signal is given the equa-
tion error and the instrumental variables are not correlated.
Starting point is the correlation coefficient

ρe,w ∶= E{(e (τ) − E{e (τ)}) (w⊺ (τ) − E{w⊺ (τ)})}
σeσw

(45)
where σe is the standard deviation of the equation error and
σw of the instrumental variables. Using the result above and
the fact that E{w⊺ (τ)} takes on a value, it leads to

ρe,w ∶= E{e (τ)w⊺ (τ)}
σeσw

. (46)

Because of the linearity, each element of w can be investi-
gated individually and either the numerator has to become 0
or the denominator has to tend to infinity. Only the numerator
is evaluated and here, exemplary,

w1 (τ) = −∫
t
′

τ

tτ
ys (t) dGLαn−1

t t′τ
γ(t − τ∆T )dt (47)

is used. The investigated expected value is given in (50).
Multiplying all parts, using the linearity of the expected value
and assuming that Ts tends to zero leads to (51). Again, the
assumption that the modulating function is uncorrelated to
the other signals is used and it results in (52). Because the
simulated signal ys (t) is not correlated to the noise and
Assum. 1 is made,

ρe,w1 = 0 (48)



m⊺ (τ) ∶=
⎡⎢⎢⎢⎢⎣
−∫

t
′

τ

tτ
ỹ (t) dGLαn−1

t t′τ
γ(t − τ∆T )dt, . . . ,−∫

t
′

τ

tτ
ỹ (t) dGLα0

t t′τ
γ(t − τ∆T )dt,

∫
t
′

τ

tτ
u (t) dGLβm

t t′τ
γ(t − τ∆T )dt, . . . ,∫

t
′

τ

tτ
u (t) dGLβ0

t t′τ
γ(t − τ∆T )dt

⎤⎥⎥⎥⎥⎦

(40)

w⊺ (τ) ∶=
⎡⎢⎢⎢⎢⎣
−∫

t
′

τ

tτ
ys (t) dGLαn−1

t t′τ
γ(t − τ∆T )dt, . . . ,−∫

t
′

τ

tτ
ys (t) dGLα0

t t′τ
γ(t − τ∆T )dt,

∫
t
′

τ

tτ
u (t) dGLβm

t t′τ
γ(t − τ∆T )dt, . . . ,∫

t
′

τ

tτ
u (t) dGLβ0

t t′τ
γ(t − τ∆T )dt

⎤⎥⎥⎥⎥⎦

(41)

where ys (t) is the simulated output signal using (33).

E{e (τ)} =
n

∑
i=0

aiTs

⌊
t
′

τ−tτ
Ts

⌋

∑
s=0

P (s)E{ε (ts)}E{ dGLαi
t t′τ

γ(t − τ∆T )∣
t=ts

} +
n

∑
i=0

aiE{Fi} (44)

follows. This is also true for all other elements of w⊺ (t)
because the result does not depend on the fractional order
and the input signal u (t) is known exactly. Therefore,

ρe,w = 0 (49)

and it follows directly that the equation error is not correlated
with the instrumental variable.

V. EXAMPLE

The system (35) which was used to demonstrate the short-
memory principle in Section III-B is also the example system
for the parameter identification:

DRLα2
e t y(t) + a1 DRLα1

e t y(t) + a0y(t) =
b1 DRLβ2

e t u(t) + b0 DRLβ1

e t u(t)
(53)

where a1 = 2, a0 = 3, b1 = 1 and b0 = 4 as well as α2 = 0.8,
α1 = 0.5, β2 = 0.5 and β1 = 0.1. The chosen modulating
function is the spline-type modulating (25) with ς = 20 and
ν = 9. The identification time is set to T = 20 s and the
modulating function is shifted by ∆T = 6 s. The duration
of the simulation is Tg = 170 s with a sampling time of
Ts = 0.01 s. Even though the simulation starts at a = 0 s, the
begin of the identification is at e = 15 s. The Gaussian white
noise which leads to a signal-to-noise ratio of SNR = 38.4 dB
superimpose the output signal.

In Fig. 2, the pseudo random binary signal which is
used as the input signal and the output signal are shown.
The original output signal is displayed as a dashed blue
course and the noisy observation which is used for the
parameter identification as a solid red course. The begin of
the identification is marked at e = 15 s.

The continuous integrals arising in the modulating func-
tion method are approximated using the trapezoidal rule
with uniform grid. The parameters are identified using the
described instrumental variable method in matrix form (39).
The parameter identification result is compared to the least

squares method which is not bias-free considering a noisy
observation of the output signal (see e.g. [4, 5, 6]). In Fig. 3,
the evolution of the estimated parameters p = [a1, a0, b1, b0]⊺

is shown. In contrast to the parameters identified using the
lest squares approach, the identified parameters using the
described instrumental variable method converge against the
true values despite the output signal is superimposed by
Gaussian white noise. It should be noted that in this case
the convergence against the true values needs more than ten
times of iterations than in the noise-free case. In this case
after four iterations the true values are reached (see [4]). In
the noisy case, 45 iterations have to be done.

It has also to be mentioned that the first four iteration leads
to the same parameters because not enough data have been
collected so the system can not be simulated. Due to this
fact no instrumental variable can be set up and the standard
least-squares method is used till this iteration. From the
fifth iteration, the described instrumental variable method is
applied and the results differ from the standard least-squares
method.

VI. CONCLUSIONS

This paper focuses on the parameter identification of a
non-commensurable fractional system considering a noisy
observation of the output signal. An assumption is that
the investigated system need not to be at rest because it
would be a conservative assumption regarding real world
application (see [4]). So that the measured signal need not
to be derived and the initialization function of the system
does not have to be taken into account, the modulation
function method is applied using the spline-type modulating
function. In contrast to other known approaches (see e.g.
[5, 6]), neither a property of the noise is used nor its
future influence is estimated to eliminate the bias, but the
instrumental variable is extended to the modulating function
method applied to a non-commensurable fractional system.



ρe,w1 = E

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝
Ts

⌊
t
′

τ−tτ
Ts

⌋

∑
s1=0

P (s1)ε (ts1) dGLαi
t t′τ

γ(t − τ∆T )∣
t=ts1

+Fε
⎞
⎟⎟⎟
⎠

⎛
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⎝
Ts

⌊
t
′

τ−tτ
Ts

⌋

∑
s2=0

P (s2)ys (ts2) dGLαn−1
t t′τ

γ(t − τ∆T )∣
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+Fy
⎞
⎟⎟⎟
⎠
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(50)

= E

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T 2
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⎛
⎜⎜⎜
⎝
P (s1)ε (ts1) dGLαi

t t′τ
γ(t − τ∆T )∣
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⌊
t
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⎞
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⎠
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(51)

= T 2
s

⌊
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′

τ−tτ
Ts

⌋

∑
s1=0

⌊
t
′

τ−tτ
Ts

⌋

∑
s2=0

P (s1)P (s2)E{ε (ts1) ys (ts2)}E{ dGLαi
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t t′τ

γ(t − τ∆T )∣
t=ts2

} (52)
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Fig. 3. Evolution of the estimated parameters using the least-squares
method and the presented instrumental variable method for fractional
systems

To set up the instrumental variable, it is recommended to use
a noise-free simulation of the output signal (see [23]). The
existing algorithms are considering zero initial conditions.
Therefore, an existing algorithm to evaluate the output signal
of a fractional system is extended with the short-memory
principle. This enables the online simulation of the fractional
system with a fixed time on which the simulation is close to
the true value. In addition, the presented approach is valid for
a numerical implementation because the Grünwald-Letnikov
derivative underlies all calculation.

The choice of the memory length and the freely chosen
parameters of the modulating function have great influence
on the parameter identification results which have to be
investigated carefully. Also, it can not be assumed that after
the minimum number of iterations the instrumental variable
method is converged. So, the convergence behavior of the
proposed instrumental variable method using the modulating
function method within should be a topic of future works.
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