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Abstract
Conjugated gradients on the normal equation (CGNE) is a popular method to 
regularise linear inverse problems. The idea of the method can be summarised 
as minimising the residuum over a suitable Krylov subspace. It is shown that 
using the same idea for the shift-and-invert rational Krylov subspace yields an 
order-optimal regularisation scheme.

Keywords: order-optimal regularisation scheme, rational Krylov subspace 
method, discrepancy principle
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1. Introduction

We consider the solution of the linear system

Tx = yδ (1)

where the operator T acts continuously between the Hilbert spaces X  and Y . The linear sys-
tem is assumed to be ill-posed, that is, the range R(T) is not closed in Y . yδ is a perturbation of 
the exact data y , such that ‖yδ − y‖ � δ . yδ is also called the noisy data and δ the noise level. 
For exact data, we assume that y  is in the range of T, y ∈ R(T), which guarantees that there 
exists a unique x+ ∈ N (T)⊥ such that Tx+   =  y . N (T)⊥ designates the orthogonal comple-
ment of the null space N (T) of T. x+ can also be characterised as the unique x+ ∈ N (T)⊥ 
that solves the normal equation

T∗Tx = T∗y. (2)
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In fact, the normal equation possesses a unique solution x+ ∈ N (T)⊥ for every y ∈ D(T+) :=  
R(T)⊕R(T)⊥, where R(T)⊕R(T)⊥ designates the direct orthogonal sum of R(T) and its 
orthogonal complement R(T)⊥ = N (T∗). The linear unbounded map T+ : D(T+) → N (T)⊥, 
y �→ x+, is the Moore–Penrose (generalised) inverse and x+ is the minimum-norm solution.

In order to reconstruct the solution x+ of the unperturbed problem Tx+   =  y  as good as 
possible subject to a given noise level δ, special procedures, called regularisation schemes, 
have to be used. Let {Rm}m∈N0 be a family of linear or nonlinear operators from Y  to X  with 
Rm0  =  0. If there exists a mapping m : R+ × Y → N0 such that

lim sup
δ→0

{‖Rm(δ,yδ)y
δ − x+‖ | yδ ∈ Y , ‖yδ − Tx+‖ � δ} = 0

for any x+ ∈ N (T)⊥, then the pair (Rm, m(δ, yδ)) is called a (convergent) regularisation 
scheme for T. The mapping m is called parameter choice or stopping rule. We will always use 
the discrepancy principle as our stopping rule, which is due to Morozov [23]. The discrepancy 
principle reads: Choose a fixed τ > 1 and set:

m(δ, yδ) := min{m ∈ N0 | ‖yδ − Txδm‖ � τδ}, (3)

where xδm := Rmyδ. The discrepancy principle leads to convergent regularisation schemes (see 
[6]). Regularisation schemes might converge arbitrarily slow unless the (unperturbed) data 
x+ satisfies some smoothness assumptions. Convergence rates can be given when x+ is in 
the source set Xµ,ρ := {x ∈ X | x = (T∗T)µw, ‖w‖ � ρ}, µ > 0. Regularisation schemes 
(Rm, m(δ, yδ)) that attain the highest possible convergence speed are called of optimal order 
in Xµ,ρ if

sup{‖Rm(δ,yδ)y
δ − x+‖ | x+ ∈ Xµ,ρ, ‖yδ − Tx+‖ � δ} � Cµδ

2µ
2µ+1 ρ

1
2µ+1 ,

where Cµ neither depends on δ nor on ρ .
One of the most popular iterative regularisation schemes is conjugated gradients on the 

normal equation (CGNE) that can be stated briefly as

xδm =: Rmyδ , xδm = argminx∈Km
‖yδ − Tx‖, m = 1, 2, . . . , (4)

where Km is the (polynomial) Krylov subspace

Km = Km(T∗T , T∗yδ) = span{T∗yδ , (T∗T)T∗yδ , . . . , (T∗T)m−1T∗yδ}.

An efficient algorithm is available to compute these approximations (see [15]). CGNE with 
the discrepancy principle as a stopping rule is an order-optimal regularisation scheme for all 
µ > 0 (see theorem 7.12 in [6, 24]). And, due to its definition, CGNE is the fastest to satisfy 
the discrepancy principle with respect to all regularisation schemes that compute approx-
imations in the Krylov subspace Km. The analysis of CGNE with respect to its regularisation 
properties is involved, since the operators Rm are nonlinear and not necessarily continuous 
(see theorem 7.6 in [5, 6]).

In this paper, we will define a method of the same type, but for the shift-and-invert or 
resolvent Krylov subspace

Qm = Km

(
(I + T∗T/γ)−1 , T∗yδ

)

= span
{

T∗yδ , (I + T∗T/γ)−1 T∗yδ , · · · , (I + T∗T/γ)−m+1 T∗yδ
}

,
 (5)
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where γ > 0 is a fixed real number (e.g. [1, 11, 12, 20–22, 26, 29]). Due to the relation 
(I + T∗T/γ)−1T∗T = γI − γ(I + T∗T/γ)−1, this rational Krylov subspace can also be writ-
ten as

Qm = Km

(
(I + T∗T/γ)−1 , T∗yδ

)
= Km

(
(I + T∗T/γ)−1 T∗T , T∗yδ

)
. (6)

We define our method by

xδm =: Rmyδ , xδm = argminx∈Qm
‖yδ − Tx‖, m = 1, 2, . . . , (7)

combined with the discrepancy principle as its stopping rule. (The minimizer xδm is uniquely 
defined, see lemma 2.3 below.) The subspace Qm  belongs to the class of rational Krylov sub-
spaces which have been studied in recent years (e.g. references in [8, 13]). Since this method 
can be seen as solving the normal equation (2) approximatively in the shift-and-invert Krylov 
subspace Qm , the method will be called shift-and-invert on the normal equation  (SINE). 
Several regularisation schemes have been proposed that compute approximations in the sub-
space Qm , see example 1.1. By definition, our method will be the fastest to stop with respect 
to the discrepancy principle. SINE is related (but not identical) to CGNE preconditioned 
by (I + T∗T/γ)−1. Actually, SINE is not a preconditioning technique in the usual sense. 
Nevertheless, rational Krylov subspaces have been observed of being capable of accelerating 
the convergence (e.g. [10]). The analysis of SINE with respect to its regularisation properties 
shares the difficulties of the analysis of CGNE, the family of operators Rm is again nonlinear 
and not continuous in general, which can be seen by generalising the ideas of the proof of 
theorem 7.6 in [5, 6].

Example 1.1. Some regularisation schemes with approximations in the subspace Qm .

 (i)  Iterated Tikhonov–Phillips regularisation (see [3, 7, 17, 18]).
 (ii)  Applying the implicit Euler method, the implicit midpoint-rule, or the trapezoidal rule 

with fixed time-step to asymptotic regularisation (Showalter’s regularisation) leads to 
approximations in Qm  (see [27]).

 (iii)  The method proposed by Riley in [28] applied to the normal equation.
 (iv)  The rational Arnoldi approach proposed in [2].

In section 2, we will show that xδm in (7) can be computed efficiently and discuss some 
basic properties of the method. Convergence for unperturbed data is shown in section 3 before 
the SINE method is discussed with respect to its regularisation properties in section 4. In sec-
tion 5, upper bounds on the number of iterations of SINE are discussed by comparing them to 
the known upper bounds on the number of iterations of CGNE. The findings are illustrated by 
an experiment in section 6.

Throughout we will use notations identical or closely related to the notations in [6]. In 
particular, the functional calculus described in section 2.3 of [6] is used without further note. 
Our proofs will follow closely or sometimes literally the corresponding proofs for CGNE in 
chapter 7 of [6].

2. Basic properties

We consider algorithm 1, where we choose xδ0 = 0 without loss of generality. If xδ0 were not 
zero, the corresponding shift-and-invert Krylov subspace would be spanned with r0 = yδ − Txδ0 
instead of yδ, which allows to use prior information on the solution. First, we aim for the fol-
lowing properties: algorithm 1 computes xδm according to (7), as long as the algorithm does not 
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break down. If algorithm 1 breaks down in step κ with qκ = 0, we have xδκ = T+yδ as well as 
xδm = T+yδ  for m � κ in (7).

Algorithm 1. Shift-and-invert on the normal equation (SINE).

Choose xδ0, set r0 = yδ − Txδ0, w0 = T∗r0 .
for j = 0, 1, 2, . . . do
   qj = Twj

   δj = (qj, qj)

   αj = (rj, qj) /δj

   xδj+1 = xδj + αjwj

   rj+1 = rj − αjqj

   sj = T∗qj

   tj+1 = (I + T∗T/γ)−1T∗rj+1

   βj = (tj+1, sj) /δj

   wj+1 = tj+1 − βjwj

end for

An alternative way to compute the iterates of SINE is presented in algorithm 2. This variant 
is closer to the standard CG iteration and it might therefore help to compare SINE to known 
methods. All proofs and experiments refer to algorithm 1.

Algorithm 2. Variant of shift-and-invert on the normal equation (SINE).

Choose x0, set r0 = yδ − Tx0, t0 = d0 = w0 = T∗r0,
for j = 0, 1, 2, . . . do
   qj = Twj

   δj = (qj, qj)

   αj = (tj, dj) /δj

   xj+1 = xj + αjwj

   rj+1 = rj − αjqj

   dj+1 = T∗rj+1

   tj+1 = (I + T∗T/γ)−1dj+1

   β̃j = (tj+1, dj+1) / (tj, dj)

   IF j   =  0 , β̃j = β̃j − (tj+1, dj) / (tj, dj)

   wj+1 = tj+1 + β̃jwj

end for

Lemma 2.1. As long as qm−1 �= 0

 (i)  (rm, qj) = (T∗rm, wj) = 0, j = 0, . . . , m − 1
 (ii)  (qm, qj) = 0, j = 0, . . . , m − 1

Proof. The proof is via induction on m. For m  =  1, we have

(r1, q0) = (r0, q0)− α0(q0, q0) = 0, α0 =
(r0, q0)

(q0, q0)
.

V Grimm Inverse Problems 36 (2020) 015008
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We further obtain

(q1, q0) = (Tw1, Tw0) = (Tt1 − β0Tw0, Tw0)

= (Tt1, Tw0)− β0(Tw0, Tw0), β0 =
(t1, s0)

(q0, q0)

= (Tt1, q0)− (t1, T∗q0) = 0,

which concludes the proof of our statements for m  =  1. Now we assume that the assertions are 
satisfied for m. Then, we have

(rm+1, qj) = (rm, qj)− αm(qm, qj), αm =
(rm, qm)

(qm, qm)

=

{
(rm, qm)− αm(qm, qm) = 0, j = m,
0, j < m

.

With respect to (ii), it follows

(qm+1, qm) = (Ttm+1 − βmTwm, qm)

= (Ttm+1, qm)− βm(qm, qm), βm =
(tm+1, T∗qm)

(qm, qm)

= 0

and for j   <  m, we have

(qm+1, qj) = (Ttm+1, Twj)− βm(qm, qj)

= (Ttm+1, Twj) = (T(I + T∗T/γ)−1T∗rm+1, Twj)

= (T∗rm+1, (I + T∗T/γ)−1T∗qj) = 0,

 (8)

since

(I + T∗T/γ)−1T∗qj = (I + T∗T/γ)−1T∗Twj ∈ Qj+2

due to (6) and the fact that assertion (i) is already proved for m  +  1. □ 

The following lemma is a direct consequence of lemma 2.1.

Lemma 2.2. As long as algorithm 1 does not break down with qm  =  0, we have

Qm+1 = span {w0, . . . , wm} ,

where w0, . . . , wm is a basis of Qm+1.

With these preparations, the statements we aimed for can be proved.

Lemma 2.3. The iterates xδm of algorithm 1 satisfy (7).

Proof. Due to algorithm 1 with xδ0 = 0, we have xδm ∈ span{w0, . . . , wm−1} = Qm. Now, let 
zm ∈ Qm = span{w0, . . . , wm−1} such that zm �= xδm ∈ Qm. Hence, we can write

0 �= zm − xδm =

m−1∑
j=0

ξjwj, ξj ∈ R,

V Grimm Inverse Problems 36 (2020) 015008
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and obtain

‖yδ − Tzm‖2 = ‖yδ − Txδm‖2 − 2
m−1∑
j=0

ξj(Twj, rm) + ‖T
m−1∑
j=0

ξjwj‖2

> ‖yδ − Txδm‖2 − 2
m−1∑
j=0

ξj(qj, rm) = ‖yδ − Txδm‖2

by lemma 2.1. The strict inequality, and therefore uniqueness of the minimizer, follows since 

Qm ⊆ N (T)⊥ and ‖T
∑m−1

j=0 ξjwj‖2 > 0 as a consequence. □ 

Lemma 2.4. If algorithm 1 breaks down in step κ with qκ = 0, then xδκ = x+ = T+yδ .

Proof. We first show that qκ = 0 means T∗rκ = 0. First assume κ = 0. Then 0 = (r0, q0) =  
(r0, TT∗r0) = ‖T∗r0‖2, hence T∗r0 = 0. Now let κ > 0 and assume (rκ, qκ) = 0. Then, with 
the help of statement (i) of lemma 2.1

0 = (T∗rκ, wκ) = (T∗rκ, tκ − βκ−1wκ−1) = (T∗rκ, tκ)

= ((I + T∗T/γ)tκ, tκ) = ‖tκ‖2 +
1
γ
‖Ttκ‖2.

Hence we have 0 = (I + T∗T/γ)tκ = T∗rκ in all cases. Since rκ = yδ − Txδk, this means

T∗Txδκ = T∗yδ , xδκ ∈ Qκ ⊆ N (T)⊥,

which characterises the minimum-norm solution, that is xδκ = x+ (see theorems 2.5 and 2.6 in 
[6]). □ 

If the algorithm stops with qκ = 0, it follows from (7) that xδm = xδκ, m � κ.
Analogous to the description of the Krylov subspace Km with the set Πm−1 of polynomials 

of degree less than m, the shift-and-invert Krylov subspace Qm  can be described with the help 
of rational functions as

Qm =
{

r(T∗T)T∗yδ | r ∈ Πm−1/(1 + ·/γ)m−1} .

The functional calculus of section 2.3 in [6] applies to these rational functions. The iterates, 
residui etc of algorithm 1 can be identified with the corresponding rational functions (see 
[6, 14]). The following lemma describes some properties of the rational function rm(λ) that 
belongs to the residuum rm, i.e. the function rm(λ) such that

rm = yδ − Txm = rm(TT∗)yδ or T∗rm = rm(T∗T)T∗yδ , (9)

respectively.

Lemma 2.5. As long as the stopping index κ has not been reached, we have

rm(λ) =
pm(λ)

(1 + λ/γ)m−1 with pm(λ) =

m∏
j=1

(
1 − λ

λj,m

)
, m � 1, (10)

where rm(λ) is the rational function that describes the residuum rm in algorithm 1. The values 
λj,m−1, j = 1, . . . , m − 1 of rm−1(λ) and the values λj,m, j = 1, . . . , m of rm(λ) are interlacing, 
real, and positive, that is

V Grimm Inverse Problems 36 (2020) 015008
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0 < λ1,m < λ1,m−1 < λ2,m < · · · < λm−1,m < λm,m−1 < λm,m � ‖T‖2.

Proof. Let v0, · · · , vm−1 be an orthonormal basis such that

Q� = span{w0, · · · , w�−1} = span{v0, · · · , v�−1} for � = 1, . . . , m.

Then we can represent the iterate xδ� as xδ� =
∑�−1

j=0 zj,�vj . Since T∗yδ − T∗Txδ� ⊥ Q� is an 

equivalent condition to xδ� being the minimizer in (7), we have

S� = ((T∗Tvi, vj))
�−1
j,i=0 , S�z� = βe1, β = ‖T∗yδ‖.

Since Q� ⊂ N (T)⊥ = N (T∗T)⊥, S� is invertible, and therefore symmetric positive definite 
with ‖S�‖ � ‖T‖2 and z� = βS−1

� e1. Specifically,

xδm =

m−1∑
j=0

zj,mvj, with zm = βS−1
m e1. (11)

Furthermore, the (�− 1, �− 1) submatrix of S� is S�−1 for � = 2, . . . , m . Inductively, by the 
interlacing eigenvalue theorem (see theorem 3.6 in [30]), this leads to the result that the ei-
genvalues of S� are separated and interlaced with the eigenvalues of S�−1. If we designate the 
eigenvalues of S� with λ1,� < · · · < λ�,� then we obtain the statement on the interlacing of the 
numbers in our theorem. Using the representation of the iterate in the rational Krylov subspace 
(see [9]), one obtains

xδm =
qm−1(T∗T)

(1 + T∗T/γ)m−1 T∗yδ =

m−1∑
j=0

ξj,mvj, ξm = β
qm−1(Sm)

(1 + Sm/γ)m−1 e1. (12)

By comparing (11) with (12), we obtain

β
qm−1(Sm)

(1 + Sm/γ)m−1 e1 = βS−1
m e1 and hence

qm−1(Sm)

(1 + Sm/γ)m−1 = S−1
m ,

since Sm comes from a Krylov process and the minimal polynomial of Sm with respect to e1 
has therefore degree m. This means that rm(λ) = 1 − λqm−1(λ)/(1 + λ/γ)m−1 has zeros λj,m, 
j = 1, . . . , m by spectral decomposition of Sm. Together with the obvious value rm(0)  =  1, this 
shows the representation of rm(λ) as given in our lemma. □ 

The inner product introduced in the following lemma will be crucial for the proof of our 
main theorem. Also, the idea of algorithm 1 can be briefly stated as computing an orthogonal 
basis w0, . . . , wj−1 of the rational Krylov subspace Qj  with respect to the inner product [·, ·] in 
(13) when the vectors are identified with the corresponding rational functions. In the follow-
ing, we will often not make a difference between the residuum rm and the rational function 
rm(λ) and denote both by rm.

Lemma 2.6. The rational functions rm generated by algorithm 1 are orthogonal to 
Πm−1/(1 + ·/γ)m−1 with respect to the inner product

V Grimm Inverse Problems 36 (2020) 015008
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[
ϕ,ψ

]
=

∫ ‖T‖2+

0
ϕ(λ)ψ(λ)λ d‖Fλyδ‖2, (13)

where Fλ designates the spectral family of TT*. Among all rational ϕ ∈ Πm/(1 + ·/γ)m−1 
with ϕ(0) = 1, rm minimises the functional

Φ[ϕ] =

∫ ‖T‖2+

0
ϕ2(λ) d‖Fλyδ‖2. (14)

Proof. We have

[ϕ,ψ] =
∫ ‖T‖2+

0
ϕ(λ)ψ(λ)λ d‖Fλyδ‖2 = (ϕ(T∗T)T∗yδ ,ψ(T∗T)T∗yδ)

which gives the first assertion by lemma 2.1 (i). The second assertion follows by lemma 2.3.
 □ 

3. Convergence

The following theorem shows convergence of the iterates xm in algorithm 1 to the minimum-
norm solution x+ = T+y for data y ∈ D(T+) and our general choice x0  =  0. For an initial 
guess x0 �= 0, it can be readily shown that the iterates converge to T+y + PN (T)x0, where 
PN (T) is the orthogonal projector to the null space of T. The superscript δ has been dropped 
in this section in order to emphasize that data y ∈ D(T+) without perturbation is considered.

Theorem 3.1. The sequence of SINE iterates {xm} converges to T+ y  for all y ∈ D(T+).

Proof. We basically follow the lines of the proof of theorem 7.9 in [6] or [25], respec-
tively. If the iteration terminates after a finite number of steps then the corresponding iterate 
coincides with T+ y  according to lemma 2.4. We therefore assume, that the iteration does not 
terminate. Then we have the sorting

0 < λ1,m < λ2,m < · · · < λm,m � ‖T‖2

of the Ritz values according to lemma 2.5. From the representation of the residual rational 
function (10) in lemma 2.5, we obtain

|r′m(0)| = −r′m(0) =
m∑

j=1

1
λj,m

+
m − 1
γ

. (15)

Since rm/(λ− λ1,m) is in the space Πm−1/(1 + ·/γ)m−1, the orthogonality relation (13) yields

0 =

∫ ‖T‖2+

0
rm(λ)

rm(λ)

λ− λ1,m
λ d‖Fλy‖2

V Grimm Inverse Problems 36 (2020) 015008
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which gives

∫ λ1,m

0
r2

m(λ)
λ

λ1,m − λ
d‖Fλy‖2 =

∫ ‖T‖2+

λ1,m

r2
m(λ)

λ

λ− λ1,m
d‖Fλy‖2.

Since λ/(λ− λ1,m) � 1 for λ � λ1,m  we obtain

∫ λ1,m

0
r2

m(λ)
λ

λ1,m − λ
d‖Fλy‖2 �

∫ ‖T‖2+

λ1,m

r2
m(λ) d‖Fλy‖2.

And therefore,

‖y − Txm‖2 =

∫ λ1,m

0
r2

m(λ) d‖Fλy‖2 +

∫ ‖T‖2+

λ1,m

r2
m(λ) d‖Fλy‖2

�
∫ λ1,m

0
r2

m(λ)
(

1 +
λ

λ1,m − λ

)
d‖Fλy‖2.

Defining

ϕm(λ) := rm(λ)
( λ1,m

λ1,m − λ

) 1
2
, 0 � λ � λ1,m,

we obtain the estimate

‖y − Txm‖ � ‖Fλ1,mϕm(TT∗)y‖ � max
0�λ�λ1,m

√
λϕ2

m(λ) ‖Eλ1,m x+‖, (16)

where Eλ designates the spectral family of T*T. For the last inequality, we additionally as-
sumed y ∈ R(T), that is, y   =  Tx+ . For later use (e.g. lemma 4.1), we discuss the slightly more 
general function λνϕ2

m(λ), ν > 0. Standard calculations lead to

d
dλ

λνϕ2
m(λ)

= λν−1ϕ2
m(λ) ·


ν + λ


 1
λ1,m − λ

−
m∑

j=1

2
λj,m − λ

− 2 · m − 1
γ

· 1
1 + λ/γ




 .

Since 0νϕ2
m(0) = 0 = λν

1,mϕ
2
m(λm,1), there is at least one 0 < λ∗ < λm,1, such that 

(λνϕ2
m(λ))

′(λ∗) = 0 and such that the maximum is achieved at this point. Hence the equation

ν = λ∗




m∑
j=1

2
λj,m − λ∗ − 1

λ1,m − λ∗ + 2 · m − 1
γ

· 1
1 + λ∗/γ


 (17)

holds true. We need to distinguish two cases.
First case: γ � ‖T‖2. Then, we have 0 < λ∗ < λ1,m � ‖T‖2 � γ. Since λ∗ < γ , we have

2 · m − 1
γ

· 1
1 + λ∗/γ

�
m − 1
γ
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and hence, by (17),

ν � λ∗




m∑
j=1

1
λj,m

+
m − 1
γ


 = λ∗ (−r′m(0))

and therefore

λ∗ �
ν

−r′m(0)
=

ν

|r′m(0)|
.

Second case: γ < ‖T‖2. We set

p =
1
2

(
‖T‖2

γ
+ 1

)
> 1.

We then have

2 · m − 1
γ

· 1
1 + λ∗/γ

�
1
p
· m − 1

γ
.

We can therefore conclude, by (17),

ν � λ∗ · 1
p
·




m∑
j=1

1
λj,m

+
m − 1
γ


 = λ∗ · 1

p
· (−r′m(0)) ,

hence we have

λ∗ �
νp

−r′m(0)
=

νp
|r′m(0)|

with p =
1
2

(
‖T‖2

γ
+ 1

)
.

In both cases, we have

λ∗ � c · ν

|r′m(0)|
, c = max{1, p}.

Hence

sup
0�λ�λ1,m

λνϕ2
m(λ) � (λ∗)νϕ2

m(λ
∗) � (λ∗)ν � cννν |r′m(0)|−ν , ν > 0. (18)

We now relax the assumption on y  to y ∈ D(T+) = R(T)⊕R(T)⊥. Since R(T)⊥ = N (T∗), 
algorithm 1 produces the same iterates for y ∈ R(T)⊕R(T)⊥ and PR(T)y ∈ R(T), respec-
tively. Rewriting PR(T)y = Tx+ with x+ = T+y, we can apply (18) with ν = 1 and obtain

‖PR(T)y − Txm‖2 � ‖Fλ1,mϕm(TT∗)Tx+‖2 � c|r′m(0)|−1‖Eλ1,m x+‖2.

From here, a nearly literal copy of the corresponding part of the proof of theorem 7.9 in [6] 
will finish the proof. □ 
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4. SINE is an order-optimal regularisation method

We assume that

y ∈ R(T), ‖yδ − y‖ � δ,

where the noise level δ > 0 is known. Algorithm 1 is stopped with m = m(δ, yδ) according to 
the discrepancy principle (3). For the stopping index m = m(δ, yδ) � 1,

‖yδ − Txδm(δ,yδ)‖ � τδ < ‖yδ − Txδm(δ,yδ)−1‖ (19)

is satisfied (with an a priori chosen τ > 1), for m  =  0, only the first inequality holds true. 
The algorithm always terminates after a finite number of steps, which can be seen as follows. 
Lemma 4.1 also holds for µ = 0 and ρ = ‖x+‖. Hence

lim
m→∞

‖yδ − Txm‖ � δ + lim
m→∞

c|r′m(0)|−
1
2 ‖x+‖ = δ,

since |r′m(0)|−
1
2 → 0 (see (15)). The limit of the norm of the residuals exists, since the sequence 

is non-increasing due to lemma 2.3 or (7), respectively, and bounded from below by zero. 
Since τδ > δ , the discrepancy principle stops the algorithm after a finite number of steps. If 
the algorithm has a finite termination index κ, then qκ = 0. According to lemma 2.4 we have 
xδκ = T+yδ, in which case

‖yδ − Txδκ‖ = ‖(I − PR(T))y
δ‖ = ‖(I − PR(T))(y

δ − y)‖ � δ

and therefore m(δ, yδ) � κ.
The letter c designates a generic constant in the following lemmata and proofs.

Lemma 4.1. Let y   =  Tx+ with x+ ∈ Xµ,ρ. Then for 0 < m � κ,

‖yδ − Txδm‖ � δ + c|r′m(0)|−µ− 1
2 ρ.

Proof. The bound (16) proved in theorem 3.1 reads

‖yδ − Txδm‖ � ‖Fλ1,mϕm(TT∗)yδ‖.

As before ϕm is bounded by 1 in [0,λ1,m] and satisfies the equation (18) with ν = 2µ+ 1

λ2µ+1ϕ2
m(λ) � c2µ+1(2µ+ 1)2µ+1|r′m(0)|−2µ−1, 0 � λ � λ1,m.

If we insert these estimates and use y = T(T∗T)µw with ‖w‖ � ρ, we obtain

‖yδ − Txδm‖ � ‖Fλ1,mϕm(TT∗)(yδ − y)‖+ ‖Fλ1,mϕm(TT∗)y‖

� δ + ‖Eλ1,mϕm(T∗T)(T∗T)µ+
1
2 w‖

� δ + cµ+
1
2 (2µ+ 1)µ+

1
2 |r′m(0)|−µ− 1

2 ρ,

which gives the assertion. □ 

The following lemma and its proof are a nearly literal copy of lemma 7.11 in [6], only that the 
functions representing the iteration are rational instead of polynomial.
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Lemma 4.2. Assume that y   =  Tx+ with x+ ∈ Xµ,ρ. Then for 0 � m � κ,

‖xδm − x+‖ � c(ρ
1

2µ+1 δ
2µ

2µ+1
m +

√
|r′m(0)|δm),

where

δm := max{‖yδ − Txδm‖, δ}.

Proof. By the interpolation inequality (see [6], page 47) and xδ0 = 0,

‖x+‖ � ρ
1

2µ+1 ‖y‖
2µ

2µ+1 � ρ
1

2µ+1 (‖yδ‖+ ‖y − yδ‖)
2µ

2µ+1 � cρ
1

2µ+1 δ
2µ

2µ+1
0 .

We conclude that the assertion of the lemma is true for m  =  0 by keeping in mind that r′0 = 0. 
Now let 0 < m � κ. By assumption, we have

x+ = T+y = (T∗T)µw,

and we choose a positive ε such that

0 < ε � |r′m(0)|−1, (20)

which in particular implies that ε is smaller than or equal to λ1,m, see (15). Next, we introduce

xδm = gm(T∗T)T∗yδ , gm(λ) =
qm−1(λ)

(1 + λ/γ)m−1 ∈ Πm−1/(1 + ·/γ)m−1, (21)

where gm is the rational function that represents the mth SINE-iterate in Qm . We obtain

‖x+ − xδm‖ � ‖Eε(x+ − xδm)‖+ ‖(I − Eε)(x+ − xδm)‖
� ‖Eε(x+ − gm(T∗T)T∗y)‖+ ‖Eε(gm(T∗T)T∗y − xδm)‖

+ ε−
1
2 ‖y − Txδm‖

� ‖Eεrm(T∗T)(T∗T)µw‖+ ‖Eεgm(T∗T)T∗(y − yδ)‖

+ ε−
1
2 ‖y − Txδm‖

� ‖λµrm(λ)‖C[0,ε]ρ+ ‖λ 1
2 gm(λ)‖C[0,ε]δ + ε−

1
2 (‖yδ − Txδm‖+ δ).

From here, a literal copy of the proof of lemma 7.11 in [6] will do. The only difference is that 
rm is a rational function (see (10)) instead of a polynomial. □ 

Finally, we can prove our main theorem.

Theorem 4.3. If y ∈ R(T) and if SINE is stopped according to the discrepancy principle 
(19) with m(δ, yδ), then SINE is an order-optimal regularisation method, i.e. if T+y ∈ Xµ,ρ, 
then

‖T+y − xδm(δ,yδ)‖ � cρ
1

2µ+1 δ
2µ

2µ+1 .
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Proof. By the definition of the stopping index m(δ, yδ) by the discrepancy principle, one 
obtains

δm(δ,yδ) = max{‖yδ − Txδm(δ,yδ)‖, δ} � τδ.

With respect to lemma 4.2, it remains to estimate |r′m(δ,yδ)(0)|. For simplicity, we write m in-
stead of m(δ, yδ) in the following and assume, without loss of generality, that m � 2. (m  =  0 
follows from lemma 4.2 with r′0 = 0, m  =  1 refers to the space Q1 = K1 and theorem 7.12 in 
[6] applies). By lemma 4.1, we conclude that

τδ < ‖yδ − Txδm−1‖ � δ + c|r′m−1(0)|−µ− 1
2 ρ.

Since τ > 1, this implies that

|r′m−1(0)| � c
(ρ
δ

) 2
2µ+1

. (22)

It remains to estimate

πm := r′m−1(0)− r′m(0).

The rational function

um(λ) :=
rm−1(λ)− rm(λ)

λ
∈ Πm−1/(1 + ·/γ)m−1

satisfies

[um,λϕ] = 0 for every ϕ ∈ Πm−2/(1 + ·/γ)m−2

due to (13) in lemma 2.6. Moreover, by definition of πm and (15),

um(0) = πm >
1
γ
> 0. (23)

Substituting um = πm + λϕ, then we have ϕ ∈ Πm−2/(1 + ·/γ)m−1 and

[um, um] = πm[um, 1] + [um,λϕ]. (24)

We first show that

[um,λϕ] = [um, um − πm] = − 1
γ
[rm−1,

rm−1

λ
] +

1
γ
[rm,

rm

λ
]. (25)

Using (21), we obtain

um(λ) =
rm−1(λ)− rm(λ)

λ
=

qm−1(λ)

(1 + λ/γ)m−1 − qm−2(λ)

(1 + λ/γ)m−2

and

πm = um(0) = qm−1(0)− qm−2(0).
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Hence,

[um, um − πm] =

[
rm−1 − rm

λ
,λ

q̃m−2

(1 + λ/γ)m−1 − λ
q̃m−3

(1 + λ/γ)m−2

]
,

with

q̃m−2(λ) =
qm−1(λ)− qm−1(0)(1 + λ/γ)m−1

λ
∈ Πm−2,

q̃m−3(λ) =
qm−2(λ)− qm−2(0)(1 + λ/γ)m−2

λ

{
∈ Πm−3 for m � 3
= 0 for m = 2

.

Since
[

rm,
q̃m−2

(1 + λ/γ)m−1 − q̃m−3

(1 + λ/γ)m−2

]
= 0

and
[

rm−1,
q̃m−3

(1 + λ/γ)m−2

]
= 0

according to lemma 2.6, we have, again with lemma 2.6,

[um, um − πm] =

[
rm−1,

q̃m−2

(1 + λ/γ)m−1

]

=

[
rm−1,

q̃m−2

(1 + λ/γ)m−1 − q̃m−2

(1 + λ/γ)m−2

]

=

[
rm−1,−λ

γ
· q̃m−2

(1 + λ/γ)m−1

]

=

[
rm−1,−λ

γ
· qm−1 − qm−1(0)(1 + λ/γ)m−1

λ (1 + λ/γ)m−1

]

= − 1
γ
·
[

rm−1,
qm−1

(1 + λ/γ)m−1 − qm−1(0)
]

= − 1
γ
·
[

rm−1,
qm−1

(1 + λ/γ)m−1

]

= − 1
γ
·
[

rm−1,
1 − rm

λ

]
= − 1

γ
·
[

rm−1,
1
λ

]
+

1
γ
·
[
rm−1,

rm

λ

]
.

By lemma 2.6 and (21), we obtain

[rm−1,
1
λ
] = [rm−1,−gm−1 +

1
λ
] = [rm−1,

1
λ

rm−1]

and, similarly,

[rm−1,
rm

λ
] = [1 − λ

qm−2

(1 + λ/γ)m−2 ,
rm

λ
] = [1,

rm

λ
] = [

1
λ

, rm] = [
rm

λ
, rm]
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which finally gives (25). Due to

[um, 1] = [rm−1,
1
λ
]− [rm,

1
λ
]

and by lemma 2.6, we obtain analogously

[rj,
1
λ
] = [rj,−gj +

1
λ
] = [rj,

1
λ

rj], j = m − 1, m,

and therefore

[um, 1] = [rm−1,
1
λ

rm−1]− [rm,
1
λ

rm].
 (26)

Hence, by setting (25) and (26) in (24), we obtain

[um, um] =

(
πm − 1

γ

)
[rm−1,

1
λ

rm−1]−
(
πm − 1

γ

)
[rm,

1
λ

rm].
 (27)

From here, the proof continues literally as the proof of theorem 7.12 in [6]. □ 

5. Upper bounds for the stopping index

The number m(δ, yδ) of necessary iterations to meet the discrepancy principle reflects the effi-
ciency of the method. Due to construction, SINE will stop faster with respect to the discrep-
ancy principle than any other method that relies on the shift-and-invert Krylov subspace. Here, 
we will additionally show that SINE stops earlier than CGNE (or at the same iterate as CGNE, 
in the worst case) under the same assumptions as in section 4. For this discussion, we desig-
nate the stopping index for SINE with parameter γ > 0 as mγ(δ, yδ). When γ  tends to infinity, 
SINE turns into CGNE. Therefore we designate the stopping index of CGNE with m∞(δ, yδ).

Theorem 5.1. If y ∈ R(T) and γ > 0 then 0 � mγ(δ, yδ) � m∞(δ, yδ) < ∞.

Proof. For m � 1, by

min
r∈Πm/(1+·/γ)m−1

r(0)=1

∫ ‖T‖2+

0
r2(λ) d‖Fλyδ‖2 � min

p∈Πm
p(0)=1

∫ ‖T‖2+

0
p2(λ) d‖Fλyδ‖2,

and hence by (9), we have

min
x∈Qm

‖yδ − Tx‖ � min
x∈Km

‖yδ − Tx‖.

Due to the definition of CGNE (4) and SINE (7), it follows immediately that the norm of the 
residual of the mth-SINE iterate xSINE

m  is always smaller than or equal to the norm of the re-
sidual of the mth-CGNE iterate xCGNE

m , i.e.

‖yδ − TxSINE
m ‖ � ‖yδ − TxCGNE

m ‖

holds for all m � 0, which proves our theorem. (The case m  =  0 is trivial.) □ 
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Theorem 5.1 basically shows that all upper bounds that are known for CGNE also apply 
to SINE, but SINE might be faster. We explicitly state some corollaries. As a corollary of 
theorem 7.13 in [6], which is due to [24], and theorem 5.1 we obtain the following statement.

Corollary 5.2. If y ∈ R(T), γ ∈ R+ ∪ {∞}, and T+y ∈ Xµ,ρ, then

mγ(δ, yδ) � c
(ρ
δ

) 1
2µ+1

and this estimate is sharp in the sense that the exponent cannot be replaced by a smaller one 
and that the bound is supposed to hold true for all possible values of γ .

Theorems 7.14 and 7.15 in [6] also hold literally for SINE as simple corollaries of theorem 5.1

Figure 1. L2-error versus inverse noise δ−1.

Figure 2. Left-hand side SINE-regularisation attained in 2nd step, right-hand side 
CGNE-regularisation attained in 19th step.
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6. Illustration and discussion

We use the multiplication operator T : L2(0, 1) → L2(0, 1), Tf (t) := tf (t), in order to illustrate 
the theoretical findings. The range of T is not closed. For example, it can be readily seen that 
any constant function apart from zero is in the closure R(T) of the range R(T), but not in 
the range R(T) itself. We further have T*  =  T and T∗Tf (t) = t2f (t). For the fractional powers 
of the operator T*T, we obtain (T∗T)µf (t) = t2µf (t), µ > 0. We choose the exact solutions 
x+1 = t  and x+2 = t3 with right-hand sides y1 = Tx+1 = t2 and y2 = Tx+2 = t4, respectively. 
Then x+1 ∈ X1/2,1 and x+2 ∈ X3/2,1. We use the perturbed right-hand sides yδi = yi + δ, i = 1, 2, 
with ‖yδi − yi‖ = δ. The linear systems with the perturbed right-hand sides yδi , i = 1, 2, do 
not have a solution and a regularisation is necessary. We now use SINE to compute regu-
larised solutions, where the iteration is stopped according to the discrepancy principle with 
τ = 1001/1000. In figure 1, the L2-norm of the error of the computed regularisation is plot-
ted versus δ−1. The red circle-marked line belongs to the error with respect to x+1 = t  and 
the green, square-marked line belongs to the error with respect to x+2 = t3. As predicted by 
theorem 4.3, the convergence to the exact solution with decreasing perturbation δ is at least 
δ

1
2 or δ

3
2, respectively, which are indicated by the gray lines. The operator is simple enough 

such that all computations could be conducted exactly by using the computer algebra system 
Maple. Due to construction, SINE will stop faster with respect to the discrepancy principle 
than any other method computing regularisations in the shift-and-invert Krylov subspace Qm . 
That is, where these methods have been used successfully, SINE should also be a very good 
choice. That SINE might also be useful with respect to regularisation schemes that do not use 
the shift-and-invert Krylov subspace Qm , will be illustrated by another simple experiment 
where we compare SINE and CGNE. For γ = 1

1000  and x+   =  t, yδ = t2 + δ, δ = 1
1000, SINE 

stops after two steps with

x2 = − 21
5000

t3 +
1507
1500

t = c1T∗yδ + c2(1 + T∗T/γ)−1T∗yδ ∈ Q2,

c1 = −21/5000, c2 = 15 070 063/15 000, whereas CGNE produces a polynomial of degree 
39 after 19 steps. Both methods have been stopped according to the discrepancy principle 
with τ = 1001

1000. In figure 2, it can be seen that the SINE regularisation on the left-hand side is 
qualitatively better than the CGNE regularisation on the right-hand side. The experiment also 
shows that the stopping index of SINE can be significantly smaller than the stopping index of 
CGNE. With the designations of section 5, we have

mγ(δ, yδ) = 2 < 19 = m∞(δ, yδ).

Altogether, the theory and the experiment suggest that SINE is a valid order-optimal regu-
larisation scheme. It is also hoped that the given analysis inspires further research on the 
regularisation properties of rational Krylov subspace methods. For example, it is immediately 
clear that theorem 5.1 carries over to rational Krylov subspaces with arbitrary negative real 
poles, when the method is defined analogous to (7). Even choosing negative poles at random 
can only improve on CGNE with respect to the stopping index. These more general rational 
Krylov subspace methods might also be seen as accelerations of the nonstationary iterated 
Tikhonov iteration (e.g. [16]) or of method (ii) in example 1.1 with varying step sizes. While 
there is only one polynomial Krylov subspace, rational Krylov subspaces inspire a wide range 
of methods that might be adapted to the needs at hand. As a possible application, rational 
Krylov subspaces have been successfully used to accelerate computations related to seismic 
imaging (e.g. [4, 19, 31, 32]), which is known to be an ill-posed inverse problem.
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