Structure Identification of Dynamical Takagi-Sugeno
Fuzzy Models by Using LPV Techniques

Matthias Kahl and Andreas Kroll

Abstract In this paper the problem of order selection for nonlinear dynamical
Takagi-Sugeno (TS) fuzzy models is investigated. The problem is solved by
formulating the TS model in its Linear Parameter Varying (LPV) form and
applying a recently proposed Regularized Least Squares Support Vector Machine
(R-LSSVM) technique for LPV models. In contrast to parametric identification
approaches, this non-parametric method enables the selection of the model order
without specifying the scheduling dependencies of the model coefficients. Once
the correct model order is found, a parametric TS model can be re-estimated
by standard methods. Different re-estimation approaches are proposed. The
approaches are illustrated in a numerical example.

1 Introduction
Takagi-Sugeno fuzzy models (Takagi and Sugeno, 1985) which permit to

approximate nonlinear systems by a weighted superposition of local linear
models have been successfully utilized in many industrial applications. Besides
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their universal approximation property, their structure with local models permits
the transfer of linear controller-design methods to a nonlinear framework, e.g. by
gain-scheduling or parallel distributed controllers (Wang et al, 1995). In order
to obtain a model which performs well for the considered task an appropriate
model structure has to be chosen. In data-driven modeling of dynamical systems
(system identification), this involves the choice of relevant physical variables and
the individual time lags of each variable as well as the choice of the model terms
describing the functional relationship between the system input and output,
resulting in a large set of potential model candidates. The structure selection
problem of TS models consists of 3 parts:

i) The choice of appropriate scheduling and input variables,

ii) the partitioning of the scheduling space by an appropriate parameterization
of the fuzzy basis functions of a predefined type as well as the choice of
the number of local models, and

iii) the selection of a suitable local model structure.

While the choice of appropriate system inputs is mostly restricted by the model-
ing exercise or results from prior knowledge, the selection of the scheduling
variables may be more challenging as it mainly determines the nonlinear behav-
ior of the model. As the output of a TS model is nonlinear in the parameters of
its basis functions, a nonlinear optimization problem has to be solved in order
to partition the scheduling space. Alternatively, heuristic construction strategies
were proposed like grid partitioning, data-point-based methods, clustering-
based approaches or heuristic tree construction algorithms like LOLIMOT with
individual advantages and drawbacks (see, e.g., Nelles, 2001). Once the param-
eterization of the membership functions is known, the remaining optimization
problem regarding the local model parameters 6; 1 is linear in the parameters
for local linear regression models. In this contribution, autoregressive models
with exogenous input (ARX) are used as local model class in order to model
nonlinear dynamical systems. Hence, the choice of the local model structure
coincides with the choice of the dynamical order of the considered system.

In order to find a suitable local model structure, a higher-level wrapper
approach can be used for a given choice of the partitioning strategy (see Kahl
et al, 2015 for an overview of different structure selection approaches in the
system identification context), which assesses the usefulness of a considered
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local regressor subset by means of the approximation or generalization properties
of a model. This is done by comparing models, which are built of different
regressor subsets and can be extended easily to the selection of scheduling
variables and hyper-parameters. However, when every possible subset has to be
evaluated by exhaustive search, the resulting high-dimensional combinatorial
optimization problem may be intractable and greedy strategies like stepwise
selection have to be used (see, e.g., Hong and Harris, 2001; Belz et al, 2017).
Alternatively, with the aim of sparse local models, the original combinatorial
optimization problem can be approximated by lasso like convex relaxation. For
the class of TS models also a grouped lasso regularization was used by Luo et al
(2014) in order to force sparseness in the number of local models by exploiting
the block-structured representation of TS models. With the same aim, Lughofer
and Kindermann (2010) introduced a rule weighting, i.e. the inclusion of an
additional weighting factor into the fuzzy basis functions, and forced it to zero by
incorporating a /1 penalty into a nonlinear optimization problem. Additionally,
they applied a sparse estimator for local parameter estimation.

All approaches have in common that the partitioning and thereby the fuzzy
basis functions have to be determined in advance or in a successive manner
and are, therefore, biased by the individually chosen partitioning strategy.
Recently, Piga and Toth (2013) and Mejari et al (2016) developed regularization
approaches based on least squares support vector machines allowing to determine
the order of LPV-ARX models without the a priori specification of the scheduling
dependencies of the model coeflicients. The approach from Mejari et al (2016)
is used in this contribution to solve the order determination problem iii) for
TS fuzzy models formulated in its LPV form to avoid solving of a nonlinear
optimization problem to find a suitable partitioning of the TS model.

2 Dynamical TS-fuzzy Model

2.1 Identification Problem

A Takagi-Sugeno fuzzy model consists of ¢ € N, superposed local models
Vi(k) = fi(0i1m, @(k)) : R — R weighted by their corresponding fuzzy basis
functions ¢;(z(k)) : R"= — [0, 1], depending on the n, scheduling variables
z(k) = [z1(k) ... zn (k)]T € R"=, respectively:
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(k) = ¢i(z(k)) - 5i(k), (1)

i=1

with the discrete time k. As local model type ARX models of the form
n
Yi(k) = Z Oir.m - @r (k) (2)
r=1

are considered in this paper. ¢, (k) is the r-th element of the vector
p(k) =[=y(k = 1)... = y(k = ny),u(k =T7) ...u(k =n, =T-)]",  (3)
n=ny+n,+1,0;, 1M is the r-th element of the local parameter vector
Oiim = [0iy,0iu]l" €R", “4)

and T, is a potential dead time. 6; , € R"™ is the parameter vector cor-
responding to the lagged values of the measured output signal y(k) € R
of the system and 6;, € R™ corresponds to the lagged values of the
measured input signal u(k) € R.

The fuzzy basis functions ¢;(z(k)) define a validity region of the correspond-
ing local models. The basis functions are defined by

wi(z(k))

_ 5
< (k) ©

¢i(z(k)) =

with the membership functions (MF) u;(z(k)). Typical types of member-
ship functions are Gaussian, trapezoidal or clustering-based ones (see, e.g.,
Kroll, 1996; Babuska, 1998). Trapezoidal membership functions have the
advantage of easier interpretation and local support. However, they suffer from
the curse of dimensionality as they are univariate and can be applied axis
aligned only. Multivariate Gaussian or clustering-based membership functions
can permit a better adjustment of the partitioning for multivariate problems,
such that the identification approach used in this contribution can be easily
scaled to higher dimensions of the scheduling space. Furthermore, they can
directly be obtained from clustering. But, they are harder to interpret and have
no local support. In order to be analogous to the LSSVM approach, in this
contribution, Gaussian membership functions are used
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k) —vi Il
r(2(K)) = exp (—%”Z()—ZV”Z) , ©)

0;

where v; € Rz represents the partition’s prototype and o; € R, specifies the
width of the Gaussian function aggregated in the parameter vector 8; M, so that
wi(z(k)) = pi (8 mr, 2(k)).

For given 6, mp, i = 1,...,c, the local model parameters 6; ;v can be
estimated by introducing y = [y(1)...y(N)]T e RV, o = [¢(1)...o(N)]" €
RNV*n " and the extended regression matrix A = [[j¢...T.@]" € RNVxcn
with I'; = diag(¢;(z(1)) ... ¢:(z(N))) € RV*N for N € N observations and
applying ordinary least squares:

fim = argmin || y — Abpv |13, @)
OLm
with 0, = [QEM,I . QEM’C] € R™“. However, for an unknown partitioning of

the scheduling space, the nonlinear optimization problem

N

. P
argmin Z (}’(k) - Z ¢i(z(k), OmF) - Ji(k,0;Lm) | » ®)

OmE, OM -y i=1

in case of a quadratic cost function, has to be solved. Especially, in combination
with a model-based structure selection approach one may have an issue with
local minima or this can lead to an intractable problem due to computational
complexity. In this contribution, the non-parametric approach described in
Section 3.1 is used in order to determine the local structure of a TS model while
avoiding such problems.

2.2 Analogies Between TS and LPV Models

According to Mejari et al (2016), an LPV-ARX model can be described by

$0) = > 8, (p(0)) - x; (k). ©)

J=1
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with ng = n, + ny, + 1, the scheduling variable p(k) € R"», and ¢;(p(k)) and
xj(k) being the j-th component of

d(k) =lai(p(k)) ... an,(p(K), bo(p(k))...bn,(p(k)]T  (10)

and

x(k) =[y(k=1)...y(k —ng),u(k)...u(k —np)]", (11)

respectively. It is assumed that the coefficient functions ¢;(p(k)) of the LPV
model can be written as

d(p(k) =pj - ¢;(p(k),j=1,....n, (12)

with the unknown parameter vector p; € R"™ and the feature maps ¢ ; mapping
p(k) to the ng-dimensional feature space. In this way, and by including (12) in
(9), the LPV model can be written in linear regression form:

$(k) =" p] - 8 (p(K)) - x;(k). (13)
j=1

It is obvious that the scheduling variable of a TS-fuzzy system z(k) and of an
LPV system p(k) can be viewed as equal. Furthermore, when assuming an
identical structure of all local models for the TS model, also ¢(k) = x(k),r = J,
and n = ng can be stated. By further incorporating (2) in (1):

$(k) = D" ¢ilz(k)) - 0w - o (K), (14)

i=1 r=1

and introducing the coefficient functions

0, (z(k)) = Z #i(z(k)) - 0;r,LM, (15)

i=1

the TS-fuzzy model can be stated as a special case of the LPV-ARX model (9):

(k) = " 0 (2(K)) - ¢, (K), (16)
r=1
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where the same fuzzy basis function for each regressor is used to parametrize
the coefficient functions.

3 Identification Approach

3.1 LPV Model Estimation Using R-LSSVM

In order to select the order and dead time of the local models of a TS model
characterized by ny, n,, and T; the Regularized Least Squares Support Vector
Machine approach (R-LSSVM) introduced in Mejari et al (2016) is used.
The approach is based on the method developed in Toth et al (2011) and
incorporates an additional regularization step in order to select the dynamical
order of an LPV model.

The approach consists of 3 steps. In a first step, the approach proposed by Toth
et al (2011) is used to estimate the coefficient functions of an over-parametrized
LPV model in a non-parametric manner. Starting from the LSSVM formulation
for the estimation of the LPV model (13):

1 & 1
argmin 7 (p, e) = 3 Zp}pj + > Z ez(k)
p.e = =
’;‘g k=l (17)
stoe(k) = y(k) = D pl e (p(R))x;(k),
j=1

with 4 € R, being the regularization parameter of the primal problem, the
Lagrangian dual problem associated with (17) is constructed:

N ng
Lip,e,a) = I(p.e) = Y ax |e(k) = y(k) + Y p];(p())x;(K) |, (18)
k=1 Jj=1

with a; € R being the Lagrangian multipliers. In the LSSVM setting, the
kernel trick can be applied which enables the non-parametric description of
the scheduling dependencies of the model coefficient functions. For a detailed
description of the solution of (18), see Toth et al (2011). The coefficient functions
to be estimated are given as
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N
8;()=p]0;() = > ak;(p(k), )x;(k), (19)
k=1

where K; is a positive definite kernel function. As stated in Toth et al
(2011) or Mejari et al (2016), a common choice of the kernel function is
the Radial Basis Function (RBF):

(20)

(oan
J

k) — 2
K;(p(k), p(m)) = exp (_ll Pt —pim) ||2)’

with the hyper-parameter o; specifying its width. The choice of the kernel
defines the class of dependencies that can be represented, and thus any kernel
function can be chosen if it matches the dependencies of the coefficient functions
of the system under consideration on the scheduling variables. But, as it is
assumed that no prior knowledge of these dependencies is available in the
considered setup, a general purpose kernel like the Gaussian kernel is used
which is capable of reproducing a wide range of smooth nonlinear functions.

In order to shrink the previously estimated coefficient functions 9; corre-
sponding to insignificant lagged values of the input and the output, that is the
elements of x, towards zero, in the second step, the following regularized convex
optimization problem is solved

2
N

argmin »" | y(k) = > Wi Z(p(R)D;(p(k)x; (k) |+ D 1 wj lleor 21
2

(w;)5 k=1 J j=1

where {(p(k)) is a vector of monomials in p(k) which has to be specified
a priori. w; € R™ is a vector of unknown parameters, and y € R, is a
regularization parameter. The term

w1 L (p(k);(p(k)) = 9;(p(k)) (22)

represents the scaled versions of the original coefficient functions introduced for
the regularization. The regularization term y Z?jj | Wj |lco i.€. the sum of the
infinity norms (/1 ), forces the vector w; either to be equal to zero or full.

As the /1 o-norm induces a bias in the estimated coefficient functions,
in a third step, the non-zero coefficient functions are re-estimated with the



Structure Identification of Dynamical TS Models 9

approach proposed in Toth et al (2011), that is minimizing (18), in order to
obtain unbiased estimates.

3.2 Re-Estimation of a TS Model

As the parameter vectors p; of the parametric LPV model (13), which we
think of as TS model (14), are not accessible in the LSSVM framework, a
re-estimation is necessary in order to obtain a parametric system description.
Note, that although similar membership functions for TS models and kernel
functions for the LSSVM approach are considered in this contribution, only
an approximate reconstruction of the TS model is possible as the TS model
uses far less parameters and normalized basis functions. Hence, the R-LSSVM
approach is viewed as a pre-processing step for order selection of a TS model to
avoid solving a non-convex optimization problem potentially multiple times.
Subsequently, the extracted information of the dependency structure of the
underlying process, that is the dynamical order, can be further exploited for TS
modeling. For this purpose, 3 approaches are investigated in the following.

Approach 1 (Standard Methods)

Once the model order is found by applying the R-LSSVM approach, a TS
model can be identified by standard methods. In this contribution, the following
approaches are applied. In a first step, a fuzzy c-means clustering with multiple
initializations is used to determine an appropriate partitioning of the scheduling
space where the prototypes are used as centers of the membership functions (6).
Afterwards, the local model parameters 6y are estimated using (7). In a third
step, the obtained model is used as initialization for a nonlinear optimization of (8)
where the prototypes and local model parameters are optimized simultaneously
regarding the simulation performance of the model. In order to solve (8) the
Matlab function Isqnonlin is used which by default uses a Trust-Region Reflective
algorithm. In this contribution, the scheduling variable z(k), the number of local
models ¢, and o; are supposed to be known in order to keep the optimization
problem simple. For the clustering, the fuzziness parameter v € R>! is chosen
to be v = 1.2 following the recommendations in Kroll (2011).
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Approach 2 (Pre-Filtering with LPV Model)

In order to further exploit the results from the R-LSSVM approach, the per-
formance of a TS model which is identified by the aforementioned tech-
niques is examined. But instead of optimizing (7) the following optimization
problem is solved:

argmin || $pv — AbLm 15, (23)
OLm

where $1pv = [J1pv(1)...9pv(N)]T € RV is the vector of the simulated
output of the LPV model identified by the R-LSSVM approach. Also, the system
output y(k) in (8) is replaced by 1 py for the subsequent nonlinear optimization.
In this way, a pre-filtering of the estimation data with the non-parametric LPV
model is performed yielding a pre-conditioned training-data set with reduced
noise in order to obtain better estimates.

Approach 3 (Coefficient-function-based Cost Function)

In a third approach, a TS model is determined by minimizing the following
nonlinear cost function:

argmin ”19, -0, (bur, HLM)”i . (24)
OmF, OLm

That is, instead of minimizing the squared distance between prediction and
measured output, the parametric TS model is determined such that the squared
distance between the non-parametric estimation of the coefficient functions
obtained by the LSSVM approach and the coefficient functions of a parametric
TS model is minimized.

4 Simulation Example

In order to evaluate the performance of the R-LSSVM approach in the TS-fuzzy
framework and appraise the proposed re-estimation procedures to obtain a T'S
model, a slightly modified version of the case study of Gringard and Kroll
(2017) is considered. The test system is a TS-fuzzy system consisting of ¢ = 5
superposed second-order lag elements with input-dependent attenuation and
amplification. Gaussian membership functions like (6) are used for partitioning.
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The prototypes are chosen to be {v;} = {-2;—1;0; 1;2} and the parameter
specifying the width of each Gaussian is o; = 0.3. The i-th local model is
defined by the following difference equation:

yW(k) = (2 - 2D;woTy)y° (k — 1) = (2D;woTs — wiT2 = 1)y°(k - 2)
N e’
gi,l,LM gi,Z,LM
+ Kia)(z)Tszu(k -2),
N——
6;31M

(25)

with the sample time Ty = 10ms, wo = 50rad/s, {K;} = {6;1.5;3;7.5;4.5},
and {D;} =~ {0.45;0.71;0.2; 0.58;0.32}. The global system is given by the
following NARX process:

Y (k) = f(p(k),z(k)) +e(k), (26)

where (k)T = [y0(k—1), y*(k=2), u(k-2)],z(k) = u(k-2), and the Gaussian
distributed additive zero-mean white noise e (k). The resultant test system shows
nonlinear behavior in the static as well as the dynamic part. Note, that the
scheduling space is chosen to be one-dimensional for the sake of simplicity. But,
the approaches are also applicable to higher dimensions of z.

Five different models are estimated from a training-data set of length N = 1000
and tested on a separate noise-free validation data set of length Ny = 1000
in 50 Monte-Carlo runs with different realizations of the noise and the input.
The input is chosen to be a uniformly distributed white noise process u(k) ~
U(-5,5). Two Monte-Carlo studies are performed. In the first one, the average
of Signal-to-Noise Ratio (SNR) over the 50 Monte-Carlo runs is equal to 18 dB
and in the second one equal to 12 dB, corresponding to a standard deviation of
the noise of 0.5 and 1, respectively. The SNR is defined as

27)

N 2
SNR:IOdB-loglo( L=t (0 (k) )

Sasi (k) = yo(k)?

with yo(k) being the noise-free system output. The models are evaluated in a
simulation which means that the output is only based on current inputs and
the previous predictions of the output. To assess the generated models, the
Best Fit Rate (BFR) is used:
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S (v(k) = $(k))? .
S (k) = 3(k))*

BFR =100% - max {1 — J (28)

The five estimated models to be compared are:

Mipy: LPV model estimated with the approach described in Section 3.1.

Mrsy: Over-parametrized TS model with ny, = n, = 5 estimated with
approach 1 described in Section 3.2.

Mrtsy: TS model with the correct dynamical order as it should result from
M py estimated with approach 1.

Mrts3: TS model with the correct dynamical order estimated with approach 2.

Mrtss: TS model with the correct dynamical order estimated with approach 3.

4.1 Order Selection Results

For the identification of the LPV model, also an over-parametrized model with
ng = np =5 is considered. o; of all RBF kernels (20) are kept equal. The values
of the hyper-parameters are determined via a combination of trial and error
and grid search optimizing the BFR on an independent calibration data set for
the two noise levels and are fixed in the Monte-Carlo studies. For 18 dB, the
obtained values are o = 1.0, 1 = 1001, and y = 1.1 - 10* yielding the correct
dynamical order and dead time in 43 of the 50 Monte-Carlo runs. For 12 dB,
only v is adjusted to y = 2.0 - 10* and o and A are kept the same as for 18 dB
yielding the correct dynamical order and dead time in 39 out of 50 runs.

4.2 LPV and TS Re-Estimation Results

The obtained LPV models My py are compared to the parametric models Mts;
to Mts4. It has to be mentioned that in all cases the scheduling variable is
assumed to be known. Furthermore, all hyper-parameters for the TS modeling
are pre-fixed as they were outside the scope of this investigation (that is v = 1.2,
c¢=5,and o =0.3).
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Figure 1: Box plots of the BFR on the validation data set of the five estimated models for an SNR of
18 dB (left) and 12 dB (right).

Figure 1 shows box plots of the BFR on the validation data sets of the five
estimated models in the case the correct model structure was found by the
R-LSSVM approach. Further results are listed in Table 1. It can be seen that
the LPV model shows good results for both noise levels due to the inherent /,
regularization preventing overfitting. The over-parametrized TS model Mg
clearly suffers from overfitting, whereas the TS model with the correct dynamical
order Mts> shows comparable results to the LPV model. Although, a slight
decrease of the median and a higher variation of the goodness of fit can be seen
for lower SNR, probably, due to the sensitivity of the nonlinear optimization
to local minima in this example. An improvement of the results is obtained by
further exploiting the LSSVM results by approach 2 and 3. Especially, applying
the pre-filtering approach yields the best results in this simulation example. The
average fit can be improved by approach 3. But the variation of the results is
higher as for the LSSVM model. In practice, a combination of the proposed
re-estimation approaches may be promising.

Table 1: Performance comparison of selected models.

Model dim(6) average mean BFR std BFR mean BFR std BFR
CPUsec @ 18dB[%] @ 18dB[%] @ 12dB[%] @ 12dB [%]
M py N 3.6 94.9 0.6 90.9 1.1
Mrs; 55+5 181.3 90.4 1.7 77.4 7.0
Mrs, 15+5 35.8 94.7 1.5 89.1 2.8
Mrts3 15+5 19.5 96.8 1.3 94.4 1.5

Mrsy 15+5 0.4 95.0 22 924 23
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Regarding the computational effort, it has to be mentioned that 1 run of
the R-LSSVM approach requires 3.6s. The nonlinear optimization of the
TS model Mg, with the correct dynamical order requires 35.8 s whereas it
takes 181.3 s for the over-parametrized model Mrts;. Especially, it is obvious
that the R-LSSVM approach may also reduce the computational burden for
dynamical order selection by solving a surrogate problem compared to a wrapper
approach for dynamical order selection, where a nonlinear optimization would
be performed multiple times.

4.3 Discussion on Generalizability to Real-World Applications

In this example, the applicability of the R-LSSVM approach in the TS framework
and the potential of re-estimation approaches was evaluated. The test system was
chosen out of the set defined by the model class in order to evaluate the ability of
the approach to identify the true system structure. In a real world application, the
system will hardly be within the model class. But, the regularization approach for
(local) order selection used in this contribution simply requires an estimate of the
coefficient functions. Thus, the characteristics of the system under consideration
should be at least smooth for both, the TS model and the LSSVM model,
offering a wide range of application in real modeling tasks. The application
to systems with multiple inputs, e.g., like the combustion engine considered
in Kahl et al (2015), is straight forward, simply by augmenting the regression
vector ¢ appropriately. However, in order to deal with the large number of
training samples (N = 46000) in this example, a modification of the LSSVM,
like fixed size LSSVM (De Brabanter et al, 2010), has to be used. Regarding
the noise model, the ARX assumption might not be valid for the data-generating
system. If e.g. the disturbance in a technical systems stems from measurement
noise, the output error (OE) assumption would be more realistically. However,
in this case, the optimization problems become nonlinear due to the recursion
of the predicted output values leaving the convex framework.
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5 Conclusions and Outlook

In this contribution, the dynamical order selection problem of a Takagi-Sugeno
fuzzy model is solved by applying recently proposed LSSVM techniques for
LPV models. It is shown that a TS model can be viewed as a special case of
LPV models and that the order of the local models can be selected by using
the R-LSSVM approach without prior specification of the antecedent part of
the fuzzy model. This is done by regularizing the complete coefficient function
describing the parameter dependencies on the scheduling variables instead of
shrinking individual local parameters towards zero. In this way, the nonlinear
parameter dependencies of the system can be estimated in a non-parametric but
convex setting and solving of a nonlinear optimization problem to find a suitable
partitioning of a TS model is avoided. Especially, for dynamical order selection,
this is an important aspect. The reported simulation example has shown the
capability of the R-LSSVM approach to find the correct dynamical order in
most cases also for high noise levels. Additionally, the re-estimation step to
obtain a parametrized T'S model is found to be more accurate by pre-filtering
the estimation data with the obtained LPV model.

The current investigations are made under the assumption of known scheduling
variables and examined for a single input single output system. The extension to
a system with multiple inputs is straightforward and will be investigated in a real
world case study. In order to deal with an over-parametrized scheduling space
the LSSVM framework has to be extended with a regularization step shrinking
the derivatives of the coefficient functions with respect to the scheduling
variables to zero which will be investigated in future work in the context of
TS modeling. Furthermore, the combination of the proposed re-estimation
approaches will be investigated.

Acknowledgements The authors thank the reviewers for their careful reading and their insightful
comments and suggestions to improve this contribution.

References
Babuska R (1998) Fuzzy Modelling for Control, International Series in Intelligent

Technologies, Vol. 12. Springer Science + Business Media B.V, Dordrecht (The
Netherlands). DOI: 10.1007/978-94-011-4868-9.


https://doi.org/10.1007/978-94-011-4868-9

16 Matthias Kahl and Andreas Kroll

Belz J, Nelles O, Schwingshackl D, Rehrl J, Horn M (2017) Order Determination and
Input Selection with Local Model Networks. IFAC-PapersOnLine 50(1):7327-7332,
Elsevier B.V. DOI: 10.1016/j.ifacol.2017.08.1475.

De Brabanter K, De Brabanter J, Suykens JA, De Moor B (2010) Optimized Fixed-
size Kernel Models for Large Data Sets. Computational Statistics & Data Analy-
sis 54(6):1484—1504, Elsevier B.V. DOI: 10.1016/j.csda.2010.01.024.

Gringard M, Kroll A (2017) On Optimal Offline Experiment Design for the Iden-
tification of Dynamic TS Models: Multi-step Signals for Uncertainty-minimal
Consequent Parameters. In: Proceedings of the 27th Workshop Computational In-
telligence, Hoffmann F, Hiillermeier E, Mikut R (eds), KIT Scientific Publishing,
Karlsruhe (Germany), pp. 117-138. DOI: 10.5445/KSP/1000074341.

Hong X, Harris CJ (2001) Variable Selection Algorithm for the Construction of
MIMO Operating Point Dependent Neurofuzzy Networks. IEEE Transactions on
Fuzzy Systems 9(1):88-101, Institute of Electrical and Electronics Engineers (IEEE).
DOI: 10.1109/91.917117.

Kahl M, Kroll A, Kistner R, Sofsky M (2015) Application of Model Selec-
tion Methods for the Identification of Dynamic Boost Pressure Model. IFAC-
PapersOnLine 48(25):829-834, Elsevier B.V. DOI: 10.1016/j.ifacol.2015.12.232.

Kroll A (1996) Identification of Functional Fuzzy Models Using Multidimensional
Reference Fuzzy Sets. Fuzzy Sets and Systems 80(2):149-158.

Kroll A (2011) On Choosing the Fuzziness Parameter for Identifying TS Models with
Multidimensional Membership Functions. Journal of Artificial Intelligence and Soft
Computing Research 1(4):283-300.

Lughofer E, Kindermann S (2010) SparseFIS: Data-driven Learning of Fuzzy Systems
with Sparsity Constraints. IEEE Transactions on Fuzzy Systems 18(2):396-411,
Institute of Electrical and Electronics Engineers (IEEE). DOI: 10.1109/TFUZZ.2010.
2042960.

LuoM, SunF, Liu H, Li Z (2014) A Novel T-S Fuzzy Systems Identification with Block
Structured Sparse Representation. Journal of the Franklin Institute 351(7):3508-3523,
Elsevier B.V. DOI: 10.1016/j.jfranklin.2013.05.008.

Mejari M, Piga D, Bemporad A (2016) Regularized Least Square Support Vector
Machines for Order and Structure Selection of LPV-ARX Models. In: Proceedings

of the 15th European Control Conference, Institute of Electrical and Electronics
Engineers (IEEE), New York (USA), pp. 1649-1654. DOI: 10.1109/ECC.2016.
7810527.

Nelles O (2001) Nonlinear System Identification: From Classical Approaches to Neural
Networks and Fuzzy Models, Ist edn. Springer, Berlin, Heidelberg (Germany).
DOI: 10.1007/978-3-662-04323-3.


https://doi.org/10.1016/j.ifacol.2017.08.1475
https://doi.org/10.1016/j.csda.2010.01.024
https://doi.org/10.5445/KSP/1000074341
https://doi.org/10.1109/91.917117
https://doi.org/10.1016/j.ifacol.2015.12.232
https://doi.org/10.1109/TFUZZ.2010.2042960
https://doi.org/10.1109/TFUZZ.2010.2042960
https://doi.org/10.1016/j.jfranklin.2013.05.008
https://doi.org/10.1109/ECC.2016.7810527
https://doi.org/10.1109/ECC.2016.7810527
https://doi.org/10.1007/978-3-662-04323-3

Structure Identification of Dynamical TS Models 17

Piga D, Toth R (2013) LPV Model Order Selection in an LS-SVM Setting. In:
Proceedings of the 52nd IEEE Conference on Decision and Control, Institute of
Electrical and Electronics Engineers (IEEE), New York (USA), pp. 4128-4133.
DOI: 10.1109/CDC.2013.6760522.

Takagi T, Sugeno M (1985) Fuzzy Identification of Systems and its Application
to Modelling and Control. IEEE Transactions on Systems, Man, and Cybernet-
ics, pp. 116-132, Institute of Electrical and Electronics Engineers (IEEE), New
York (USA). DOI: 10.1109/TSMC.1985.6313399.

Toth R, Laurain V, Zheng WX, Poolla K (2011) Model Structure Learning: A Support
Vector Machine Approach for LPV Linear-regression Models. In: Proceedings of
the 50th IEEE Conference on Decision and Control and European Control Confer-
ence, Institute of Electrical and Electronics Engineers (IEEE), New York (USA),
pp- 3129-3197. DOI: 10.1109/CDC.2011.6160564.

Wang HO, Tanaka K, Griffin M (1995) Parallel Distributed Compensation of Nonlinear
Systems by Takagi-Sugeno Fuzzy Model. In: Proceedings of the IEEE International
Conference on Fuzzy Systems, Institute of Electrical and Electronics Engineers
(IEEE), New York (USA), pp. 531-538. DOI: 10.1109/FUZZY.1995.409737.


https://doi.org/10.1109/CDC.2013.6760522
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1109/CDC.2011.6160564
https://doi.org/10.1109/FUZZY.1995.409737

	Structure Identification of Dynamical Takagi-Sugeno Fuzzy Models by Using LPV Techniques

